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Abstract

Maximum Mean Discrepancy (MMD) has been widely used in the areas of machine learn-
ing and statistics to quantify the distance between two distributions in the p-dimensional
Euclidean space. The asymptotic property of the sample MMD has been well studied when
the dimension p is fixed using the theory of U-statistic. As motivated by the frequent use
of MMD test for data of moderate/high dimension, we propose to investigate the behavior
of the sample MMD in a high-dimensional environment and develop a new studentized test
statistic. Specifically, we obtain the central limit theorems for the studentized sample MMD
as both the dimension p and sample sizes n,m diverge to infinity. Our results hold for a
wide range of kernels, including popular Gaussian and Laplacian kernels, and also cover
energy distance as a special case. We also derive the explicit rate of convergence under mild
assumptions and our results suggest that the accuracy of normal approximation can im-
prove with dimensionality. Additionally, we provide a general theory on the power analysis
under the alternative hypothesis and show that our proposed test can detect difference be-
tween two distributions in the moderately high dimensional regime. Numerical simulations
demonstrate the effectiveness of our proposed test statistic and normal approximation.

Keywords: Berry-Esseen Bound, Distance Covariance, Energy Distance, Hilbert-Schmidt
Independence Criterion, Kernel Method

1. Introduction

Testing whether two samples are drawn from the same distribution is a classical problem
in statistics. Mathematically speaking, given independent and identically distributed (iid)
p-dimensional samples X1, . . . , Xn from the distribution FX and Y1, . . . , Ym from the dis-
tribution FY , we aim to test the hypothesis H0 : FX = FY versus HA : FX 6= FY . There
is a rich literature for the two-sample testing and well-known tests include Kolmogorov-
Smirnov test [Kolmogorov (1933), Smirnov (1939)], Cramer von-Mises test [Cramér (1928)]
and Anderson-Darling test [Anderson and Darling (1952)]. Other notable ones include
Wald-Wolfowitz runs test [Wald and Wolfowitz (1940)], Mann-Whitney test [Mann and
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Whitney (1947)] for univariate distributions and their multivariate generalizations [Fried-
man and Rafsky (1979)], among others.

In this article, we focus on the test based on maximum mean discrepancy (MMD, here-
after) [Gretton et al. (2012)], which is defined as the largest difference in expectations over
functions in the unit ball of a reproducing kernel Hilbert space (RKHS). Since its introduc-
tion in the machine learning literature, it has gained growing popularity in both statistics
and machine learning and found numerous real-world applications, ranging from biological
data integration [Borgwardt et al. (2006)], to neural networks training [Dziugaite et al.
(2015)], to the evaluation of a generative model in generative adversarial networks (GAN)
[Arbel et al. (2018), Bińkowski et al. (2018)].

As a distance metric that measures the closeness of two distributions, MMD belongs
to the category of interpoint distance based metric. In this category, a notable member is
energy distance (ED, hereafter) [Székely et al. (2004), Székely and Rizzo (2013b)], which
can be viewed as a special case of MMD [Sejdinovic et al. (2013)]. ED has been applied
to many statistical problems, including two sample testing [Székely et al. (2004), Zhu and
Shao (2021)], change-point detection [Matteson and James (2014)], hierarchical clustering
[Szekely et al. (2005)], assessment of the quality of probabilistic forecasts via new scoring
rules [Gneiting and Raftery (2007)], and covariate balancing in causal inference [Huling and
Mak (2020)].

Motivated by the increasing use of MMD test for data of moderate and high dimension
[Borgwardt et al. (2006), Zhu et al. (2017), Zhao et al. (2019)], we propose to study the
behavior of sample MMD in the high-dimensional setting, which seems relatively less ex-
plored. To the best of our knowledge, we are only aware of recent contributions from Zhu
and Shao (2021) and Chakraborty and Zhang (2021). In Zhu and Shao (2021), they showed
that under the setting p � max(n,m), the MMD permutation tests are inconsistent when
the two high dimensional distributions correspond to the same marginal distributions but
differ in other aspects of the distributions in that the ED and MMD tests mainly target the
differences between marginal means and sum of componentwise variances; see Chakraborty
and Zhang (2021) for similar findings. Note that the computational complexity of MMD
permutation test is O((n + m)2pB) with B being the number of permutations employed
and the computational cost is expensive for large scale data, whereas that of our proposed
method is O((n+m)2p).

As close relatives of ED, distance covariance (dcov, hereafter) and its standardized
version distance correlation (dcor, hereafter) were proposed by Székely et al. (2007) to
measure the dependence between two random vectors X ∈ Rp and Y ∈ Rq of arbitrary
dimensions. The high-dimensional behavior of sample dcov has been studied in Zhu et al.
(2020) and Gao et al. (2021). In Zhu et al. (2020), they showed that under the setting
min(p, q)� n, the dcov is unable to capture full nonlinear dependence betweenX and Y and
it is only capable of capturing componentwise cross-covariance, a phenomenon reminiscent
of the one in Zhu and Shao (2021) and Chakraborty and Zhang (2021). Additionally, their
results have been shown to hold for sample HSIC (Hilbert-Schmidt Independence Criterion),
which can be viewed as a kernelized version of sample dcov; see Sejdinovic et al. (2013). On
the other hand, Gao et al. (2021) showed that a rescaled sample dcor is capable of detecting
full nonlinear dependence as long as p = q = o(

√
n) and other regularity conditions hold.

Thus the results in Zhu et al. (2020) and Gao et al. (2021) complement each other and
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suggest that there are several interesting regimes for the asymptotic behavior of sample
dcov and sample dcor. Han and Shen (2021) derived the first non-null central limit theorem
(CLT, hereafter) for the sample distance covariance, as well as the more general sample
HSIC in high dimensions, and their results were obtained primarily in the Gaussian case.

Despite the aforementioned recent advances, the asymptotic theory for sample MMD
under the null hypothesis H0 in general case of n,m and p diverging in an arbitrary fashion
remains unexplored. Our first main contribution is to obtain central limit theorems for a
studentized sample MMD. We also obtain the explicit rates of convergence to the limiting
standard normal distribution. As another important contribution, we provide a general
theory for the power analysis for our studentized sample MMD and provide several non-
overlapping cases to discuss when the power of our MMD test is asymptotically one. One of
the main findings is that in the moderately high-dimensional regime, the proposed studen-
tized test statistic is able to detect the difference between two distributions with high power.
The difference can lie in the means, marginal variances, componentwise covariances, and
higher-order features associated with two high-dimensional distributions. The theoretical
results are new to the literature and can be considered as substantial extensions over those
obtained in Zhu et al. (2020), Zhu and Shao (2021), and Gao et al. (2021). As compared
to Zhu and Shao (2021), who focused on the behavior of MMD-based permutation test in
both High-dimensional Low Sample Size (HDLSS) and High-dimensional Medium Sample
Size (HDMSS) settings, we aim to derive a simple studentized test statistic with standard
normal limiting null distribution, under less stringent restrictions on the growth rate of
p as a function of n. Some detailed comparisons with their power results are deferred to
Section 3.5.

As two sample testing and independence testing are very much related, our work is
also inspired by the dcov-based testing in high dimensional setting in Zhu et al. (2020)
and Gao et al. (2021). In particular, since our work and Gao et al. (2021) share some
technical arguments (say, Berry-Esseen bound for martingale), it pays to highlight the
main difference between these two papers. First, the main U-statistic (that is, sample dcov)
in Gao et al. (2021) is based on a one-sample kernel of order four, whereas we need to deal
with a two-sample kernel of order (2, 2). Consequently, some new theoretical tools need
to be developed, such as the moment inequality for the two-sample U-statistic. Second, to
form the studentized test statistic, we estimate the variance of sample MMD under the null
using the pooled sample. The asymptotic behavior of this variance estimate is studied under
both the null and the alternative. In particular, we have shown that it is a ratio-consistent
estimator of HSIC of a mixture distribution with itself under some mild conditions. Lastly,
our asymptotic theory is developed for a large class of kernels, including the L2 norm as well
as the Gaussian kernel, the Laplacian kernel, and many other kernels used in the machine
learning literature. This generality is achieved by substantial new technical developments
and very involved asymptotic analysis.

Recently, Yan and Zhang (2023) have obtained some related results for MMD-based test
in high dimension. Specifically, they propose a studentized MMD-based test statistic under
a specific model structure and establish the null CLT as well as the non-null CLTs under
fixed and local alternatives for an (infeasible) standardized statistic. Though both papers
consider the two-sample MMD-based testing problem when both (n,m) and p diverge and
propose a studentized statistic, there are significant differences in terms of settings, technical
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tools and theoretical results. Firstly, the problem set-ups are different. Yan and Zhang
(2023) consider a special factor-like model which has been adopted in high-dimensional
two sample mean testing [Chen and Qin (2010)]. All of our theory, including the CLT,
the general Berry-Esseen bound and the power results, are established with no specific
model constraints, and are thus applicable to a broader set of data generating processes.
Secondly, the technical tools and primary results established in the two papers are very
different. The most striking contribution in Yan and Zhang (2023) is the non-null CLTs
for the standardized statistic, which are very interesting and seem only achievable under
the specific model assumption, whereas we only present the null CLT for our studentized
test statistic but additionally derive a Berry-Esseen bound under the null. Thirdly, the
power results and the regimes under which the power approaches one are very different,
and more discussion can be found in Section 3.4. Overall, we view the results in Yan and
Zhang (2023) and our paper complementary to each other. Together they provide a more
complete portrayal of the high-dimensional behavior of MMD-based statistics.

The rest of this paper is organized as follows. Section 2 introduces the maximum mean
discrepancy, its sample version as a two sample U-statistic and its Hoeffeding decomposition.
The distributional properties when the dimension p is fixed is also described. We propose
a studentized test statistic and present the main theorems in Section 3. To be specific, we
present the CLT for the studentized MMD and obtain the rates of convergence under the
null. We also provide a general theory for the power under the alternative in this section.
Finite sample performance is examined via simulations in Section 4. In Section 5, we
summarize our results and discuss some potential extensions. Some illustrative examples,
all the technical details, and some additional simulation results are presented in the online
appendices; see https://arxiv.org/abs/2109.14913.

Let c, d be any positive integers and φ(x1, . . . , xc, y1, . . . , yd) denote a two-sample ker-
nel function. For any 0 ≤ c′ ≤ c, 0 ≤ d′ ≤ d, and subsets {i1, . . . , ic′}, {j1, . . . , jd′}, define

EXi1 ,...,Xic′ ,Yj1 ,...,Yjd′ [φ(X1, . . . , Xc, Y1, . . . , Yd)] =

∫
· · ·
∫
φ(X1, . . . , Xc, Y1, . . . , Yd)

c′∏
s=1

dFXis

d′∏
r=1

dFYjr .

For simplicity, we write

EX1,...,Xc,Y1,...,Yd [φ(X1, . . . , Xc, Y1, . . . , Yd)] = E [φ(X1, . . . , Xc, Y1, . . . , Yd)] .

For two random vectors V1, V2, the notation V1 =d V2 means that they are identically
distributed. We use →d and →p to denote convergence in distribution and in probability
respectively. For two real-valued sequences an, bn, we say an = O(bn) or an . bn if there
exist M,C > 0, such that an ≤ Cbn for n > M . If there exist M,C1, C2 > 0, such that
C1bn ≤ an ≤ C2bn for n > M , then we say an = Os(bn). In addition, we say an = o(bn)
or an ≺ bn if an/bn → 0 as n → ∞. For any p-dimensional vectors a, b, we use |a − b|
to denote the Euclidean distance between a and b. For a function f , we use fi to denote
its i-th order derivative, and f̃ to denote its centered version, that is, f̃(V1, . . . , Vk) =
f(V1, . . . , Vk) − E

[
f(V1, . . . , Vk)

]
. We use C(u1, . . . , uk) to denote a positive and finite

constant that depends only on the parameters u1, . . . , uk and the values of C(u1, . . . , uk) may
vary from line to line. Additionally, we use cum(x1, · · · , xk) to denote the joint cumulant
of the random variables x1, · · · , xk.
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2. Maximum Mean Discrepancy and Its Properties

2.1 The Definition of Maximum Mean Discrepancy

We follow Definition 2 in Gretton et al. (2012) to provide a formal definition of MMD.

Definition 1 Let X ∼ P1 and Y ∼ P2 be independent random vectors in Rp and let F0 be
a class of functions f : Rp → R. We define the maximum mean discrepancy (MMD) as

MMD(P1, P2) = sup
f∈F0

{
E
[
f(X)

]
− E

[
f(Y )

]}
. (1)

With properly selected function class F0, MMD(P1, P2) has some special properties. To fa-
cilitate the subsequent discussion, we follow the introduction in Section 2.2 of Gretton et al.
(2012) to provide some basic properties of the reproducing kernel Hilbert space (RKHS).

Specifically, let F be an RKHS on the separable metric space (Rp,P), where P denotes
the set of Borel probability measures on Rp. By the property of the RKHS and the Riesz
representation theorem, there is a feature mapping φ(x) : Rp → R such that f(x) =
〈f, φ(x)〉F for any f ∈ F . Furthermore, there exists a symmetric and positive definite
kernel k̄ associated with F such that φ takes the canonical form φ(x) = k̄(x, ·). It follows
that k̄(x, x′) = 〈φ(x), φ(x′)〉F for any x, x′ ∈ Rp.

For any distribution P ∈ P, we define the mean embedding of µP ∈ F as the function
satisfying that E[f(x)] = 〈f, µP 〉F for any f ∈ F . It is shown in Lemma 3 and Lemma 4
of Gretton et al. (2012) that, when the aforementioned kernel k̄ is measurable and satisfies
E[
√
k̄(X,X)] < ∞, E[

√
k̄(Y, Y )] < ∞, then MMD can be expressed as the distance in F

between mean embeddings, that is, MMD2(P1, P2) := ‖µP1−µP2‖2F . Equivalently, as stated
in Lemma 6 of Gretton et al. (2012), MMD can be expressed through the kernel as

MMD(P1, P2) = MMD(X,Y |k̄) :=
(
−2E

[
k̄(X,Y )

]
+ E

[
k̄(X,X ′)

]
+ E

[
k̄(Y, Y ′)

])1/2
, (2)

where X ′, Y ′ are independent and identical copies of X ∼ P1 and Y ∼ P2, respectively.

When F0 in Equation (1) is the unit ball in the RKHS (F , k̄), Gretton et al. (2012)
has shown that MMD(P1, P2) is a nonnegative metric and MMD(P1, P2) = 0 if and only
if P1 =d P2. Similar results have been generalized by using the equivalent definition of
MMD. In particular, if k̄ in Equation (2) is characteristic on Rp (i.e., the corresponding
mean map µP is injective), then the associated MMD is a metric on P, which satisfies
MMD(P1, P2) = 0 if and only if P1 = P2 [Fukumizu et al. (2007), Sejdinovic et al. (2013)].
Many commonly used kernels are shown to be characteristic kernels on Rp, including the
Gaussian kernel and Laplacian kernel [Fukumizu et al. (2007)].

We note that when k(x, y) = |x− y|, Equation (2) coincides with the formulation of ED
[Székely et al. (2004)].

Definition 2 Let X,X ′, Y, Y ′ be independence random vectors in Rp that satisfies X,X ′ ∼
P1 and Y, Y ′ ∼ P2, we define the energy distance (ED) as

ED(P1, P2) = ED(X,Y ) =
(
2E
[
|X − Y |

]
− E

[
|X −X ′|

]
− E

[
|Y − Y ′|

])1/2
. (3)

ED is a nonnegative metric and it holds that ED(P1, P2) = 0 if any only if P1 = P2.
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In this paper, we aim to provide a unified treatment of ED and MMD, so we follow the
approach in Zhu and Shao (2021) and mimic the definition of energy distance in Székely
and Rizzo (2013b) and Huang and Huo (2017) to give the definition of MMD with a general
kernel k. Though kernel is commonly used to measure similarity in the machine learning
literature, we use kernel throughout this article to refer to a broader range of metrics of
dissimilarities, which include both a semimetric of strong negative type on Rp (Definition 1
and Definition 28 of Sejdinovic et al. (2013)) and a characteristic kernel multiplied by −1,
as formally stated in Definition 3 below. For notational simplicity, we shall use MMD (ED)
instead of MMD2 (ED2) as in their original definitions (2) and (3), and the same is done
for dcov later.

Definition 3 Define k : Rp×Rp → [0,∞) to be a kernel that satisfies either of the following
conditions:

(i) for any x, y ∈ Rp, it holds that k(x, y) = k(y, x) and k(x, y) = 0 if and only if
x = y, and additionally, for any Borel probability measures P,Q on Rp satisfying∫
k(z, z)dP (z) <∞ and

∫
k(z, z)dQ(z) <∞, P 6= Q implies that

∫
kd([P −Q]× [P −

Q]) < 0.

(ii) (F ,−k) is an RKHS on (Rp,P) and the kernel −k is characteristic.

To ease the reading, we mimic Table 1 of Zhu and Shao (2021) to summarize a few kernels
covered by Definition 3 in the following table.

Kernel k Expression of k Condition satisfied

Euclidean distance k(x, y) = |x− y| k satisfies (i)
Gaussian kernel (multiplied by -1) k(x, y) = − exp

(
−|x− y|2/(2γ2)

)
k satisfies (ii)

Laplacian kernel (multiplied by -1) k(x, y) = − exp (−|x− y|/γ) k satisfies (ii)

Table 1: Examples of kernel k covered by Definition 3.

Then we are ready to propose the unified definition of ED and MMD.

Definition 4 Let k denote a kernel defined as Definition 3. Suppose that X,Y ∈ Rp are two
independent random vectors satisfying that E [|k(X,X ′)|]+E [|k(X,Y )|]+E [|k(Y, Y ′)|] <∞,
then we define

Ek(X,Y ) = 2E [k(X,Y )]− E
[
k(X,X ′)

]
− E

[
k(Y, Y ′)

]
, (4)

where X ′, Y ′ are independent and identical copies of X and Y , respectively.

As shown in Sejdinovic et al. (2013), Ek(X,Y ) is always non-negative and is zero if and
only if X =d Y . Similar to Huang and Huo (2017), who expressed sample ED as a U-
statistic, we can find an unbiased estimator of Ek(X,Y ) via a U-statistic with a two-sample
kernel.

Proposition 5 Define the two-sample kernel

hk(X1, X2, Y1, Y2) =
1

2

2∑
i=1

2∑
j=1

k(Xi, Yj)− k(X1, X2)− k(Y1, Y2), (5)
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which satisfies E
[
hk(X1, X2, Y1, Y2)

]
= Ek(X,Y ). Then an unbiased estimator of Ek(X,Y )

can be defined as

Ekn,m(X,Y ) =

(
n
2

)−1(
m
2

)−1 ∑
1≤i1<i2≤n

∑
1≤j1<j2≤m

hk(Xi1 , Xi2 , Yj1 , Yj2)

=
2

mn

n∑
i=1

m∑
j=1

k(Xi, Yj)−
(
n
2

)−1 ∑
1≤i<j≤n

k(Xi, Xj)−
(
m
2

)−1 ∑
1≤i<j≤m

k(Yi, Yj).

It follows from the Hoeffding decomposition that two-sample U-statistic Ekn,m(X,Y ) can
be decomposed into the sum of a leading term and a remainder term. In particular, let Gx
denote the distribution function of a single point mass at x, and for 0 ≤ c, d ≤ 2, define

h(c,d)(X1, . . . , Xc;Y1, . . . , Yd) =

∫
· · ·
∫
hk(u1, u2, v1, v2)

c∏
i=1

(dGXi(ui)− dFX(ui))
2∏

i=c+1

dFX(ui)

×
d∏
j=1

(
dGYj (vj)− dFY (vj)

) 2∏
j=d+1

dFY (vj).

Then it holds that Ekn,m(X,Y ) = Lkn,m(X,Y ) +Rkn,m(X,Y ), where

Lkn,m(X,Y ) =Ek(X,Y ) +
2

n

n∑
i=1

h(1,0)(Xi) +
2

m

m∑
j=1

h(0,1)(Yj)

+
2

n(n− 1)

∑
1≤i1<i2≤n

h(2,0)(Xi1 , Xi2) +
4

nm

n∑
i=1

m∑
j=1

h(1,1)(Xi, Yj)

+
2

m(m− 1)

∑
1≤j1<j2≤m

h(0,2)(Yj1 , Yj2),

Rkn,m(X,Y ) =
4

n(n− 1)m

∑
1≤i1<i2≤n

m∑
j=1

h(2,1)(Xi1 , Xi2 , Yj)

+
4

nm(m− 1)

n∑
i=1

∑
1≤j1<j2≤m

h(1,2)(Xi, Yj1 , Yj2)

+
4

n(n− 1)m(m− 1)

∑
1≤i1<i2≤n

∑
1≤j1<j2≤m

h(2,2)(Xi1 , Xi2 , Yj1 , Yj2),

By generalizing some results established in Huang and Huo (2017), the expressions of
Lkn,m(X,Y ) and Rkn,m(X,Y ) can be greatly simplified, which are stated in Proposition 6.

Proposition 6 Assume that E [|k(X,X ′)|]+E [|k(X,Y )|]+E [|k(Y, Y ′)|] <∞, then it holds
that Rkn,m(X,Y ) = 0, and

Lkn,m(X,Y ) = 3Ek(X,Y )− 4
n

n∑
i=1

h10(Xi)− 4
m

m∑
j=1

h01(Yj) + 4
nm

n∑
i=1

m∑
j=1

h11(Xi, Yj)

+

(
n
2

)−1 ∑
1≤i1<i2≤n

h20(Xi1 , Xi2) +

(
m
2

)−1 ∑
1≤j1<j2≤m

h02(Yj1 , Yj2),
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where for 1 ≤ i1 < i2 ≤ n and 1 ≤ j1 < j2 ≤ m, we define

h10(Xi1) = EXi2 ,Yj1 ,Yj2 [hk(Xi1 , Xi2 , Yj1 , Yj2)], h01(Yj1) = EXi1 ,Xi2 ,Yj2 [hk(Xi1 , Xi2 , Yj1 , Yj2)],

h20(Xi1 , Xi2) = EYj1 ,Yj2 [hk(Xi1 , Xi2 , Yj1 , Yj2)], h02(Yj1 , Yj2) = EXi1 ,Xi2 [hk(Xi1 , Xi2 , Yj1 , Yj2)],

and h11(Xi1 , Yj1) = EXi2 ,Yj2 [hk(Xi1 , Xi2 , Yj1 , Yj2)].

If additionally X =d Y , then Ekn,m(X,Y ) = Lkn,m(X,Y ) with the simplified expression

Lkn,m(X,Y ) =

(
n
2

)−1 ∑
1≤i1<i2≤n

h20(Xi1 , Xi2) + 4
nm

n∑
i=1

m∑
j=1

h11(Xi, Yj) +

(
m
2

)−1 ∑
1≤j1<j2≤m

h02(Yj1 , Yj2).

Proposition 6 simplifies Ekn,m(X,Y ) and facilitates the subsequent analysis.

2.2 Distributional Properties of Ekn,m(X,Y ) with Fixed p

The asymptotic behavior of sample MMD (and sample ED) has been well studied when
the dimension p is fixed; see Székely et al. (2004), Gretton et al. (2009) and Gretton et al.
(2012). In particular, the asymptotic distribution of Ekn,m(X,Y ) (in the case of sample
MMD) under the null is established in Theorem 12 of Gretton et al. (2012). Define

dk(X1, X2) = k(X1, X2)− EX1 [k(X1, X2)]− EX2 [k(X1, X2)] + E [k(X1, X2)] . (6)

Assume that E
[
k2(X,X ′)

]
< ∞, and that lim

n,m→∞
n

n+m = ρ for some fixed 0 < ρ < 1, then

under the null, Ekn,m(X,Y ) converges in distribution according to

(n+m)Ekn,m(X,Y )→d
∞∑
`=1

λ`

(
(ρ(1− ρ))−1 −

(
ρ−1/2a` − (1− ρ)−1/2b`

)2)
,

where {a`}`≥1, {b`}`≥1 ∼ N (0, 1) are two independent sequences of iid Gaussian random
variables, and {λi}∞i=1 and {Ψi(x)}∞i=1 are respectively the eigenvalues and the eigenfunc-
tions of the equation EX

[
dk(X,X ′)Ψi(X)

]
= λiΨi(X

′). Note that the above limiting null
distribution is not pivotal, so critical values are not directly available. Several approxima-
tion methods have been developed in the special case of m = n in Gretton et al. (2009).

3. Studentized Statistic and Asymptotic Theory

3.1 Studentized Statistic

To develop our studentized statistic, we need to find the variance of Lkn,m under the null,
which can be shown to have a strong connection with the Hilbert-Schmidt independence
criterion (HSIC) [Gretton et al. (2007)]. We thus start from the definition and some basic
results of HSIC, and then move on to deriving the variance of Lkn,m under the null before
proposing a studentized test statistic.

Definition 7 Suppose X ∈ Rp and Y ∈ Rq with integers p, q ≥ 1. Let k be a kernel defined
as Definition 3, then a generalized Hilbert-Schmidt independence criterion (HSIC) V2k(X,Y )
between the distributions X and Y is defined as

V2
k(X,Y ) = E

[
k(X1, X2)k(Y1, Y2)

]
− 2E

[
k(X1, X2)k(Y1, Y3)

]
+ E

[
k(X1, X2)

]
E
[
k(Y1, Y2)

]
, (7)

where (X1, Y1), (X2, Y2) and (X3, Y3) are independent copies of (X,Y ).
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Remark 8 This definition directly follows from Lemma 1 of Gretton et al. (2005) when
−k(·, ·) is a characteristic kernel w.r.t. (Rp,P). When k is a semimetric of strong negative
type according to Definition 3, the resulting metric also fully quantifies nonlinear dependence
in the sense that V2k(X,Y ) ≥ 0 and equals to zero if and only if X,Y are independent; see
Sejdinovic et al. (2013). In fact, V2k(X,Y ) can be viewed as a generalization of distance
covariance (dcov), as the expression of V2k(X,Y ) with k(x, y) = |x − y| coincides with the
well-known dcov [Székely et al. (2007)]. For simplicity, we call V2k(X,Y ) the HSIC in both
cases.

Next, we introduce a mixture distribution of X and Y , defined by

Z =

{
X, with probability ρ,
Y, with probability 1− ρ, (8)

where ρ is the limit of the size proportion n/(n+m). By introducing the mixture distribution
Z, we are able to aggregate X and Y with respect to their occurrence frequencies in the
pooled sample. Consequently, we can directly establish some unified results in terms of Z,
which are more succinct than establishing the counterparts in terms of X and Y respectively.

Let Z1, Z2, Z3 be three independent copies of Z, then HSIC of Z with itself is given by

V2k(Z) = E
[
k2(Z1, Z2)

]
− 2E [k(Z1, Z2)k(Z1, Z3)] + (E [k(Z1, Z2)])

2 . (9)

With V2k(X,Y ) being a generalization of distance covariance, we can also view V2k(Z) as a
generalization of distance variance of Z. It is trivial that X =d Y =d Z under the null.
Furthermore, the variance of Lkn,m under the null can be written in terms of V2k(Z).

Proposition 9 If X and Y are identically distributed, and E
[
k2(X1, X2)

]
< ∞, then it

holds that Var(Lkn,m(X,Y )) = cn,mV2k(Z), where cn,m = 2
n(n−1) + 4

nm + 2
m(m−1) .

If given n independent and identically distributed observations Z = (Z1, . . . , Zn) from
the mixture distribution Z, an unbiased estimator of V2k(Z) with k(x, y) = |x − y| can
be obtained using the U -centering approach in Székely and Rizzo (2013a) and Székely
and Rizzo (2014). However, the mixture distribution Z is unobserved, and we only have
two independent random samples X = (X1, . . . , Xn) from the distribution of X and Y =
(Y1, . . . , Ym) from the distribution of Y . Let N = n + m denote the total sample size.
Throughout, we assume that there exists some constant 0 < ρ < 1, such that n/N → ρ as
min{n,m} → ∞. We propose to use the pooled sample to estimate V2k(Z) as follows.

Proposition 10 For any fixed p and kernel k : Rp×Rp 7→ R, assume that E
[
k2(X1, X2)

]
,

E
[
k2(X1, Y1)

]
and E

[
k2(Y1, Y2)

]
are all finite, and k(X,X) = ak0 is a finite constant inde-

pendent of X. For 1 ≤ s, t ≤ N , define

aks,t =


k(Xs, Xt), 1 ≤ s, t ≤ n
k(Xs, Yt−n), 1 ≤ s ≤ n < t ≤ N
k(Xt, Ys−n), 1 ≤ t ≤ n < s ≤ N
k(Ys−n, Yt−n), n+ 1 ≤ s, t ≤ N

(10)

9
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Define the U-centered distances with kernel k as Ak∗s,t = aks,t − ãk·t − ãks· + ãk··, where

ãk·t =
1

N − 2

N∑
i=1

aki,t, ãks· =
1

N − 2

N∑
j=1

aks,j , ãk·· =
1

(N − 1)(N − 2)

N∑
i,j=1

aki,j .

Then under the null, it holds for any fixed p and kernel k that,

Vk∗n,m(X,Y ) =
1

N(N − 3)

∑
s 6=t

(
Ak∗s,t

)2
− (ak0)2

(N − 1)(N − 3)
(11)

is an unbiased estimator of V2k(Z). Furthermore, under the alternative, Vk∗n,m(X,Y ) is

asymptotically unbiased of V2k(Z) for any fixed p and kernel k, that is, E
[
Vk∗n,m(X,Y )

]
→

V2k(Z) as n,m→∞.

Remark 11 If the kernel k is chosen to be the L2 norm, we have ak0 = 0 and the estimate
Vk∗n,m(X,Y ) reduces to the traditional U-centering based sample distance variance based on

the pooled sample. However, for a general kernel k, ak0 may be nonzero, and the correction

term − (ak0)
2

(N−1)(N−3) is necessary to obtain the unbiasedness. This bias correction is important
for Gaussian and Laplacian kernels as the use of biased variance estimate leads to noticeable
size distortion in the small sample in our (unreported) simulations.

To our best knowledge, the proposed estimate of V2k(Z) based on the pooled sample
is a new addition to the literature, and it is different from the studentizers proposed in
Chakraborty and Zhang (2021) and Yan and Zhang (2023); see Remark 12 and Remark 13.

In terms of computational complexity, the computation of all aks,t’s is of order O((n +
m)2p). Since the U-centering only requires O((n + m)2) computation, the computational
complexity of Vk∗n,m(X,Y ) and the studentized statistic T kn,m,p defined below is of order
O((n + m)2p). By contrast, the computational complexity for the permutation based test
in Zhu and Shao (2021) is of order O((n+m)2pB), where B is the number of permutations.

To test H0 : X =d Y against Ha : X 6=d Y , it is natural to use the following studentized
test statistic:

T kn,m,p =
Ekn,m(X,Y )√
cn,mVk∗n,m(X,Y )

, (12)

where cn,m is defined in Proposition 9.
Similar test statistics for the two-sample problem have been previously discussed in other

existing papers; see Chakraborty and Zhang (2021) and Yan and Zhang (2023). We conjec-
ture that all three studentizers are asymptotically equivalent. Some additional discussions
can be found in the following remarks.

Remark 12 In Chakraborty and Zhang (2021), a different studentized test statistic is pro-

posed in the form of T̃ kn,m,p =
Ekn,m(X,Y )√
cn,mSn,m/2

. The major difference between T kn,m,p and T̃ kn,m,p

is the variance estimator of Ekn,m(X,Y ) in the denominator. Specifically,

Sn,m =
4(n− 1)(m− 1)cdCov2n,m(X,Y ) + 4vnVk∗n (X) + 4vmVk∗m (Y )

(n− 1)(m− 1) + n(n− 3)/2 +m(m− 3)/2
,

10
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where Vk∗n (X),Vk∗m (Y ) are respectively the U-centering based unbiased estimators of V2k(X),V2k(Y ),
and cdCov2n,m(X,Y ) is the cross distance covariance between X and Y , given by

cdCov2n,m(X,Y ) =
1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

k̂(Xk, Yl)
2

with k̂(Xk, Yl) = k(Xk, Yl)− 1
n

∑n
i=1 k(Xi, Yl)− 1

m

∑m
j=1 k(Xk, Yj)+ 1

nm

∑n
i=1

∑m
j=1 k(Xi, Yj).

In Theorem 4.2 of Chakraborty and Zhang (2021), they derived the limiting distribution of
T̃ kn,m,p under both the null and alternatives when p→∞ whereas (n,m) are fixed.

Remark 13 In a very recent paper by Yan and Zhang (2023), they also proposed a studen-
tized MMD test, and their studentizer is based on a linearization argument and differs from
ours and the one in Chakraborty and Zhang (2021). However, the CLT results in Yan and
Zhang (2023) are established for the standardized statistic instead of the studentized statistic
under both the null and alternative when both the dimension and sample size diverge, and
the standardizer is actually infeasible.

As we present below, we will be investigating the asymptotic behavior of our studen-
tized statistic T kn,m,p under the setting min(n,m, p) → ∞ using a different set of technical
arguments and our results are complementary to those in theirs.

3.2 Asymptotic Distributions

For each p ∈ N, let k(p) : Rp×Rp 7→ R be a kernel defined as in Definition 3 and (k(p) : p ∈ N)
thus forms a sequence of kernels. Throughout the paper, we let C =

{
(k(p) : p ∈ N)

}
be

the set of all the kernel sequences of interest. Again, we drop the symbol (p) for simplicity
when we are focusing on a specific kernel given a fixed p.

Let k̃(Z1, Z2) = k(Z1, Z2) − E
[
k(Z1, Z2)

]
denote the centered version of k. We have

already shown that Vk∗n,m(X,Y ) is an unbiased estimator of V2k(Z) under the null and is

asymptotically unbiased under the alternative, then we are ready to state that Vk∗n,m(X,Y )
is ratio-consistent for V2k(Z) under both the null and the alternative with some conditions.

Proposition 14 Assume that E
[
k4(Z1, Z2)

]
<∞ for each k = k(p) ∈ C and n/N → ρ as

n,m → ∞ for some 0 < ρ < 1. Under the null when X =d Y =d Z, if for some constant
0 < τ ≤ 1, it is satisfied when N, p→∞ that

E
[∣∣∣k̃(Z1, Z2)

∣∣∣2+2τ
]

N τ
(
V2k(Z)

)1+τ → 0, (13)

then we have
Vk∗n,m(X,Y )

V2k(Z)
−→p 1. As a direct consequence, under the null we have that

cn,mVk∗n,m(X,Y )

Var(Lkn,m(X,Y ))
→p 1.

11
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Condition (13) is directly from the use of Markov’s inequality. In fact, to show that

Vk∗n,m(X,Y ) is ratio-consistent for V2k(Z), it suffices to find an upper bound of
E
[
|Vk∗n,m(X,Y )−V2

k(Z)|
1+τ

]
(V2
k(Z))

1+τ ,

where τ ∈ (0, 1]. As shown in Proposition 10, Vk∗n,m(X,Y ) is unbiased of V2k(Z) under the

null. Furthermore, Vk∗n,m(X,Y ) − V2k(Z) can be decomposed as a summation of multiple
U-statistics with mean zero. By applying a moment inequality for the U-statistics, we can
show that the deviation E

[
|Vk∗n,m(X,Y )− V2k(Z)|1+τ

]
is bounded by E

[
|k̃(Z1, Z2)|2+2τ

]
/N τ

from above. This leads to condition (13).
As a counterpart of Proposition 14, the ratio-consistency of the sample estimate Vk∗n,m(X,Y )

under the alternative is established in Proposition 15.

Proposition 15 Assume that E
[
k4(Z1, Z2)

]
< ∞ for each k = k(p) ∈ C and n/N =

ρ + O(1/N s) as n,m → ∞ for some 0 < ρ < 1 and s > 0. Under the alternative, if for
some constant 0 < τ ≤ 1, it is satisfied that∣∣Ek(X,Y )

∣∣2+2τ

N τ
(
V2k(Z)

)1+τ → 0,
E
[
k2(Z1, Z2)

]
N sV2k(Z)

→ 0, (14)

and

E
[∣∣∣k̃(X1, X2)

∣∣∣2+2τ
+
∣∣∣k̃(X1, Y1)

∣∣∣2+2τ
+
∣∣∣k̃(Y1, Y2)

∣∣∣2+2τ
]

N τ
(
V2k(Z)

)1+τ → 0, (15)

then it holds that
Vk∗n,m(X,Y )

V2k(Z)
−→p 1 as N, p→∞.

The argument to show Proposition 15 is quite similar to that of Proposition 14, with the
main difference being attributed to the fact that Vk∗n,m(X,Y ) is not an unbiased estimator

of V2k(Z) under the alternative. In this case, to bound E
[
|Vk∗n,m(X,Y )− V2k(Z)|1+τ

]
, we

break it into two parts, namely, E
[
|Vk∗n,m(X,Y )− E[Vk∗n,m(X,Y )]|1+τ

]
and |E[Vk∗n,m(X,Y )]−

V2k(Z)|1+τ . Note that Vk∗n,m(X,Y ) − E
[
Vk∗n,m(X,Y )

]
can be decomposed as a combination

of multiple U -statistics and its upper bound is obtained by a moment inequality. This is
manifested in the first condition in (14) and condition (15). A major difference from the
condition under the null is that, to make the pooled-sample estimate Vk∗n,m(X,Y ) ratio-
consistent for V2k(Z), the discrepancy between the distributions of X and Y , as quantified
by Ek(X,Y ), cannot be too large, as regulated by the first condition in (14).

The upper bound of |E
[
Vk∗n,m(X,Y )

]
−V2k(Z)|1+τ corresponds to the second condition in

(14). In fact, it follows from some simple calculations that, under the assumption n/N =
ρ+O (1/N s), the bias E

[
Vk∗n,m(X,Y )

]
−V2k(Z) can be bounded by E

[
k2(Z1, Z2)

]
/N s up to

a multiplicative constant, where the convergence rate of n/N is involved.
To establish the central limit theorem for the proposed test, we define the functionals

gk(X1, X2, X3, X4) = dk(X1, X2)d
k(X1, X3)d

k(X2, X4)d
k(X3, X4), (16)

where dk is defined as (6). We can obtain the following central limit theorem for the
proposed test statistic under the null.
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Theorem 16 Assume that E
[
k4(Z1, Z2)

]
< ∞ for each k = k(p) ∈ C and n/N → ρ as

n,m → ∞ for some 0 < ρ < 1. Under the null when X =d Y =d Z, if for some constant
0 < τ ≤ 1, it is satisfied for some {(k(p))} ∈ C that

E
[∣∣∣k̃(Z1, Z2)

∣∣∣2+2τ
]

N τ
(
V2k(Z)

)1+τ → 0, (17)

and (
E
[
gk(Z1, Z2, Z3, Z4)

])(1+τ)/2(
V2k(Z)

)1+τ → 0, (18)

when N, p→∞, then it holds for this sequence {k(p)} that T kn,m,p −→d N (0, 1).

This theorem can be viewed as a counterpart of Theorem 1 in Gao et al. (2021) but is
stated for a general kernel. Under the null, it follows from Proposition 14 that Vk∗n,m(X,Y )
is ratio-consistent for V2k(Z) under H0 when (17) is satisfied, and it is derived in Proposition
6 that Ekn,m(X,Y ) = Lkn,m(X,Y ). To derive the central limit theorem of T kn,m,p, it suffices

to investigate the asymptotic behavior of
Lkn,m(X,Y )√
cn,mV2

k(Z)
using the martingale central limit

theorem, since Lkn,m(X,Y ) forms a martingale. Condition (18) is basically Lyapunov-type
condition in the use of martingale central limit theorem.

Note that condition (18) only depends on p and is free of the sample size N , whereas
condition (17) depend on both N and p and thus might impose some implicit constraints

between the divergence rate of N and p. For any fixed τ , if the order of E
[
|k̃(Z1, Z2)|

]2+2τ

does not exceed that of (V2k(Z))1+τ , then the quantity in (17) naturally goes to zero as long
as N diverges without additional restrictions between N and p. As it turns out, it can be
shown that the orders of E

[
|k̃(Z1, Z2)|

]2+2τ
and (V2k(Z))1+τ are the same for the Gaussian

kernel, the Laplacian kernel as well as the L2 norm, hence the first term is independent of
p for these kernels. Furthermore, later in this paper, we show that this is true as long as
the kernel satisfies some technical conditions.

In the literature, Zhu and Shao (2021) obtained the asymptotic distribution for the MMD
permutation test statistics under the HDLSS (high-dimensional low sample size, where p
grows to infinity and (n,m) is fixed) and HDMSS (high-dimensional medium sample size,
where (p, n,m) all grow to infinity but p grows faster than N). The asymptotic results
for the studentized test proposed in Chakraborty and Zhang (2021) are also limited to the
HDLSS setting. Yan and Zhang (2023) obtained the CLT of a standardized MMD statistic
for a factor-like model allowing (p, n,m) to diverge without constraints.

3.3 Rate of Convergence

We can further obtain the rate of convergence of the test statistic under the null using the
Berry-Esseen bound for martingales, which has been used in Gao et al. (2021). Here we
first follow their steps to find an upper bound of sup

x∈R

∣∣P (T kn,m,p ≤ x)− Φ(x)
∣∣.
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Note that under the null, for any 0 < γ < 1, we have

sup
x∈R

∣∣P (T kn,m,p ≤ x)− Φ(x)
∣∣ = sup

x∈R

∣∣∣∣∣∣P
 Ekn,m√

cn,mVk∗n,m(X,Y )
≤ x

− Φ(x)

∣∣∣∣∣∣
≤ 2 sup

x∈R

∣∣∣∣∣∣P
 Lkn,m√

Var(Lkn,m)
≤ x

− Φ(x)

∣∣∣∣∣∣+ sup
x∈R

∣∣∣Φ(x)− Φ(x
√

1 + γ)
∣∣∣

+ sup
x∈R

∣∣∣Φ(x)− Φ(x
√

1− γ)
∣∣∣+ 2P

(∣∣∣∣∣cn,mVk∗n,m(X,Y )

Var(Lkn,m)
− 1

∣∣∣∣∣ > γ

)
=: 2P1 + P2 + P3 + 2P4.

By upper bounding each Pi, we obtain the following theorem.

Theorem 17 Let Z denote the mixture distribution of X and Y defined as (8). Assume

that E
[
k4(Z1, Z2)

]
< ∞ for each k = k(p) ∈ C and n/N → ρ as n,m → ∞ for some

0 < ρ < 1. Under the null, it holds for any n,m, p and 0 < τ ≤ 1 that

sup
x∈R

∣∣P (T kn,m,p ≤ x)− Φ(x)
∣∣ ≤ C(ρ, τ)


E
[∣∣∣k̃(Z1, Z2)

∣∣∣2+2τ
]

Nτ (V2
k(Z))1+τ

+

(
E
[
gk(Z1, Z2, Z3, Z4)

]) 1+τ
2

(V2
k(Z))1+τ


1

3+2τ

.

Theorem 17 states a non-asymptotic Berry-Esseen bound of the proposed test statistic.

The two terms in the bound,
E
[
|k̃(Z1,Z2)|

]2+2τ

Nτ (V2
k(Z))

1+τ and

(
E
[
gk(Z1,Z2,Z3,Z4)

])(1+τ)/2
(V2
k(Z))

1+τ jointly determine

the accuracy of normal approximation. As we have mentioned after Theorem 16, the second
term is solely determined by p, whereas the first term might depend on both N and p.
Although the bound established in Theorem 17 is valid for any n,m, p, the accuracy of
normal approximation is guaranteed only when both quantities are close to zero, which
might put some restrictions on the way the dimension p diverges with respect to N . Such
restriction is implicit for a general kernel k, but under some assumptions we can explicitly
calculate the order of each term on the right-hand side, which enables us to derive the
specific regime where the bound goes to zero. To this end, we first present a computational
formula for E

[
gk(Z1, Z2, Z3, Z4)

]
in the following proposition.

Proposition 18 Assume that E
[
k4(Z1, Z2)

]
<∞, it holds that

E
[
gk(Z1, Z2, Z3, Z4)

]
= G1 +G2 +G3 +G4,

where G1 = E [k(Z1, Z2)k(Z1, Z3)k(Z2, Z4)k(Z3, Z4)]−4E [k(Z1, Z2)k(Z1, Z3)k(Z2, Z4)k(Z4, Z5)]+
2E [k(Z1, Z2)k(Z1, Z3)]

2, G2 = 4E [k(Z1, Z2)]E [k(Z1, Z2)k(Z1, Z3)k(Z2, Z4)], G3 = −4E [k(Z1, Z2)]
2

× E [k(Z1, Z2)k(Z1, Z3)], and G4 = E [k(Z1, Z2)]
4.

If we restrict our attention to the kernels of the form k(x, y) = f(|x−y|) for some smooth
function f , we can derive the explicit rate of convergence. To this end, in the following we
state the technical assumptions on f and the distributions of X and Y .
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Assumption 1 Assume that for each k(p) ∈ C, there exists some function f (p), such that
k(p)(x, y) = f (p)(|x − y|) for any x, y ∈ Rp. Let D be the domain of f (p) and D0 ⊆ D be a

set that contains A0 = E
[
|Z1 − Z2|2

]1/2
and AXY0 = E

[
|X1 − Y1|2

]1/2
.

Additionally, assume that

(i) for each f (p) and any s ∈ D and s0 ∈ D0, it holds that

f (p)(s) =

6∑
i=0

1

i!
f
(p)
i (s0)(s− s0)i + f

(p)
7 (ξ(s, s0))(s− s0)7,

where f
(p)
i denotes the i-th order derivative of f (p), and ξ(s, s0) denotes some point

between s and s0.

(ii) these exists a positive constant M̃ < ∞, such that for any f (p) and any s0 ∈ D0, it
holds that

max
1≤i≤7

sup
s∈D
|f (p)i (s)| · |si0| ≤ M̃ |f

(p)
0 (s0)|.

(iii) there exists a positive constant M̂ < ∞, such that for any f (p) and any s0 ∈ D0, it
holds that

|f (p)0 (s)| ≤ M̂ min{|1
2
f
(p)
1 (s)s|, | − 1

8
f
(p)
1 (s)s+

1

8
f
(p)
2 (s)s2|}.

(iv) there exists a positive constant M̂ < ∞, such that for any f (p) and any s0 ∈ D0, it
holds that

|f (p)0 (s)| ≤ M̂ min{| 1

16
f
(p)
1 (s)s− 1

16
f
(p)
2 (s)s2 +

1

48
f
(p)
3 (s)s3|,

| − 5

128
f
(p)
1 (s)s+

5

128
f
(p)
2 (s)s2 − 1

64
f
(p)
3 (s)s3 +

1

384
f
(p)
4 (s)s4|}.

Assumption 1(i) is mild and it only requires that the function f is smooth enough and
has continuous derivatives up to the 7-th order. Assumption 1(ii)-(iv) further regulates
the smoothness of the derivatives of f and will be used to determine the exact orders of
Ek(X,Y ) and V2k(Z). Later in Section 3.5, we will use the Gaussian kernel as a special
example to demonstrate the verification of Assumption 1. Additional examples for L2 norm
and the Laplacian kernel can be found in the online supplement.

Before stating the next assumption, we introduce some useful notations. Define A =
E
[
|Z1 − Z2|2

]
, AX = E

[
|X1 −X2|2

]
, AXY = E

[
|X1 − Y1|2

]
and AY = E

[
|Y1 − Y2|2

]
. Let

A0 = A1/2 and define AX0 , A
XY
0 and AY0 in the same way. For each X and Y , let µX = E [X]

and µY = E [Y ] be the mean vectors, and use X̃ = X − µX and Ỹ = Y − µY to denote
the centered version of X,Y respectively. Additionally, we use ∆ = µX − µY to denote
the mean difference between X and Y and we denote the covariance matrices of X,Y by
ΣX = (σ2X,j1j2)j1,j2 and ΣY = (σ2Y,j1j2)j1,j2 .

Assumption 2 For any fixed p and X = (x1, . . . , xp)
> and Y = (y1, . . . , yp)

>, assume that
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(i) there exists an integer 1 ≤ α(p) ≺ p, such that X and Y have α(p)-dependent compo-
nents, respectively. Specifically, for any 1 ≤ j ≤ p−α(p)− 1 and ` > α(p), {xi}i≤j is
independent of {xi}i≥j+`, and {yi}i≤j is independent of {yi}i≥j+`.

(ii) there exists a constant 0 < U∗ <∞, such that

max
1≤j≤p

max
1≤r≤128

{E[|xj |r],E[|yj |r]} < U∗.

(iii) there exists some positive constants 0 < L0, U0 <∞, such that

L0p ≤ min{AX , AXY , AY } ≤ max{AX , AXY , AY } ≤ U0p.

(iv) there exists some positive constants 0 < L∗0, U
∗
0 <∞, such that

L∗0α(p)p ≤ min{‖ΣX‖2F , ‖ΣY ‖2F } ≤ max{‖ΣX‖2F , ‖ΣY ‖2F } ≤ U∗0α(p)p.

Assumption 2(i) imposes some condition on the weak componentwise dependence within
X and Y and it only needs to hold for some permutation of components of X and Y ,
as our test statistic is permutation-invariant when the kernel k(x, y) = f(|x − y|). It is
worth noting that α(p) may vary w.r.t. p and thus the range of dependence is allowed to
grow when p increases. Assumption 2(ii) requires a uniform bound of the componentwise
moments of both distributions, which can be relaxed at the expense of lengthy proofs.
Assumption 2(iii) requires both E

[
|X̃|2

]
and E

[
|Ỹ |2

]
are strictly of order p, which is a mild

condition. Finally, Assumption 2(iv) specifies the order of ‖ΣX‖2F and ‖ΣY ‖2F , which seems
reasonable in views of the α(p)-dependent assumption. With Assumption 2, we are able to
calculate the orders of the quantities involved in our main theorems, which lead to a specific
convergence rate of normal approximation and some explicit power results to be stated in
the next section. Note that it is not our intention to showcase the convergence rate of
normal approximation under the weakest possible assumption, as that is at the expense of
very complicated arguments. Assumption 2 is quite reasonable to illustrate the convergence
rate in a case of broad interest.

Proposition 19 Assume that E
[
k4(Z1, Z2)

]
< ∞ and n/N → ρ as n,m → ∞ for some

0 < ρ < 1. Suppose that Assumptions 1(i)-(ii) and Assumptions 2(i)-(ii) hold, then there
exists some p0 = p0(M̃, M̂ , U∗, L0, U0, L

∗
0, U

∗
0 ), such that for any p ≥ p0, it holds under the

null that for any k = k(p) ∈ C,

sup
x∈R

∣∣∣P(T kn,m,p ≤ x)− Φ(x)
∣∣∣ ≤ C(M̃, M̂ , U∗, L0, U0, L

∗
0, U

∗
0 )

(
1

N
+
α(p)

p

)1/5

, (19)

where M̃, M̂ are defined in Assumption 1 and U∗, L0, U0, L
∗
0, U

∗
0 are defined in Assumption

2.

Proposition 19 provides a uniform explicit rate of convergence for a class of kernels
and for X and Y with weakly dependent components. In fact, the rate of convergence
is determined only by N, p, and the parameters M̃, M̂ from Assumption 1, as well as
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α(p), U∗, L0, U0, L
∗
0, U

∗
0 from Assumption 2. One implication of Proposition 19 is that,

the empirical distribution of the proposed test statistic can be accurately approximated by
the standard Gaussian distribution only when both N and p diverge to infinity, though no
constraint is required regarding the divergence rate between N and p. Another implica-
tion is that, the dependence within X and Y is allowed to grow as p increases, but at the
sacrifice of the accuracy of normal approximation. When the dependence within X and
Y gets stronger, accurate normal approximation can only be obtained with larger p. This
theoretical phenomenon is consistent with our empirical finding in Section 4.

The main theoretical tool we use to obtain the rate of convergence is the Berry-Esseen
bound for martingale [Haeusler (1988)], as also used in Gao et al. (2021). One important
difference between Gao et al. (2021) and our work is that the denominator of our test statistic
is estimated over the pooled sample, and its leading term is a combination of several two-
sample U-statistics, and the tools provided in Gao et al. (2021) are not sufficient for our
theory. To this end, we generalize the moment inequality for the one-sample U-statistic
to the two-sample U-statistic. Furthermore, Berry-Esseen bound obtained here is valid for
a general kernel, and the rate of convergence can be explicitly derived under some mild
conditions as shown in Proposition 19.

3.4 Power Analysis

Next we look into the power behavior of the studentized test statistic. In the following
theorem, we can show that the power of the proposed test is asymptotically one under some
conditions.

Theorem 20 Assume that E
[
k4(Z1, Z2)

]
<∞ and n/N = ρ+O(1/N s) as n,m→∞ for

some 0 < ρ < 1 and s > 0. If for some constant 0 < τ ≤ 1, it holds that∣∣Ek(X,Y )
∣∣2+2τ

N τ
(
V2k(Z)

)1+τ → 0,
E
[
k2(Z1, Z2)

]
N sV2k(Z)

→ 0, (20)

E
[∣∣∣k̃(X1, X2)

∣∣∣2+2τ
+
∣∣∣k̃(X1, Y1)

∣∣∣2+2τ
+
∣∣∣k̃(Y1, Y2)

∣∣∣2+2τ
]

N τ
(
V2k(Z)

)2 → 0, (21)

N
(
Ek(X,Y )

)2
E
[
(hk(X1, X2, Y1, Y2))

2
] →∞, NEk(X,Y )√

V2k(Z)
→∞, (22)

where k̃ denotes the centered version of k. Then for any C > 0, we have P
(
T kn,m,p > C

)
→ 1

as n,m, p→∞.

Theorem 20 gives the conditions under which the power of the test can be asymptotically
one for a general kernel. Note that conditions (20) and (21) are introduced in Proposition 15
to ensure the ratio-consistency of the pooled-sample estimate Vk∗n,m(X,Y ). In the proof, we

show that when
N(Ek(X,Y ))

2

E
[
(hk(X1,X2,Y1,Y2))

2
] →∞, the sample estimate Ekn,m(X,Y ) closely approx-

imates its population counterpart Ek(X,Y ) and the asymptotic divergence of T kn,m,p(X,Y )
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is equivalent to Ek(X,Y )√
cn,mV2

k(Z)
diverging to infinity as N, p increases. It is then not difficult to

see that the asymptotic power one of the proposed test can be achieved under the condition
NEk(X,Y )√
V2
k(Z)

→∞.

The conditions presented in Theorem 20 are sufficient but may not be necessary due
to the technical arguments we employed. Nevertheless, Theorem 20 can provide us some
interesting insights of the regimes where our proposed test has nontrivial power. Below we
shall discuss multiple scenarios based on the leading terms of Ek(X,Y ) and V2k(Z). For the
sake of readability, we only present the results when α(p) = O(1) (i.e. fixed) and s = 1 and
leave the general results when α(p) = pδ0 with 0 ≤ δ0 < 1 and s > 0 in online appendices.

Assumption 3 For any fixed p and X = (x1, . . . , xp)
> and Y = (y1, . . . , yp)

>, assume that
there exists some positive constants L1, U1 <∞, such that

L1p ≤ max{|∆|2,
∣∣∣E[|X̃1|2

]
− E

[
|Ỹ1|2

]∣∣∣} ≤ U1p.

Assumption 3 focuses on the scenario when at least one of |∆|2 and |E
[
|X̃1|2

]
−E
[
|Ỹ1|2

]
|

is strictly of order p. It holds under Assumption 2(ii) that |∆|2 =
∑p

j=1(E
[
xj
]
−E

[
yj
]
)2 ≤

2
∑p

j=1(E
[
xj
]2

+E
[
yj
]2

) ≤ 4U∗p and
∣∣∣E[|X̃1|2

]
− E

[
|Ỹ1|2

]∣∣∣ =
∣∣∣∑p

j=1(Var(xj)−Var(yj))
∣∣∣ ≤∑p

j=1(Var(xj) + Var(yj)) ≤ 2U∗p, then Assumption 3 implies that the differences in com-
ponentwise mean or variance attain the highest possible order.

Proposition 21 Suppose that Assumption 1(i)-(ii), Assumption 2(i)-(iii) and Assumption
3 hold, and additionally, for any k = k(p) ∈ C, assume that E

[
k4(Z1, Z2)

]
< ∞ and

n/N = ρ + O(1/N) as n,m → ∞ for some 0 < ρ < 1. When there exists some positive
constant L∗ <∞, such that∣∣2f(AXY0 )− f(AX0 )− f(AY0 )

∣∣ ≥ L∗|f(AXY0 )|, (23)

then it holds that P
(
T kn,m,p > C

)
→ 1 as n,m, p→∞.

The condition (23) requires that the leading term of
∣∣2f(AXY0 )− f(AX0 )− f(AY0 )

∣∣ can
be lower bounded by |f(AXY0 )| up to a multiplicative constant, which is a mild condition
and can be satisfied by many kernel functions; see Section 3.5 for its verification of the
Gaussian kernel and the online supplement for the verifications of the L2 norm and the
Laplacian kernel. Under the assumptions in Proposition 21, 2f(AXY0 ) − f(AX0 ) − f(AY0 )
is the leading term of Ek(X,Y ) and (2f(AXY0 ) − f(AX0 ) − f(AY0 ))2 is that of V2k(Z). It
follows that (Ek(X,Y ))2 and V2k(Z) are of the same order, and both of them dominate
E
[
k2(Z1, Z2)

]
and E

[
(hk(X1, X2, Y1, Y2))

2
]
. Additionally, (V2k(Z))2 dominated the numera-

tor of condition (21). Consequently, all the conditions in Theorem 20 are naturally satisfied
and the nontrivial power is obtained with no constraints on the order of p relative to N ,
which seems reasonable in view of significant differences in either the means and/or the sum
of marginal variances. In comparison, Zhu and Shao (2021) obtained the asymptotic power
one result for the MMD permutation test under the HDLSS and HDMSS settings only. The
asymptotic power function for the studentized test proposed in Chakraborty and Zhang
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(2021) is also derived only under the HDLSS setting. Additional comparison with Zhu and
Shao (2021) under the special case when X and Y have either identical means or identical
covariance matrices are discussed for the Gaussian kernel in Section 3.5; see Remark 26.

Next, we further investigate the scenarios where the differences in marginal mean or
variance are weaker.

Assumption 4 For any fixed p and X = (x1, . . . , xp)
> and Y = (y1, . . . , yp)

>, assume that
there exists some positive constants L2, U2 < ∞ and 0 ≤ δ1 < 1, −1 ≤ δ2 < 1, such that
L2α(p)p ≤ ‖ρΣX + (1− ρ)ΣY ‖2F ≤ U2α(p)p, and

L2p
δ1 ≤ |∆|2 ≤ U2p

δ1 and L2p
(1+δ2)/2 ≤

∣∣∣E[|X̃1|2
]
− E

[
|Ỹ1|2

]∣∣∣ ≤ U2p
(1+δ2)/2.

Assumption 4 considers the case where the orders of both |∆|2 and
∣∣∣E[|X̃1|2

]
− E

[
|Ỹ1|2

]∣∣∣
are strictly smaller than p but are no smaller than a constant. In this case, the differences
in the marginal mean and variance still dominate those in higher moments as long as
max{δ1, δ2} > 0, resulting in high power under certain rate constraints on p. The condition
L2α(p)p ≤ ‖ρΣX + (1− ρ)ΣY ‖2F ≤ U2α(p)p is mild under Assumption 2(iv).

Proposition 22 Suppose that Assumption 1(i)-(iii) and Assumption 2(i)-(iv) hold, As-
sumption 4 holds with δ1 6= δ2 and max{δ1, δ2} > 0, and additionally, for any k =
k(p) ∈ C, assume that E

[
k4(Z1, Z2)

]
< ∞ and n/N = ρ + O(1/N) as n,m → ∞ for

some 0 < ρ < 1, then it holds that P
(
T kn,m,p > C

)
→ 1 when n,m, p → ∞ as long as

p = o
(
N1/(2−2max{δ1,δ2,1/2})

)
.

When the leading difference between the distributions of X and Y lies in marginal
mean or variance, the Ek(X,Y ) is of order |f0(AXY0 )|pmax{δ1,δ2}−1, while V2k(Z) is of order
f20 (ZXY0 )p2max{δ1,δ2,1/2}−2. When max{δ1, δ2} > 1/2, (Ek(X,Y ))2 has the same order as

of V2k(Z), thus condition (21)-(22) are naturally satisfied. To have
E
[
k2(Z1,Z2)

]
NV2

k(Z)
→ 0, we

need additional constraint between N and p since V2k(Z) is dominated by E
[
k2(Z1, Z2)

]
.

For the case that max{δ1, δ2} ≤ 1/2, the order of V2k(Z) becomes f20 (AXY0 )p−1 but that of
Ek(Z1, Z2) remains unchanged. Hence (E2k (X,Y ))2 is no longer capable of dominating V2k(Z)
and E

[
(hk(X1, X2, Y1, Y2))

2
]
, which leads to the constraint p = o(N) to make condition (22)

hold.
Intuitively, as the disparities in marginal mean and variance between X and Y weakens

to the point max(δ1, δ2) ≤ 1/2, our proposed test has nontrivial power only when the growth
rate of p is strictly smaller than that of N . When δ1 = δ2, similar power results can be
attained given a specific kernel function following some lengthy analysis, but we exclude
this case for simplicity.

Next we investigate the scenario when the differences in the marginal mean and variance
between X and Y further diminish.

Assumption 5 For any fixed p and X = (x1, . . . , xp)
> and Y = (y1, . . . , yp)

>, assume that
|∆| = 0 and there exists some positive constants L3, U3 <∞ and 0 ≤ δ3, δ4 < 1, such that

L3p
δ3/2 ≤

∣∣∣E[|X̃1|2
]
− E

[
|Ỹ1|2

]∣∣∣ ≤ U3p
δ3/2 and L3p

δ4/2 ≤ ‖ΣX − ΣY ‖F ≤ U3p
δ4/2.
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Assumption 5 targets at the case when X and Y have the identical mean, and their
leading disparities fall within the covariances. Note that with α(p) = O(1) and Assumption
2(iv), the order of ‖ΣX − ΣY ‖2F won’t exceed p, and under Assumption 5 we set it to be
pδ4 , where δ4 ∈ (0, 1).

Proposition 23 Suppose that Assumption 1(i)-(iii) and Assumption 2(i)-(iv) hold, As-
sumption 5 holds with δ3 6= δ4 and max{δ3, δ4} > 0, and additionally, for any k =
k(p) ∈ C, assume that E

[
k4(Z1, Z2)

]
< ∞ and n/N = ρ + O(1/N) as n,m → ∞ for

some 0 < ρ < 1, then it holds that P
(
T kn,m,p > C

)
→ 1 when n,m, p → ∞ as long as

p = o
(
N1/(3−2max{δ3,δ4})

)
.

Under Assumption 5, the order of Ek(X,Y ) decreases to |f0(AXY0 )|pmax{δ3,δ4}−2, as com-
pared to the second scenario (under Assumption 4). Recall that Ek(X,Y ) characterizes the
disparity between the distributions X and Y , then it is not surprising that its order decreases
as the leading disparities between X and Y move to some higher moment quantities. In
this case, Ek(X,Y ) may not dominate E

[
(hk(X1, X2, Y1, Y2))

2
]
, and furthermore, Ek(X,Y )

is dominated by V2k(Z), whose order stays at f20 (AXY0 )p−1. Therefore, additional constraints
on p are required to satisfy condition (22).

Zhu and Shao (2021) showed that in the HDMSS setting, when |∆|2 = o(
√
p/N),∣∣∣E[|X̃1|2

]
− E

[
|Ỹ1|2

]∣∣∣ = o(
√
p/N) and ‖ΣX − ΣY ‖F = o(

√
p), MMD permutation test has

trivial power. In the special case δ3 = 0, δ4 ∈ (0, 1), it is easy to see that both the condition
in Zhu and Shao (2021) and our Assumption 5 can be satisfied for different sets of (p,N).
The resulting power phenomenon is strikingly different with the MMD permutation test
being powerless and our studentized test being power one asymptotically. This difference is
not a contradiction but is mainly attributed to the different regimes, since HDMSS setting
implies p� N whereas our Proposition 23 requires p� N . This is an example that shows
that even for the same alternative, the order of p relative to N can play an important role
in determining the power behavior.

Finally, we look into the scenario when X and Y have identical means and covariance
matrices to complete the discussions in this section. With cum(·) denoting the cumulant,
we propose the following assumption.

Assumption 6 For any fixed p and X = (x1, . . . , xp)
> and Y = (y1, . . . , yp)

>, assume
that |∆| = ‖ΣX − ΣY ‖F = 0 and there exists some positive constants L4, U4 < ∞ and
0 ≤ δ5, δ6, δ7 < 1, such that

L4p
δ5 ≤

p∑
j1,j2,j3=1

(cum(x̃1j1 , x̃1j2 , x̃1j3)− cum(ỹ1j1 , ỹ1j2 , ỹ1j3))
2 ≤ U4p

δ5 ,

L4p
δ6 ≤

p∑
j2=1

(
p∑

j1=1

{Cov(x̃21j1 − σX,j1 , x̃1j2)− Cov(ỹ21j1 − σY,j1 , ỹ1j2)}

)2

≤ U4p
δ6 ,

L4p
2δ7 ≤

(
p∑

j1,j2=1

{Cov(x̃21j1 − σX,j1 , x̃
2
1j2
− σX,j2)− Cov(ỹ21j1 − σY,j1 , ỹ

2
1j2
− σY,j2)}

)2

≤ U4p
2δ7 .

Proposition 24 Suppose that Assumption 1(i)-(iv) and Assumption 2(i)-(iv) hold, As-
sumption 6 holds with 1 + max{δ5, δ6} 6= 2δ7, max{δ5, δ6, δ7} > 0, and additionally, for
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any k = k(p) ∈ C, assume that E
[
k4(Z1, Z2)

]
< ∞ and n/N = ρ + O(1/N) as n,m → ∞

for some 0 < ρ < 1, then it holds that P
(
T kn,m,p > C

)
→ 1 when n,m, p → ∞ as long as

p = o
(
N1/(7−2max{1+max{δ5,δ6},2δ7})

)
.

Proposition 24 implies that, when δ7 < (1 + max{δ5, δ6})/2, nontrivial power against
the alternative is obtained when p = o

(
N1/(5−2(δ5∨δ6))

)
and otherwise the corresponding

regime is p = o
(
N1/(7−4δ7)

)
. In fact, the order of V2k(Z) remains f20 (AXY0 )p−1 while that of

Ek(X,Y ) drops to |f0(AXY0 )|pmax{δ5,δ6,2δ7−1}−3, and following some similar arguments as in
the previous scenario, we obtain the constraint between N and p for this case.

To summarize, Proposition 21-Proposition 23 jointly investigate the cases when the dis-
crepancy between two distributions is dominated by their differences in the mean and/or
covariance matrices, which correspond to S1 in Section 4 of Yan and Zhang (2023). Propo-
sition 24 corresponds to the scenario where two distributions have identical first and second
moments, and the difference lies in the third and/or fourth moments/cumulants. This sce-
nario corresponds to S2 with ` = 3 in Section 4 of Yan and Zhang (2023). The latter authors
provided a comprehensive description of when their test has trivial power, nontrivial power
and asymptotic power one based on non-null CLT obtained. In general, we feel it is diffi-
cult to directly compare the power results in Yan and Zhang (2023) with ours due to the
different settings and regimes we explored. In particular, we mainly focus on the regime
p � Nω1 for some ω1 > 0 as stated in Proposition 22- Proposition 24, whereas Yan and
Zhang (2023) focus on the regime where N � pω2 for some ω2 ≥ 1/2. The two regimes may
have overlap (i.e., the intersection is nonzero), their power one results and ours complement
each other, and both contribute to the understanding of the space of alternatives for which
the MMD-based test has high power.

As revealed by the four propositions above, our test is powerful against a wide range
of alternatives, including the differences in means, variances, covariances and high-order
features associated with the distributions.

The intuition behind all these propositions is that, the disparities that fall within lower
moments between X and Y are easier to be detected by our proposed test. When the
leading differences move to higher moment quantities, stricter constraints between N and
p are required to make the test powerful. This phenomenon is consistent with that found
by Yan and Zhang (2023), who provided an asymptotic exact power analysis and revealed
a delicate interplay between the detectable moment discrepancy and the dimension-and-
sample orders (see Table 1 therein).

3.5 An Illustrative Example with the Gaussian Kernel

As shown in Table 1, a special case covered by our setup is the Gaussian kernel multiplied
by -1, that is, k(x, y) = − exp

(
−|x− y|2/(2γ2)

)
, where γ is a pre-specified tuning parame-

ter. We note that many technical assumptions and theoretical results are presented in the
previous sections, which may be difficult to digest. In this section, we use the Gaussian
kernel as a special example to demonstrate the verification of Assumption 1 and condition
(23) in the previous section.

We define D = [0,∞) and D0 =
[
E[|Z1 − Z2|2]1/2,E[|X1 − Y1|2]1/2

]
. For each fixed p

and the tuning parameter γ that depends on p, we consider the Gaussian kernel k(p)(x, y) =
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− exp
(
− |x−y|

2

2γ2

)
. Here, different choices of γ2 lead to different Gaussian kernels, and we

restrict our interest to k(p) with specific γ, that is,

C = C(`, u) :=

{
k(p) : for each p,

E
[
|X1 − Y1|2

]1/2
u

≤ γ ≤
E
[
|Z1 − Z2|2

]1/2
`

}
, (24)

where 0 < `, u < ∞ are some specified constants such that C(`, u) is well defined. Note
that C is a set of Gaussian kernel sequences with growing p, for each k(p) ∈ C, we define

f (p)(s) = − exp
(
− s2

2γ2

)
to be the unique smooth function associated with k(p) and for

simplicity, we drop the superscript hereafter. With the explicit expression of f , we obtain
the derivatives of f up to the 7th order, that is

f0(s) = − exp

(
− s2

2γ2

)
, f1(s) =

s

γ2
exp

(
− s2

2γ2

)
,

f2(s) =

(
1

γ2
− s2

γ4

)
exp

(
− s2

2γ2

)
, f3(s) =

(
−3s

γ4
+
s3

γ6

)
exp

(
− s2

2γ2

)
,

f4(s) =

(
− 3

γ4
+

6s2

γ6
− s4

γ8

)
exp

(
− s2

2γ2

)
, f5(s) =

(
15s

γ6
− 10s3

γ8
+

s5

γ10

)
exp

(
− s2

2γ2

)
,

f6(s) =

(
15

γ6
− 45s2

γ8
+

15s4

γ10
− s6

γ12

)
exp

(
− s2

2γ2

)
,

f7(s) =

(
−105s

γ8
+

105s3

γ10
− 21s5

γ12
+

s7

γ14

)
exp

(
− s2

2γ2

)
.

It follows from the Taylor theorem with the Lagrange form of remainder that C satisfies
Assumption 1(i)

To verify Assumption 1(ii), we note that

sup
s∈D
|f1(s)| = sup

s≥0

∣∣∣∣ sγ2 exp

(
− s

2

γ2

)∣∣∣∣ =
1

γ
sup
t≥0
|t exp(−t2/2)| = 0.607

γ
.

It follows from similar steps that

sup
s∈D
|f2(s)| =

1

γ2
, sup

s∈D
|f3(s)| =

1.38

γ3
, sup

s∈D
|f4(s)| =

3

γ4
,

sup
s∈D
|f5(s)| =

5.783

γ5
, sup

s∈D
|f6(s)| =

15

γ6
, sup

s∈D
|f7(s)| =

35.539

γ7
.

Recall that C has restrictions on the tuning parameter γ associated with k(p) such that

E
[
|X1 − Y1|2

]1/2
/u ≤ γ ≤ E

[
|Z1 − Z2|2

]1/2
/`, then it holds that sup

s0∈D0

s0
γ ≤ u, thus

max
1≤i≤7

sup
s∈D
|fi(s)| · |si0| ≤ M̃ |f0(s0)| holds for any s0 ∈ D0 when

M̃ = max{0.607u exp(u2/2), u2 exp(u2/2), 1.38u3 exp(u2/2), 3u4 exp(u2/2),
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5.783u5 exp(u2/2), 15u6 exp(u2/2), 35.539u7 exp(u2/2)},

which completes the verification of Assumption 1(ii).

As for Assumption 1(iii), it follows from direct computation that |f0(s)| = exp

(
−1

2

(
s
γ

)2)
,

1
2 |f1(s)s| =

1
2

(
s
γ

)2
exp

(
−1

2

(
s
γ

)2)
, and

| − 1

8
f1(s)s+

1

8
f2(s)s

2| = 1

8

(
s

γ

)4

exp

(
−1

2

(
s

γ

)2
)
.

Again, it follows from the definition of C that inf
s0∈D0

(s0/γ) ≥ `. Therefore, Assumption 1(iii)

holds with M̂ = max{2/`2, 8/`4}.

Lastly, we look into Assumption 1(iv). Note that |f0(s)| = exp

(
−1

2

(
s
γ

)2)
, and

| 1

16
f1(s)s−

1

16
f2(s)s

2 +
1

48
f3(s)s

3| = 1

48

(
s

γ

)6

exp

(
−1

2

(
s

γ

)2
)
,

| − 5

128
f1(s)s+

5

128
f2(s)s

2 − 1

64
f3(s)s

3 +
1

384
f4(s)s

4| = 1

384

(
s

γ

)8

exp

(
−1

2

(
s

γ

)2
)
,

then it is trivial Assumption 1(iv) is satisfied with M̂ = max{48/`6, 384/`8}.
To conclude, we present the results in the following proposition.

Proposition 25 Let C denote the set of Gaussian kernel sequences as defined in Equation
(24), it holds that C satisfies Assumption 1.

Next, we verify condition 23 in Proposition 21, that is∣∣2f(AXY0 )− f(AX0 )− f(AY0 )
∣∣ ≥ L∗|f(AXY0 )|,

Again, we restrict the analysis to the set C. For each k(p) ∈ C, we define f(s) = − exp
(
− s2

2γ2

)
,

and it follows from the definition of C that E
[
|X1 − Y1|2

]1/2
/u ≤ γ ≤ E

[
|Z1 − Z2|2

]1/2
/`.

Note that

(
2f(AXY0 )− f(AX0 )− f(AY0 )

)
/f(AXY0 ) = 2− exp

(
−A

X −AXY

2γ2

)
− exp

(
−A

Y −AXY

2γ2

)
,

where

exp

(
−A

X −AXY

2γ2

)
= exp

(
|∆|2

2γ2

)
exp

(
−
E
[
|X̃1|2

]
− E

[
|Ỹ1|2

]
2γ2

)
,

exp

(
−A

Y −AXY

2γ2

)
= exp

(
|∆|2

2γ2

)
exp

(
E
[
|X̃1|2

]
− E

[
|Ỹ1|2

]
2γ2

)
,
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then it follows from the fact exp(s) > 1 and exp(s) + exp(−s) > 2 for any s > 0 that

exp

(
−A

X −AXY

2γ2

)
+ exp

(
−A

Y −AXY

2γ2

)
= exp

(
|∆|2

2γ2

)(
exp

(
−
E
[
|X̃1|2

]
− E

[
|Ỹ1|2

]
2γ2

)
+ exp

(
E
[
|X̃1|2

]
− E

[
|Ỹ1|2

]
2γ2

))
> 2.

Consequently, the condition is naturally satisfied with

L∗

= inf
AXY0 /u≤γ≤A0/`

{
exp

(
|∆|2

2γ2

)(
exp

(
−
E
[
|X̃1|2

]
− E

[
|Ỹ1|2

]
2γ2

)
+ exp

(
E
[
|X̃1|2

]
− E

[
|Ỹ1|2

]
2γ2

))
− 2

}
.

Suppose that Assumption 2 holds, and we have E[k4(Z1, Z2)] <∞ for each k = k(p) ∈ C,
we summarize a few regimes where the asymptotic power of the Gaussian kernels in C is one.
We want to emphasize that Table 2 only includes a few special cases, whereas our proposed
test is guaranteed to obtain full power asymptotically across a wider range of regimes.

|∆|2 Os(p) Os(p
1/2) 0∣∣∣E[|X̃1|2

]
− E

[
|Ỹ1|2

]∣∣∣ Os(p) Os(p
1/2) Os(p

1/4)

‖ρΣX + (1− ρ)ΣY ‖2F Os(α(p)p)

‖ΣX − ΣY ‖F Os(p
1/4)

Regime N, p→∞ N, p→∞ p = o(N) p = o(N1/2)

Table 2: Selected regimes where the power of the Gaussian kernels is asymptotically one.

In the following remark, we compare the sufficient conditions for asymptotically power
one derived in Zhu and Shao (2021) and in this article under the special case when X and
Y have either identical means or identical covariance matrices.

Remark 26 Both Zhu and Shao (2021) and our work aim to test for the distributional
discrepancy, that is, to test for H0 : X =d Y versus H1 : X 6=d Y . The discussion in Zhu
and Shao (2021) is limited to MMD with a user-specified kernel k̂ of the following expression

k̂(X,Y ) = ϕ

1

p

p∑
j=1

ψ(xj , yj)

 ,

where ψ ≥ 0 and ϕ has continuous second order derivative on (0,∞). It is trivial that the
Gaussian kernel is covered by the set of k̂.

Both the high dimensional low sample size setting (HDLSS) when n,m are fixed but
p → ∞ and the high dimensional medium sample size (HDMSS) setting when p → ∞ and
n := n(p)→∞ are investigated in Zhu and Shao (2021), but here we only focus on HDMSS
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setting. It is shown that the permutation test in Zhu and Shao (2021) is consistent within
the following consistency space H:

Hc = {(X,Y ) : 2ϕ(eXY ) 6= ϕ(eX) + ϕ(eY )} ,

where

eX = lim
p→∞

E[ψ̄(X,X ′)], eY = lim
p→∞

E[ψ̄(Y, Y ′)], eXY = lim
p→∞

E[ψ̄(X,Y )],

are all assumed to exist, with X ′, Y ′ being independent copies of X,Y and ψ̄ denoting the
average distance over components

ψ̄(Zi, Zj) =
1

p

p∑
s=1

ψ(zis, zjs).

For the Gaussian kernels, Hc can be further characterized as

Hc =

(X,Y ) :

p∑
j=1

(E[xj ]− E[yj ])
2 = o(p), |

p∑
j=1

(Var(xj)−Var(yj)) | = o(p)


c

.

As shown in Theorem 3.5 of Zhu and Shao (2021), it holds under the HDMSS that

lim
p→∞

PHc
(
Ekn,m(X,Y ) > c

)
= 1

for any c ∈ {QR̂,1−α, QR̃,1−α}, where QR̂,1−α is the critical value obtained from (n + m)!

permutations with R̂ being the randomization distribution of Ekn,m(X,Y ), and QR̂,1−α is the

critical value obtained from a fixed number S of permutations with R̃ being the counterpart
of R̂ with only S permutations. In other words, it is shown in Zhu and Shao (2021) that
the asymptotic power of their permutation-based test is one within Hc.

Now we are able to compare the sufficient conditions for consistent power derived in
Zhu and Shao (2021) and ours when X and Y have either identical means or identical
covariance matrices. When µX = µY , the condition in Zhu and Shao (2021) reduces

to |
p∑
j=1

(Var(xj)−Var(yj)) | & p, which is equivalent to
∣∣∣E[|X̃1|2]− E[|Ỹ1|2]

∣∣∣ = Os(p) in

our article. When ΣX = ΣY , the condition in Zhu and Shao (2021) is simplified as
p∑
j=1

(E[xj ]− E[yj ])
2 & p, which exactly matches the condition |µX − µY |2 = Os(p) in our

work. In summary, the sufficient conditions derived in both articles are equivalent under
the special case that X and Y have either the same means or the same covariance ma-
trices. However, it is worth mentioning that both works require some additional regularity
conditions, which are not enumerated here.

4. Numerical Experiments

In this section, we carry out several simulation studies to examine the finite-sample perfor-
mance of the proposed test statistics and compare with permutation-based counterparts.
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4.1 Normal Approximation Accuracy

We generate two independent random samples X = {X1, . . . , Xn} and Y = {Y1, . . . , Ym}
as follows.

Example 1 Generate independent samples: X1, . . . , Xn
iid∼ N (0,Σ), Y1, . . . , Ym

iid∼ N (0,Σ),
where Σ = (σij) ∈ Rp×p with σij = ρ|i−j| and ρ = 0.5. We set the sample size ratio
m/n = 1, and consider the setting that n ∈ {25, 50, 100, 200, 400} and the data dimensional-
ity p ∈ {25, 50, 100, 200}. As for the kernel k, we consider the L2-norm kL2(x, y) = |x− y|,
the Gaussian kernel multiplied by -1, that is,, kG(x, y) = − exp

(
−|x− y|2/(2γ2)

)
with

γ2 = Median{|Xi1 −Xi2 |2, |Xi− Yj |2, |Yj1 − Yj2 |2}, and the Laplacian kernel multiplied by -
1, that is,, kL(x, y) = − exp (−|x− y|/γ) with γ = Median{|Xi1−Xi2 |, |Xi−Yj |, |Yj1−Yj2 |}.
The median heuristic is a popular way of choosing γ; see Gretton et al. (2012).

Throughout the simulations, our proposed methods are averaged over 5000 Monte Carlo
replications, whereas those of the permutation tests are averaged over 1000 Monte Carlo
replications owing to the high computational cost; see subsequent section. 300 permutations
are conducted for each replication. Given the 5000 replicates of the studentized test statistic
T kn,m,p, we plot the kernel density estimates (KDE) for the three kernels and the standard
normal density function for each combination of sample size and dimension, see Figure 1.
Each row of Figure 1 corresponds to a fixed pair of (n,m) whereas each column represents
a fixed choice of p.

As shown in Figure 1, when p is fixed, the improvement of normal approximation ac-
curacy is minimal as N increases. However, we do observe significant improvement in the
accuracy as p grows for fixed n = m. The three kernels correspond to very similar empirical
distributions suggesting the insensitivity to the kernel choice in terms of size. It is worth
noticing that normal approximation is already quite accurate when the sample size and
the dimensionality are relatively small, say N = 50 and p = 100, and higher accuracy is
achieved with larger N and p. Such requirements of N and p are usually not demanding in
real-world applications, which shows the applicability of the proposed test.

Additional simulation results regarding normal approximation accuracy can be found in
online appendices, including the results when the sample sizes n,m are unequal with the
difference beyond a constant, and the Kolmogorov-Smirnov distance as well the Wasserstein
distance between the standard normal distribution and the empirical distribution of our
proposed test statistic under the null. The overall finding from the unbalanced setting is
qualitatively similar to what we observe here.

4.2 Empirical Size

Under the significance level α = 0.05, we reject the null hypothesis if T kn,m,p > Φ(1−α). As a
comparison, we also consider the permutation test based on the sample MMD studied in Zhu
and Shao (2021). For our test statistic, we consider the three kernels introduced in Example
1, while for the permutation test, we additionally consider the L1-norm kL1(x, y) = |x−y|1,
which is advocated in Zhu and Shao (2021).

In this section, we consider a simulated example that mimics Example 4.1 in Zhu and
Shao (2021).
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Figure 1: Kernel density estimates of the studentized test statistic T kn,m,p with different
kernels for Example 1 when m/n = 1. The four columns correspond to different
p’s and the five rows correspond to different pairs of (n,m).

Example 2 Generate independent samples: X1, . . . , Xn
iid∼ (V 1/2ΣV 1/2)1/2ZX and Y1, . . . , Ym

iid∼
(V 1/2ΣV 1/2)1/2ZY , where Σ = (σij) ∈ Rp×p with σij = ρ|i−j| and ρ ∈ {0.4, 0.7}. We con-
sider the setting that (n,m) ∈ {(25, 25), (50, 50), (50, 100), (100, 100),

(200, 200)} and p ∈ {50, 100}. Here, V is a diagonal matrix with V
1/2
ii = 1 or uniformly

drawn from the interval (1, 5). ZX , ZY are iid copies of Z drawn from the following two
distributions:

(i) Z = (z1, . . . , zp) with z1, . . . , zp
iid∼ N (0, 1).

(ii) Z = (z1 − 1, . . . , zp − 1) with z1, . . . , zp
iid∼ Exponential(1).

As reported in Table 3, our test exhibit some mild size distortion due to the inaccuracy
of normal approximation in finite sample.

However, even when n = m = 25 and p = 50, the rejection rate is only slightly higher
than the nominal level 5%, suggesting that our test is practically useful for small sample and
moderate dimensional setting. The size distortion tends to increase when the componentwise
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dependence gets stronger, which matches the theory developed in previous sections; see
Proposition 19. As we expect, the permutation tests exhibit accurate size, but at the cost
of computation. Comparing all three kernels, it seems that no kernel dominates the other
in terms of size accuracy.

(n,m) p ρ V
Example 2(i) Example 2(ii)

Proposed Permutation Proposed Permutation
L2 G L L2 G L L1 L2 G L L2 G L L1

(25,25)

50
0.4

Id 6.98 6.92 6.80 4.60 4.60 4.20 3.80 5.66 5.80 5.80 4.50 4.60 4.50 4.90
Unif 6.54 6.54 6.50 4.60 4.60 4.10 4.50 6.72 6.72 6.60 5.40 5.40 5.50 5.50

0.7
Id 5.86 5.80 6.00 5.20 5.00 5.00 5.20 6.38 6.26 6.00 6.00 5.80 4.90 4.80

Unif 6.50 6.46 6.10 5.00 4.90 4.90 4.80 6.98 6.78 6.66 4.90 5.00 5.20 5.10

100
0.4

Id 5.52 5.54 5.52 4.90 4.90 4.60 4.20 6.12 6.04 6.08 5.00 5.00 5.10 5.70
Unif 6.42 6.36 6.34 5.50 5.40 5.70 5.10 6.06 6.04 6.08 4.90 4.80 5.40 4.60

0.7
Id 6.90 6.86 7.10 5.80 5.70 5.10 4.90 6.52 6.56 6.46 5.80 5.70 5.40 5.50

Unif 6.60 6.60 6.74 5.30 5.40 5.50 6.30 6.62 6.62 6.70 5.50 5.40 5.50 5.40

(50,50)

50
0.4

Id 6.06 6.06 6.00 5.80 5.60 5.50 5.20 6.36 6.44 6.64 4.00 4.10 4.20 4.10
Unif 5.86 5.94 5.82 4.00 3.90 3.80 4.00 6.46 6.30 6.26 4.00 3.90 3.80 3.80

0.7
Id 7.36 7.28 7.00 5.50 5.30 5.50 5.20 7.00 6.88 6.96 5.10 5.30 5.10 5.00

Unif 6.56 6.66 6.68 5.90 6.30 6.30 6.50 6.46 6.36 6.22 5.10 5.30 5.40 5.20

100
0.4

Id 5.98 6.00 6.18 5.10 5.00 5.30 5.30 5.82 5.72 5.74 4.30 4.30 4.10 4.00
Unif 6.42 6.40 6.42 4.90 4.90 4.70 4.60 5.62 5.50 5.50 5.40 5.50 5.10 5.30

0.7
Id 6.90 6.86 6.74 5.30 5.30 5.60 4.80 6.38 6.46 6.68 5.60 5.80 6.00 6.10

Unif 6.68 6.68 6.50 6.30 6.00 5.50 5.70 6.10 6.12 6.10 4.20 4.20 4.60 4.60

(50,100)

50
0.4

Id 6.34 6.26 6.16 5.10 5.10 4.80 4.90 6.38 6.38 6.04 5.40 5.20 5.00 5.00
Unif 6.66 6.76 6.80 6.00 6.00 5.50 6.00 6.08 6.20 5.92 4.90 5.10 5.40 4.10

0.7
Id 6.44 6.40 6.38 5.20 5.10 4.70 5.10 6.50 6.36 6.30 4.30 4.10 4.10 4.00

Unif 6.74 6.62 6.30 5.20 5.20 4.90 5.10 5.98 5.94 6.02 3.30 3.30 3.50 3.80

100
0.4

Id 5.84 5.86 5.92 5.30 5.30 5.00 4.60 5.86 5.84 5.70 4.90 4.80 5.00 4.30
Unif 6.14 6.22 6.24 5.50 5.60 6.20 6.80 6.04 6.06 6.14 5.70 5.70 5.50 5.10

0.7
Id 6.50 6.54 6.30 5.40 5.30 4.20 5.30 6.16 6.22 6.08 5.30 5.30 5.30 5.20

Unif 6.48 6.38 6.42 4.70 4.40 4.70 4.10 6.64 6.72 6.72 5.20 5.40 5.40 5.30

(100,100)

50
0.4

Id 6.24 6.14 6.16 5.30 5.30 5.80 5.10 5.54 5.56 5.68 4.80 4.50 4.90 4.40
Unif 6.12 6.08 6.06 5.50 5.50 5.20 4.90 7.04 7.04 6.90 6.40 6.40 6.40 5.60

0.7
Id 6.56 6.66 6.44 4.00 4.10 4.00 4.40 6.00 6.02 6.14 5.10 5.10 5.00 5.00

Unif 6.40 6.36 6.42 5.10 5.00 5.30 4.90 6.66 6.60 6.70 4.50 4.30 4.70 4.40

100
0.4

Id 5.98 5.94 6.08 5.50 5.30 5.60 5.00 5.92 5.86 5.76 4.40 4.60 4.20 3.90
Unif 6.24 6.22 6.10 5.00 5.10 5.50 5.70 6.04 6.00 5.94 4.10 4.10 3.50 3.40

0.7
Id 6.14 6.08 6.06 4.90 4.90 5.20 5.00 6.46 6.36 6.44 4.50 4.40 4.40 4.40

Unif 6.60 6.66 6.54 4.50 4.30 4.30 4.70 6.76 6.88 6.82 5.30 5.40 5.50 4.60

(200,200)

50
0.4

Id 5.60 5.60 5.42 4.30 4.20 4.30 4.30 6.12 6.22 6.28 6.20 6.60 5.70 5.60
Unif 6.38 6.52 6.32 5.20 5.20 4.80 5.10 6.14 6.24 6.26 5.00 5.20 5.00 5.20

0.7
Id 6.78 6.84 6.52 4.50 4.40 4.10 4.10 6.66 6.60 6.56 5.60 5.50 4.80 5.40

Unif 6.56 6.68 6.64 4.10 4.00 4.40 4.20 6.94 6.88 6.74 6.10 5.90 6.10 5.80

100
0.4

Id 6.18 6.18 6.06 5.30 5.30 4.80 5.00 5.60 5.60 5.66 5.40 5.40 5.50 5.80
Unif 6.74 6.74 6.66 5.10 5.10 5.00 4.70 5.50 5.52 5.56 4.30 4.50 4.10 3.90

0.7
Id 7.22 7.24 7.10 5.70 5.70 5.90 5.80 6.42 6.50 6.16 4.40 4.30 3.60 3.40

Unif 6.56 6.50 6.32 5.70 5.40 5.40 4.40 5.56 5.54 5.76 3.90 4.10 4.30 4.60

Table 3: Size comparison for Example 2. All the empirical sizes are reported in percentage.

4.3 Power Behavior

Next we investigate the power behavior. The simulated example is adopted from the setting
of Example 4.2 in Zhu and Shao (2021). We present the simulation results for the alternative
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of mean difference in this section, and defer to online appendices the results when two
distributions differ in the covariance matrices.

Example 3 Generate independent samples: X1, . . . , Xn
iid∼ (V 1/2ΣV 1/2)1/2ZX and Y1, . . . , Ym

iid∼
(V 1/2ΣV 1/2)1/2ZY +

(
0.15× 1βp,0(1−β)p

)
, where Σ, ZX , ZY are defined the same as in Ex-

ample 2 and V is chosen as the identity matrix. Here, we fix ρ = 0.5, consider (n,m) ∈
{(25, 25), (50, 50), (100, 100), (200, 200)}, p ∈ {50, 100} and β ∈ {0, 0.1, . . . , 1}.

We plot the size-adjusted power curves against β in Figure 2. Note that we only made
critical value adjustment in calculating the size-adjusted power for our method, as there
is little distortion for permutation-based test. As can be seen from Figure 2, when there
is a mean shift, our test statistic and permutation-based counterpart have almost identical
power for all kernels. The use of L1 norm brings some power gain in some cases. As N
increases, we do observe a significant improvement in power, regardless of the choice of p,
which is consistent with our intuition. When p increases from 50 to 100, the power increases
noticeably for fixed (n,m), as the alternative gets farther away from the null.
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Figure 2: Size-adjusted Power Curves for Example 3. The first two columns correspond to
p = 50 while the last two columns correspond to p = 100.

29



Gao and Shao

n m p
Proposed Permutation

L2 G L L2 G L L1

25 25
50 0.12 0.21 0.19 20.87 22.55 22.64 22.04
100 0.15 0.25 0.25 33.32 35.20 35.12 36.03

50 50
50 0.36 0.69 0.68 82.95 94.39 95.05 86.64
100 0.58 1.12 1.12 148.75 158.73 159.32 152.56

50 100
50 0.59 1.11 1.12 155.40 171.97 173.00 168.64
100 0.89 1.74 1.74 263.34 278.31 276.89 283.76

100 100
50 1.35 2.57 2.59 328.13 369.62 367.83 332.62
100 2.31 4.30 4.28 576.19 625.81 626.61 601.24

200 200
50 5.04 9.98 10.05 1229.59 1380.77 1387.88 1241.33
100 6.69 13.43 13.24 1879.47 1989.71 1991.56 2001.98

Table 4: Computational cost under multiple settings. All the numerical results are counted
in seconds.

4.4 Computational Cost

One of the major advantage of our proposed method over the permutation test in Zhu and
Shao (2021) is the computational efficiency. In this section we compare the computational
cost per 100 replications of our method with that of the permutation test under multiple
settings; see Table 4. The number of permutations per replication is set to be 300. As
shown in Table 4, it is obvious that our method is much more computationally efficient
compared to permutation-based counterpart, which makes up for the slight size distortion
of our test under the null.

5. Discussion

In this paper, we have obtained the central limit theorems for studentized sample MMD and
derived the explicit rates of convergence under the null hypothesis of equal distributions
when both sample size and dimensionality are diverging. Furthermore, we have also devel-
oped a general power theory for the studentized sample MMD and demonstrated its ability
of detecting the difference in distributions. Our proof is built on the argument in Gao et al.
(2021) but we need to develop some new theoretical tools owing to the fact that we are
dealing with a general class of kernels and a two sample U-statistic with high-dimensional
observations. In particular, the pooled sample estimate Vk∗n,m(X,Y ) is proposed and its
ratio-consistency as an estimator of V2k(Z) is shown using a newly developed moment in-
equality for the multi-sample U-statistics. To deal with a general class of kernels, we also
develop new bounds for the moments of the in-sample and between-sample distances. From
a practical viewpoint, our proposed test is simple and easy to implement with much less
computational cost compared to permutation test in Zhu and Shao (2021). Finite sample
simulations suggest that the size is quite accurate and there is no power loss compared to
the permutation-based counterpart.

As a part of future work, we expect our theory to be useful to the study of asymptotic
behavior of sample HSIC in high-dimension, and to test for distributional change in a
sequence of high-dimensional data. We leave these topics for future investigation.
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