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Abstract

This paper revisits the bandit problem in the Bayesian setting. The Bayesian approach
formulates the bandit problem as an optimization problem, and the goal is to find the
optimal policy which minimizes the Bayesian regret. One of the main challenges facing the
Bayesian approach is that computation of the optimal policy is often intractable, especially
when the length of the problem horizon or the number of arms is large. In this paper, we
first show that under a suitable rescaling, the Bayesian bandit problem converges toward
a continuous Hamilton-Jacobi-Bellman (HJB) equation. The optimal policy for the limit-
ing HJB equation can be explicitly obtained for several common bandit problems, and we
give numerical methods to solve the HJB equation when an explicit solution is not avail-
able. Based on these results, we propose an approximate Bayes-optimal policy for solving
Bayesian bandit problems with large horizons. Our method has the added benefit that its
computational cost does not increase as the horizon increases.

Keywords: Bayesian bandit, Hamilton-Jacobi-Bellman equation, optimal control, dy-
namic view, diffusion approximation, continuous limit

1. Introduction

Bandit problems were first introduced by Thompson (1933) with later pioneering work due
to Robbins (1952) and Wald (2004). In more recent years, bandit algorithms have become
widely adopted for automated decision-making tasks such as dynamic pricing (Ferreira et al.,
2018), mobile health (Tewari and Murphy, 2017), Alpha Go (Silver et al., 2016), etc.

The bandit problem can be considered from one of two perspectives: Bayesian or fre-
quentist. The Bayesian approach dominated bandit research from 1960-1980 (Bradt et al.,
1956; Gittins, 1979). The objective is to minimize an average cumulative regret with respect
to the Bayesian prior measure of the problem environment. It formulates the bandit prob-
lem as an optimization problem, and the goal is to find the optimal policy which minimizes
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the Bayesian regret. In the frequentist setting (Lai and Robbins, 1985), the cumulative
regret is viewed as an unknown deterministic quantity, and the goal is to design policies to
achieve the best environment-dependent performance.

The main difficulty with Bayesian bandits is that computation of the optimal policy is
often intractable, especially when the number of arms or the horizon is large. Gittin’s index
(Gittins, 1979) reduced the computational cost for the discounted infinite horizon setting
but does not apply to undiscounted cases (Berry and Fristedt, 1985). Although computing
the Bayes-optimal policy is challenging, there is a significant payoff: the performance of
the policy is not only optimal in the Bayesian setting (by definition) but also has favorable
frequentist regret guarantees (Lattimore, 2016). In addition, Bayesian bandits have been
widely employed in economics (Bergemann and Valimaki, 2006), including in contract theory
(Gur et al., 2022), dynamic pricing (Leloup and Deveaux, 2001), portfolio management
(El Karoui et al., 2005), etc.

In this paper, we revisit the Bayesian perspective for the multi-armed bandit problem
and analyze it using tools from PDEs. A continuous-in-time limiting HJB equation is
derived as the horizon n goes to infinity for a range of bandit problems. Based on the limiting
equation, a regularized Bayes-optimal policy is proposed, where regularization is employed
to increase exploration and stability. Numerical schemes can be used to approximate the
optimal policy, leading to improved computational efficiency when the horizon is large. In
addition, the exact optimal policy for the limiting HJB equation can be obtained for certain
types of bandit problems, including the classical Bernoulli and Gaussian arm reward cases,
resulting in an efficient algorithm to approximate the optimal policy even if the number of
arms is large. In summary, our contributions are as follows.

• We derive a continuous-in-time limit, an HJB equation, for the Bayesian multi-armed
bandit problem.

• We propose a regularized version of the Bayesian multi-armed bandit problem, which
encourages exploration and smooths the optimal policy.

• Based on the limiting PDE, we give an efficient algorithm for approximating the
optimal policy.

Recently, the use of differential equations to analyze machine learning algorithms has
received growing interest, especially in optimization algorithms Su et al. (2014); Li et al.
(2017), sampling algorithms Welling and Teh (2011); Liu (2017), neural networks Mei et al.
(2018); Chen et al. (2018); Han et al. (2019); Chen et al. (2020). However, fewer connections
have been built between multi-armed bandits and differential equations until the recent
two years. For bandit problems, Fan and Glynn (2021); Wager and Xu (2021); Kobzar
and Kohn (2022) model several policies in the frequentist setting via a continuous SDE
or PDE, and this continuous analysis is used to provide insights into the properties of
the algorithms studied. In the Bayesian setting, Araman and Caldentey (2022); Che and
Hörner (2018) give differential equation approximations, but their work can only be applied
to settings with two possible environments. In this paper, we consider Bayesian bandits with
general environments. There are also related works using differential equations in online
learning settings, including contextual bandits (Kapralov and Panigrahy, 2011), drifting
games (Wang and Kohn, 2022), etc.
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2. Bayesian Bandits

Throughout the paper, we focus on K-armed stochastic bandits played over n rounds, where
n ∈ Z+ is a positive integer called the horizon. At each round i, the learner chooses an
arm (also called an action) Ai from the action space A = {ak}Kk=1 according to a policy πi,
and the environment reveals a reward Xi ∈ R. The underlying environment ν belongs to
an environment class E and defines the arm reward distributions. More precisely, given an
environment ν = (P νa , a ∈ A) ∈ E , the reward Xi follows the distribution P ν

Ai
.

The policy πi at round i is a function which maps the historyH i = (A1, X1, · · · , Ai−1, Xi−1)
to a probability distribution over the action space A. More precisely, we denote the set of
possible histories at the beginning of round i by Hi = (A×R)i−1, and H1 = ∅. We denote
by ∆(A) the set of probability measures on A so that the policy πi is a mapping from Hi
to ∆(A). We denote by Π the set of policies π = {πi}ni=1, which is measurable with respect
to the filtration associated with the process {H i}ni=1. We call Π the competitor class.

Define the expectation of arm a in environment ν as µa(ν), where

µa(ν) =

∫
R
xP νa (x)dx. (1)

The expected cumulative reward cn(π, ν) measures the performance of policy π in environ-
ment ν,

cn(π, ν) = E

[
n∑
i=1

µAi(ν)

]
,

where the expectation is taken over the probability measure induced by the interaction of
the policy and the environment. The goal in the K-armed bandit setting is to design a
policy π∗ that leads to the largest expected cumulative reward among all policies in the
competitor class Π. The main difficulty arises because the environment is unknown, and
the policy can only depend on the history sequences {H i}n−1

i=0 .
One way to measure the performance of a policy π is to find functions C : E → [0,∞), f :

E → [0,∞) that upper bound the regret:

Rn(π, ν) = nµ∗(ν)− cn(π, ν) ≤ C(ν)f(n),

where µ∗(ν) = maxa µa(ν) is the expected reward of the optimal arm. This is the frequentist
regret, which is environment-dependent (Lattimore and Szepesvári, 2020).

Another way to measure the performance of a policy is via the averaged cumulative
reward with respect to a probability measure ρ(ν) on the environment E ,

cn(π, ρ) = E

[
n∑
i=1

∫
E
µAi(ν)ρ(ν)dν

]
.

In the Bayesian setting, the environment is viewed as a random variable. According to
Bayes’ rule, the probability ρ(ν) will be updated conditional on the history sequence. Given
a horizon n, we assume that at each round i, the environment νi is sampled from a prior
measure ρi(ν) over the environment class E . After pulling arm Ai and obtaining the reward
Xi ∼ PA

i

ν , we update ρi+1(ν) to be the posterior distribution of the environment. Given
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an initial prior measure ρ1(ν), the goal is to find the optimal policy that maximizes the
averaged cumulative reward,

max
π∈Π

cn(π) = E

[
n∑
i=1

∫
E
µAi(ν)ρi(ν)dν

]
.

The bandit problem with the above objective function is called a Bayesian bandit (Chapter
35 in Lattimore and Szepesvári (2020)).

3. Continuous Limits of Bayesian Bandits

3.1 An illustrative example

Consider the “one-armed” bandit problem in which the reward of the first arm follows
a Bernoulli(ν) distribution (with ν unknown) and the second arm gives a deterministic
reward µ2 = 1

2 . We assume an initial prior distribution of ν ∼ Beta(α, β). Then the
posterior measure of ν at round i depends on two quantities. The first quantity is qi, which
is the number of pulls of the unknown arm before round i. The second quantity is si, which
is the cumulative reward of the unknown arm before round i. The posterior distribution of
ν is Beta(α+ si, β + qi − si).

Let wi(s, q) be the optimal cumulative reward starting from round i with si = s, qi = q.
Similarly, let wik(s, q) be the optimal cumulative reward in this same setting, assuming that
the k-th arm is pulled at round i. Formally, we have

wi(s, q) = max
π∈Π

E

 n∑
j=i

∫
E
µAj (ν)ρj(ν)dν

∣∣∣∣∣ si = s, qi = q

 ,
wik(s, q) = max

π∈Π
E

 n∑
j=i

∫
E
µAj (ν)ρj(ν)dν

∣∣∣∣∣ si = s, qi = q, Ai = k

 .
As before, the dependence of the expectation on the policy π is through the actions Aj . If
the second arm is chosen at round i, then

wi2(s, q) = µ2 + wi+1(s, q).

If the first arm is chosen at round i, then

wi1(s, q) = p(s, q) + p(s, q)wi+1(s+ 1, q + 1) + (1− p(s, q))wi+1(s, q + 1),

where

p(s, q) =
α+ s

α+ β + q
.

The first term p(s, q) represents the expectation of the reward if the first arm is pulled at
round i. The second and third term hold because after pulling the first arm, one has

qi+1 = qi + 1;

P(si+1 = si + 1|si) = p(si, qi), P(si+1 = si|si) = 1− p(si, qi).
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Since wi is the optimal reward, one has

wi(s, q) = max{wi1(s, q), wi2(s, q)}. (2)

Note that for horizon n, wn+1(s, q) = 0 for all s, q by the definition of w. Therefore, one
can compute wi(s, q) for all s = {0, · · · , i− 1}, q = {0, · · · , i− 1} via backwards induction.

To derive a continuous limit in this setting, we rescale the reward and the number of
arm pulls by 1/n:

ŝ =
1

n
s, q̂ =

1

n
.

One can define the rescaled optimal reward function

vi(ŝ, q̂) =
1

n
wi(s, q),

which then satisfies the equation

vi(ŝ, q̂) = max

{
1

n
µ2 + vi+1(ŝ, q̂),

1

n
p̃(ŝ, q̂) + p̃(ŝ, q̂)vi+1(ŝ+

1

n
, q̂ +

1

n
) + (1− p̃(ŝ, q̂))vi+1(ŝ, q̂ +

1

n
)

}
,

where

p̃(s, q) =
n−1α+ s

n−1(α+ β) + q
.

By setting δt = δs = δq = n−1, the above equation can be equivalently written as

vi+1(ŝ, q̂)− vi(ŝ, q̂)
δt

+ max

{
µ2, p̃(ŝ, q̂) + p̃(ŝ, q̂)

vi+1(ŝ+ δs, q̂ + δq)− vi+1(ŝ, q̂ + δq)

δs

+
vi+1(ŝ, q̂ + δq)− vi+1(ŝ, q̂)

δq

}
= 0.

From the above equation, one sees that the rescaled value function vi(ŝ, q̂) is the numerical
discretization of the following PDE:

∂tv(t, ŝ, q̂) + max{µ2, µ̂(ŝ, q̂) + µ̂(ŝ, q̂)∂ŝv(t, ŝ, q̂) + ∂q̂v(t, ŝ, q̂)} = 0, v(1, ŝ, q̂) = 0, (3)

where

µ̂(s, q) = lim
n→∞

p̃(s, q).

Furthermore, by moving the constant µ2 outside of the maximum operator and introducing
a control parameter π̂ ∈ [0, 1], one arrives at a Hamilton-Jacobi-Bellman equation for v:

∂tv + max
π̂(t,ŝ,q̂)∈[0,1]

(µ̂+ µ̂∂ŝv + ∂q̂v − µ2)π + µ2 = 0, v(1, ŝ, q̂) = 0. (4)

(3) and (4) are equivalent because when µ̂ + µ̂∂ŝv + ∂q̂v > (<)µ2, then π̂ = 1(= 0),
respectively. In other words, as the horizon n → ∞, the rescaled value function vi(ŝ, q̂)
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Figure 1: The above plot shows the decrease in the error | 1nw
i(s, q)−v(t, ŝ, q̂)| as the horizon

n→∞ for (i, s, q) = {(n2 + 1, n4 ,
n
2 ), (n2 + 1, n8 ,

n
4 ), (1, 0, 0)} and the corresponding

(t, s, q) = {(1
2 ,

1
4 ,

1
2)(1

2 ,
1
8 ,

1
4), (0, 0, 0)}. We set the initial hyperparameters (α, β) =

(n2 ,
n
2 ),.

satisfies the above HJB equation. We plot the convergence of 1
nw

i(ŝ, q̂) as n increases in
Figure 1.

Classical results from optimal control (see, e.g., Chapter 10.3.3 of Evans (2010)) imply
that v(t, ŝ, q̂) in (4) solves the control problem

max
π̂(τ)∈[0,1]

∫ 1

t
µ̂(ŝ(τ), q̂(τ))π(τ) + (1− π(τ))µ2dτ

s.t. dq̂(τ) = π(τ)dτ,

dŝ(τ) = µ̂(ŝ(τ), q̂(τ))π(τ)dτ,

q̂(t) = ŝ, ŝ(t) = q̂.

(5)

The preceding example illustrates that the Bayesian bandit algorithm (2) can be viewed
as the discretization of an HJB equation (4), which solves the control problem (5). In other
words, as the horizon n → ∞, the Bayesian bandit problem will converge to a continuous
control problem that can be solved via the HJB equation. In the next section, we extend
this formulation to a more general setting.

3.2 Formal derivation from Bayesian bandits to the HJB equation

We return to the original K-armed bandit setting with horizon n and environments pa-
rameterized by ν ∈ E ⊂ Rd. The reward of the k-th arm ak follows the distribution P ν

k .
We assume a prior measure ρ(ν) on the environment ν at the beginning of the first round.
We also assume that the updated measure ρi(ν) at the beginning of round i only depends
on (si,qi). Here si = (sik)

K
k=1 ∈ RK is a K-dimensional vector representing the cumulative

reward of each arm up to round i−1, and qi = (qik)
K
k=1 ∈ {0, · · · , i−1}K is a K-dimensional

vector representing the number of pulls of each arm up to round i − 1. We note that the
assumption that the state space can be reduced to (si,qi) covers many, but not all, bandit
algorithms. For instance, many stochastic bandit algorithms, where the arm rewards are
drawn from a stationary probability distribution, can be represented using this state space,
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but the Exp3 algorithm (Auer et al., 2002) cannot. For an extensive discussion, refer to
Section 2.1 of Wager and Xu (2021).

Under the above assumptions, the posterior distribution of the environment at round i
can be written as a function of si,qi, i.e., ρ(ν|si,qi). If arm k is pulled at round i, then the
reward Xi follows the distribution P ν

k , and

si+1
k = sik +Xi, qi+1

k = qik + 1. (6)

Let wi(s,q) be the optimal expected cumulative reward starting from round i with
(si,qi) = (s,q). Then it satisfies the following equation:

wi(s,q) = max
k

{∫
E
µk(ν)ρ(ν|s,q)dν +

∫
E

∫
R
wi+1(s + xek,q + ek)P

ν
k (x)ρ(ν|s,q) dx dν

}
,

(7)
where µk(ν) is the expected reward of the k-th arm defined in (1), and ek is a K-dimensional
vector with the k-th element being 1 and all other elements being 0. The first term in the
max operator represents the expectation of the rewards if the k-th arm is pulled. The
second term is due to the fact that si+1

k and qi+1
k will follow (6) if the k-th arm is pulled at

round i.
Next, we rescale the parameters to derive the continuous-in-time limit. Let

t =
i− 1

n
, q̂ =

1

n
qi, ŝ =

1

f(n)
si, v

(
i− 1

n
,

s

f(n)
,
q

n

)
=

1

f(n)
wi(s,q). (8)

We shrink the n rounds to the time interval [0, 1] so that as n → ∞, the discrete round
i ≤ n will correspond to a continuous time t = (i−1)/n ∈ [0, 1]. We also rescale the number
of pulls to [0, 1], so that it is on the same scale as the rescaled rounds. The cumulative
reward si and wi are rescaled by 1

f(n) , where f(n) will be determined later. Accordingly, the

rescaled expected reward v(t, ŝ, q̂) becomes a function of the continuous time t and rescaled
history (ŝ, q̂). We refer to the function f(n) as the scaling factor. For different scaling
factors, the limiting rescaled cumulative reward v(t, ŝ, q̂) will follow different dynamics.

Define the moments of the k-th arm w.r.t. the probability measure P ν
k (x) and Bayesian

measure ρ(ν|s,q) by

µ̄k(s,q) =

∫
E

∫
R
xP ν

k (x)ρ(ν|s,q) dx dν, σ̄2
k(s,q) =

∫
E

∫
R
x2P ν

k (x)ρ(ν|s,q) dx dν,

Ēpk(s,q) =

∫
E

∫
R
xpP ν

k (x)ρ(ν|s,q) dx dν.

(9)

We assume that these moments exist and are finite. Inserting the Taylor expansion

wi+1(s + xek,q + ek) =
∞∑
p=0

1

p!
∂pskw

i+1(s,q + ek)x
p

into (7) yields

wi(s,q) = max
k

{
µ̄k(s,q) + wi+1(s,q + ek) + µ̄k(s,q)∂skw

i+1(s,q + ek) +
1

2
σ̄2
k(s,q)∂2

sk
wi+1(s,q + ek)

+

∞∑
p=3

1

p!
Ēpk(s,q)∂pskw

i+1(s,q + ek)

 .
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Therefore, the rescaled reward v
(
i−1
n , s

f(n) ,
q
n

)
= 1

f(n)w
i(s,q) satisfies

v

(
i− 1

n
,

s

f(n)
,
q

n

)
= max

k

{
1

f(n)
µ̄k(s,q) + v

(
i

n
,

s

f(n)
,
q + ek
n

)
+

1

f(n)
µ̄k(s,q)∂ŝkv

(
i

n
,

s

f(n)
,
q + ek
n

)
+

1

2

1

f2(n)
σ̄2
k(s,q)∂2

ŝk
v

(
i

n
,

s

f(n)
,
q + ek
n

)

+

∞∑
p=3

1

p!

1

fp(n)
Ēpk(s,q)∂pŝkv

(
i

n
,

s

f(n)
,
q + ek
n

) .

After reorganizing the terms and setting δt = δq = 1
n , one has

v(t+ δt, ŝ, q̂)− v(t, ŝ, q̂)

δt
+ max

k

{
1

δtf(n)
µ̄k(f(n)ŝ, nq̂) +

v(t+ δt, ŝ, q̂ + δqek)− v(t+ δt, ŝ, q̂)

δq

+
1

δtf(n)
µ̄k(f(n)ŝ, nq̂)∂ŝkv(t+ δt, ŝ, q̂ + δqek)

+
1

2

1

δtf2(n)
σ̄2
k(f(n)ŝ, nq̂)∂2

ŝk
v(t+ δt, ŝ, q̂ + δqek)

+
∞∑
p=3

1

p!

1

δtfp(n)
Ēpk(f(n)ŝ, nq̂)∂pŝkv(t+ δt, ŝ, q̂ + δqek)

 = 0.

If one assumes that there exist functions {µ̂k(ŝ, q̂)}Kk=1, {σ̂k(ŝ, q̂)}Kk=1, such that for all
ŝ ∈ RK , q̂ ∈ [0, 1]K ,

lim
n→∞

n

f(n)
µ̄k(f(n)ŝ, nq̂) = µ̂k(ŝ, q̂);

lim
n→∞

n

f2(n)
σ̄2
k(f(n)ŝ, nq̂) = σ̂2

k(ŝ, q̂);

lim
n→∞

n

fp(n)
Ēpk(f(n)ŝ, nq̂) = Êpk ≡ 0, for ∀p ≥ 3,

(10)

then as the horizon n → ∞, i.e., δt, δq → 0, the rescaled expected cumulative reward
v(t, ŝ, q̂) = 1

f(n)w
nt+1(f(n)ŝ, nq̂) satisfies the PDE

∂tv + max
k
{µ̂k + ∂q̂kv + µ̂k∂ŝkv +

1

2
σ̂2
k∂

2
ŝk
v} = 0,

which can be equivalently written as the following HJB equation:

∂tv + max
π̂(t,ŝ,q̂)∈∆K

K∑
k=1

(
µ̂k(t, ŝ, q̂) + ∂q̂kv + µ̂k(ŝ, q̂)∂ŝkv +

1

2
σ̂2
k(ŝ, q̂)∂2

ŝk
v

)
π̂k = 0. (11)

Here we introduce π̂(t, ŝ, q̂) as the feedback control, which corresponds to the policy in
the bandit problem. Since the policy is a mapping from the history H i to probability
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measures on the action space ∆(A), the policy at round i is described by a K-dimensional
vector-valued function πi(si,qi) that satisfies

∑
k π

i
k(s

i,qi) = 1. In the limit, the policy
π̂(t, ŝ, q̂) = limn→∞ πnt+1(f(n)ŝ, nq̂) is a mapping from the rescaled history (ŝ, q̂) to the
simplex ∆K that satisfies

∑
k π̂k(t, ŝ, q̂) = 1 for ∀(t, ŝ, q̂).

We remark briefly that the selection (or even the existence) of f(n) may not be obvious
in the general setting described above. In general, f(n) should be thought of as describing
the “order” or asymptotic size of the unscaled rewards in the original bandit problem with n
rounds. For instance, if the rewards are of constant size and observed with at least constant
probability, then we will expect the cumulative reward of the original bandit problem to be
linear in the time horizon, and we will have f(n) = Θ(n). Rather than describing necessary
and sufficient technical conditions relating f(n) to the arm reward distributions P ν

k and
the posterior ρ(ν|s,q) (which may be intractable given the generality of the framework),
in the remainder of the paper, we will show that in a wide range of concrete examples, our
framework provides useful insights into the problem. See Remark 2 for further discussion
of the scaling factor f(n).

Note that the solution to (11) is not necessarily differentiable, so we are searching for
a viscosity solution instead of a classical solution (Evans, 2010). One has the following
guarantee on the well-posedness of the solution.

Proposition 1 If {µ̂k(s,q)}k, {σ̂k(s,q)}k are bounded and Lipschitz continuous in (s,q),
then the value function defined in (13) is the unique viscosity solution to the HJB equation
(11).

See, e.g., Nisio (2015) for the proof. Finding necessary and sufficient conditions on the prob-
lem primitives—specifically, the arm reward distributions P ν

k , the prior ρ, and the scaling
factor f(n)—under which the boundedness and Lipschitz assumptions in Proposition 1 hold
is an interesting question for future work. In this paper, our goal is to demonstrate the
useful insights which can be derived from our framework for specific bandit problems, once
it has been determined that they meet these conditions.

Summary If the rescaled moments of all the arms satisfy (10) for some scaling factor f(n),
then the rescaled optimal expected cumulative reward 1

f(n)w
nt+1(f(n)ŝ, nq̂) will converge

to v(t, ŝ, q̂) as n → ∞, where v satisfies the HJB equation (11) with boundary condition
v(1, ŝ, q̂) = 0. In addition, the rescaled optimal policy π∗,nt+1(f(n)ŝ, nq̂) will converge to
π̂∗(t, ŝ, q̂) as n→∞, where π̂∗(t, ŝ, q̂) is given by

π∗k(t, ŝ, q̂) =

1, k = argmax
k

{
µ̂k(ŝ, q̂) + ∂q̂kv + µ̂k(ŝ, q̂)∂ŝkv +

1

2
σ̂2
k(ŝ, q̂)∂2

ŝk
v

}
0, o.w.

(12)

These results form the foundation for the rest of the paper.

3.3 A formal derivation from Bayesian bandits to the optimal control problems

If one views v(t, s,q) as the optimal cumulative reward starting from time t

v(t, ŝ, q̂) = max
π̂(τ)∈∆K

E
[∫ 1

t
µ̂(ŝ(τ), q̂(τ)) · π(τ)dτ

]
, (13)

9
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then v(t, s,q) is the solution to the optimal control problem (Evans, 2010)

max
π̂(τ)∈∆K

E
[∫ 1

t
µ̂(ŝ(τ), q̂(τ)) · π(τ)dτ

]
s.t. dq̂k(τ) = π̂k(τ)dτ, 1 ≤ k ≤ K;

dŝk(τ) = µ̂k(ŝ(τ), q̂(τ))π̂k(τ)dτ + σ̂k(ŝ(τ), q̂(τ))
√
π̂k(τ)dBτ , 1 ≤ k ≤ K;

ŝ(t) = ŝ, q̂(t) = q̂.

(14)

Therefore, as the horizon n→∞, the Bayesian bandit problem also converges to the above
continuous control problem. In fact, one can derive the optimal control formulation above
directly from the definition of the Bayesian bandit problem.

Given a policy {πi}i, at each round i, the environment ν is sampled with probability
ρ(ν|si,qi), the k-th arm is pulled with probability πik, and the reward of the k-th arm follows
distribution P ν

k . Assume at the beginning of round I, (sI ,qI) = (s,q). The goal of Bayesian
bandits is to find the optimal policy {π∗,i}i that maximizes the expected cumulative reward.
More precisely, our goal is to find {πi}i that solves the following optimization problem:

max
{πi}i∈∆K

cn({πi}) = E

[
n∑
i=I

∫
E
µAi(ν)ρ(ν|si,qi)dν

]
where Ai = k w.p. πik(s

i,qi),

si+1
k − sik =

{
0, if Ai 6= k

Xi ∼ P ν
k ,ν ∼ ρ(ν|si,qi), if Ai = k

,

qi+1
k − qik =

{
0, if Ai 6= k

1, if Ai = k
,

(sI ,qI) = (s,q),

(15)

where µa(ν) is the expected reward of arm a defined in (1).

Using the same rescaling as in (10) and viewing the history (si,qi) at the discrete rounds
as a function (ŝ(t), q̂(t)) over the continuous time t, the differences of the rescaled cumulative
reward ŝ(t) and the rescaled number of pulls q̂(t) after one round become

E[ŝk(t+ δt)− ŝk(t)] = δt
n

f(n)
πik(f(n)ŝ, nq̂)µ̄k(f(n)ŝ, nq̂),

V[ŝk(t+ δt)− ŝk(t)] = δt
n

f2(n)
πik(f(n)ŝ, nq̂)σ̄2

k(f(n)ŝ, nq̂)− (E[ŝk(t+ δt)− ŝk(t)])2 ,

E[q̂k(t+ δt)− q̂k(t)] = δt π
i
k(f(n)ŝ, nq̂),

V[q̂k(t+ δt)− q̂k(t)] = (δt)
2πik(f(n)ŝ, nq̂)− (δt)

2(πik(f(n)ŝ, nq̂))2,

(16)

10



Continuous Limit for Bayesian Bandits

where δt = 1
n , and µ̄k, σ̄k are defined in (9). Accordingly, the rescaled objective function

becomes

ĉn({πi}) =
1

f(n)
cn({πi})

= δt E

[
n∑
i=I

K∑
k=1

n

f(n)
πik

(
f(n)ŝ

(
i

n

)
, nq̂

(
i

n

))
µ̄k

(
f(n)ŝ

(
i

n

)
, nq̂

(
i

n

))]
.

(17)
Formally, based on (16) and (17), under the assumptions (10) on the moments, the following
equations hold.

lim
n→∞

E[ŝk(t+ δt)− ŝk(t)]/δt = π̂k(t, ŝ, q̂)µ̂k(ŝ, q̂),

lim
n→∞

V[ŝk(t+ δt)− ŝk(t)]/δt = π̂k(t, ŝ, q̂)σ̂2
k(ŝ, q̂),

lim
n→∞

E[q̂k(t+ δt)− q̂k(t)]/δt = π̂k(t, ŝ, q̂),

lim
n→∞

V[q̂k(t+ δt)− q̂k(t)]/δt = 0,

lim
n→∞

ĉn({πi}) = E

[∫ 1

t

K∑
k=1

π̂k(t, ŝ(τ), q̂(τ))µ̂k(ŝ(τ), q̂(τ))dτ

]
.

This implies that the rescaled version of the Bayesian bandits (15) will converge to the
continuous optimal control problem (14).

Remark 2 Assumption (10) is critical to determine what scaling factor f(n) one should
use to derive a meaningful limiting HJB equation. Take the Bernoulli reward introduced in
Section 3.1 for an example. Since

µ̄(s, q) = σ̄2(s, q) = Ēp(s, q) =
α+ s

α+ β + q
,

one has

µ̂(ŝ, q̂) = lim
n→∞

n

f(n)

α
f(n) + ŝ

α+β
n + q̂

, σ̂2(ŝ, q̂) = lim
n→∞

n

f(n)2

α
f(n) + ŝ

α+β
n + q̂

,

Êp(ŝ, q̂) = lim
n→∞

n

f(n)p

α
f(n) + ŝ

α+β
n + q̂

.

If the initial hyperparameters (α, β) are set such that limn→∞( α
f(n) ,

α+β
n ) = (α̂, β̂), then

the only scaling factor that will induce a meaningful HJB equation is f(n) = O(n). For
all f(n) = O(nb) with b < 1, µ̂ diverges. For the case where b > 1, one has µ̂ ≡ 0,
and consequently, the limiting HJB equation does not give any useful information on the
dynamics. In this particular case, one always ends up with an HJB equation without a
diffusion term (σ ≡ 0), and this is consistent with the nature of the Bernoulli bandits.
Note that ŝ(t) is non-decreasing by definition, but when σ > 0, there is a chance that
ŝ(t) will decrease due to the nonzero dBτ term. Therefore, any valid scaling factor must
induce a deterministic optimal control problem. However, in the general case, depending on
the choice of scaling factor f(n), the limiting optimal control problem can be stochastic or
deterministic.
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3.4 Specialized limiting equations for Structured and Unstructured Bandits

In this section, we will derive the general limiting HJB equation for both unstructured and
structured bandits. Then in Section 3.4.1, we will derive the continuous limit for some
specific bandit problems which are common in the literature.

Unstructured Bandits In the unstructured bandit problem, action a ∈ A is completely
uninformative of all other actions b 6= a. That is, when a is played, the learner gains no
information about the reward distribution of the other arms (Chapter 4.3 of Lattimore and
Szepesvári (2020)). Here we mainly discuss a specific kind of unstructured bandit problem
in which all the arms belong to the same parametric family of distributions with different
unknown parameters. For instance, the rewards of each arm may be normally distributed
with an unknown mean. One will see that, in this case, the drift and diffusion terms of
each arm in the limiting HJB equation have a similar form. Provided that the initial prior
measure is determined by a hyperparameter β, then we claim that under certain conditions,
the Bayesian bandit problem converges to the following HJB equation as the horizon n→∞:

∂tv + max
π̂(t,ŝ,q̂)∈∆K

[
K∑
k=1

(
∂q̂kv + µ̂(ŝk, q̂k, β̂k)∂ŝkv +

1

2
σ̂(ŝk, q̂k, β̂k)

2∂2
ŝk
v

+µ̂(ŝk, q̂k, β̂k)
)
π̂k(t, ŝ, q̂)

]
= 0,

v(1, s,q) = 0,
(18)

where the functions µ̂ and σ̂ depend on the problem setting, and β̂ is the rescaled hyperpa-
rameter. The main difference between the general form (14) and the unstructured version
(19) is that the drift and diffusion functions (µ̂k, σ̂k) have the same form for each arm.
Thus, the difference in drift and diffusion for each arm will be due only to differences in the
arm histories (ŝk, q̂k) at time t and the initial prior measure represented by β̂.

Structured Bandits In a structured bandit problem, the learner can obtain information
about other actions even if these actions are never played. That is, playing a particular arm
a ∈ A may be informative of the reward distributions of other arms b 6= a (Chapter 4.3 of
Lattimore and Szepesvári (2020)). Specifically, we consider the following setting. Let the
action space {ak}Kk=1 = A ⊂ Rd be a set of real vectors, and assume that the reward x ∈ Ω
on the arm ak has density p(x|ak,ν) with an unknown parameter ν ∈ E ∈ Rd. Then we
claim that under certain conditions, the Bayesian bandit problem described above converges
to the following HJB equation as the horizon n→∞:

∂tv + max
π̂(t,ŝ,q̂)∈∆K

[
K∑
k=1

(
∂q̂kv + µ̂(ŝ, q̂,ak)∂ŝkv +

1

2
σ̂(ŝ, q̂,ak)

2∂2
ŝk
v

+µ̂(ŝ, q̂,ak)) π̂k(t, s,q)] = 0,

v(1, s,q) = 0,
(19)

Similar to the unstructured case, the main difference between (11) and (19) is that the
drift and diffusion terms (µ̂k, σ̂k) have the same form. In the structured case, the two terms

12



Continuous Limit for Bayesian Bandits

depend on the history of all the arms (ŝ, q̂) and the position of the arm ak, and the difference
for each arm is only due to the position ak.

3.4.1 Three common bandits

Here we derive the HJB equation for three common examples: unstructured bandits with
Bernoulli and normal arm rewards, and a structured linear bandit with normal rewards.

Unstructured Bernoulli rewards Consider the environment class ν ∈ [0, 1]K of Bernoulli
distributions Bγ with horizon n. For an environment ν ∈ E = [0, 1]K , the k-th arm follows
a Bernoulli distribution taking values γ(n) and −γ(n) with probability νk and 1 − νk, re-
spectively, where νk is the k-th component of ν. We set the initial prior measure for the
k-th arm to be ν1

k ∼ Beta(αk(n), βk(n)) for 1 ≤ k ≤ K.

Lemma 3 Let f(n) be such that there exist real numbers (α̂, β̂, σ̂) with

lim
n→∞

γ(n)(αk(n)− βk(n))

f(n)
= α̂k, lim

n→∞

αk(n) + βk(n)

n
= β̂k, lim

n→∞

√
n

f(n)
γ(n) = σ̂.

Then as n → ∞, the rescaled Bayesian bandit problem with scaling factor f(n) converges
to the HJB equation (18) with

µ̂(s, q, α̂k, β̂k) =
α̂k + s

β̂k + q
, σ̂(s, q, α̂k, β̂k) ≡ σ̂.

See Appendix A for the proof of the above lemma.

Unstructured normal rewards Consider the environment class ν ∈ RK of normally
distributed arm rewards Nσ with horizon n. For environment ν ∈ E = RK , the rewards of
the k-th arm follow the normal distribution N (νk, σ

2(n)), where νk is the k-th component
of ν. We set the initial prior measure to be ν1

k ∼ N (αk(n), βk(n)2) for 1 ≤ k ≤ K.

Lemma 4 Let f(n) be such that there exist real numbers (α̂, β̂, σ̂) with

lim
n→∞

σ2(n)αk(n)

f(n)β2
k(n)

= α̂k, lim
n→∞

σ2(n)

β2
k(n)n

= β̂k, lim
n→∞

√
n

f(n)
σ(n) = σ̂.

Then as n→∞, the rescaled Bayesian bandit problem with the scaling factor f(n) converges
to the continuous control problem (19) with

µ̂(s, q, α̂k, β̂k) =
α̂k + s

β̂k + q
, σ̂(s, q, α̂k, β̂k) ≡ σ̂.

See Appendix B for the proof of the above lemma.

Linear bandits with normal rewards Consider the case of stochastic linear bandits
with horizon n, where the environment is encoded by a vector ν ∈ Rd. For environment
ν ∈ E = Rd, the reward Xi at round i depends linearly on the chosen action Ai ∈ A ⊂ Rd
in the following sense:

Xi =
〈
Ai,ν

〉
+ ηi, (20)
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where (ηi)ni=1 is a sequence of independent and identically distributed normal random vari-
ables N (0, σ2(n)) with given σ. We set the prior measure of ν to be the normal distribution
N (α(n),Σ(n)).

Lemma 5 Let f(n) be such that there exist real constants (α̂, Σ̂) with

lim
n→∞

σ2(n)

n
Σ−1(n) = Σ̂−1, lim

n→∞

σ2(n)

f(n)
Σ−1(n)α(n) = α̂, lim

n→∞

√
n

f(n)
σ(n) = σ̂.

Then as n → ∞, the rescaled Bayesian bandit problem with scaling factor f(n) converges
to the continuous control problem (19) with

µ̂(s,q,b) =b>

(
Σ̂−1 +

∑
k

qkak(ak)
>

)−1(
α̂ +

K∑
k=1

skak

)
, σ̂(s,q) ≡ σ̂.

See Appendix C for the proof of the above lemma.

4. Approximate Bayes-optimal policy

What can one do with the limiting HJB equations or optimal control problems? In Sec-
tion 4.1, we propose a regularized version of the Bayesian bandit by adding a regularizer
term to the objective function of the optimal control limit. In this way, the resulting opti-
mal policy will be a stochastic policy instead of a deterministic one, which can encourage
exploration and make the solution less sensitive to perturbations. In Section 4.2, we pro-
pose an approximate Bayes-optimal policy algorithm, which is based on the solution to the
(regularized or unregularized) HJB equation.

4.1 Regularized Bayesian bandits

The optimal policy from the optimal control problem (14) is deterministic and can be
sensitive to small perturbations to the problem. To encourage robustness, one can add
regularization to the objective function in (14), resulting in a stochastic optimal policy and
encouraging more exploration and stability. For example, entropy regularization for the
policy −

∑
k πk log πk can be added to (14):

max
π̂(τ)∈∆K

E
[∫ 1

t
(µ̂(ŝ(τ), q̂(τ))− λ log π̂(τ)) · π̂(τ)dτ

]
s.t. dq̂k(τ) = π̂k(τ)dt, 1 ≤ k ≤ K;

dŝk(τ) = µ̂k(ŝ(τ), q̂(τ))π̂k(τ)dτ + σ̂k(ŝ(τ), q̂(τ))
√
π̂k(τ)dBτ , 1 ≤ k ≤ K;

ŝ(t) = ŝ, q̂(t) = q̂.

(21)

The resulting HJB equation is (Evans, 2010)

∂tv + max
π̂∈∆K

[
K∑
k=1

(
µ̂k(ŝ, q̂)∂ŝkv + ∂q̂kv +

1

2
σ̂2
k(ŝ, q̂)∂2

ŝk
v + µ̂k(ŝ, q̂)

−λ log(π̂k(t, ŝ, q̂))) π̂k(t, ŝ, q̂)] = 0.
(22)
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The maximum in the above equation can be computed explicitly (Ying and Zhu, 2022). Let

Hk(p,m, h) = µ̂k(s,q)p+m+
1

2
σ̂2
k(s,q)h+ µ̂k(s,q),

then the optimal policy is

π̂∗k(t, ŝ, q̂) =
1

Z
exp

(
1

λ
Hk(∂ŝkv, ∂q̂kv, ∂

2
ŝk
v)

)
, (23)

with normalizing constant Z =
∑

k exp
(

1
λHk(∂skv, ∂qkv, ∂

2
sk
v)
)
. Hence, (22) can be equiv-

alently written as

∂tv + λ log

(∑
k

exp

(
1

λ
Hk(∂ŝkv, ∂q̂kv, ∂

2
ŝk
v)

))
= 0. (24)

There are several potential advantages of the regularized version. First, the resulting op-
timal policy is always stochastic for λ > 0, which will be less sensitive to perturbations
compared with deterministic optimal policy. Second, regularization encourages more ex-
ploration, which helps the performance when the initial prior is significantly different from
the underlying truth. Third, regularization will usually lead to a smoother solution with
a differentiable policy and value function, making it easier to numerically approximate the
solution. For a more comprehensive introduction to the use of regularization in bandit and
reinforcement learning problems, see, e.g., the tutorial by Geist et al. (2019).

4.2 Approximating the Bayes-optimal policy

Based on the limiting equation, if one can obtain the optimal policy for the HJB equation,
then one can approximate the optimal Bayesian bandit policy by rescaling (t, ŝ, q̂) to (i, s,q).
This is summarized by the pseudocode in Algorithm 1.

Algorithm 1 Approximate Bayes-optimal policy

for i = 1, . . . ,K do
Ai ← i, si ← Xi, qi ← 1

end for
for i = K + 1, . . . , n do

Pull Ai ∼ πi(s,q) = π̂∗k(
i−1
n , s

f(n) ,
q
n) . π̂∗(t, ŝ, q̂) given in (12) (unregularized) or

(23) (regularized)
Get reward Xi

sAi ← sAi +Xi, qAi ← qAi + 1
end for

5. Solving the limiting HJB equation

One of the difficulties of the Bayesian bandit problem is its large computational cost. The
computational complexity for solving a K-armed bandit with horizon n via backward in-
duction is O(n2K), which is intractable when n or K is large. If one can obtain the exact
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optimal policy for the limiting HJB equation, then one can use it to approximate the Bayes-
optimal policy for the finite horizon problem with almost no additional computational cost.
Section 5.1 shows one of the cases where the exact solution can be obtained. Even if the
exact solution cannot be obtained directly, Section 5.2 shows a numerical scheme to ap-
proximate the solution. The computational cost of numerically solving the HJB equation
is O(N2K), where N depends on the mesh of the scheme. This can be much more efficient
than the discrete Bayesian bandit algorithm when n is large and K is small.

5.1 Exact solution

Although solving the HJB equation can also be challenging in general, it turns out that
if µk(s, q) = sk+α̂

qk+β̂
, one can obtain the exact solution. By Lemmas 3 and 4, two common

bandit problems are exactly in this form.

Theorem 6 If the drift term in the HJB equation (11) is

µ̂k(ŝ, q̂) =
sk + α̂k

qk + β̂k
,

then for any constants (α̂k, β̂k), the optimal policy for the unregularized HJB equation (11)
is

π̂∗k(t, ŝ, q̂) =

1, k = argmax
k

ŝk + α̂k

q̂k + β̂k

0, o.w.

; (25)

and the optimal policy for the regularized HJB equation (22) is

π̂∗k(t, ŝ, q̂) ∝ exp

(
1

λ

ŝk + α̂k

q̂k + β̂k

)
. (26)

The proof is given in Appendix D. Based on the above theorem, the approximate optimal
policy for the unregularized Bayesian bandit problem is given by

π̃∗,ik (s,q) = π̂∗k

(
i− 1

n
,

s

f(n)
,
q

n

)
=

1, k = argmax
k

sk

qk + nβ̂k
+
f(n)α̂k

q + nβ̂k

0, o.w.

(27)

and the approximate optimal policy for the regularized Bayesian bandit problem is given
by

π̃∗,ik (s,q) = π̂∗k

(
i− 1

n
,

s

f(n)
,
q

n

)
∝ exp

(
n

λf(n)

sk + f(n)α̂k

qk + nβ̂k

)
. (28)

Furthermore, note that the approximate optimal policy (27) for the unregularized Bayesian
bandit is similar in form to UCB: the first term is an approximation to the empirical mean,
and the second term measures the degree to which the arm has been explored. The ap-
proximate optimal policy (28) for the regularized Bayesian bandit has a form similar to

the tempered greedy algorithm, where the term sk+f(n)α̂k
qk+nβ̂k

is an approximation to the em-

pirical mean and n
λf(n) adjusts the exploration rate. When n

λf(n) is smaller (i.e., when the

regularization constant λ is larger), there is more exploration.
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5.2 Numerical solution

In the general case, an exact solution to the HJB equation (11) is not available, so we
present a numerical scheme to approximate the solution in this section. In certain cases,
the numerical scheme yields the exact optimal policy and value function (see Lemma 7). In
general, when the horizon is large, the computational cost of numerically solving the PDE
will be much less than that of classical Bayesian bandit algorithms while still yielding a
good approximation to the optimal policy.

First, observe that one can directly compute the maximum in the HJB equation (11).
Let

k∗(t, ŝ, q̂) = argmaxk ∂q̂kv + µ̂k(ŝ, q̂)∂ŝkv +
1

2
σ̂2
k(ŝ, q̂)∂2

ŝk
v + µ̂k(ŝ, q̂),

then the optimal policy is

π∗k(t, ŝ, q̂) =

{
1, k = k∗(t, ŝ, q̂)

0, k 6= k∗(t, ŝ, q̂)

and the optimal value function satisfies

∂tv + ∂q̂k∗v + µ̂k∗(ŝ, q̂)∂ŝk∗v +
1

2
σ̂2
k∗(ŝ, q̂)∂2

ŝk∗
v + µ̂k∗(ŝ, q̂) = 0. (29)

All of the above results hold in the deterministic case when σ̂k ≡ 0 for all k. Based on (29),
we present a finite difference method for solving the HJB equation (29).

HJB equation with diffusion First, consider the case where σ̂ 6≡ 0. We discretize
the time interval [0, 1] via the grid points 0 = t0 < t1 < · · · < tNt = 1, where tl =
lδt and δt = 1/Nt. We impose a cutoff on the cumulative reward in RK so that it lies
within [−S, S]K , then further discretize this clipped interval into −S ≤ sik ≤ S. Here
i ∈ {ZK ,−Ns ≤ ik ≤ Ns} is a K-dimensional index vector, and si = iδs with δs = S/Ns.

Finally, we discretize the number of pulls to 0 ≤ qjk ≤ 1, where j ∈ {ZK , 0 ≤ jk ≤ Nq} is
a K-dimensional index vector, and qj = jδq with δq = 1/Nq. Observe that at each time tl,

one has that 0 ≤ qjk ≤ t
l and

∑K
k=1 q

j
k = tl. We will typically set Nq = Nt and δq = δt.

Let ṽli,j be the approximation for v(tl, si,qj), where i, j ∈ ZK . The numerical approxi-

mation ṽli,j satisfies the following equation:

1

δt
(ṽl+1

i,j − ṽ
l
i,j) +

1

2δs
µ̂i,jk∗(ṽ

l+1
i+ek∗ ,j+ek∗

− ṽl+1
i−ek∗ ,j+ek∗

) +
1

δq
(ṽl+1

i,j+ek∗
− ṽl+1

i,j )

+
1

2δ2
s

σ̂i,jk∗(ṽ
l+1
i+ek∗ ,j+ek∗

− 2ṽl+1
i+ek∗ ,j+ek∗

+ ṽl+1
i−ek∗ ,j+ek∗

) + µ̂i,jk∗ = 0,

(30)

where ek is the k-th standard basis vector, µ̂i,jk = µ̂k(s
i,qj), and σ̂i,jk = σ̂k(s

i,qj). Since the

boundary conditions at the terminal time specify that ṽNti,j = 0, one can use the preceding

equations to solve backward in time and compute all of the values ṽli,j.

In fact, if one defines gli,j as a vector with k-th element given by

(gli,j)k =ṽl+1
i,j + δt

[
1

2δs
µ̂i,jk (ṽl+1

i+ek,j+ek
− ṽl+1

i−ek,j+ek
) +

1

δq
(ṽl+1

i,j+ek
− ṽl+1

i,j )

+
1

2δ2
s

σ̂i,jk (ṽl+1
i+ek,j+ek

− 2ṽl+1
i,j+ek

+ ṽl+1
i−ek,j+ek

) + µ̂i,jk

]
,

(31)
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then one gets an equivalent form for the numerical scheme (30) with the correspondence
given by

k∗ = argmaxk(g
l
i,j)k, and ṽli,j = (gli,j)k∗ , (π̃li,j)k =

{
1, k = k∗

0, k 6= k∗
(32)

Note that for this scheme to be numerically stable, δt and δs must satisfy the inequality

δt ≤ min(σ̂ki,j)
2δ2
s .

Since ṽli,j is only defined on grid points, the continuous approximated solution ṽ(t, ŝ, q̂) is
defined as

ṽ(t, ŝ, q̂) = ṽli,j for


lδt ≤ t < (l + 1)δt

ikδs ≤ ŝk < (ik + 1)δs

jkδq ≤ q̂k < (jk + 1)δq.

(33)

HJB equation without diffusion Second, we consider the case where σ̂ ≡ 0. Since
there is no longer a diffusion term, one should use the upwind scheme for the transport
term. Let

µ̂i,jk,+ = max(µ̂i,jk , 0) , µ̂i,jk,− = min(µ̂i,jk , 0),

(gli,j)k = ṽl+1
i,j + δt

[
µ̂i,jk,+
δs

(ṽl+1
i+ek,j+ek

− ṽl+1
i,j+ek

) +
µ̂i,jk,−
δs

(ṽl+1
i,j+ek

− ṽl+1
i−ek,j+ek

)

+
1

δq
(ṽl+1

i,j+ek
− ṽl+1

i,j ) + µ̂i,jk

]
.

(34)

Then

k∗ = argmaxk(g
l
i,j)k and ṽli,j = (gli,j)k, (π̃li,j)k =

{
1, k = k∗

0, k 6= k∗.
(35)

In this case, the stability conditions imply that

max(µ̂i,jk )δt ≤ δs.

Connection to the Bayesian bandit algorithm In certain cases, the numerical schemes
(31)-(32) and (34)-(35) give the exact optimal value function for the finite horizon problem.

Lemma 7 For the Bernoulli bandits introduced in Section 3.1, when the initial hyperparam-
eters (αk, βk) = (c1n, c2n) for some constants (c1, c2), then the numerical scheme (34)-(35)
for the limiting HJB equation based on the scaling factor f(n) = n gives the exact optimal
value function when δt = δq = δs = 1

n .
Similarly, for the binomial bandits described in Section 3.4.1 with γ being a constant

independent of n, when the initial hyperparameters (αk, βk) = (c1n+ c2
√
n, c1 − c2

√
n) for

some constants (c1, c2), then the numerical scheme (31)-(32) for the limiting HJB equation
based on the scaling factor f(n) =

√
n gives the exact optimal value function when δt =

δq = 1
n , δs = γ√

n
.

See Appendix E for the proof of the above lemma.
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6. Numerical experiments

6.1 Convergence to the HJB equation

In this section, we will show the convergence of the Bayes-optimal solution to the HJB
solution as the horizon goes to infinity. Namely, we would like to show the differences in
the optimal policy and the rescaled optimal cumulative reward

πi,n(s,q)− π̂n
(
i− 1

n
,

s

f(n)
,
q

n

)
,

1

f(n)
wi,n(s,q)− v

(
i− 1

n
,

s

f(n)
,
q

n

)
decay as the horizon n→∞, where πi,n(s,q), wi(s,q) are obtained by backward induction
and π̂(t, ŝ, q̂), v(t, ŝ, q̂) are obtained by solving the corresponding HJB equation. We show
the convergence result in Figures 2 and 3. Below are the details of the plots.

Consider the one-armed Bernoulli bandit problem, where the first arm has a reward 1
with probability ν and −1 with probability 1− ν, while the second arm has a deterministic
reward µ2. In this case, given a prior measure ν ∼ Beta(α, β), one can obtain the exact
optimal policy and cumulative reward πi,n(s, q) and wi,n(s, q) via the equations

πi,nk (s, q) =

1, for k = argmax
k

ŵi,nk (s, q)

0, o.w.
; wi,n(s, q) = max

k
ŵi,nk (s, q),

where

ŵi,n1 (s, q) = p(s, q)wi+1,n(s+ 1, q + 1) + (1− p(s, q)wi+1,n(s− 1, q + 1)),

ŵi,n2 (s, q) = wi+1,n(s, q) + µ2,

with wn+1,n(s, q) = 0 for all (s, q) and p(s, q) = α+s/2+q/2
α+β+q . The limiting HJB equation

depends on the scaling factor f(n). By Lemma 3, one arrives at a stochastic optimal control
problem if f(n) =

√
n and a deterministic one if f(n) = n. We will compare πi,n, wi,n with

the limiting HJB solution for both of these scenarios.
In Figures 2 and 3, we set µ2 = 1/(3

√
n). The hyperparameters (α, β) for the initial

prior measure are set to be (n, n−
√
n), which implies that in the limiting HJB equation

∂tv + max
π(s,q)∈[0,1]

[
µ̂∂ŝv + ∂q̂v +

1

2
σ̂2∂2

ŝv + µ̂− µ2

]
+ µ2 = 0,

µ̂ = 1+s
2+q , µ̂2 = 1/3, σ̂ = 1 for f(n) =

√
n, and µ̂ = s

2+q , µ̂2 = 0, σ̂ = 0 for f(n) = n. By
Theorem 6, one can obtain the exact optimal policy for the limiting HJB equation. In
Figure 2, we plot the average difference over i, s, q. That is, we plot

enπ =
1

Z

∑
i,s,q

∣∣∣∣πi,n(s, q)− π̂
(
i− 1

n
,

s

f(n)
,
q

n

)∣∣∣∣ ,
enw =

1

Z

∑
i,s,q

∣∣∣∣ 1

f(n)
wi,n(s, q)− v

(
i− 1

n
,

s

f(n)
,
q

n

)∣∣∣∣ , (36)

where the summation is over i ∈ {1, · · · , n}, s ∈ {−(i − 1), · · · , i − 1}, q ∈ {0, · · · , i − 1},
and Z is the number of summations.
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Next, we test the difference between the Bayes-optimal solution and the numerical so-
lution to the HJB equation presented in Section 6. The following averaged differences are
plotted in Figure 3:

en,Nπ =
1

Z

∑
i,s,q

∣∣∣∣πi,n(s, q)− π̃N
(
i− 1

n
,

s

f(n)
,
q

n

)∣∣∣∣ ,
en,Nw =

1

Z

∑
i,s,q

∣∣∣∣ 1

f(n)
wi,n(s, q)− ṽN

(
i− 1

n
,

s

f(n)
,
q

n

)∣∣∣∣ , (37)

where ṽN is obtained according to the scheme (31)-(32) with δt = δq = N−1, δs = N−1/2

when f(n) =
√
n; and ṽN is according to the scheme (34) - (35) with δt = δq = δs = N−1

when f(n) = n. The difference en,Nw based on f(n) =
√
n is rescaled by 1√

n
so that it is

on the same scale as the scheme based on f(n) = n. Due to the different discretizations,

ṽN
(
i−1
n , s

f(n) ,
q
n

)
is not necessarily on a grid point, so we define the continuous approxima-

tion solution ṽ(t, s, q) as in (33), which implies that

π̃N
(
i− 1

n
,

s

f(n)
,
q

n

)
= π̃lm,j , ṽN

(
i− 1

n
,

s

f(n)
,
q

n

)
= ṽlm,j , (38)

for

l =

⌊
i− 1

nδt

⌋
,m =

⌊
s

f(n)δs

⌋
, j =

⌊
q

nδq

⌋
,

where bxc is the largest integer less than or equal to x.
Figure 2 shows that the difference enπ decays as n increases for both scaling factors.

The stochastic limit according to the scaling factor f(n) =
√
n is closer to the optimal

Bayesian solution compared with the deterministic limit. Figure 3 shows that the difference
en,N decays as n and N increase. Note that en,N has two components: model error and
numerical error. Model error decreases as the horizon n increases. The numerical error
decreases as the number of grid points N increases. We can see from Figure 3 that when
both the horizon n and the number of grid points N increase, the differences decrease.
We observe that when N = 50, the difference en,Nv in the value functions decreases slower
or does not decrease after n reaches some threshold. This is because the numerical error
dominates over the model error in this regime.

6.2 The performance of the approximate Bayes-optimal policy

We compare the performance of the approximate Bayes-optimal policy (Algorithm 1) with
Thompson sampling and UCB in terms of the expected regret. (See Appendix F for the
details of Thompson sampling and UCB.)

For unstructured bandits, we consider normal arm rewards, in which case the exact
policy for the limiting HJB equation can be directly obtained. The performance of the
three algorithms is shown in Figure 4. Below are the details of the plots.

Consider the K-armed normal bandit problem with K ≥ 2. Assume that the first arm
follows r1 ∼ N(µ1, 1) for µ1 ≡ 0, while the k-th arm follows rk ∼ N(µ, 1) for 2 ≤ k ≤ K.
Note that although µ1 ≡ 1, this is unknown to us. We define

∆ = µ− µ1 (39)
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Figure 2: The above plot shows the decay of the difference between the Bayes-optimal
solution and the solution to the HJB equation as n increases, i.e., enπ and enw
defined in (36). Here f(n) is the scaling factor. When f(n) =

√
n, the resulting

limit is a stochastic optimal control problem, while when f(n) = n, the resulting
limit is a deterministic one.
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Figure 3: The above plot shows the decay of the difference between the Bayes-optimal
solution and the numerical solution to the HJB equation as n and N increase,
i.e., en,Nπ and en,Nw defined in (37). Here N is the number of grid points when
numerically solving the HJB equation, and f(n) is the scaling factor. When
f(n) =

√
n, the resulting limit is a stochastic optimal control problem, while

when f(n) = n, the resulting limit is a deterministic one. The curve for N =
50, f(n) = n is indistinguishable from the curve for N = 500, f(n) = n in en,Nπ ,
so it is not shown on the right plot.
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to be the arm gap. The horizon is set to be n = 103. For the proposed method (Algorithm
1), we set the scaling factor f(n) =

√
n, that is, the limiting optimal control problem is

stochastic. The exact solution to the limiting HJB equation can be obtained by Theorem 6.
The initial prior measure for both the Bayes-optimal policy and Thompson sampling is νk ∼
N( 1√

n
, 1
n) for all k. This implies that the limiting HJB equation is (11) with µ̂k(s,q) = sk+1

qk+1

and σ̂ ≡ 1. In addition, δ = n2 for the UCB algorithm. Figure 4 shows the expected regret
of the three algorithms for ∆ ∈ [−1, 1] and K = 5, 10, 20. The expected regret is averaged
over 103 simulations.

We can see from Figure 4 that the overall performance of the approximate Bayes-optimal
policy is better than the other two algorithms, especially when the prior guess is close to the
underlying environment. When ∆ approaches −1, UCB is a bit better than the approximate
Bayes-optimal policy because the prior guess is significantly different from the underlying
truth. However, note that as the number of arms increases, the performance is almost the
same, even around ∆ = −1.
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Figure 4: The above plot shows the expected regret in the K-armed normal bandit problem
for the approximate Bayes-optimal policy, Thompson sampling, and UCB. The
arm gap ∆ ∈ [−1, 1] is defined in (39). The left, middle, and right plots correspond
to K = 5, 10, 20.

For structured bandits, we consider the linear bandits described in Section 3.4.1. Assume
there are two arms, and the reward for arm ai follows aiν + η with unknown ν and η ∼
N (0, 1). We set the initial measure for ν ∼ N (0, 1

n), and take the scaling factor f(n) =
√
n,

then µ̂, σ̂ for the limiting HJB equation can be obtained according to Lemma 5. We solve
the limiting HJB equation by the numerical scheme (31)-(32) with δt = δq = 1

N , δs = 1√
N

and N = 100. The performance in terms of the expected regret is plotted in Figure 5, where
we test three different action positions (a1, a2) = (0.1,−0.1), (0.1,−0.2), (0.1, 0.2).

Figure 5 shows that the overall performance of the approximate Bayes-optimal pol-
icy is more robust than the other two methods. First, the approximate Bayes-optimal
always outperforms TS. When (a1, a2) = (0.1,−0.1), the performance of UCB and approx-
imate Bayes-optimal policy are similar. However, for the other two cases where (a1, a2) =
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(0.1,−0.2), (0.1, 0.2), UCB has much worse performance on one side, while the approximate
Bayes-optimal policy has evener regret on both sides. If one measures the performance in the
worst-case regret or in the averaged regret over the possible environments, the approximate
Bayes-optimal policy outperforms the other two.

-0.5 0 0.5

0

5

10

15

20

25

30

35

40

45

50

-0.5 0 0.5

0

10

20

30

40

50

60

70

80

-0.5 0 0.5

0

5

10

15

20

25

30

35

40

45

50

Figure 5: The above plot shows the expected regret in the 2-armed linear bandit problem
for the approximate Bayes-optimal policy, Thompson sampling, and UCB. The
arm gap of the normal bandits ∆ ∈ [−1, 1] is defined in (39). The environment
of the linear bandits ν ∈ [−1/2, 1/2] is defined in (20).

We also show the performance of the regularized approximate Bayes-optimal policy in
Figure 6. We compare the regularized Bayes-optimal policy with the unregularized version
for normal bandits and linear bandits. The setting of the two bandit problem is the same
as Figures 4 and 5, but the initial Bayesian prior of the two bandits are worse (farther from
the ground truth). We set νk ∼ N(0.01

√
n, 1) for the normal bandits, and ν ∼ N (

√
n, 1)

for the linear bandits. One can see from Figure 6 that the regularized version performs
similarly to or better than the unregularized version when the initial prior measure is bad.

We remark that since the solution to the regularized HJB equation is always smooth
when λ > 0, it is also potentially easier to break the curse of dimensionality. However, we
leave the high-dimensional problem for future study.

7. Discussion

In this paper, we derived a continuous-in-time limit for the Bayesian bandit problem. We
showed that the rescaled optimal cumulative reward converges to the solution of an HJB
equation. We derive several benefits from the limiting PDE:

• A single recipe for many Bayesian bandits. For most multi-armed bandit prob-
lems, the classical Bayesian bandit algorithms yield a formulation that cannot be
solved accurately. Different recipes are required to approximate the value function in
different settings. On the other hand, the limiting PDE gives a single, unified recipe
to solve the Bayes-optimal policy.
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Figure 6: The above plot shows the expected regret of a 5-armed normal bandit problem and
a 2-armed linear bandit problem for the regularized approximate Bayes-optimal
policy. The environment ν ∈ [−1/2, 1/2] is defined in (20). The left, middle and
right plots correspond to (a1, a2) = (0.1,−0.1), (0.1,−0.2), (0.1, 0.2).

For example, one way to solve the one-armed bandit problem with normal distributions
using a Bayesian bandit algorithm is to solve the following equation backward:

W i(µ, q) = max

{
W i+1(µ, q) + µ2, µ+

1

2π

∫
R

exp(− x

2σ2
i

)wi+1(µ+ x, q + 1)dx

}
for all µ ∈ R and i = 1, · · · , n with σi = (qi + σ−2)−1. Since there is no closed-
form solution for the integral in the above equation, one must approximate W i using
piecewise quadratic functions (see e.g. Section 35.3.2 of Lattimore and Szepesvári
(2020) for details). This results in a completely different algorithm for solving this
problem compared to solving the Bernoulli reward case. However, if one instead uses
the HJB equation to solve the one-armed bandit problem with normally distributed
rewards, the same formulation (18) which applies for Bernoulli rewards also applies
for normal rewards. The only modification is the different forms of µ̂ according to
Lemma 4.

• Improved efficiency for large n. The classical Bayesian bandit algorithm requires a
computational cost of O(n2K) to calculate the optimal policy, which can be prohibitive
for large n.

On the other hand, as n→∞, the Bayesian bandit problem converges to the continu-
ous HJB equation. The computational cost of solving the HJB equation is independent
of the horizon, and it only depends on the numerical discretization of the PDE, which
is O(N2K). When N � n, one obtains huge computational savings by solving for
the HJB value function instead. Since the accuracy of the approximation solution is
ṽ − v = O(N−1), one retains an accurate approximation of the solution with much
less computational cost.
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• Improved efficiency for large K For the case where the exact solution can be
obtained for the limiting HJB equation as stated in Theorem 6, there is no computa-
tional cost of solving the limiting equation. In this case, even if K is large, one can
approximate the Bayes-optimal policy efficiently. For the case where the exact solu-
tion to the HJB equation cannot be obtained, it may be possible to break the curse
of dimensionality numerically by using a non-linear function approximation, such as
a deep neural network. We leave the high-dimensional problem for future study.

One can also extend the current framework of finite arms to infinite arms, for instance,
with a continuous action space. The policy π(t, s,q,a) is a probability density function
such that

∫
π(t, s,q,a)da = 1 for all t, s,q. The general limiting control problem takes the

form

max∫
π̂da=1

E
[∫ 1

t

∫
A
µ̂(ŝ, q̂,a)π̂(τ,a)dadτ

]
s.t. dq̂(τ,a) = π̂(τ,a)dt, ∀a ∈ A;

dŝ(τ,a) = µ̂(ŝ, q̂,a)π̂(τ,a)dt+ σ̂(ŝ, q̂,a)
√
π̂(τ,a)dBt, ∀a ∈ A;

ŝ(t,a) = s, q̂(t,a) = q.

(40)

We will leave the study of the above case to future research.
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Appendices

A Proof of Lemma 3

The expectation of the k-th arm in environment ν is µk(ν) = γ(2νk − 1). At the start of
the i-th round, the posterior distribution of νk is uniquely determined by the cumulative
reward sik =

∑i−1
j=1X

j1Aj=k and the number of pulls qik =
∑i−1

j=1 1Aj=k through round i− 1
according to

νik ∼ Beta(αik, β
i
k), αik = α+ sik/(2γ) + qik/2, βik = β − sik/(2γ) + qik/2.

Hence the joint posterior ρi(ν) at round i is

ρ(ν|si,qi) =
1

Z

K∏
k=1

ν
αik−1

k (1− νk)β
i
k−1 (A.1)

where Z is a normalizing constant. This allows us to compute the posterior mean and
variance of each arm:

µ̄k(s
i,qi) =

∫
[0,1]K

γ(2νk − 1)ρ(ν|si,qi)dν = γ

(
2

αik
αik + βik

− 1

)
= γ

αk − βk + sik/γ

αk + βk + qik
,

σ̄2
k(s

i,qi) =

∫
[0,1]K

γ2ρ(ν|si,qi)dν = γ2,

(A.2)
and the higher-order moments are

Ēpk(si,qi) =

∫
γpνk + (−γ)p(1− νk)ρ(ν|si,qi)dν =


γp, p is even,

γp
αk − βk + sik/γ

αk + βk + qik
, p is odd.

By the definition of µ̂, σ̂ in (10), one has

µ̂k(ŝ, q̂) = lim
n→∞

γ(αk−βk)
f(n) + ŝk
αk+βk
n + q̂k

σ̂2
k(ŝ, q̂) = lim

n→∞

n

f(n)2
γ2

Êpk = lim
n→∞

n

f(n)p
Ēk(f(n)s, nq) =


lim
n→∞

(
γ

f(n)

)p−2 n

f(n)2
γ2, p is even,

lim
n→∞

(
γ

f(n)

)p−1 γ(αk−βk)
f(n) + ŝk
αk+βk
n + q̂k

, p is odd.

By the assumption given in Lemma 3, one ends up with

µ̂(s, q, α̂k, β̂k) = lim
n→∞

α̂k + s

β̂k + q
, σ̂(s, q) ≡ σ̂, Êpk ≡ 0.

The last equation is because limn→∞
√
n

f(n)γ = σ̂ implies that limn→∞
1

f(n)γ = 0.
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Different limiting equations due to different scaling factors Let us consider the
case where the reward value γ and −γ are independent of the horizon n. We set γ = 1 and
the prior hyperparameter to be (α, β) = (n2 ,

n
2 ), i.e., the prior measure of νk ∼ Beta(n2 ,

n
2 ).

In this case, one can rescale the cumulative reward s and cn by
√
n. By Lemma 3, one has

µ̂(s, q) =
s

1 + q
; σ̂(s, q) ≡ 1.

One can also rescale the cumulative reward s and cn by n−1. By Lemma 3, one has

µ̂(s, q) =
s

1 + q
; σ̂(s, q) ≡ 0.

In this case, the Bayesian bandit problem converges to a deterministic control problem in
the form of (18) with

µ̂(s, q) =
s

1 + q
, σ̂ ≡ 0. (A.3)

One can see from the above examples that the same Bayesian bandit problem may converge
toward different control problems based on the chosen scaling.

B Proof of Lemma 4

The probability density function for the k-th arm in environment ν is

P νk =
1√
2πσ

e−
|x−νk|

2

2σ2 .

(Note that here π denotes the constant 3.14159... rather than the policy.) Thus the expected
reward for the k-th arm in environment ν is µk(ν) = νk. At the start of the i-th round,
the posterior distribution of νk is uniquely determined by the cumulative reward sik and the
number of pulls qik through round i− 1 according to

νik ∼ N (αik, (β
i
k)

2), αik =
αβ−2 + sikσ

−2

qikσ
−2 + β−2

, (βik)
2 =

1

qikσ
−2 + β−2

.

Hence the joint posterior ρi(ν) at round i is

ρi(ν) = ρ(ν|si,qi) =
K∏
k=1

1√
2πβik

e
− |νk−α

i
k|

2

2(βi
k
)2 .

From this, it follows that

µ̄k(s
i,qi) =

∫
RK

νkρ
i(ν)dν = αik =

αβ−2 + sikσ
−2

qikσ
−2 + β−2

,

σ̄2
k(s

i,qi) =

∫
RK

(σ2 + ν2
k)ρi(ν)dν = σ2 + (βik)

2 + (αik)
2 = σ2 +

1

qikσ
−2 + β−2

+ (µ̄k)
2,
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Inserting µ̄k and σ̄k into (10) yields

µ̂k(ŝ, q̂) = lim
n→∞

n

f(n)

αβ−2 + f(n)ŝkσ
−2

nq̂kσ−2 + β−2
= lim

n→∞

ŝk + σ2α
f(n)β2

q̂k + σ2

nβ2

.

(σ̂k(ŝ, q̂))2 = lim
n→∞

n

f(n)2
σ2 +

n

f(n)2(nσ−2q̂k + β−2)
+

1

n

(
n

f(n)
µ̄k

)2

= lim
n→∞

n

f(n)2
σ2

(
1 +

1

n

1

q̂k + σ2

nβ2

)
.

By the condition in Lemma 4, one ends up with

µ̂(s, q, α̂k, β̂k) =
α̂k + s

β̂−2
k + q

, σ̂(s, q) ≡ σ̂.

For the higher-order moments, one can write the moments of the normal distribution in the
following form, ∫

xpP νk (x)dx =

bp/2c∑
j=0

C(p, j)νp−2j
k σ2j

where C(p, j) is a constant depends on p, j. Then one has

Ēp(si,qi) =

∫ ∫
xpP νk (x)dxρ(νk)dνk =

bp/2c∑
j=0

C(p, j)σ2j

∫
νp−2j
k ρ(νk)dνk

=

bp/2c∑
j=0

b(p−2j)/2c∑
l=0

C(p, j)C(p− 2j, l)σ2j(βik)
2l(αik)

p−2j−2l

=

bp/2c∑
j=0

b(p−2j)/2c∑
l=0

C(p, j)C(p− 2j, l)σ2j(βik)
2l(µ̄k)

p−2j−2l

Therefore, after rescaling, one has

Êpk(ŝ, q̂) = lim
n→∞

bp/2c∑
j=0

b(p−2j)/2c∑
l=0

C(p, j)C(p− 2j, l)n1+j−p
(

n

f(n)2
σ2

)j+l( 1

q̂k + σ2

nβ2

)l (
n

f(n)
µ̄k

)p−2j−2l

Since

n1+j−p ≤ n−1, lim
n→∞

n

f(n)2
σ2 = σ̂, lim

n→∞

1

q̂k + σ2

nβ2

=
1

q̂k + β̂−2
, lim

n→∞

n

f(n)
µ̄k = µ̂,

one has,

Êpk(ŝ, q̂) ≡ 0
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C Proof of Lemma 5

The expectation of the reward at round i in environment ν is
〈
Ai,ν

〉
, and the probability

density function for k-th arm is

P ν
k =

1√
2πσ

e−
|x−(ak)

>ν|
2σ2 .

Then, the posterior distribution of ν at round i is uniquely determined by the cumulative
reward (si,qi) up to time i− 1,

νi ∼ N (αi,Σi), Σi = (Σ−1 + σ−2
K∑
k=1

qikak(ak)
>)−1, αi = Σi(Σ−1α + σ−2

K∑
k=1

sikak).

Note that the ak ∈ Rd in the above equation represents the action value of the k-th arm.
Hence the posterior measure of νi at round i is

ρi(ν) =
1√

(2π)d|Σi|
exp

(
−1

2
(ν −αi)>Σi(ν −αi)

)
.

Therefore, one obtains

µ̄k(s
i,qi) =

∫
RK

(ak)
>νρi(ν)dν = (ak)

>αi

=(ak)
>(Σ−1 + σ−2

K∑
j=1

qijaj(aj)
>)−1(Σ−1α + σ−2

K∑
j=1

sijaj),

σ̄2
k(s

i,qi) =

∫
RK

(σ2 + (ak)
>νν>(ak)

>)ρi(ν)dν = σ2 + (ak)
>(Σi + αi(αi)>)ak

=σ2 + (ak)
>(Σ−1 + σ−2

K∑
j=1

qijaj(aj)
>)−1ak + (µ̄k)

2.

(C.1)

Inserting µ̄k and σ̄k into (10) yields

µ̂k(ŝ, q̂) = lim
n→∞

(ak)
>

σ2

n
Σ−1 +

K∑
j=1

q̂ijaj(aj)
>

−1 σ2

f(n)
Σ−1α +

K∑
j=1

ŝijaj

 .

(σ̂k(ŝ, q̂))2 = lim
n→∞

(
n

f(n)2
σ2

)1 + (ak)
>

σ2

n
Σ−1 +

K∑
j=1

q̂ijaj(aj)
>

−1

ak

+
1

n

(
n

f(n)
µ̄k

)2

.

By the condition in Lemma 4, one ends up with

µ̂(s,q,b) = b>(Σ̂−1 +
∑
k

qkak(ak)
>)−1(α̂ +

K∑
k=1

skak), σ̂(s,q) ≡ σ̂.
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For the higher-order moments, since

Σ(ŝ, q̂) = σ2n−1

(
σ2

n
Σ−1 +

∑
k

q̂kak(ak)
>

)−1

αi(ŝ, q̂) =
f(n)

n

(
Σ−1 +

∑
k

q̂kak(ak)
>

)−1(
σ2Σ−1α

f(n)
+
∑
k

ŝkak

)
,

Therefore, similar to the normal bandit problem, the higher-order moments are in the
following order:

Êk(ŝ, q̂) = lim
n→∞

n

f(n)p

bp/2c∑
j=0

b(p−2j)/2c∑
l=0

O(σ2j)O(Σl)O(αp−2j−2l)

= lim
n→∞

bp/2c∑
j=0

b(p−2j)/2c∑
l=0

O

(
n

f(n)p

)
O(σ2j)O(σ2ln−l)O

(
f(n)p−2j−2l

np−2j−2l

)

= lim
n→∞

bp/2c∑
j=0

b(p−2j)/2c∑
l=0

O

((√
nσ

f(n)

)2j+2l

n1+j−p

)
= 0

where the last equality is because 1j − p ≤ −1 for all p ≥ 3 and limn→∞
√
nσ

f(n) = σ̂.

D Proof of Theorem 6

Look at the optimal control problem (21) with σ̂ ≡ 0, when µ̂k = ŝk+αk
q̂k+βk

, note that

d

dτ
µ̂k =

1

q̂k + βk

d

dτ
ŝk −

ŝk + αk
(q̂k + βk)2

d

dτ
q̂k = 0 for ∀π̂(τ).

This implies that µ̂k(τ) ≡ µ̂k(t) for ∀k. Therefore, the objective function becomes∫ 1

t
(µ̂(t)− λπ(τ)) · π(τ)dτ (D.1)

Since µ̂(t) is a constant, the above objective function will be maximized at π∗ given in (25)
and (26) for the unregularized version, i.e., λ = 0 and the regularized version, i.e., λ > 0.

For the stochastic case, Note that

dE[µ̂k] = E
[

1

q̂k + βk
dŝk −

ŝk + αk
(q̂k + βk)2

dq̂k

]
= 0 + E[σ̂(ŝ, q̂)

√
π(ŝ, q̂)dBt] = 0 for ∀π̂(τ).

(D.2)
so the objective function for the stochastic case is the same as (D.1), which results in the
same optimal policy.

E Proof of Lemma 7

Consider k-armed Bernoulli bandit, where the k-th arm gives reward 1 with probability νk
and 0 with probability 1 − νk. The initial prior measure of νk follows Beta(αk, βl). Then
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the rescaled optimal cumulative reward

vi(ŝ, q̂) =
1

n
wi(s,q)

with scaling factor f(n) = n satisfies

vi(ŝ, q̂) = max
k

{
1

n
p̃k(ŝ, q̂) + p̃k(ŝ, q̂)v

i+1(ŝ +
1

n
ek, q̂ +

1

n
ek) + (1− p̃k(ŝ, q̂))vi+1(ŝ, q̂ +

1

n
ek)

}
(E.1)

where

p̃k(ŝ, q̂) =
n−1αk + sk

n−1(αk + βk) + qk
.

The corresponding HJB equation under the scaling factor f(n) = n is

∂tv + max
π̂(t,ŝ,q̂)∈∆K

(µ̂k + µ̂k∂skv + ∂qkv)πk = 0, v(1, ŝ, q̂) = 0.

where

µ̂k =
α̂k + sk

β̂k + qk
, with α̂k = lim

n→∞
n−1αk, β̂k = lim

n→∞
n−1(αk + βk).

Since µ̂ ≥ 0, applying the numerical scheme (34)-(35) with δt = δq = δs = 1/n gives ,

ṽ(
l

n
, ŝ, q̂) = max

k

{
ṽ(
l + 1

n
, ŝ, q̂) +

1

n

[
µ̂k(ŝ, q̂)

n−1

(
ṽ(
l + 1

n
, ŝ +

1

n
ek, q̂ +

1

n
ek)

−ṽ(
l + 1

n
, ŝ, q̂ +

1

n
ek)

)
+

1

n−1

(
ṽ(
l + 1

n
, ŝ, q̂ +

1

n
ek)− ṽ(

l + 1

n
, ŝ, q̂)

)
+µ̂k(ŝ, q̂)]}

(E.2)
By comparing (E.1) and (E.2), one can see if and only if

µ̂k(ŝ, q̂) = p̃k(ŝ, q̂),

The numerical scheme is equivalent to the exact Bayes-optimal algorithm. The above con-
dition holds if and only if

(αk, βk) = (c1n, c2n)

for any constants (c1, c2), which completes the proof for the first part of the Lemma 7.
Consider the binomial bandits described in Section 3.4.1. First, the optimal cumulative

reward satisfies,

wi(s,q) = max
k

{
γ(2pk(s,q)− 1) + pk(s,q)wi+1(s + γek,q + ek)

+(1− pk(s,q))wi+1(s− γek,q + ek)
}

with pk(s,q) = αk+sk/(2γ)+qk/2
αk+βk+qk

. Then the rescaled optimal cumulative reward

vi(ŝ, q̂) =
1√
n
wi(s,q)
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with scaling factor f(n) =
√
n satisfies

vi(ŝ, q̂) = max
k

{
n−1/2γ(2p̂k(ŝ, q̂)− 1) + p̂k(ŝ, q̂)vi+1(ŝ + γn−1/2ek, q̂ + n−1ek)

+(1− p̂k(ŝ, q̂))vi+1(ŝ− γn−1/2ek, q̂ + n−1ek)
}
,

where

2p̂k(ŝ, q̂)− 1 =
1√
nγ

γ(αk−βk)√
n

+ ŝk
αk+βk
n + q̂k

By letting µ̃(ŝ, q̂) =
√
nγ(2p̂k(ŝ, q̂)− 1), then

vi(ŝ, q̂) = max
k

{
n−1µ̃(ŝ, q̂) +

1

2

(
µ̃(ŝ, q̂)√
nγ

+ 1

)
vi+1(ŝ + γn−1/2ek, q̂ + n−1ek)

+
1

2

(
1− µ̃(ŝ, q̂)√

nγ

)
vi+1(ŝ− γn−1/2ek, q̂ + n−1ek)

}
,

(E.3)

On the other hand, the limiting HJB equation for vi(ŝ, q̂) is

∂tv + max
π̂(t,ŝ,q̂)∈∆K

(
µ̂k + µ̂k∂skv + ∂qkv +

1

2
σ̂2∂2

sk
v

)
πk = 0, v(1, ŝ, q̂) = 0,

where

µ̂(ŝ, q̂) =
α̂k + ŝk

β̂k + q̂k
, σ̂ = γ, with α̂k = lim

n→∞

γ(αk − βk)√
n

, β̂k = lim
n→∞

αk + βk
n

.

By comparing (E.1) and (E.2), one can see if and only if

µ̂k(ŝ, q̂) = µ̃k(ŝ, q̂),

The numerical scheme is equivalent to the exact Bayes-optimal algorithm. The above con-
dition holds if and only if

(αk, βk) = (c1n+ c2

√
n, c1 − c2

√
n)

for any constants (c1, c2), which completes the proof for the second part of the Lemma 7.

F Detailed algorithms
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Algorithm 2 Thompson Sampling for unstructured bandits

Require: Input: n, (s,q) = 0, ρ(ν|β)
for i = 1, . . . ,K do

Ai ← i, si ← Xi, qi ← 1
end for
for i = K + 1, . . . , n do

Update ρ(ν|s,q) according to Bayesian rule
Sample νi according to the probability distribution ρ(ν|s,q)
Ai ← argmaxk µk(ν

i), sk ← sk +Xi, qk ← qk + 1
end for

Algorithm 3 UCB for unstructured bandits

Require: Input: n, (s,q) = 0, δ
for i = 1, . . . ,K do

Ai ← i, si ← Xi, qi ← 1
end for
for i = K + 1, . . . , n do

Update µ̂k ← sk
qk

+
√

2 log(δ)
qk

Ai ← argmaxk µ̂k, sk ← sk +Xi, qk ← qk + 1
end for

Algorithm 4 Thompson Sampling for linear bandits

Require: Input: n,ak, (s,q) = 0, ρ(ν) ∼ N (µ,Σ)
for i = 1, . . . ,K do

Ai ← i, si ← Xi, qi ← 1
end for
for i = K + 1, . . . , n do

Sample ν according to the probability distribution ρ(ν)
Ai = argmaxk a>k ν
x = aAi , y = ν ∗ x+ η, where η ∼ N (0, σ2)
µ = (Σ−1 + σ−2xx>)−1(Σ−1µ+ σ−2yx), Σ = (Σ−1 + σ−2xx>)−1

end for

Algorithm 5 UCB for linear bandits

Require: Input: V = v0,W = 0, ν̂ = 0, λ = 0.1
for i = 1, . . . ,K do

Ai ← i, si ← Xi, qi ← 1
end for
for i = K + 1, . . . , n do

β ←
√
λ+

√
2 log(n2) + log(1 + (i− 1)/λ)

Ai ← argmaxk akν̂ + β ∗
√

a2
k/V

x← aAi , y ← ν ∗ x+ η, where η ∼ N (0, σ2)
V ← V + x2,W ←W + xy, ν̂ ← W

V
end for
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