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Abstract
Multiple testing is a commonly used tool in modern data science. Sometimes, the hypotheses
are embedded in a space; the distances between the hypotheses reflect their co-null/co-
alternative patterns. Properly incorporating the distance information in testing will boost
testing power. Hence, we developed a new multiple testing framework named Distance
Assisted Recursive Testing (DART). DART features in joint artificial intelligence (AI) and
statistics modeling. It has two stages. The first stage uses AI models to construct an
aggregation tree that reflects the distance information. The second stage uses statistical
models to embed the testing on the tree and control the false discovery rate. Theoretical
analysis and numerical experiments demonstrated that DART generates valid, robust,
and powerful results. We applied DART to a clinical trial in the allogeneic stem cell
transplantation study to identify the gut microbiota whose abundance was impacted by
post-transplant care.
Keywords: multiple testing, hierarchical testing, aggregation tree, false discovery rate,
auxiliary information

1. Introduction

Multiple testing is commonly used to discover important features in modern data science.
Each feature represents a hypothesis: the important features correspond to alternative
hypotheses, and the rest to null hypotheses. A rejected hypothesis corresponds to an
identified feature. The goal is to discover the alternative hypotheses with a controlled false
discovery rate (FDR), the expected number of false discoveries over the total number of
discoveries.

Under many circumstances, the hypotheses are coupled with other attributes in a metric
space with a known pairwise distance. For example, previous brain studies have shown that
the anatomical distance between the neurons can partially inform brain activities and neurons’

©2023 Xuechan Li, Anthony D. Sung, and Jichun Xie.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v24/22-1131.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-1131.html


Li, Sung and Xie

co-functioning patterns (Alexander-Bloch et al., 2013; Perinelli et al., 2019; Kristanto et al.,
2020). For another example, the polygenic distance between amplicon sequence variants
(ASVs) often informs their functional similarity and survival (Chen et al., 2012; Garcia et al.,
2014; Martiny et al., 2015). In these examples, if we form neurons or ASVs as hypotheses,
properly incorporating anatomy distance or the polygenic distance between hypotheses can
improve the power in identifying functionally important neurons or ASVs. In other words,
the distance among the hypotheses partially reflects the hypotheses’ co-null or co-alternative
status, called co-status hereafter.

We developed a new hierarchical multiple testing procedure called DART. It incorporates
distance information to boost the power of testing. DART has two stages. The first stage
is based on AI modeling: we use the automatic algorithm to construct an aggregation tree
that incorporates the distance information and facilitates downstream testing. The second
stage is based on statistical modeling: we perform a bottom-up multiple testing procedure
on the aggregation tree to control FDR. Unlike traditional multiple testing that only uses
statistical modeling, DART combines the power of statistical models and AI models to
improve testing accuracy: statistical models are less flexible and less data-adaptive, but
they can provide highly interpretable results; AI models fail to provide interpretable results,
but they can explore complex underlying structures. Our study provides a new solution to
generate data-adaptive and highly-interpretable results.

Our work is closely related to three streams of research.

• Testing using distance/side information. Some methods incorporate side information via
parametric modeling. For example, Shu et al. (2015) imposes a 3D hidden Ising model
to model the nearby hypothesis co-status. Lee and Lee (2016) uses a scalar parameter
in a specific exponential-family distribution to control the level of co-status among
nearby hypotheses. Cai et al. (2020) uses kernel functions to enforce similar prior null
probabilities on nearby hypotheses. Lei and Fithian (2018) proposes an iterative FDR
control procedure that incorporates side information via a parametric model estimated
by the EM algorithm. These methods use parametric forms to model how distance/side
information impacts the hypothesis co-status. Although parametric methods usually
achieve good performances on simulated data, their performance on real data is unclear.
For example, for fMRI analysis, Eklund et al. (2012) used extensive real data sets to
show that many commonly used parametric models that specify temporal correlations
in fMRI analysis are inappropriate, and thus lead to highly inflated type I error in
multiple testing. Recently, Ramdas et al. (2019b) develops an FDR control procedure
that allows scientists to incorporate four types of prior knowledge simultaneously. The
procedure allows mix and match techniques and using multiple different forms of prior
knowledge simultaneously while maintaining internal consistency among the pattern
of rejections and acceptances. Besides, Xia et al. (2017) and Tansey et al. (2018)
employ neural networks to leverage side information to improve testing accuracy while
controlling FDR. All these methods specify the side information for each hypothesis
specifically. However, the distance information is not defined for each hypothesis but
for each hypothesis pair, and thus cannot be incorporated directly. Alternatively, some
methods adopt non-parametric models to incorporate distance information into multiple
testing. Zhang et al. (2011) uses a local neighborhood size and uses the aggregated

2



DART: Distance Assisted Recursive Testing

P-values in the neighborhood to perform multiple testing, called FDRL. Li et al. (2013)
uses the non-parametric propagation-separation approach (Belomestny and Spokoiny,
2007) to smooth the coefficients in the generating generalized estimating equations
(GEE) models. These methods are more data adaptive. Because Li et al. (2013) only
works for the GEE models, we will mainly compare DART with FDRL later.

• Hierarchical multiple testing.

a) Gatekeeping. Suppose the hypotheses are grouped into m ≥ 2 ordered families.
Gatekeeping procedures test a later family only if they reject the previous families
(Dmitrienko et al., 2007, 2008, 2011; Dmitrienko and Tamhane, 2013; Xi and
Tamhane, 2014) . The aim is to control the family-wise error rate (FWER). Gate-
keeping procedures are usually designed for clinical trials. For other applications,
the tests lose power when they discard the families of hypotheses whose previous
family is accepted.

b) Top-down hierarchical testing. Soriano and Ma (2017) applied a tree-structured
Markov prior distribution to the indicators of hypotheses status and then calculated
their posterior being alternative. The method relies on parametric modeling.
Yekutieli (2008) proposes a top-down testing rule similar to gatekeeping. A node
on the tree (a set with multiple hypotheses) will be tested only if its parent node
is rejected. Other top-down multiple testing procedure also have been proposed for
hypotheses structured in DAG, such as Ramdas et al. (2019a),Loper et al. (2022),
Meijer and Goeman (2015), and Goeman and Finos (2012). These methods require
the hypotheses to be partially ordered in the DAG, and thus not applicable to
general hypotheses testing. Lei et al. (2020) proposes an iterative testing algorithm
to perform FDR control on a series of contiguous candidate sets in a constrained
set. However, for hypotheses with distance information, how to turn the distance
into contiguous candidate sets is unclear.

c) Bottom-up hierarchical testing. This approach tests the individual hypotheses first
and then tests the aggregated hypotheses later. Our method, DART, adopts this
approach. The most similar work to ours is the one introduced by Li et al. (2020b).
They proposed a bottom-up procedure to test conjugate nodes (sets of hypotheses)
with tree structures. A conjugate node is alternative only when all its containing
hypotheses are alternative. Their method aims to control the node-level FDR. In
contrast, DART focuses on each hypothesis. It aims to control hypothesis-level
FDR. Thus, DART is fundamentally different.

• Explainable AI (XAI). XAI aims to (a) produce more explainable models while main-
taining a high level of learning performance (prediction accuracy) and (b) enable
human users to understand, appropriately trust, and effectively manage the emerging
generation of AI partners. (Turek, 2021) However, to the best of our knowledge, no
XAI method has been proposed to control FDR in multiple testing. In general, pure
AI modeling introduces intrinsic difficulties in controlling FDR.
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2. Preliminaries

Suppose there are m hypotheses, forming the null and alternative hypothesis sets Ω0 and
Ω1: Ω0 ∩Ω1 = ∅, Ω0 ∪Ω1 = [m]. For hypothesis i, a P-value statistic Ti is derived. Previous
studies often assume the null P-values follow super-uniform distributions:

∀ i ∈ Ω0,∀ p ∈ (0, 1),P(Ti ≤ p) ≤ p.

Our work relaxes this assumption. We allow a null Ti asymptotically converges to a super-
uniform statistic T̃i in the following way.

sup
i∈Ω0

sup
p∈Pi0

∣∣∣∣P(Ti < p)

P(T̃i < p)
− 1

∣∣∣∣ ≤ δ0m, where lim
m→∞

δ0m = o(1)

and Pi0 =
{
p ∈ [0, 1] : P (T̃i < p) ≥

{
m(logm log logm)1/2

}−1
}
. (1)

Pi0 excludes the left tail regions (close to zero) to make the convergence easier. Otherwise, if
P (T̃i < p) is too small, the convergence is hard to achieve. If T̃i follows a super-uniform (resp.
uniform) distribution, we call Ti asymptotically super-uniform (resp. uniform). We relax the
P-value null distribution assumptions because many P-values derived from asymptotic tests
(e.g., Wald, score, and likelihood-ratio tests) do not follow super-uniform distributions, but
they are asymptotically super-uniform.

We do not make assumptions on alternative P-value distributions. Although they can
be arbitrary, it is useful to think of the alternative P-values have larger probabilities to be
small than the uniform distributions. Thus, many methods reject the hypotheses when the
P-values are small. For example, a commonly used P-value threshold (Liu et al., 2013; Cai
and Liu, 2016a; Xie and Li, 2018) is

t̂ = sup

{
αm ≤ t ≤ α :

mt∑
i∈[m] I(Ti < t)

································· ≤ α

}
, where αm = (m logm)−1. (2)

Here, the dotted fraction notation denotes the shorthand a
b·· =

a
b∨1 . The threshold t̂ for the

Benjamini and Hochberg procedure (BH) (Benjamini and Hochberg, 1995) is slightly different
but asymptotically equivalent to (2). In general, the rejection set is R = {i : Ti ≤ t} for
some threshold t. Then, U = Ω1 ∩ R is called the true discovery set, and V = Ω0 ∩ R is
called the false discovery set. The false discovery proportion and rate are defined as

FDP :=
|V|
|R|
······· , FDR := E (FDP) ,

where |A| denotes the cardinality of set A. Our task is to design a powerful rejection
rule to asymptotically control FDR when m goes to infinity. We hope to gain power by
properly incorporating the distance information between hypotheses, assuming they reflect
their co-status patterns.

3. DART Algorithm Description

DART has two stages. Stage I uses an AI method to transfer the distance matrix into an
aggregation tree, which defines the testing structure (Section 3.1). Stage II tests hypotheses
embedded in the tree to gain power while controlling FDR (Section 3.2). An illustrating
example is provided in Section 3.3.
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3.1 Distance Matrix and Aggregation tree

Stage I aims to construct an aggregation tree T that provides a hierarchical testing
structure for stage II. The aggregation tree T has L layers, constructed based on the distance
matrix D = (dij). The node-set on layer ℓ is denoted by A(ℓ). On the first (bottom) layer,
A(1) = {{1}, . . . , {m}}; each node represents a hypothesis. In general, A(ℓ) contains the
nodes representing a set of hypotheses.

The hypotheses have different co-status patterns: some alternative hypotheses might
stand-alone, some co-alternative within a small region, and others co-alternative within a large
region. For any node A, denote its diameter (within-node distance) by dia(A) = maxi,j∈A dij .
On higher layers of T , nodes have larger diameters. We design multiple layers to construct
nodes with various diameters and adapt to various co-status patterns.

In stage II, if a node is rejected, we will reject all the hypotheses within the node. For
this purpose, we require the hypothesis distance within the node to be small so that they
are likely co-status; thus, imposing the same decision rule on these hypotheses is reasonable.
We require that for all A ∈ A(ℓ), dia(A) ≤ g(ℓ), where g(ℓ) is a distance threshold with
0 < g(2) < . . . < g(L). We set g(1) = 0 because we do not need to aggregate hypotheses on
the first layer.

Another requirement is to limit nodes’ child numbers. Any node A in A(ℓ) with ℓ ≥ 2 is
formed by aggregating the nodes from the previous layer. These nodes are called the children
of A; they form the child set C(A). We require that |C(A)| ≤ M for any node A. Here, M is
called the maximum node size. We set up this requirement to increase the following testing’s
stability: if A contains too many hypotheses, rejecting A leads to rejecting all hypotheses in
A. This introduces large variability in testing and makes the algorithm outputs unstable.

To make sure all the nodes on layer ℓ satisfy dia(A) ≤ g(ℓ) and |C(A)| ≤ M , we developed
Algorithm 1. The key strategy is to recursively set A(ℓ) based on A(ℓ−1) and find the closest
node pair for aggregation. The resulting tree depends on the tuning parameter L, M , and
g(ℓ) with ℓ ∈ {2, . . . , L}. We introduce the tuning parameter selection criteria in Section 3.4.

Algorithm 1 is a feasible algorithm to construct an aggregation tree satisfying dia(A) ≤ g(ℓ)

and |C(A)| ≤ M . Alternative AI approaches could also be used. For example, an aggregation
tree can be constructed by recursively applying community detection algorithms, such as
K-means clustering (Jin and Han, 2010), Louvain method (Blondel et al., 2008), and Leiden
algorithm (Traag et al., 2019), in the similar spirit of hierarchical clustering (Zepeda-Mendoza
and Resendis-Antonio, 2013). If a modified algorithm based on these algorithms could restrict
the maximum node size, it may also be applied here. The key of the desired algorithm is to
generate a tree with few mixed nodes (defined in Section 4) to ensure the asymptotic FDR
control of Step 2.

3.2 Recursive Testing Embedded in the Tree

Recall that the tree nodes consist of close hypotheses likely to be co-status. We developed
a multiple testing algorithm that incorporates the tree to improve the testing power.

Algorithm 2 describes the recursive testing procedure from the single-hypothesis layer
(bottom) to the large-node layer (top). It starts with testing all hypotheses using the
traditional FDR control procedure. This step does not use any hypothesis co-status patterns.
Thus, DART is likely to discover the hypotheses with strong signal-to-noise ratios (SNRs) on

5



Li, Sung and Xie

the bottom layer. On higher layers, DART tests larger nodes containing more hypotheses.
The weaker-SNR hypotheses are likely to be aggregated then to increase their identification
chances.

Algorithm 2 mentioned a few new terms: dynamic nodes, candidate node P-values, and
recursive P-value cutoffs. We provide more details on these terms below.

Candidate dynamic nodes. The dynamic nodes are the nodes excluding the rejected
hypotheses on previous layers. If a hypothesis is rejected, we will not test it again. There are
two main reasons. First, if the rejected hypotheses were not removed, they could become non-
significant after being aggregated with other null hypotheses on higher layers. It introduces
interpretation difficulties. Second, a rejected hypothesis on low layers usually has strong
SNRs. If we include these hypotheses in higher layers, this hypothesis alone may make the
entire node significant, even if the node contains null hypotheses. Then, the rejection of the
entire node may lead to false rejections on its containing null hypotheses.

A candidate dynamic node is a dynamic node with |C(S)| ≥ 2. If a node S has |C(S)| = 1,
this node must have been tested on previous layers. Thus, we do not need to test it again.
The set of the candidate dynamic nodes on layer ℓ is denoted by B(ℓ).

Candidate node P-values. For any candidate dynamic node S, we use the Gaussian
aggregation approach to derive candidate node P-value: TS = Φ̄

{∑
j∈S Φ̄−1(Tj)/

√
|S|
}
,

where Φ̄ is the complement cumulative density function (CCDF) of the standard Gaussian
distribution. The aggregation is efficient. Alternatively, we may consider using other
aggregation approaches, such as the Fisher’s combination (Fisher, 1925), the chi-square
aggregation, and the Cauchy aggregation (Liu and Xie, 2020). The Fisher’s combination and
the chi-square aggregation approaches have lower power than the Gaussian aggregation when
the hypotheses in the node are co-status. The Cauchy aggregation relies on the heavy-tail
Cauchy density; thus, it introduces theoretical challenges to studying the asymptotic null
distributions of the node P-values. The main challenge lies in accounting for the post-selection
effect: the hypotheses and their P-values only have the chance to be aggregated when they
are not rejected on the previous layers. In contrast, for Gaussian aggregation, the post-
selection problem can be solved because the candidate node P-values are still asymptotically
super-uniform (Lemmas 7 and 8). Thus, we go with the Gaussian aggregation.

P-value cutoffs. On layer ℓ, we already have the set of the rejected hypotheses on the
previous ℓ− 1 layers, denoted by R(1:ℓ−1). We set up the P-value threshold t̂(ℓ) as

t̂(ℓ) = sup

{
αm ≤ t ≤ α :

∑ℓ−1
ℓ′=1m

(ℓ′)t̂(ℓ
′) +m(ℓ)t

|R(1:ℓ−1)|+
∑

S∈B(ℓ) |S|I(TS < t)
·································································· ≤ α

}
. (3)

Here, αm = (m logm)−1 and m(ℓ′) = |B(ℓ′)|. It is easy to see that t̂(ℓ) depends on the previous
layer’s cutoff and rejection set. Comparing t̂ in (2) and t̂(ℓ) in (3), it is easy to see that they
share some similarities. The numerators bound the false discoveries asymptotically, and the
denominators count the total discoveries. By making the fraction less than or equal to the
desired FDR level α, DART asymptotically controls the weighted node-FDR (Section 4).
DART also asymptotically controls the hypothesis level FDR when most nodes contain
co-status hypotheses.
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Algorithm 1: Transform the distance matrix into an aggregation tree.
Data: Distance matrix D = (dij)m×m, maximum layer L, maximum node size M ,

distance thresholds g(ℓ) with ℓ ∈ [L].
Result: An aggregation tree T = {A(ℓ) : ℓ ∈ [L]}.
A(1) = {{1}, . . . , {m}};
for ℓ ∈ {2, . . . , L} do

A(ℓ) = A(ℓ−1); flag=TRUE ; // Initiate A(ℓ)

Calculate the between-node distances: ∀ A1, A2 ∈ A(ℓ),
dist(A1, A2) = maxi∈A1,j∈A2 dij ;

while flag=TRUE do
Pick up the node pair (Ă1, Ă2) with the smallest between-node distance;
if dist(Ă1, Ă2) > g(ℓ) then flag=FALSE ;
else

if |C(Ă1 ∪ Ă2)| ≤ M then
Put Ă = Ă1 ∪ Ă2 in A(ℓ) and remove Ă1 and Ă2;
Set the between-node distance: ∀ A ∈ A(ℓ),
dist(A, Ă) = maxi∈A,j∈Ă dij ;

else Update the between-node distance: dist(Ă1, Ă2) = ∞;

Algorithm 2: Recursive testing embedded in the tree.
Data: P-values T1, . . . , Tm; tree T = {A(ℓ) : ℓ ∈ [L]}.
Result: Rejection set R.
Following the BH procedure (2) to set the threshold t̂(1) and R = I(i : Ti < t̂(1));
for ℓ ∈ {2, . . . , L} do

Define the candidate dynamic node set B(ℓ) = {S : S = A \ R, |C(S) ≥ 2|};
For all S ∈ B(ℓ), get the candidate node P-values TS ;
Set the recursive P-value cutoff t̂(ℓ) as in (3) and let R(ℓ)

node = {S : TS < t̂(ℓ)};
Map the rejections to hypothses and update R = R∪ {i : i ∈ S, S ∈ R(ℓ)

node}.
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3.3 A Toy Example to Illustrate DART

We provide a toy example in Figure 1 to illustrate DART. The detailed algorithm
descriptions are provided in Algorithm 1 and Algorithm 2 in Section 3.

Setting up 
dynamic working 

nodes

Null

Strong

Signal-to-noise 
ratio 

Weak

Layer 1

(a) 1 2 3 4 5 6 7

1 0 2 4 5 5 8 11

2 2 0 2 3 3 6 9

3 4 2 0 1 1 8 11

4 5 3 1 0 2 9 12

5 5 3 1 2 0 9 12

6 8 6 8 9 9 0 3

7 11 9 11 12 12 3 0

Stage II:  Embed multiple testing in the tree

(c)

Stage I:  Transform the distance matrix into an aggregation tree

(b)

1 2 3 4 5 6 7

Layer 2 Layer 3

11 32 54 6 7

2 4 5 6 7

2 4 5 6 7

1 2 4 5 6 71 3

2 6 7

2 6 7

Hypothesis 
testing 

and 
FDR control

Tree nodes Dynamic nodes

Rejected nodes Accepted nodes

Figure 1: An illustrating example of DART with 7 features.

Figure 1(a) shows the distance matrix of the seven hypotheses. In stage I, we transfer the
distance matrix into the 3-layer aggregation tree based on Algorithm 1. The resulting 3-layer
aggregation tree is shown in Figure 1(b). Each leaf (node on the bottom layer) on the tree
corresponds to a hypothesis and a test statistic. The gray scales illustrate the underlying
SNR ratios in the statistics; these SNR ratios are unknown.

In stage II, we perform the multiple testing embedded in the aggregation tree based on
Algorithm 2. We start from the bottom layer and hierarchically proceed to higher layers.

• On layer 1 (the bottom layer), hypotheses 1 and 3 are rejected because their test
statistics have strong SNR ratios.
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• After the testing procedure on each layer, the rejected nodes are marked by solid
squares and the accepted nodes solid hexagons. If a node is rejected, all its containing
hypotheses are rejected.

• When testing on a higher layer, all previously rejected features are excluded from the
nodes (dashed-line circled) to form the dynamic nodes (solid-line circled) on this layer.
For example, on layer 2, tree node A1 = {1, 2} turns into the dynamic node S1 = {2}
because hypothesis 1 is rejected on the bottom layer. S1 will not be tested on layer two
because it only contains hypothesis 2, already tested on layer 1. Using the terminology
in Section 3.2, the number of children |C(S2)| = 1; thus, S1 is not a candidate dynamic
node and will not be tested on layer 2. For another example, A2 = {3, 4, 5} turns to
the dynamic node S2 = {4, 5} on layer 2 because hypothesis 3 was rejected on the
bottom layer. |C(S2)| = 2 and thus, it will be tested on layer 2.

• The test statistics of hypotheses 4 and 5 have relatively weak SNRs. They are not
significant enough to be rejected on layer 1. However, on layer 2, they are aggregated
to form the dynamic node S2 = {4, 5}; the aggregated SNR is large enough so that S2

is rejected, leading to the rejections of hypotheses 4 and 5. Thus, the power of DART
is higher than the power of a single-layer testing method.

3.4 Tuning Parameter Selection

Proper parameters will result in a tree empowering testing. We suggest setting the
maximum node size M as 2 or 3. Appendix C verified that when M = 2 or M = 3, DART
asymptotically controls FDR and is more powerful. Denote the desired minimal number
of nodes on layer L by cm. If cm < 35, DART’s asymptotic validity might fail to kick in,
leading to possibly inflated FDR. Therefore, we request cm ≥ 35. Accordingly, we set the
maximum layer number L = ⌊logM m − logM cm⌋ ≤ ⌊logM m − logM 35⌋. The distance
thresholds are set recursively to maximize the number of candidate nodes on each layer.
We first try a set of possible thresholds G = {g1, . . . , gK}. On layer ℓ with ℓ ≥ 2, we let
G(ℓ) = {g ∈ G : g ≥ g(ℓ−1)}. Hierarchically, on layer ℓ, we try every g ∈ G(ℓ) and count
the number of resulting candidate nodes on this layer. We set g(ℓ) as the g with the most
candidate nodes. See Algorithm 3 in Appendix C for details.

4. Asymptotic Validity

This section shows that DART asymptotically controls the hypothesis FDR under mild
conditions.

Weighted node-FDR and hypothesis FDR. For any candidate dynamic node, if the
node contains any alternative hypothesis, we call the node alternative; otherwise, it is called
null. On layer ℓ, we denote the set of null candidate dynamic nodes by B(ℓ)

0 and the set of
rejected nodes by R(ℓ)

node. Then the weighted node-FDR is

FDPnode :=

∑L
ℓ=1

∑
S∈R(ℓ)

node∩B
(ℓ)
0

|S|∑L
ℓ=1

∑
S∈R(ℓ)

node

|S|
··············································· =

∑L
ℓ=1

∑
S∈R(ℓ)

node∩B
(ℓ)
0

|S|

|R|
··············································· , FDRnode = E(FDPnode).
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In contrast, the hypothesis FDR is

FDP :=
|R| ∩ Ω0

|R|
················· , FDR = E(FDP).

Notably, FDPnode only accounts for the false discoveries in null nodes. If an alternative
node containing both null and alternative hypotheses is rejected, the rejection will not increase
the numerator of FDPnode but will increase the numerator of FDP. Thus, FDPnode ≤ FDP.
Although our ultimate goal is to control FDP, we control FDPnode as an intermediate step.
The difference between FDPnode and FDP relies on the number of the rejected mixed nodes
that contain both null and alternative hypotheses.

Weighted node-FDR control. We require the following conditions for weighted
node-FDR control.
• Condition 1. Sparse alternatives. The alternative hypothesis number m1 = O(mr1), for

some r1 < (ML−1 + 1)−1.
• Condition 2. Sufficient moderate SNR nodes (see Definition 4 in Appendix A). Denote the

number of moderate SNR nodes on the tree T by mmd. We require that mmd ≥ O(logm).
A moderate SNR node (a) contains no hypotheses that will be rejected with non-vanishing
probabilities before its locating layer, and (b) will be rejected on its locating layer with
a non-vanishing positive probability. The existence of these nodes is to guarantee that
some alternative nodes are rejected on each layer so that the threshold t̂(ℓ) is not too
small; otherwise, the number of total rejections will be too small so that a single false
rejection would inflate FDR.

• Condition 3. Almost independence. Most hypothesis P-values are mutually independent.
The number of dependent P-values does not exceed o(mmd).
Here, Conditions 1 and 2 are inherited and extended from the previous multiple testing

literature (Cai and Liu, 2016b). Condition 1 assumes the alternative hypothesis sparsity.
Condition 2 usually holds when the sample size n is sufficiently large compared to p, L is
properly chosen, and the signal-to-noise ratio distribution of the alternative hypotheses has
continuous support over a large range. Condition 3 is a strong assumption. We require it
to ensure that after higher-layer aggregation, most node P-values are still asymptotically
super-uniformly distributed under the null. It is possible to relax this condition. However,
the proof will be much more complicated.

Lemma 1 Under Conditions 1–3, at any pre-specified level α ∈ (0, 1), Algorithm 2 satisfies
the following asymptotic validity.
(a) For any ϵ > 0, limm→∞ P(FDPnode ≤ α+ ϵ) = 1. Consequently, limm→∞ FDRnode ≤ α.
(b) Let Ω̃0 be the set of null P-values that are asymptotically uniform. If limm→∞ |Ω̃0|/m = 1,

then for any ϵ > 0, limm→∞ P(|FDPnode−α| ≤ ϵ) = 1. Consequently, limm→∞ FDRnode =
α.

See Appendix B for proof of this lemma. Two main challenges in the proof are the
hierarchical testing structure and the post-selective effect introduced by the dynamic nodes.
Thus, we proved the FDRnode control recursively, starting from the bottom layer. The
bottom layer follows the BH procedure. Then, given the FDRnode control on the previous
layers, we proved the control on the current layer. Recall that dynamic nodes do not contain
the already-rejected hypotheses. To account for the post-selection effect, we proved that
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conditioning on the testing results from the previous layers, the dynamic node P-values are
still asymptotically super-uniform or asymptotically uniform.

Hypothesis FDR control. Previously, we constructed a tree where the hypotheses
were hierarchically aggregated into the nodes based on their distance. Thus, we expect
many nodes contain co-status hypotheses. However, some large nodes on high layers may
be mixed, containing null and alternative hypotheses. Some mixed nodes are concerning,
while others are not. For example, suppose a node A on layer ℓ contains null hypotheses,
strong SNR hypotheses (see Definition 5 in Appendix A) and weak SNR hypotheses (see
Definition 6 in Appendix A). The strong SNR hypotheses are probably rejected before layer ℓ.
Thus, when Algorithm 2 reaches layer ℓ, A probably already turns into a dynamic node only
containing the null and weak SNR hypotheses. The weak SNR hypotheses are the alternative
hypotheses unlikely to be rejected. As a result, the null hypotheses in A will not be rejected,
and thus, the existence of A will not inflate the FDR. Thus, to control FDR, we only need
to restrict those concerning mixed nodes whose null hypotheses are likely to be rejected with
non-vanishing probabilities.

Definition 2 (Concerning mixed nodes) For any node A ∈ A(L), let

A∗ = A \ (Ωst ∪ Ωwk),

where Ωst is the strong SNR hypothesis set, and Ωwk is the weak SNR hypothesis set. The
definitions of Ωst and Ωwk are provided in Appendix A. If A∗ ∩ Ω0 ̸= ∅ and A∗ ∩ Ω1 ̸= ∅, we
call A a concerning mixed node.

• Condition 4. sparse concerning mixed nodes. On the top layer of the tree A(L), the number
of the concerning mixed nodes cannot exceed o(mmd).
We allow the existence of concerning mixed nodes, but to asymptotically control FDR,

Algorithm 2 cannot afford too many of them. Condition 4 specifies the tolerance level.
Intrinsically, Condition 4 depends on the assumption that the distance matrix predominantly
reflects the hypothesis co-status. If so, with properly selected {g(ℓ) : ℓ ∈ [L]}, Algorithm 1
will probably generate a tree satisfying Condition 4, because it uses the greedy algorithm to
aggregate the closest remaining hypotheses. On the other hand, if this assumption does not
hold, Algorithm 1 cannot generate a tree with nodes implying hypothesis co-status. Under
this case, we do not recommend using DART.

By adding Condition 4, we extend the FDRnode control to FDR control (Theorem 3).

Theorem 3 Under Conditions 1-4, at any pre-specified level α ∈ (0, 1), Algorithm 2 satisfies
the following asymptotic vality.
(a) For any ϵ > 0, limm→∞ P(FDP ≤ α+ ϵ) = 1. Consequently, limm→∞ FDR ≤ α.
(b) Let Ω̃0 be the set of null P-values that are asymptotically uniform. If limm→∞ |Ω̃0|/m = 1,

then for any ϵ > 0, limm→∞ P(|FDP − α| ≤ ϵ) = 1. Consequently, limm→∞ FDR = α.

5. Numerical Simulation

We simulated m = 1000 features located in the two-dimensional Euclidean space with
randomly generated location coordinates: the first coordinate follows N(0, 2), and the second
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coordinate follows Unif(0, 4). A distance matrix D = (dij)m×m was calculated based on the
Euclidean distance between two features’ locations. Feature i links to a parameter of interest
θi. The hypotheses are H0,i : θi = 0 versus H1,i : θi ̸= 0, i ∈ [m].

We considered four settings, SE1–SE4. SE1 simulated a straightforward case where the
P-values follow uniform distributions under the null. SE2 misspecified the null distributions
of the test statistics, in order to evaluate the methods’ robustness. SE3 simulated the linear
regression model, and SE4 simulated the Cox proportional hazard model; their P-values were
derived from the Wald tests. Each setting contained 200 repetitions. The setting details
were described in Appendix C.

Under different nominal FDR levels α ∈ {0.05, 0.1, 0.15, 0.2}, we compared the perfor-
mance of DART and its competitors: BH (Benjamini and Hochberg, 1995), AdaPT (Lei and
Fithian, 2018) and FDRL (FDRL I and FDRL II) (Zhang et al., 2011). AdaPT incorporates
the location coordinates as side information; DART incorporates the distance matrix; FDRL

incorporates the information of each hypothesis’s k nearest neighbors. Thus, the settings
favor AdaPT because we provided it with the most information. The tuning parameters
used in DART, AdaPT, and FDRL procedures were discussed in Appendix C.

Figure 2A shows the type I error (measured by average FDP) and power (measured by
average sensitivity) and their error bars of various methods:

• Average FDP : Under SE1, SE3, and SE4, DART, BH, AdaPT, and FDRL II control
the average FDP well. Under SE2, DART’s (resp. BH’s) average FDP is slightly
inflated when α = 5% (resp. α ≤ 15%). This is because we deliberately misspecified
the P-value null distributions in SE2. AdaPT has consistently good FDR control. In
contrast, FDRL I exhibited severe FDR inflation under all four settings. FDRL I has
longer error bars than DART; so does FDRL II when α ≥ 10%. This suggests that
DART’s FDP is less variable than FDRL I and II.

• Average sensitivity : DART’s sensitivities are consistently higher than BH. DART has
much higher sensitivities than AdaPT (resp. FDRL II) when α ≤ 15% (resp. α ≤ 10%)
and slightly lower sensitivities when α = 20%. If a low nominal FDR level (such as
5%) is preferred, DART is the most powerful among all methods.

• Computation time: DART is computationally efficient. For example, on average, one
run (per repetition) of DART takes only 0.64 minutes across all settings. In contrast,
AdaPT failed in generating any testing results within 8 minutes in about 17% of the
runs (Table 1 in Appendix C). Among AdaPT’s successful runs (within 8 minutes),
one run on average takes 3.90 minutes. DART is at least 6 times faster.

DART assumes that the distances reflect the hypothesis co-status patterns. However, in
practice, this assumption could be partially violated. To assess the methods’ robustness, we
switched the proportion τ of the alternative hypotheses with the null hypotheses (Appendix
C). Figure 2B shows that FDRL have inflated average FDP when the switching proportion
τ ≥ 6%. All other methods still have good FDR control. Even under these assumption
partial violation cases, DART’s sensitivity is still much higher than BH. Compared to AdaPT,
DART still has higher sensitivity when α ≤ 15% and a slightly lower average sensitivity
when α = 20%. These results show that DART’s performance is consistently satisfying even
when the data are less ideal.
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Test BH FDRL I FDRL II AdaPT DART
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Figure 2: A, FDP and sensitivity of various testing methods under SE1-SE4. B, FDP of
various testing methods under SE1-SE4 when proportion τ of the alternative
hypotheses were switched with the null. The dashed lines in the FDP panels mark
the nominal FDR levels.
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One reason for DART’s satisfying performance is because DART incorporates AI modeling
to transfer the distance matrix into an aggregation tree, which later defines the testing
structure. The AI modeling is data adaptive (compared to fixed neighborhood modeling as
in FDRL) and robust (compared to the parametric modeling as in AdaPT) and thus generate
satisfying results under various settings.

6. Real-world Experiment

We applied DART to a clinical trial on hematopoietic stem cell transplantation (HCT).
Graft-versus-host disease (GVHD) is one of the major complications of HCT. Recent studies
have linked GVHD to the disruptions of the gut microbiome (Jenq et al., 2012). The
disruptions may be related to the environmental changes such as post-transplant care
(Claesson et al., 2012). This study investigates the impact of two post-transplant cares, home
care (HC) and standard hospital care (SH), on patients’ gut microbiota compositions.

In our data, patient fecal samples were collected before and after HCT; the fecal micro-
biome are sequenced by the 16S ribosomal RNA sequencing at the Memorial Sloan Kettering
Cancer Center. The data were then pre-processed by the R package, DADA2 (Callahan
et al., 2016), to generate the amplicon sequence variants (ASV) and the read counts. To
improve the analysis quality, we removed the ASVs present in fewer than 10% of the samples.
Samples with follow-up time longer than 1-year was also removed from the study. The zero
counts were replaced by 0.5 (Aitchison, 1982; Kurtz et al., 2015).

After pre-processing, our data contain 456 microbiome samples from 126 leukemia patients
before and after the HCT. Each microbiome sample contains 866 amplicon sequence variants
(ASVs). We excluded the 9 ASVs with missing taxonomy order information. In microbiome
studies, the ASV relative abundance (measured by its abundance proportions) is more
meaningful than its absolute abundance. Thus, for the remaining 857 ASVs, we calculated
their log odds. Here, the odds for an ASV is

odds =
ASV abundance proportion

1− ASV abundance proportion
.

These ASV’s abundance proportions do not add up to 1 because 9 ASVs were excluded.
We set up the longitudinal linear mixed model

Yijk =θ0,i + θ1,iW1,k + θ2,iW2,jk + θ3,iW1,jkW2,jk + bij + ϵijk. (4)

Here i is the ASV index, j is the sample index, and k is the patient index. The outcome
Yijk is the log odds of ASVi when sample j of patient k was collected. For patient k, W1,k is
one’s after-transplant care type (HC for 1 and SH for 0), W2,jk is care time length. bij is
the random effect to incorporate the dependence across measurements for the same patient,
and ϵijk is the random error. To identify ASVs whose abundance change is impacted by
the after-transplant care (the interaction between the post-transplant care type and time),
we set up the hypotheses: H0,i : θ3,i = 0, i ∈ [857]. The distances between the hypotheses
were defined by the evolutionary distances among ASVs. Previous studies showed that
evolutionally close ASVs might be functional similar. (Chen et al., 2012; Garcia et al., 2014;
Martiny et al., 2015). We used the Wald tests to calculate the P-values.
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Figure 3: Forest plots to visualize the after-transplant time effect in home care group (HC)
and standard hospital care group (SH) on the abundance of 43 DART-identified
ASVs. A dot represents the estimated time effect on an ASV; a vertical line marks
its 95% confidence interval. Here, CSS stands for Genus Clostridium sensu stricto.

We applied BH and DART to test the hypotheses with the nominal FDR level 5%. Details
about aggregation tree construction in DART can be found in Appendix C. BH failed to
identify any important ASVs. In contrast, DART identified 43 ASVs by incorporating the
evolutionary distance information among ASVs. Among them, 39 ASVs have well-annotated
Genus information. Figure 3 shows their log relative abundance change across time in
home-care (HC) and standard hospital care (SH) groups Higher abundance in Enterococcus,
Clostridium XI and Akkermansia were associated with more severe GVHD (Payen et al.,
2020; Li et al., 2020a,a; Shono et al., 2016). Most of the ASVs in these three genera had
less abundance over time in the home care group, suggesting home care might help reduce
the GVHD severity. Higher abundances in Bacteroides, Anaerostipes and Lactobacillus were
associated with reduced GVHD severity (Payen et al., 2020; Lin et al., 2021). Almost all the
identified ASVs in Bacteroides had increased relative abundance in the home care group but
decreasing abundance in the standard hospital care group. These findings suggested that
home care might help relieve the GVHD severity.

7. Conclusion and Discussion

In this paper, we developed a novel multiple testing method, DART, to incorporate
feature distance in multiple testing. Under many application contexts, the feature distances
serve as auxiliary information of their co-importance pattern. DART incorporates this
information to boost the testing power. DART applies to the P-values obtained from many
asymptotic tests, and thus can work with a wide range of models.

Stage 1 of DART involves constructing an aggregation tree. We provided Algorithm 1 to
construct the aggregation tree. Other algorithms may also work, and result in a different
aggregation tree from the same distance matrix. Consequently, Stage 2 testing process could
lead to different results based on different trees. In practice, if several aggregation trees exist,
DART can be applied to all of them, and we can take the one with the most rejections. The
asymptotic validity will still hold for this procedure.

The main limitation of the work is that the FDR control is asymptotic and relies on
several conditions. Recently, many hypothesis testing literature develops finite-sample FDR
control procedures. These procedures usually impose stronger assumptions on p-values
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or test-statistics (Lei and Fithian, 2018; Ren and Candès, 2020). The primary obstacle
for incorporating these conditions into DART lies in ensuring that higher layer p-values
or statistics also adhere to them, thereby facilitating higher layer FDR control proof via
deduction. This intriguing area of research warrants further exploration. Additionally, we
aspire to alleviate Condition 4 without relying on the presumption that the distance matrix
primarily represents co-status patterns. Our objective is to devise a robust testing algorithm
that ensures FDR control in the absence of this assumption while enhancing power when the
assumption is valid.

In conclusion, our paper initiates an attempt at joint AI-statistics modeling to generate
data-adaptive, powerful, and high-interpretable analysis results. It can be easily extended to
the case where other information implies the co-importance pattern of the features. Such
information could from domain knowledge, external data sets, or other resources. In addition,
the hierarchical testing ideas and techniques can also be extended to solve other multiple
testing problems.
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Appendix Appendix A. More Definitions

In Section 4, we introduced a few terms, including moderate SNR nodes, strong SNR
hypotheses, and weak SNR hypotheses. We provide their mathematical definitions here.

Appendix A.1 Moderate SNR Nodes

For any node A, we define its descendant set as

D(A) = {D : ∃ ℓ, such that D ∈ A(ℓ) and D ⫋ A}.

The descendant set contains all the nodes from previous layers that a subset of A.

Definition 4 (Moderate SNR node) A node A is called a moderate SNR node if

P{TA < αm, ∀D ∈ D(A), TD ≥ Φ̄(mr1−1
√
logm)} ≥ C1 > 0, (5)

To provide more intuitions on the moderate SNR nodes, we provide a sufficient condition
for a node being a moderate SNR node when the test statistics are Gaussian-distributed.

Example 1 A sequence of independent Gaussian-distributed test statistics Zi ∼ N(τi, 1) for
i ∈ [m]. To test the two-sided hypothesis

Hi : τi = 0 versus τi ̸= 0,

we derive the P-value Ti = 2Φ̄(|Zi|).

In example 1, if a node A satisfies

∀i ∈ A, |τi| ∈

(
γm√
|A|

,
βm√
|A| − 1

)
with βm =

√
2(1− r1) logm− 2 log logm and γm =

√
2 logm+ log log logm, (6)

then A has moderate SNR. We request each τi falls in the range involving βm and γm; both
slowly increase with m. In practice, the test statistics are calculated based on the observed
samples. We usually consider the sample size n increases with the number of hypotheses m.
As sample size n increases, the alternative SNR τi will also increase, often at the rate of

√
n.

Thus, we usually expect to have some alternatives whose SNR falls into the range.
In (6), each τi needs to fall in the range. More generally, the purpose to define moderate

SNR nodes is to define a set of alternative nodes (a) remaining in tree till they become
candidate nodes, and (b) having large enough signals to be discovered when they become
candidate nodes. We only need O(logm) such nodes to make sure the multiple testing
procedure is stable and asymptotic valid.
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Appendix A.2 Strong SNR Hypotheses

The definition of strong SNR hypotheses is linked with the definition of strong SNR node.
On layer 1, we define strong SNR hypotheses. On layer ℓ with ℓ ≥ 2, recursively, we exclude
the strong SNR hypotheses defined on previous layers from each node, and then evaluate if
this node is a strong SNR node; if so, all the hypotheses in this node are counted as strong
SNR hypotheses. This process ends till reaching the top of the tree. Denote the strong SNR
node set on layer ℓ by G(ℓ)

st and the strong SNR hypothesis set on layer ℓ by Ω
(ℓ)
st . To initiate,

let Ω
(0)
st = ∅.

Definition 5 (Strong SNR hypotheses) On layer ℓ, after excluding the strong SNR hy-
potheses from the previous layers, define

Ã(ℓ) = {A \ ∪ℓ−1
ℓ′=1Ω

(ℓ′)
st : A ∈ A(ℓ)}.

For any node Ã ∈ Ã(ℓ), if for all i ∈ Ã,

P{Ti ∈ κ(|Ã|)} > 1− o(m−r1) with κ(|Ã|) = [m
− 1−r1

|Ã|−1 ,
{
m(logm log logm)1/2

}−1/|Ã|
], (7)

Then Ã is called a strong SNR node. The strong SNR hypothesis set on layer ℓ is

Ω
(ℓ)
st = {i ∈ Ã : Ã is a strong SNR node in Ã(ℓ)}.

The overall strong SNR hypothesis set is defined as Ωst = ∪L−1
ℓ=1 Ω

(ℓ)
st .

With a high probability converging to 1, no hypothesis in Ω
(ℓ)
st will be rejected before layer ℓ,

but all of them will be rejected on layer ℓ.

Note that on layer ℓ ≥ 2, it is possible that
{
m(logm log logm)1/2

}−1/|Ã|
< m

− 1−r1
|Ã|−1 ,

which leads κ(|Ã|) = ∅. In that case, strong SNR nodes do not exist. Our method does not
require the existence of the strong SNR nodes.

Under Example 1, (7) is satisfied when the SNR

|τj | ∈

 γm√
|Ã|

+ λm,
βm√
|Ã| − 1

− λm

 with βm, γm defined in (6), λm =
√
2r1 logm. (8)

Appendix A.3 Weak SNR Hypotheses

Weak SNR hypotheses are those with weak SNRs so that they are very unlikely to be
rejected if aggregated with other null hypotheses.

Definition 6 (Weak SNR hypothesis) For any alternative hypothesis i ∈ Ω1, if

P(Ti ∈ ι) = o(m−r1) with ι = (0,m
r1−1

ML−1 ), (9)

this hypothesis is called a weak SNR hypothesis.

Under Example 1, (9) is satisfied if |τi| ∈ (0, βm/
√
ML−1).
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Appendix Appendix B. Proofs of Main Theorems

We introduce some notations before we provide the proofs. On layer ℓ, for a working node
S ∈ B(ℓ), let U(S) = {S′ ⊂ S : S′ ∈ ∪ℓ−1

ℓ′=1B
(ℓ′)} be the collection of sets in the testing path of

S. In addition, let Uc(S) = {S′′ ∈ ∪ℓ−1
ℓ′=1B

(ℓ′) : S′′ ∩ S = ∅, S′′ ∪ S ⊂ A, for some A ∈ A(ℓ)}
be the collection of sets that was planning to combined with S on layer ℓ of the static
aggregation tree but rejected on previous layers. When S ∈ B(1), we set U(S) = Uc(S) = ∅.
We define GS(c) as the complementary CDF conditional on previous testing results. When
ℓ = 1, we have S = {i} ⊂ {1, ...,m}, and GS(c) = P (Zi ≥ c) with Z1, . . . , Zm

iid∼ N(0, 1).
When ℓ > 1, the oracle rejection path for set S ∈ B(ℓ) is recursively defined as

Q(1:ℓ−1)
z = {z : ∀S′ ∈ U(S), GS′(ZS′) ≥ t̂(ℓS′ )(α),∀S′′ ∈ Uc(S), GS′′(ZS′′) ≤ t̂(ℓS′′ )(α)},

where
GS(c) = P

(
ZS ≥ c

∣∣Q(1:ℓ−1)
z

)
and ZS =

∑
i∈S Zi/

√
|S|, and ℓS′ , ℓS′′ ∈ {1, ..., ℓ − 1} is the value s.t. S′ ∈ B(ℓS′ ) and

S′′ ∈ B(ℓS′′ ), respectively.
Given Z1, . . . , Zm are mutually independent, we have

GS(c) = P
(
ZS ≥ c

∣∣∀S′ ∈ U(S), GS′(ZS′) ≥ t̂(ℓS′ )(α)
)

Given the definition of GS(c), we define the rejection path as

Q(1:ℓ−1) = {x : ∀S′ ∈ U(S), GS′(XS′) ≥ t̂(ℓS′ )(α),∀S′′ ∈ Uc(S), GS′′(XS′′) ≤ t̂(ℓS′′ )(α)} (10)

In addition, for two sequence of real numbers am and bm, we write am = o(bm) when
am/bm → 0, and am = O(bm) when limm→∞ |am/bm| ≤ C for some constant C. To prove
the asymptotic properties of DART, we need the following lemmas. The proofs of lemmas
are shown in supplementary materials.

Lemma 7 Let Pi = {p ∈ [0, 1] : P(T̃i < p) ≥ ϵ(m)} and P ′
i = {p ∈ [0, 1] : P(T̃i < p) ≥

ϵ(m)ϵ′(m)}, with ϵ(m), ϵ′(m) → 0. For any set of independent random variable T̂i ∈ [0, 1],
and a collection M = {S ⊂ {1, ...,m} : |S| < c0} with some constant c0,
(1) If maxi∈M supp∈P ′

i

∣∣P(T̂i < p)/P(T̃i < p)− 1
∣∣→ 0, then,

sup
S0∈M

sup
p≥ϵ(m)

∣∣∣∣P(
∑

i∈S0
X̂i > cS0(p))

P(
∑

i∈S0
X̃i > cS0(p))

− 1

∣∣∣∣→ 0,

(2) If limm→∞maxi∈M supp∈P ′
i

(
P (T̂i < p)/P(T̃i < p)− 1

)
≤ 0, then,

lim
m→∞

sup
S0∈M

sup
p≥ϵ(m)

(
P(
∑

i∈S0
X̂i > cS0(p))

P(
∑

i∈S0
X̃i > cS0(p))

− 1

)
≤ 0

Here, X̂i = Φ̄−1(T̂i), X̃i = Φ̄−1(T̃i) and cS0(p) is the value s.t. P[
∑

i∈S0
X̃i > cS0(p)] = p.
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Lemma 8 Let Ω̃0 = {i : T̃i follows Unif(0, 1)}, B(ℓ)
0a := {S ∈ B(ℓ)

0 : ∃A ∈ A(L) \ A′, s.t.S ⊂
A}, and B(ℓ)

0b := {S ∈ B(ℓ)
0a : S ∈ Ω̃0}, we have:

(1) max
S∈B(ℓ)

0a

sup
c∈[0,γm]

∣∣∣∣GS(c)

Φ̄(c)
− 1

∣∣∣∣→ 0

(2) max
S∈B(ℓ)

0b

sup
c∈[0,Φ̄−1(1/m)]

∣∣∣∣P(XS > c|Q(1:ℓ−1))

P(XS > c)
− 1

∣∣∣∣→ 0

Lemma 9 Define

X (ℓ) =

{
x :

∑
S∈B(ℓ)

0

|S|I(TS < t̂(ℓ))−
∑

S∈B(ℓ)
0

|S|t̂(ℓ) ≤
{ ∑

S∈B(ℓ)
0

|S|t̂(ℓ)
}
ϵ

}
(11)

X ′(ℓ) =

{
x :

∣∣∣∣
∑

S∈B(ℓ)
0

|S|I(TS < t̂(ℓ))∑
S∈B(ℓ)

0

|S|t̂(ℓ)
− 1

∣∣∣∣ ≥ ϵ

}

Then, ∀ℓ = 1, ..., L, when the FDR control holds on layer 1, ..., ℓ− 1,
(1) For all ϵ ∈ (0, α), if P(mt̂(ℓ) ≥ Ccmd) → 1, then P(X (ℓ)) = 1 − o(1). Together with

limm→∞ |Ω̃0|/m = 1, we have P (X ′(ℓ)) = 1− o(1).
(2) On ∩ℓ

h=1X (h), there exist a constant C s.t. t̂(ℓ) ≤ Cmr1−1.
(3) Let ĉS be the rejection threshold for the test node S ∈ B(ℓ), s.t. ḠS(ĉS) = t̂(ℓ). Then on

∩ℓ
h=1X (h),

ĉS > βm, ∀S ∈ B(ℓ),

and on ∩ℓ−1
h=1X

(h),

ĉS < γm, ∀S ∈ B(ℓ).

Lemma 10 ∑
S∈B(ℓ)

0

|S|t̂(ℓ)∑
S∈B(ℓ) |S|I(TS < t̂(ℓ))

= α(1 + o(1)) (12)

Proof [Proof of Theorem 3] Let V(ℓ) = {S ∈ B(ℓ)
0 : S ⊂ R(ℓ)} and W(ℓ) = {S ∈ B(ℓ)

1 :
S ⊂ R(ℓ)} be the false rejection node set and the rejection node set on layer ℓ, respectively.
Define

X1 = {S ∈ ∪L
ℓ=2W(ℓ) : S ∩ Ωst ̸= ∅ and S ∩ Ω0 ̸= ∅}

X2 = {S ∈ ∪L
ℓ=2W(ℓ) : S ∩ Ωwk ̸= ∅, S \ (Ω0 ∪ Ωwk) = ∅ and S ∩ Ω0 ̸= ∅}

X3 = {S ∈ ∪L
ℓ=2W(ℓ) : S ∩ Ω1 \ (Ωwk ∪ Ωst) ̸= ∅ and S ∩ Ω0 ̸= ∅}
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Then,

P(X1 ̸= ∅) ≤ P(X1 ̸= ∅| ∩L
ℓ=1 X (ℓ)) P(∩L

ℓ=1X (ℓ)) + P((∩L
ℓ=1X (ℓ))c) ≤ Cmr1o(m−r1) + o(1) → 0

P(X2 ̸= ∅) ≤ P(X2 ̸= ∅| ∩L
ℓ=1 X (ℓ)) P(∩L

ℓ=1X (ℓ)) + P((∩L
ℓ=1X (ℓ))c)

(a)

≤ Cmr1 P

[
XS ≥ βm

∣∣∣∣S ∈ Ωwk ∪ Ω0

]
+ o(1)

≤Cmr1o(m−r1) + o(1) → 0

Here, the inequality (a) is based on Lemma 9 (1) and (3). By condition 4, |X3| = o(cmd),
accordingly,

P
(
FDP > α+ ϵ

)
≤P(X1 ∪ X2 ̸= ∅) + P

( ∑L
ℓ=1

∑
S∈V(ℓ) |S|∑L

ℓ=1

∑
S∈R(ℓ)

node

|S|
> α+ ϵ,X1 ∪ X2 = ∅

)

≤o(1) +
L∑

ℓ=1

P

(∑
S∈V(ℓ)\X3

|S|∑
S∈R(ℓ)

node

|S|
> α+ ϵ+ o(1)

)
→ 0

So statement (a) is proved. The statement (b) can be proved in the similar way.

Appendix Appendix C. Additional Details on Simulation and Real Data
Analysis

All the experiments were conducted on 2.10 GHz Intel Xeon Gold 6252 processors with
16 Gb memory at the Duke Compute Cluster. We requested 80 cores when running the
simulation experiments to save time. Experiment code can be found in https://github.
com/jichunxie/DART_manu_support.git. We also built an R package, which can be found
in https://github.com/jichunxie/DART.git.

Appendix C.1 Details on Numerical Experiments

We generated four simulation settings, each with n = 300 observations on m = 1000
features (hypotheses). All four simulation settings were based on a set of parameters
ηi, i ∈ [m] related to alternative hypothesis signal levels. We defined two driver features 7
and 156; the features close to them were likely alternative. We also added 10 stand-alone
features. Define the stand-alone feature set Ω2 = {100, 200, . . . , 1000}.

η′i = {[3.4ϕ1(d156,i)− 0.8] ∨ 0}+ 3{ϕ2(d7,i)}+ 10 ∗ I(i ∈ Ω2),

ηi = η′iI(η
′
i > 0.15)

Here, ϕ1 and ϕ2 are the probability density functions of N(0, 0.8) and N(0, 0.05), respectively.
Once feature locations and signals ηis were generated, they were fixed across all settings and
all repetitions. We visualized the feature locations and their ηi in Figure 4.

Below is the list of the four settings.
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Figure 4: Illustration of the simulated hypotheses’ affiliated location and their corresponding
ηi. A dot stands for a hypothesis. The dot color indicates its corresponding
hypothesis status; and its size is L-eta = log(ηi + 1) + 0.01.

SE1: For node i ∈ {1, ...,m}, we generated the P-values Ti = 2Φ̄(|Z̆i|) with Z̆1, . . . , Z̆m

independently from N(
√
nθi, 1), with θi =

1
5ηi.

SE2: For node i ∈ {1, ...,m}, we generated the P-values Ti = 2Φ̄(|Z̆i|) with Z̆1, . . . , Z̆m inde-
pendently from the mixed Gaussian and T distribution 0.04t5(

√
nθi) + 0.96N(

√
nθi, 1).

Here, t5(
√
nθi) stands for the student t distribution with the degree of freedom 5 and

none centrality parameter
√
nθi, with θi =

1
5ηi.

SE3: Consider the linear mode Yi = ϑ0,i+θiW1+ϑ2,iW2+ϵi. Here, W1 and W2 were generated
from Binom(0.5) and Unif(0.1, 0.5); ϵi was from N(0, 1). We set ϑ0,i = ϑ2,i = 0.1 and
θi =

2
5ηi. The P-values Ti were generated from the Wald test of testing whether θi is

zero.
SE4: We generated the data D = {(W1,j ,W2,j ,∆ij , Eij) : i ∈ [m], j ∈ [n]}. Here, the

covariates W1,j and W2,j were sampled from Binom(0.5) and Unif(0.1, 0.5), respectively.
Eij ∈ [0,+∞) is the survival time and ∆ij ∈ {0, 1} is the event indicator. The true event
time was generated from the exponential distribution with the rate exp{θiW1,j+ϑiW2,j},
where ϑi = 0.1 and θi =

1
2ηi. The centering time Cij was generated from Unif(0, 5).

The observed event time was set as Eij = min{Ẽij , Cij}. We used the Cox regression
model to regress the covariates W1,j and W2,j on the event (∆ij , Eij) Cox (1972). The
P-values Ti were generated from the Wald test of testing whether θi is zero.
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To check the robustness of the algorithms when the distance cannot fully reflect the
co-status patterns, we switched some hypotheses’ null/alternative statuses. In particular, we
randomly changed proportion τ of alternative hypotheses to be null and proportional τ of
the null hypotheses to be alternative. The switching rate τ reflects the violation level of the
co-status patterns. Here is the detailed switching process.

(1) Denote the original null and alternative sets by Ω′
0 = {i : θi = 0} and Ω′

1 = {i : θi > 0}.

(2) We randomly selected the elements from the original null and alternative sets to form

– the alternative-to-null set Ω′
1,0 ⊂ Ω′

1, where |Ω′
1,0| = ⌊τ |Ω′

1|⌋; and

– the null-to-alternative set Ω′
0,1 ⊂ Ω′

0, where |Ω′
0,1| = |Ω′

1,0|

(3) Re-assign the signal parameters.

– For i ∈ Ω′
0,1, re-assign θi = θj for a random-chosen j ∈ Ω′

1,0.

– For i ∈ Ω′
1,0, set θi = 0.

(4) Define the new null and alternative sets Ω0 = Ω′
0 ∪Ω′

1,0 \Ω′
0,1 and Ω1 = Ω′

1 ∪Ω′
0,1 \Ω′

1,0.

The average FDP and sensitivity across 200 repetitions were summarized in Figure 2B and
Figure 5.

We applied DART, BH (Benjamini and Hochberg, 1995), two FDRL procedures (Zhang
et al., 2011), and AdaPT (Lei and Fithian, 2018) to the above numerical settings. BH
does not have tuning parameters. For DART, based on the tuning parameter selection
criterion in Section 3.4, we set M = 3 and constructed a 3-layer aggregation tree, with
distance thresholds g(2) = 0.88 and g(3) = 1.52. For the two FDRL procedures, Zhang et al.
(2011) recommended setting k as an odd number greater than three and used k = 5 in the
simulation experiments. Thus, we set k = 5 in our numerical experiments too. For AdaPT, we
followed the instructions found at https://cran.r-project.org/web/packages/adaptMT/
vignettes/adapt_demo.html to set up its tuning parameters. During simulation, we noticed
that AdaPT sometimes failed to generate results after a long execution time. To ensure valid
results from AdaPT, Figures 2 and 5 only summarize the repetition who successfully deliver
a result. Table 1 lists the number of repetitions that failed under different scenarios among
200 repetitions.

SE τ = 0 τ = 0.02 τ = 0.04 τ = 0.06 τ = 0.08 τ = 0.1

1 33 41 34 45 46 45
2 34 37 29 42 39 45
3 23 30 36 42 32 51
4 12 19 15 27 25 36

Table 1: Number of repetition fails to deliver testing result within 8 minutes.
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Appendix C.2 Experiments to Decide the Optimal Maximum Node Size

We considered four settings of the maximum node sizes: M ∈ {2, 3, 4, 5}. To design a
good tuning parameter selection criterion, we evaluated DART’s performance with different
M via numerical experiments described in Section 5. The maximum number of layers L and
distance thresholds g(ℓ) were set according to Section 3.4 and Algorithm 3. We listed the
resulting tuning parameters in Table 2.

Figure 6 shows that no matter what M we used, DART always controls the average FDR
well under SE1, SE3, and SE4. For SE2, when the nominal FDR is 5%, DART has slight
inflation because SE2 deliberately misspecified the null distribution. However, when the
nominal FDR ≥ 10%, DART under SE2 still has the average FDP well controlled. This
indicates that DART’s performance is robust in M . When M ∈ {2, 3}, DART has higher
sensitivity. Thus, in practice, we recommend using M = 2 or M = 3.

M 2 3 4 5
Maximum Layer L 4 3 2 2

Distance thresholds
g(2) = 1.20

g(3) = 1.52

g(4) = 1.74

g(2) = 0.88

g(3) = 1.52
g(2) = 0.25 g(2) = 0.19

Table 2: Summary of the tuning parameters selected under different M

Appendix C.3 Aggregation Tree Construction in Real-world Experiment

Because 9 ASVs are chosen as the reference ASVs, the distance matrix is calculated
among the remaining 857 non-reference ASV using the R package Phangorn (Schliep, 2011)
based on the JC69 model (Jukes et al., 1969). As the default model in Phangorn, the JC69
model is a classical Markov model of DNA sequence evolution and can be used to estimate
the evolutionary distance between sequences. Two ASVs with similar sequences tend to be
evolutionary close to each other, and more likely to perform similar biological functions.
Therefore, we incorporate the distance matrix in identifying the important ASVs.

Based on the tuning parameter selection procedure described in Section 2.3, we con-
struct an aggregation tree with M = 3, L = 3. The set of possible threshold G is set as
{4, 8, 12, 16}/

√
n logm log logm, with n = 456 and m = 857, and we choose g(2) = g(3) =

16/
√
n logm log logm = 0.21.
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Algorithm 3: g(ℓ) Selection algorithm.
Data: Distance Matrix D = (dij)m×m, Sample size n, number of features m, the

maximum children number M , the maximum layer L
Result: g(2), ..., g(L).
// set searching upper bound dmax and step-size sn,m
Let dmax = maxj∈Ωmini∈{i:i ̸=j} dij ; sn,m = 4/

√
n log(m) log log(m) ;

for ℓ = 2, ..., L do
// on layer ℓ, search g(ℓ) from (g(ℓ−1), dmax], g(1) = 0

Let Mg =NULL; eg=1; G =NULL; g = g(ℓ−1) + sn,m;
while g ≤ (2ML−2 − 1)dmax and eg < 10 do

// stop searching process if the value g exceed the searching upper bound or the
|Ã(ℓ)(g)| does not increase for past 10 candidate values g.

// stop searching process if the value g exceed the searching upper bound.
Use Algorithm 1 to Construct an ℓ layers aggregation tree
Tℓ = {A(ℓ′) : ℓ′ = 1, ..., ℓ} with maximum children number M, and
(g(1), ..., g(ℓ−1), g);

Set Ã(ℓ)(g) = {A : A ∈ A(ℓ)(g), |C(A)| ≥ 2}; if mg ≥ |Ã(ℓ)(g)| then
eg = eg + 1;

else
eg=1;

G = (G, g); Mg = (Mg, |Ã(ℓ)(g)|) ; mg = |Ã(ℓ)(g)| ;
g = g + sn,m;

g(ℓ) = min{argmaxg∈GMg};
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α=0.05 α=0.1 α=0.15 α=0.2

τ=
0.02

τ=
0.04

τ=
0.06

τ=
0.08

τ=
0.1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0.0

0.4

0.0

0.4

0.0

0.4

0.0

0.4

0.0

0.4

SE

Test

BH

FDRL I

FDRL II

AdaPT

DART

Figure 5: Sensitivity of various testing methods under SE1-SE4 when proportion τ of the
alternative hypothesis were switched with the null. The main bars mark the
average values across 200 repetitions; the error bars mark their 25% and 75%
quantiles. Every column shows the sensitivity under a nominal FDR level α.
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Figure 6: Performance of DART across different M . The main bars mark the average values
across 200 repetitions; the error bars mark their 25% and 75% quantiles. Every
column shows the performance under a nominal FDR level α. The first row
represents the average FDP, and the dashed horizontal lines marks the desired
FDR level. The second row represents the average sensitivity.
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Appendix S1. Proofs of Lemmas

Proof [Proof of Lemma 1] Since the proof of the theorem statement (b) is similar to the
proof of the theorem statement (a), we will only focusing on the proof of statement (a).

The random variable FDP (ℓ) can be decomposed to the product of two parts.

FDP (ℓ) =

∑
S∈B(ℓ)

0

|S|I{TS < t̂(ℓ)}∑
S∈B(ℓ)

0

|S|t̂(ℓ)
×

∑
S∈B(ℓ)

0

|S|t̂(ℓ)

max(
∑

S∈B(ℓ) |S|I{TS < t̂(ℓ)}, 1)
(S1)

Based on (S1), in order to prove limm→∞ P(FDP (ℓ) ≤ α+ ϵ) = 1 for all ϵ > 0, we only need
prove

lim
m→∞

P

{∑
S∈B(ℓ)

0

|S|I{TS < t̂(ℓ)}∑
S∈B(ℓ)

0

|S|t̂(ℓ)
− 1 < ϵ

}
→ 1 (S2)

lim
m→∞

P

{∣∣∣∣
∑

S∈B(ℓ)
0

|S|t̂(ℓ)

max(
∑

S∈B(ℓ) |S|I{TS < t̂(ℓ)}, 1)
− α

∣∣∣∣ > ϵ

}
→ 0 (S3)

(S3) is immediately followed by Lemma 10, and we will prove (S2) by induction. Below is a
list of the proof sketch:
1. On layer 1, show P (mt̂(1) ≥ Ccmd) → 1. Then, by applying Lemma 9, we have

• P (X (1)) → 1, which is equivalent to (S2). Hence, we proved the FDR control on
layer 1.

• P (βm < ĉS < γm,∀S ∈ B(1)) → 1, and P (ĉS < γm,∀S ∈ B(2)) → 1. Note that
although this conclusion is not used to prove the FDR control on the current layer,
but is necessary to guarantee the FDR control on higher layers.

2. On layer ℓ ≥ 2, assume the FDR control holds on previous layers and P (X (ℓ′)) → 1 for
all ℓ′ = 1, . . . , ℓ − 1. Then by Lemma 9, P (βm < ĉS < γm, ∀S ∈ ∪ℓ−1

ℓ′=1B
(ℓ′)) → 1, and

P (ĉS < γm, ∀S ∈ B(ℓ)) → 1. Accordingly, we can get P (mt̂(1) ≥ Ccmd) → 1. Then, by
applying the Lemma 9 again, we have

• P (X (ℓ)) → 1, which is equivalent to (S2). Hence, we proved the FDR control on
layer ℓ.

• P (βm < ĉS < γm,∀S ∈ B(ℓ)) → 1, and P (ĉS < γm,∀S ∈ B(ℓ+1)) → 1.

We start the proof on layer 1. Layer 1:
Take a subset F (1) ⊂ Amd ∩ A(1), such that |F (1)| = cmd. For any i ∈ F (1), we have

P(Xi > γm) ≥ C. By Markov’s inequality, we have:

P
(∣∣ ∑

i∈F(1)

I(Xi > γm)−
∑

i∈F(1)

P(Xi > γm)| ≥ c
3/4
md
)
≤ C(cmd)

−1/2
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Thus,

P
[ ∑
1≤i≤m

I(Ti ≤ t̂(1)) ≥ Ccmd − c
3/4
md
]
≥ 1− o(1)

Therefore, by Lemma 10, exists constant C(1), s.t.

P
[
m0t̂

(1) ≥ C(1)cmd
]
≥ 1− o(1) (S4)

Together with Lemma 9 (1), we have P(X (1)) → 1 and accordingly, P(FDP (1) < α+ ϵ) → 1.

Layer ℓ:
Based on similar arguments on Layer 1, it suffices to show P(m0t̂

(ℓ) > C(ℓ)cmd) → 1 for
some constant C(ℓ).

Assume ∀h = 1, . . . , ℓ − 1, P(X (h)) → 1, then by Lemma 9, we have P(βm < ĉS <
γm,∀S ∈ B(h)) → 1, and P(cS < γm,∀S ∈ B(ℓ)) → 1.

Let F (ℓ) ⊂ Amd ∩ A(ℓ) with |F (ℓ)| = cmd. Define

F̂ (ℓ) =
{
A ∈ B(ℓ) ∩ F (ℓ) : TA < αm

}
By condition 2, ∀A ∈ F (ℓ),

P(A ∈ F̂ (ℓ)) ≥ P
(
TA < αm, TD ≥ Φ̄(mr1−1

√
logm),∀D ∈ D(A)

)
≥C1 (S5)

Accordingly, define X̂ (ℓ) = {|F̂ (ℓ)| ≥ cmd/2}, then P(X̂ (ℓ)) ≥ 1− o(1).
On X̂ (ℓ), we have ∑

S∈B(ℓ)
1

I(TS ≤ t̂(ℓ)) ≥ Ccmd

Then based on Lemma 8, we can conclude that P(m0t̂
(ℓ) ≥ C(ℓ)cmd) ≥ 1 − o(1) for some

constant C(ℓ).

Proof [Proof of Lemma 7] (1) Define X̃i = Φ̄(T̃i), For k ∈ {1, ..., c0}, let q0 ≥ ϵ(m). Also
define b1,k(q0), c1,...,ck be the value s.t. P (

∑k
j=1 X̃j > b1,k(q0)) = q0

[
ϵ′(m)

](c0−k)/c0 , and
P (X̃1 > c1) = ... = P (X̃k > ck) = ϵ(m)ϵ′(m), respectively. For simplicity’s sake, we use b1,k
to present b1,k(q0).

Based on the definition, we have

b1,k <
k∑

j=1

cj

Thus, when k = 2,

P (X̂1 + X̂2 > b1,2)

=P (X̂1 + X̂2 > b1,2, X̂1 > b1,2 − c2, X̂2 > b1,2 − c1)

+ P (X̂1 + X̂2 > b1,2, X̂1 < b1,2 − c2) + P (X̂1 + X̂2 > b1,2, X̂2 < b1,2 − c1)

=P (X̂1 + X̂2 > b1,2, c1 > X̂1 > b1,2 − c2) + P (X̂1 > c1, X̂2 > b1,2 − c1)

+ P (X̂1 + X̂2 > b1,2, X̂1 < b1,2 − c2) + P (X̂1 + X̂2 > b1,2, X̂2 < b1,2 − c1)
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Based on construction, the last three terms always smaller than ϵ(m)ϵ′(m)(1 + δ4(m)) for

δ4(m) := maxi∈Ω supp∈P ′
i

∣∣∣∣P (T̂i < p)/P (T̃i < p)− 1

∣∣∣∣→ 0, and accordingly, we have

P (X̂1 + X̂2 > b1,2, c1 > X̂1 > b1,2 − c2) + P (X̂1 > c1, X̂2 > b1,2 − c1)

≤[P (X̂1 + X̃2 > b1,2, c1 > X̂1 > b1,2 − c2) + P (X̂1 > c1, X̃2 > b1,2 − c1)](1 + δ4(m))

≤[P (X̂1 + X̃2 > b1,2, X̂1 > b1,2 − c2, X̃2 > b1,2 − c1)](1 + δ4(m))

≤P (X̃1 + X̃2 > b1,2, X̃1 > b1,2 − c2, X̃2 > b1,2 − c1)(1 + δ4(m))2

Based on similar arguments, we can also have

P (X̂1 + X̂2 > b1,2, c1 > X̂1 > b1,2 − c2) + P (X̂1 > c1, X̂2 > b1,2 − c1)

≥P (X̃1 + X̃2 > b1,2, X̃1 > b1,2 − c2, X̃2 > b1,2 − c1)(1− δ4(m))2

Thus,

sup

q0≥ϵ(m)
[
ϵ′(m)

] c0−2
c0

∣∣∣∣P (X̂1 + X̂2 > b1,2)

P (X̃1 + X̃2 > b1,2)
− 1

∣∣∣∣→ 0

Similarly, if sup
q0≥ϵ(m)

[
ϵ′(m)

] c0−k
c0

∣∣∣∣P (
∑k

j=1 X̂j>b1,k)

P (
∑k

j=1 X̃j>b1,k)
− 1

∣∣∣∣→ 0, we can have

sup

q0≥ϵ(m)
[
ϵ′(m)

] c0−k−1
c0

∣∣∣∣P (
∑k+1

j=1 X̂j > b1,k+1)

P (
∑k+1

j=1 X̃j > b1,k+1)
− 1

∣∣∣∣→ 0

Thus, we can get (1). In addition, based on the similar arguments, we can get (2).

Proof [Proof of Lemma 8] (1) Let Z ′
1, ..., Z

′
K

iid∼ N(0, 1), with 2 ≤ K < ML−1. Define the
set M = {M1 ⊂ {1, ...,m} : 1 ≤ |M1| ≤ K − 1}. It is suffice to show:

lim
m→∞

sup
M1∈M

sup
c1∈[β0,γm]
c2∈[0,γm]

P( 1√
K

∑K
i=1 Z

′
i > c2,

1√
|M1|

∑
j∈M1

Z ′
j > c1)

P( 1√
K

∑K
i=1 Z

′
i > c2)

= 0

Here, β0 =
√

2b(1− r1) logm+ b(1− r1) log log logm, with

b =

2ML−1+1
ML−1+1

− r1

2(1− r1)
∈
(

ML−1

(ML−1 + 1)(1− r1)
, 1

)
.

For simplification, let k1 = |M1|. For Z1 and Z2
iid∼ N(0, 1), define

Dm =

{
c2 ∈ (0, γm) :

d

dc2

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2, Z1 > β0

)
P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2

) = 0

}
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, then

sup
c1∈[β0,γm]
c2∈[0,γm]

P ( 1√
K

∑K
i=1 Z

′
i > c2,

1√
|M1|

∑
j∈M1

Z ′
j > c1)

P ( 1√
K

∑K
i=1 Z

′
i > c2)

≤2 sup
c2∈[0,γm]

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2, Z1 > β0

)
P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2

)
≤2max

{
max

c2=0 or γm

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2, Z1 > β0

)
P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2

) ,

sup
c2∈Dm

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2, Z1 > β0

)
P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2

)
}

(i). When c2 = 0,

lim
m→∞

P
(√

k1
K
Z1 +

√
K−k1

K
Z2 > c2, Z1 > β0

)
P
(√

k1
K
Z1 +

√
K−k1

K
Z2 > c2

) = lim
m→∞

2P
(√k1

K
Z1 +

√
K − k1

K
Z2 > c2, Z1 > β0

)
= 0

(ii). When c2 = γm, c2/β0 =
√

1
b(1−r1)

,

lim
m→∞

P
(√

k1
K
Z1 +

√
K−k1

K
Z2 > c2, Z1 > β0

)
P
(√

k1
K
Z1 +

√
K−k1

K
Z2 > c2

) = lim
β0→∞

∫∞
β0

∫∞

S
√

K
K−k1

β0−
√

k1
K−k1

z1
ϕ(z1)ϕ(z2)dz2dz1∫∞

Sβ0
ϕ(z)dz

≤C lim
β0→∞

∫∞

S
√

K
K−k1

β0−
√

k1
K−k1

β0

ϕ(β0)ϕ(z)dz +
∫∞
β0

ϕ(z)ϕ(S
√

K
K−k1

β0 −
√

k1
K−k1

z)dz

ϕ(Sβ0)
(L’Hopital’s rule)

≤C lim
β0→∞

[
exp

{
− β2

0

2

(
S

√
k1

K − k1
−

√
K

K − k1

)2}
+

∫ ∞

β0

exp

{
− 1

2

(√
K

K − k1
z − S

√
k1

K − k1
β0

)2}
dz

]
= 0,

Where S =
√

1
b(1−r1)

(iii). When c2 ∈ Dm, given

0 =
d

dc2

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2, Z1 > β0

)
P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2

)
=

1

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2

)2×{
P
(√k1

K
Z1 +

√
K − k1

K
Z2 > c2

) d

dc2
P
(√k1

K
Z1 +

√
K − k1

K
Z2 > c2, Z1 > β0

)
− P

(√k1
K

Z1 +

√
K − k1

K
Z2 > c2, Z1 > β0

) d

dc2
P
(√k1

K
Z1 +

√
K − k1

K
Z2 > c2

)}
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We have

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2, Z1 > β0

)
P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2

) =

d
dc2

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2, Z1 > β0

)
d
dc2

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2

)
Therefore,

sup
c2∈Dm

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2, Z1 > β0

)
P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2

)
= sup

c2∈Dm

d
dc2

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2, Z1 > β0

)
d
dc2

P
(√

k1
KZ1 +

√
K−k1
K Z2 > c2

)
= sup

c2∈Dm

C

∫ ∞

β0

exp

{
− 1

2

(√
K

K − k1
z −

√
k1

K − k1
c2

)2}
dz

≤C

∫ ∞

β0

exp

{
− 1

2

(√
K

K − k1
z −

√
k1

K − k1
γm

)2}
dz

→0

Combine (i), (ii) and (iii), we have

lim
m→∞

sup
M1∈M

sup
c1∈[β0,γm]
c2∈[0,γm]

P ( 1√
K

∑K
i=1 Zi > c2| 1√

|M1|

∑
j∈M1

Zj | > c1)

P ( 1√
K

∑K
i=1 Zi > c2)

= 0

(2)

It is suffice to show

lim
m→∞

sup
M1∈M

sup
c2∈[0,Φ̄−1(1/m)]

P( 1√
K

∑K
i=1Xi > c2,

1√
|M1|

∑
j∈M1

Xj > β0)

P(
∑K

i=1 Z
′
i/
√
K > c2)

≤ 0

Let X̆1 =
∑

i∈M1
Xi/

√
k1, X̆2 =

∑
i∈M\M1

Xi/
√
K − k1.

Based on lemma 7, δ6m = |P (X̆j > p)/P (Zj > p) − 1| → 0 uniformly for j = 1, 2 and
p > αm.
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Thus, uniformly,

P (

√
k1
K

X̆1 +

√
K − k1

K
X̆2 > c2, X̆1 > β0)

=P (

√
K − k1

K
X̆2 > c2 −

√
k1
K

β0, X̆1 > β0)

+ P (

√
K − k1

K
X̆2 < c2 −

√
k1
K

β0,

√
k1
K

X̆1 +

√
K − k1

K
X̆2 > c2)

≤(1 + δ6m)
[
P (

√
K − k1

K
X̆2 > c2 −

√
k1
K

β0, Z1 > β0)

+ P (

√
K − k1

K
X̆2 < c2 −

√
k1
K

β0,

√
k1
K

Z1 +

√
K − k1

K
X̆2 > c2) + P (Z1 > Φ̄−1(αm))

]
≤(1 + δ6m)2

[
P (

√
k1
K

Z1 +

√
K − k1

K
Z2 > c2, Z1 > β0)

]
+ (1 + δ6m)

2∑
j=1

P (Zj > Φ̄−1(αm))

≤(1 + δ6m)2
[
P (

√
k1
K

Z1 +

√
K − k1

K
Z2 > c2, Z1 > β0)

]
+ 2(1 + δ6m)αm

≤o(P(

K∑
i=1

Z ′
i/
√
K > c2))

Proof [Proof of Lemma 9] (i) Prove that (1) can leads to (2):
On ∩ℓ

t=1X (t), ∑
S∈B(ℓ)

0

|S|I(TS < t̂(ℓ)) ≤
∑

S∈B(ℓ)
0

|S|t̂(ℓ) +
{ ∑

S∈B(ℓ)
0

|S|t̂(ℓ)
}
ϵ

Combined with ∑
S∈B(ℓ)

0

|S|t̂(ℓ) ≤ α
∑

S∈B(ℓ)

|S|I{TS < t̂(ℓ)}

and ∑
S∈B(ℓ)

|S|I{TS < t̂(ℓ)} =
∑

S∈B(ℓ)
0

|S|I{TS < t̂(ℓ)}+
∑

S∈B(ℓ)
1

|S|I{T (ℓ)
S ≤ t̂(ℓ)}

≤
∑

S∈B(ℓ)
0

|S|I{T (ℓ)
S < t̂(ℓ)}+ Cmr1

We have:
(1− α− αϵ)

∑
S∈B(ℓ)

0

|S|t̂(ℓ) ≤ αCmr1

Thus, 2|B(ℓ)
0 |t̂(ℓ) ≤

∑
S∈B(ℓ)

0

|S|t̂(ℓ) ≤ α
1−α−αϵm

r1 , for any 1 ≤ ℓ ≤ L.
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When ℓ = 1, by |B(1)
0 | = m0 = m(1 + o(1)), we have t̂(ℓ) ≤ Cm(r1−1).

When ℓ ≥ 2, on ∩(ℓ)
k=1X

(k), we have

max
k=1,...,ℓ

{FDP (k) − α} < ϵ

which leads to |B(ℓ)
0 |/|B(ℓ)| → 1. And accordingly, t̂(ℓ) ≤ Cm(r1−1).

(ii) Prove that statement (2) leads to statement (3)
On layer 1, Φ̄(ĉS) = t̂(1) ≤ C(m)r1−1. On layer ℓ ≥ 2 and ∩ℓ

h=1X (h), for all S ∈ B(ℓ),

Φ̄(ĉS) ≤ GS(ĉS) +
∑

S′∈U(S)

Φ̄(ĉS′) (S6)

Suppose Φ̄(ĉS′) ≤ C(m)r1−1 for S′ ∈ ∪ℓ−1
k=1B

(k), then together with GS(ĉS) = t̂(ℓ) ≤ Cmr1−1

and (S6), we have

ĉS ≥
√
2(1− r1) logm− 2 log logm = βm

for all S ∈ B(ℓ).
In addition, for S ∈ B(ℓ), on ∩ℓ−1

h=1X
(h),

GS(ĉS)[1− Φ̄(
β0√
ML−1

)]M
L−1 ≤ Φ̄(ĉS) (S7)

So we have Φ̄(ĉS) ≥ t̂(ℓ)(1 + o(1)), and accordingly, ĉS ≤ γm.
Note that the ĉS ≤ γm only depends on the statement (2) on layer ℓ− 1. Thus, we can

apply the conclusion to show P(m0t̂
(ℓ) > c logm) → 1 in the proof of theorem 1.

(iii) Prove that statement (1) holds on layer 1 (ℓ = 1):
Define νm = [(|A′|2/m + δ2m) ∨ 1]/

√
cmd logm. Let 0 = c0 < ... < c⌈γm/νm⌉ = γm

satisfy ck − ck−1 = νm for 1 ≤ k < ⌈γm/νm⌉ and c⌈γm/νm⌉ − c⌈γm/νm⌉−1 ≤ νm. We can get
the corresponding p-values sequence q0 > ... > q⌈γm/νm⌉ with qk = 1 − Φ(ck). Let value
q(1) = C(1)cmd/m, by (S4), we have P (t̂ > q(1)) → 1. We define the working p-value sequence
on layer 1 as P

(1)
sub = {q0, ..., qk(1) , q(1)}, where k(1) ∈ {0, ..., ⌈γm/νm⌉ − 1} is the index s.t.

qk(1) ≥ q(1) and qk(1)+1 ≤ q(1).
If ∀ϵ > 0,

P

(
max
q∈P (1)

sub

∣∣∣∣
∑

S∈B(1)
0

I(XS > Φ̄−1(q))−
∑

S∈B(1)
0

P (XS > Φ̄−1(q))(1− δ0m)∑
S∈B(1)

0

q

∣∣∣∣ > ϵ

)
→ 0 (S8)
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Then,

P

(
max
q∈P (1)

sub

∑
S∈B(1)

0

I(T
(1)
S < q)−

∑
S∈B(1)

0

q∑
S∈B(1)

0

q
> ϵ

)

≤P

(
max
q∈P (1)

sub

∑
S∈B(1)

0

I(XS > Φ̄−1(q))−
∑

S∈B(1)
0

P (X̃S > Φ̄−1(q))∑
S∈B(1)

0

q
> ϵ

)

≤P

(
max
q∈P (1)

sub

∑
S∈B(1)

0

I(XS > Φ̄−1(q))−
∑

S∈B(1)
0

P (XS > Φ̄−1(q))(1− δ0m)∑
S∈B(1)

0

q
> ϵ

)

≤P

(
max
q∈P (1)

sub

∣∣∣∣
∑

S∈B(1)
0

I(XS > Φ̄−1(q))−
∑

S∈B(1)
0

P (XS > Φ̄−1(q))(1− δ0m)∑
S∈B(1)

0

q

∣∣∣∣ > ϵ

)
=o(1) (S9)

Together with the fact that supj=1,...,k

∣∣∣∣q(j)/q(j−1) − 1

∣∣∣∣ = o(1), we have

P

(
sup

q∈[q(1),α]

∑
S∈B(1)

0

I(TS < q)−
∑

S∈B(1)
0

q∑
S∈B(1)

0

q
> ϵ

)
= o(1)

Thus, to prove (1) holds on layer 1, we only need to show (S8).
Define C

(1)
sub = {c0, ..., ck′ , c′}, with c′ = Φ̄−1(q′). In order to show (S8), it is suffice to

show ∫ c′

0
P

{∣∣∣∣
∑

S∈B(1)
0

I(XS > c)− P (XS > c)(1− δ0m)∑
S∈B(1)

0

Φ̄(c)

∣∣∣∣ ≥ ϵ

}
dc = o(νm) (S10)

Note that by Markov inequality,

P

{∣∣∣∣
∑

S∈B(1)
0

[
I(XS > c)− P (XS > c)(1− δ0m)

]∑
S∈B(1)

0

Φ̄(c)

∣∣∣∣ ≥ ϵ

}

≤P

{∣∣∣∣
∑

S∈B(1)
0

[
I(XS > c)− P (XS > c)

]∑
S∈B(1)

0

Φ̄(c)

∣∣∣∣ ≥ ϵ− (1 + δ0m)δ0m

}

≤

∑
S,S′∈B(1)

0

[
P (XS > c,XS′ > c)− P (XS > c)P (XS′ > c)

]
(∑

S∈B(1)
0

Φ̄(c)
)2
[ϵ− (1 + δ0m)δ0m]2

We can divide the S, S′ ∈ B(1)
0 into the following three subsets:

B(1)
01 = {S, S′ ∈ B(1)

0 : S = S′}

B(1)
02 = {S, S′ ∈ B(ℓ)

0 : S ̸= S′,∃A,A′ ∈ A(L), s.t.S ⊂ A,S′ ⊂ A′, and A′ ∈ ΓA} (S11)

B(1)
03 = {S, S′ ∈ B(1)

0 : S ̸= S′} \ B(1)
02
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Then, ∑
(S,S′)∈B(1)

01

[
P (XS > c,XS′ > c)− P (XS > c)P (XS′ > c)

]
(∑

S∈B(1)
0

Φ̄(c)
)2
[ϵ− (1 + δ0m)δ0m]2

≤ C∑
S∈B(1)

0

Φ̄(c)

Based on condition 3,∑
(S,S′)∈B(1)

02

[
P (XS > c,XS′ > c)− P (XS > c)P (XS′ > c)

]
(∑

S∈B(1)
0

Φ̄(c)
)2
[ϵ− (1 + δ0m)δ0m]2

≤ C(|A′|2/m+ δ2m)∑
S∈B(1)

0

Φ̄(c)

In addition, ∑
(S,S′)∈B(1)

03

[
P (XS > c,XS′ > c)− P (XS > c)P (XS′ > c)

]
(∑

S∈B(1)
0

Φ̄(c)
)2
[ϵ− (1 + δ0m)δ0m]2

= o(1)

Thus, after some calculation, we can prove (S10) and then P(X (1)) → 1.
Similarly, if |Ω̃0| = m(1 + o(1)), based on (S8), we have

P

(
max
q∈P (1)

sub

∣∣∣∣
∑

S∈B(1)
0

I(T
(1)
S < q)−

∑
S∈B(1)

0

q∑
S∈B(1)

0

q

∣∣∣∣ > ϵ

)
= o(1)

Hence, P(X ′(1)) → 1.
(iv) Prove that statement (1) holds on layer ℓ ≥ 2 when statement (1) holds

on previous layers:
On layer ℓ, we can divide the S, S′ ∈ B(ℓ)

0 into the following three subsets:

B(ℓ)
01 = {S, S′ ∈ B(ℓ)

0 : S = S′, {Ti : i ∈ S} are mutually independent}

B(ℓ)
02 = {S, S′ ∈ B(ℓ)

0 : ∃A,A′ ∈ A(L), s.t.S ⊂ A,S′ ⊂ A′, and A′ ∈ ΓA}

B(ℓ)
03 = {S, S′ ∈ B(ℓ)

0 : S ̸= S′} \ B(ℓ)
02

Consider the p-values sequence q0 > ... > q⌈γm/νm⌉ constructed in (iii). Let q(ℓ) = C(ℓ)cmd/m,
by (S4), we have P (t̂ > q(ℓ)) → 1. We define the working p-value sequence on layer 1 as
P

(ℓ)
sub = {q0, ..., qk(ℓ) , q(ℓ)}, where k(ℓ) ∈ {0, ..., ⌈γm/νm⌉ − 1} is the index s.t. qk(ℓ) ≥ q(ℓ) and

qk(ℓ)+1 ≤ q(ℓ).
In view of statement (3) and Lemma 8, we have

sup
k=0,...,⌈γm/νm⌉

∣∣∣∣GS(ck)

Φ̄(ck)
− 1

∣∣∣∣ = o(1)

Together with statement (3) and Lemma 7, there exists δ5(m) → 0 with

max
S∈B(ℓ)

0

P(XS > Φ̄−1(q)|Q(1:ℓ−1))

q

≤ max
S∈B(ℓ)

0

P (XS > Φ̄−1(q))

P (ZS > Φ̄−1(q))[1− Φ̄( β0√
ML−1

)]ML−1

≤1 + δ5(m)
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Then ∀ϵ > 0, by following the similar arguments in (iii), we can have

P

(
max
q∈P (ℓ)

sub

∣∣∣∣
∑

S∈B(ℓ)
01

|S|I(XS > Φ̄−1(q))−
∑

S∈B(ℓ)
01

|S|P (XS > Φ̄−1(q)|Q(1:ℓ−1))(1 + δ0m)∑
S∈B(ℓ)

01

|S|q

∣∣∣∣ > ϵ

∣∣∣∣∣Q(1:ℓ−1)

)
→ 0 (S12)

Then,

P

(
max
q∈P (ℓ)

sub

∑
S∈B(ℓ)

0

|S|I(TS < q)−
∑

S∈B(ℓ)
0

|S|q∑
S∈B(ℓ)

0

|S|q
> ϵ

∣∣∣∣∣Q(1:ℓ−1)

)

≤P

(
max
q∈P (ℓ)

sub

∑
S∈B(ℓ)

0

|S|I(XS > Φ̄−1(q))−
∑

S∈B(ℓ)
0

|S|P (XS > Φ̄−1(q)|Q(1:ℓ−1))∑
S∈B(ℓ)

0

|S|q
> ϵ/2

∣∣∣∣∣Q(1:ℓ−1)

)
=o(1) (S13)

Together with the fact that supj=1,...,k

∣∣q(j)/q(j−1) − 1
∣∣ = o(1), we have

P

(
sup

q∈[q(ℓ),α]

∑
S∈B(ℓ)

0

|S|I(TS < q)−
∑

S∈B(ℓ)
0

|S|q∑
S∈B(ℓ)

0

|S|q
> ϵ

∣∣∣∣∣Q(1:ℓ−1)

)
= o(1)

And thus P (X (ℓ)) → 1.
Similarly, when |Ω̃0| = m(1 + o(1)), we have P (X ′(ℓ)) → 1 based on Lemma 8 (2).

Proof [Proof of Lemma 10] When ℓ = 1:
for δ = 1/m4, ∑

S∈B(1)
0

|S|t̂(1) ≤ α
∑

S∈B(1)

|S|I(TS < t̂(1))

≤ α
∑

S∈B(1)

|S|I(TS < t̂(1) + δ)

≤
∑

S∈B(1)
0

|S|t̂(1)(1 + o(1)) (S14)

Assume (12) holds on layer 1, . . . , ℓ− 1. Then,∑
S∈B(ℓ)

0

|S|t̂(ℓ) ≤ α(1 + o(1))
∑

S∈B(ℓ)

|S|I(TS < t̂(ℓ))

Thus, by following the similar arguments on (S14), we can get (12) on layer ℓ.

S10
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