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ul. Śniadeckich 8, 00-656 Warszawa, Poland

Editor: Samory Kpotufe

Abstract

We prove Carl’s type inequalities for the error of approximation of compact sets K by deep
and shallow neural networks. This in turn gives estimates from below on how well we can
approximate the functions in K when requiring the approximants to come from outputs
of such networks. Our results are obtained as a byproduct of the study of the recently
introduced Lipschitz widths.
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1. Introduction

Neural network approximation is the method of approximation used in numerical algorithms
in many application areas. Thus, it is important to understand not only how well they
approximate the underlying objects, but also what are the limits of their approximation
power. In this paper, we study the limitations of deep and shallow neural networks in
approximating a compact subset K ⊂ X of a Banach space X when it is required that the
parameters in the approximation procedure have certain bounds. This is done by proving
appropriate Carl’s type inequalities that relate the error of neural network approximation
of K to the entropy numbers of this set.

Recall that the classical Carl’s inequality relates the entropy numbers εn(K)X of a
compact class K to its Kolmogorov width dn(K)X . More precisely, see Carl (1981), it states
that for every α > 0 there is a constant C(α) > 0, possibly dependent on α, such that for
any K ⊂ X

εn(K)X ≤ C(α)n−α max
k=1,...,n

{kαdk−1(K)X} .

Thus, if we know the rate of decay of the entropy numbers εn(K)X of the class K, we
can derive an estimate from below for dn(K)X . Note that the Kolmogorov width dn(K)X
describes the best possible approximation rate for the compact set K if the approximants
to K are coming from linear spaces of dimension n. Therefore, a bound from below for
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dn(K)X would describe the limitations of such approximation. We adopt this strategy and
derive bounds from below for the error of approximation of K via the outputs of deep and
shallow neural networks, using instead of dn(K)X the recently introduced Lipschitz widths,
see Petrova and Wojtaszczyk (2023). It is worth mentioning that not all widths satisfy
Carl’s inequality (see Petrova and Wojtaszczyk (2022) where it is shown that the Carl’s
inequality does not hold for manifold widths).

In this paper, we provide a general framework for obtaining estimates from below for
deep and shallow NNs. It can be applied to any compact set K and any Banach space
X, provided we only know a bound from below of the entropy numbers εn(K)X of K.
Such bounds are readily available for a wide range of classical and novel classes K and
spaces X. For example, see (Edmunds and Triebel, 1996, Chapters 3,4), (Golitschek and
Makovoz, 1996, Chapter 15),(Dominguez and Kuhn, 2018, Section 5), (Siegel and Xu, 2022,
Theorem 9), or Cobos and Kuhn (2009); Gao (2008), where all such bounds are of the form
n−α[log n]β, α > 0, β ∈ R, and thus can be treated by our theory. In addition, we provide
generalized inverse theorems for neural network approximation via deep and shallow neural
networks.

More precisely, we investigate deep feed-forward neural networks (NN) with ReLU or
bounded Lipschitz activation function, fixed width W ≥ 2 and depth n ( where we let
n → ∞), whose parameters have absolute values bounded by a given function w(n). We
prove that the capabilities of these networks to approximate any compact subset K is limited
by the behavior of its entropy numbers. For example, we show that Deep Neural Networks
(DNNs) with fixed width W , depth n and parameters bounded by w(n) = Cnδ, δ > 0,
cannot approximate better than C[log2 n]β−αn−2α any compact set of functions K whose
entropy numbers εn(K)X & [log2 n]βn−α, n ∈ N, see Corollary 11. We also show that if a
class of functions K is approximated up to accuracy C[log2 n]βn−α, n ∈ N, by the above
mentioned DNNs, then εn(K)X ≤ C ′n−

α
2 [log2 n]β+α

2 , see Corollary 17. In particular, we
obtain estimates for the entropy numbers of the classes of functions that are approximated
via DNNs with predetermined rates (approximation classes) as the depth n of the NN grows.

Results of the same type are obtained for shallow (neural networks with one hidden
layer) NNs (SNNs) as we let the width W → ∞. For example, we show that SNNs
with width W and parameters bounded by w(W ) = CW δ, with δ ≥ 0, cannot ap-
proximate better than C[log2W ]β−αW−α a compact set of functions K whose entropy
numbers are & [log2W ]βW−α, see Corollary 13. Also, if a class K is approximated
up to accuracy C[log2W ]βW−α, W = 2, 3, . . . , by a SNN, then it has entropy numbers
εW (K)X ≤ C ′W−α[log2W ]β+α, W ∈ N, see Corollary 18.

Analogous estimates for DNNs or SNNs with general bounds w(n) or w(W ), respectively,
on their parameters are also given, including the case w(n) = C2cn

ν
.

In our analysis of neural network approximation (NNA), we are not concerned with
the numerical aspect of the construction of the corresponding DNN or SNN and its sta-
bility, but rather with the theoretical bounds from below of the performance of such an
approximation. We show that the mapping that assigns to each choice of NN parameters a
function, generated by the NN feed-forward architecture with this choice of parameters, is
a Lipschitz mapping with a large Lipschitz constant, depending on the upper bound w(n)
(or w(W ) in the case of SNN) on the NN parameters. Thus, we can view NN approximation
as an approximation of a class K via Lipschitz mappings. This type of approximation is
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studied via the Lipschitz widths dγn(K)X introduced in Petrova and Wojtaszczyk (2023).
These widths join the plethora of classical widths available, see Leviatan and Tikhomirov
(1993), and give a theoretical bound on the approximation of K via γ-Lipschitz mappings
defined on unit balls in Rn. An almost complete analysis of these widths with parameter
γ = const or γ = γn = λn, λ > 1, was given in Petrova and Wojtaszczyk (2023). Here, we
show that DNNs whose parameters are bounded by w(n) are Lipschitz mappings and are
associated with Lipschitz widths with constant γ = γn ( see Theorem 3 and (4.4)), where

2c1n(1+log2 w(n)) < γn < 2c2n(1+log2 w(n)),

(note that when w(n) = const, we have γ = γn = λn), and Shallow NNs (SNNs) whose
parameters are bounded by w(W ) are Lipschitz mappings (see Theorem 5 and (4.5)) asso-
ciated with Lipschitz widths with constant

γ = γW = 2c(log2W+log2 w(W )).

Thus, the investigation of the approximation power of deep or shallow NNs with a general
bound w(·) of their parameters requires a study of Lipschitz widths with Lipschitz constant
γ = 2ϕ(·) with rather general functions ϕ. In this paper, we provide such a study and its
consequences for NN approximation.

The paper is organized as follows. In §2, we introduce our notation and recall the
definitions of NNs, Lipschitz widths and entropy numbers. We show in §3 that the NNs
under consideration are Lipschitz mappings. Estimates from below for the Lipschitz widths
dγnn (K)X with Lipschitz constants γn = 2ϕ(n) for a compact class K and their implication
for deep and shallow NN approximation of K are provided in §4. Generalized inverse
theorems for NNA are presented in §5. Further properties of dγnn (K)X are discussed in §6.
Finally, our concluding remarks are presented in §7, and some lemmas and their proofs are
discussed in the Appendix.

1.1 Previous work

While the expressive power of NNs is an extensively studied topic, involving numerous
results, such as Telgarsky (2016); Yang and Barron (1999) and many others, we will focus
on those that relate to our specific problem.

Estimates from below for the approximation error for classes K approximated by the
outputs of NNs have been available for certain choices of classes K (such as Hölder balls
of smoothness s > 0), the space X = L∞ and either the ReLU activation function, see for
example, Yarotsky (2017, 2018); Yang and Zhang (2022), or other activation functions, see
Liaw and Mehrabian (2019); Yarotsky and Zhevnerchuk (2020), or for sets K that are the
unit ball of certain Besov classes, see (Hanin and Petrova, 2021, Section 5.9). These results
rely on the technique of using the VC dimension of the outputs of the corresponding NNs,
the particular structure of the sets K, and utilize the fact that the error is measured in the
‖ · ‖L∞ norm. Recently, estimates from below for the approximation error (measured in
the X = Lp norm, 1 ≤ p <∞) of DNNs for sets K have been obtained in Gerchinovitz and
Malgouyres (2022). There, the authors study the general problem

sup
f∈K

inf
gn∈G

‖f − gn‖Lp(µ)
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of approximating K by the elements gn of G (which depend on n parameters), where K and
G are real-valued functions, and all functions in K have the same fixed range. They derive
a lower bound for the above quantity, see (Gerchinovitz and Malgouyres, 2022, Theorem
1), that contains the packing number of K, the fixed range of the functions in K, and
the fat-shattering dimension of G, using a key probability result of Mendelson. Finally,
they used their general result to derive estimates from below for the approximation power
of NNs with piecewise-polynomial activation functions, see (Gerchinovitz and Malgouyres,
2022, Corollary 1). Another recent work is Siegel (2022), where the author gives an optimal
bound from below for the error of approximation (measured in the X = Lp norm, p ≥ 1) of
ReLU NNs for the class K being a Sobolev or a Besov unit ball.

Another recently explored venue are estimates for the approximation power of NNs
whose parameters are encoded with a fixed number of bits, or the so-called quantized NNs.
We refer the reader to Voigtlaender and Petersen (2019); Petersen and Voigtlaender (2018);
Gühring and Raslan (2020), where lower bounds for such networks are obtained.

In the case of SNNs with continuous activation functions, estimates from below for the
error of NNA are available for sets K of functions with smoothness s, defined on a compact
in Rd and the space X = L2, see Maiorov (1999); Meir and Ratsaby (1999). Recently, such
estimates for SNNs with bounded parameters and certain activation functions have been
derived in (Siegel and Xu, 2022, Section 4.1, Corollaries 2,3) for compact sets K that are
the closures of the symmetric convex hull of certain dictionaries and X = L2, see Remark
14.

2. Preliminaries

In this section, we introduce our notation and recall some known facts about NNs, Lipschitz
widths and entropy numbers. In what follows, we will denote by A & B the fact that there
is an absolute constant c > 0 such that A ≥ cB, where A,B are some expressions that
depend on n as n→∞ (or W as W →∞). Note that the value of c may change from line
to line, but is always independent on n. Similarly, we will use the notation A . B, which
is defined in an analogues way, and A � B if A & B and A . B.

We also will use the notation A = A(B) to stress the fact that the quantity A depends
on B. For example, if C is a constant, the expression C = C(d,W ) means that C depends
on d and W .

2.1 Neural networks

2.1.1 Deep feed-forward neural networks

We denote by C(Ω) the set of continuous functions defined on the compact set Ω ⊂ Rd,
equipped with the uniform norm.

A feed-forward NN with activation function σ : R→ R, constant width W and depth n
generates a family Σn,σ of continuous functions

Σn,σ := {Φσ(y) : y ∈ Rñ, ñ = ñ(d,W, n) = C0(d,W )n} ⊂ C(Ω), Ω ⊂ Rd,

that is used to produce an approximant to a given function f ∈ K or the whole class K.
Each parameter vector y ∈ Rñ determines a continuous function Φσ(y) ∈ Σn,σ, defined on
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Ω, of the form
Φσ(y) := A(n) ◦ σ̄ ◦A(n−1) ◦ . . . ◦ σ̄ ◦A(0), (2.1)

where σ̄ : RW → RW is given by

σ̄(z1, . . . , zW ) = (σ(z1), . . . , σ(zW )), (2.2)

and A(0) : Rd → RW , A(`) : RW → RW , ` = 1, . . . , n − 1, and A(n) : RW → R are affine
mappings. Note that y ∈ Rñ is the vector with coordinates the entries of the matrices and
offset vectors (biases) of the affine mappings A(`), ` = 0, . . . , n. We order them in such a
way that the entries of A(`) appear before those of A(`+1) and the ordering for each A(`) is
done in the same way. For detailed study of such DNNs we refer the reader to Hanin and
Petrova (2021) and the references therein. We investigate the approximation power of Σn,σ

when the width W is fixed and the depth n→∞.

2.1.2 Shallow neural networks

A shallow NN with activation function σ : R → R, and width W generates a family ΞW,σ
of continuous functions

ΞW,σ := {Ψσ(y) : y ∈ RW̃ , W̃ = C0(d)W} ⊂ C(Ω), Ω ⊂ Rd,

that is used to produce an approximant to a given function f ∈ K or the whole class K.

Each parameter vector y ∈ RW̃ determines a continuous function Ψσ(y) ∈ ΞW,σ, defined on
Ω, of the form

Ψσ(y) := A(1) ◦ σ̄ ◦A(0), (2.3)

where σ̄ : RW → RW is given as in (2.2) and A(0) : Rd → RW and A(1) : RW → R are affine
mappings. We investigate the approximation power of ΞW,σ as the width W →∞.

2.2 Lipschitz widths

Lipschitz widths dγn(K)X for a compact subset K ⊂ X of a Banach space X with a Lipschitz
constant γ = C0 = const or γ = γn = C ′λn with λ > 1 were introduced and analyzed in
Petrova and Wojtaszczyk (2023). The latter were used to study bounds from below for
ReLU DNNs with weights and biases bounded by 1. However, in practice, the weights and
biases used in a DNN may grow. This growth affects the Lipschitz constant associated
with the corresponding DNN viewed as a Lipschitz mapping. Thus, providing bounds from
below for the approximation power of such networks requires the investigation of Lipschitz
widths with varying Lipschitz constants γ that depend on n.

Let us first recall the definition of dγn(K)X . We denote by (Rn, ‖.‖Yn), n ∈ N, the
n-dimensional Banach space with a fixed norm ‖ · ‖Yn , by

BYn(r) := {y ∈ Rn : ‖y‖Yn ≤ r},

its ball with radius r, and by

‖y‖`n∞ := max
j=1,...,n

|yj |, ‖y‖`np :=
( ∑
j=1,...,n

|yj |p
)1/p

, 1 ≤ p <∞,
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the usual `p norms of y = (y1, . . . , yn) ∈ Rn. For γ ≥ 0 we define the fixed Lipschitz width
dγ(K, Yn)X as d0(K, Yn)X := rad(K) := infg∈X supf∈K ‖g − f‖X , and for γ > 0,

dγ(K, Yn)X := inf
Ln

sup
f∈K

inf
y∈BYn (1)

‖f − Ln(y)‖X , (2.4)

where the infimum is taken over all Lipschitz mappings Ln : (BYn(1), ‖ · ‖Yn) → X that
satisfy the Lipschitz condition

sup
y,y′∈BYn (1)

‖Ln(y)− Ln(y′)‖X
‖y − y′‖Yn

≤ γ, (2.5)

with constant γ. Then, the Lipschitz width dγn(K)X is defined as

d0
n(K)X := d0(K, Yn)X , dγn(K)X := inf

‖·‖Yn
dγ(K, Yn)X ,

where the infimum is taken over all norms ‖ · ‖Yn in Rn.

Various notions of widths had been introduced and used in approximation theory to
theoretically quantify the limitations of certain types of approximations. We refer the reader
to Leviatan and Tikhomirov (1993) or Golitschek and Makovoz (1996), where different
widths and their decay rates for common smoothness classes have been discussed. Note that
the definition of Lipschitz width is similar to the definition of the manifold n-width δn(K)X ,
(see e.g. Petrova and Wojtaszczyk (2022)) δn(K)X := infM,asupf∈K‖f −M(a(f))‖X , where
the infimum is taken over all continuous mappings a : K → Rn, M : Rn → X. However,
in the definition of Lipschitz width, we impose the stronger Lipschitz condition on the
approximation mapping.

Before going further, we list some of the properties of the Lipschitz width dγn(K)X ,
proved in Petrova and Wojtaszczyk (2023), which we gather in the following theorem.

Theorem 1 For any n ∈ N, any compact set K ⊂ X, and any constant γ > 0 we have:

• dγn(K)X is a monotone decreasing function of γ and n. More precisely,

– If γ1 ≤ γ2 then dγ2n (K)X ≤ dγ1n (K)X ;

– If n1 ≤ n2 then dγn2(K)X ≤ dγn1(K)X .

• there is a norm ‖ · ‖Yn on Rn such that dγn(K)X = dγ(K,Yn)X , where we have the
inequalities ‖y‖`n∞ ≤ ‖y‖Yn ≤ ‖y‖`n1 for every y ∈ Rn.

Note that the Lipschitz widths dγn(K)X are defined via Lipschitz mappings with domain
the unit balls BYn(1), see (2.4). However, having in mind approximation via NNs with pa-
rameters that are bounded by w(n), we need to consider Lipschitz mappings whose domain
are balls BYn(w(n)) with radius w(n). The next lemma shows how the Lipschitz width
dγn(K)X is related to all γ/r-Lipschitz mappings Ln with domain BYn(r), r > 0, whose
image is in X. More precisely, we prove that in the definition of fixed Lipschitz widths we
can consider mappings defined on balls with changing radiuses as long as the product of
the Lipschitz constant of the mappings and the radius of the ball does not exceed γ.
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Lemma 2 For any compact subset K of X, any γ > 0, any n ∈ N, and any norm ‖ · ‖Yn
on Rn, we have that

dγ(K, Yn)X= inf
Ln,r>0

sup
f∈K

inf
y∈BYn (r)

‖f − Ln(y)‖X , (2.6)

where the infimum is taken over all γ/r-Lipschitz mappings Ln : (BYn(r), ‖ · ‖Yn)→ X, and
all r > 0.

Proof: We provide the proof in the Appendix. �

2.3 Entropy numbers

We recall, see e.g. Carl (1981); Carl and Stephani (1990); Golitschek and Makovoz (1996),
that the entropy numbers εn(K)X , n ≥ 0, of a compact set K ⊂ X are defined as the infimum
of all ε > 0 for which 2n balls with centers from X and radius ε cover K. Formally, we write

εn(K)X = inf{ε > 0 : K ⊂
2n⋃
j=1

B(gj , ε), gj ∈ X, j = 1, . . . , 2n}.

3. Neural networks are Lipschitz mappings

Our choice of norm when working with NNs is the ‖ · ‖`n∞ norm of the parameters y of the
neural network. This is simply because we are interested in the asymptotic behavior (with
respect to the depth n of the DNN or the width W of the SNN) of the approximation error
that the network provides for a class K and not in the best possible constants in the error
estimates.

3.1 Deep neural networks

We do not investigate what information about the function f is given or what methods one
employs to find an appropriate parameter vector y∗ ∈ Rñ such that the function Φ(y∗) is
the (near)best approximant to f from the set Σn,σ, but rather focus on the properties of
the mapping

y → Φσ(y), Φσ(y) ∈ Σn,σ,

where all parameters (entries of the matrices and biases) are bounded by w(n), where
w(n) ≥ 1. To illustrate the dependence on w(n), we denote the collection of all such
mappings as Σn,σ(w(n)), namely

Σn,σ(w(n)) := Φσ(B`ñ∞(w(n))),

with Φσ being defined in (2.1). We have shown in Petrova and Wojtaszczyk (2023) that in
the case w(n) ≡ 1, σ = ReLU, and Ω = [0, 1]d, the mapping

Φσ : (B`ñ∞(1), ‖ · ‖`ñ∞)→ C(Ω), ñ = C0n, C0 = C0(W ),

defined in (2.1) is a Lipschitz mapping with Lipschitz constant Ln, where 2c2n < Ln < 2c1n

for fixed constants c1, c2 > 0 depending on the width W . More precisely, we have

‖Φσ(z)− Φσ(y)‖C([0,1]d) ≤ Ln‖z − y‖`ñ∞ for all z, y ∈ B`ñ∞(1).
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Here, we will investigate what is the Lipschitz constant Ln when the parameters y have
components bounded by w(n), namely y ∈ B`ñ∞(w(n)), and the activation function σ is
either ReLU(t) := max{0, t} = t+ or a bounded Lipschitz function with Lipschitz constant
L. Note that ReLU is a Lipschitz function with a Lipschitz constant L = 1.

In what follows, we use the notation ‖g‖ := max
1≤i≤W

‖gi‖C(Ω), when working with vector

functions g = (g1, . . . , gW )T whose coordinates gi ∈ C(Ω).

Theorem 3 Let X be a Banach space such that C([0, 1]d) ⊂ X is continuously embedded in
X. Then the mapping Φσ : (B`ñ∞(w(n)), ‖ · ‖`ñ∞) → X, defined in (2.1), is an Ln-Lipschitz
mapping, that is

‖Φσ(y)− Φσ(y′)‖X ≤ c0‖Φσ(y)− Φσ(y′)‖C(Ω) ≤ Ln‖y − y′‖`ñ∞ , y, y′ ∈ B`ñ∞(w(n)),

where the constant Ln is bounded by

2c1n(1+log2 w(n)) < Ln < 2c2n(1+log2 w(n)),

provided σ is a bounded L-Lipschitz function or σ =ReLU and LWw(n) ≥ 2. The constants
c1, c2 depend on c0, d, W , and the function σ.

Proof: The proof follows the arguments from the proof of Theorem 6.1 in Petrova and
Wojtaszczyk (2023). Let y, y′ be the two parameters from B`ñ∞(w(n)) that determine the
continuous functions Φσ(y),Φσ(y′) ∈ Σσ,n(w(n)). They are constructed by ordering in a
predetermined way the entries of the affine mappings A(j)(·) := Aj(·) + b(j), j = 0, . . . , n,
and A′(j)(·) := A′j(·) + b′(j), j = 0, . . . , n, that define Φσ(y) and Φσ(y′), respectively. We fix
x ∈ Ω and denote by

η(0)(x) := σ(A0x+ b(0)), η′(0)(x) := σ(A′0x+ b′(0)),

η(j) := σ(Ajη
(j−1) + b(j)), η′

(j)
:= σ(A′jη

′(j−1) + b′(j)), j = 1, . . . , n− 1,

η(n) := Anη
(n−1) + b(n), η′(n) := A′nη

′(n−1) + b′(n).

Note that A0, A
′
0 ∈ RW×d, Aj , A′j ∈ RW×W , b(0), b′(0), b(j), b′(j) ∈ RW , for j = 1, . . . , n − 1,

while An, A
′
n ∈ R1×W , and b(n), b′(n) ∈ R. Each of the η(j), η′(j), j = 0, . . . , n − 1, is a

continuous vector function with W coordinates and η(n), η′(n) are the outputs of the DNN
with activation function σ and parameters y, y′, respectively.

Case 1: DNN with activation function a bounded Lipschitz function σ.
Observe that in this case

|σ(t)| ≤ C̃, |σ(t1)− σ(t2)| ≤ L|t1 − t2|, t1, t2 ∈ R,

and therefore for any m, vectors ȳ, ŷ, η ∈ Rm and numbers y0, ŷ0 ∈ R, where ȳ, y0 and ŷ, ŷ0

are subsets of the coordinates of y, y′ ∈ Rñ, respectively, we have

|σ(ȳ · η + y0)| ≤ C̃, |σ(ȳ · η + y0)− σ(ŷ · η + ŷ0)| ≤ L(m‖η‖`m∞ + 1)‖y − y′‖`ñ∞ . (3.1)

It then follows, see (3.1), that ‖η′(j)‖ ≤ C̃, j = 0, . . . , n− 1, and

‖η(0) − η′(0)‖ ≤ L(d+ 1)‖y − y′‖`ñ∞ =: C0‖y − y′‖`ñ∞ .
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Suppose we have proved the inequality ‖η(j−1) − η′(j−1)‖ ≤ Cj−1‖y − y′‖`ñ∞ . Then we have

‖η(j) − η′(j)‖ ≤ L‖Ajη(j−1) + b(j) −A′jη′(j−1) − b′(j)‖

≤ L‖Aj(η(j−1) − η′(j−1))‖+ L‖(Aj −A′j)η′(j−1)‖+ L‖b(j) − b′(j)‖

≤ LW‖y‖`ñ∞‖η
(j−1) − η′(j−1)‖+ LW‖y − y′‖`ñ∞‖η

′(j−1)‖+ L‖y − y′‖`ñ∞
≤ (LWw(n)Cj−1 + LWC̃ + L)‖y − y′‖`ñ∞
=: Cj‖y − y′‖`ñ∞ ,

where we have used that ‖y‖`ñ∞ ≤ w(n), ‖η′(j)‖ ≤ C̃, and the induction hypothesis. Thus,
the relation between Cj and Cj−1 is

C0 = L(d+ 1), Cj = LWw(n)Cj−1 + LWC̃ + L, j = 1, . . . , n.

If we denote by A := LWw(n) ≥ 2 and B := LWC̃ + L = L(WC̃ + 1), we have that

Cj = ACj−1 +B = . . . = AjC0 + (Aj−1 + . . .+ 1)B

≤ (Aj + . . .+ 1)L(max{WC̃, d}+ 1) =
Aj+1 − 1

A− 1
L(max{WC̃, d}+ 1)

≤ 2AjL(max{WC̃, d}+ 1) = C ′[LWw(n)]j , C ′ := 2L(max{WC̃, d}+ 1).

Finally, since ‖Φσ(y)− Φσ(y′)‖C(Ω) = ‖η(n) − η′(n)‖, we have

‖Φσ(y)−Φσ(y′)‖X ≤ c0‖Φσ(y)−Φσ(y′)‖C(Ω) ≤ c0Cn‖y− y′‖`ñ∞ < C ′[LWw(n)]n‖y− y′‖`ñ∞ .

The next case follows the same idea with several slight modifications.
Case 2: DNN with activation function σ =ReLU.

Observe that for any m, vectors ȳ, ŷ, η ∈ Rm and numbers y0, ŷ0 ∈ R, where ȳ, y0 and ŷ, ŷ0

are subsets of the coordinates of y, y′ ∈ Rñ, respectively, we have

|(ȳ · η + y0)+| ≤ (m‖η‖`m∞ + 1)‖y‖`ñ∞ ≤ (m‖η‖`m∞ + 1)w(n). (3.2)

Note that since ‖y‖`ñ∞ ≤ w(n), it follows from (3.2) that ‖η′(0)‖ ≤ dw(n) + w(n) (when

m = d and η = x), and ‖η′(j)‖ ≤ Ww(n)‖η′(j−1)‖ + w(n), j = 1, . . . , n (when m = W and
η = η′(j−1)). We want to point out that the last two inequalities hold even if we use σ(t) = t
instead of σ(t) = ReLU(t) for some of the coordinates in the definition (2.2) of σ̄. One can
show by induction that for j = 1, . . . , n,

‖η′(j)‖ ≤ dW jw(n)j+1 + w(n)

j∑
i=0

[Ww(n)]i ≤ dW jw(n)j+1 + 2w(n)[Ww(n)]j

= (d+ 2)w(n)[Ww(n)]j ,

since Ww(n) ≥ 2 (note L = 1 in this case). The above inequality also holds for j = 0.
Clearly, we have

‖η(0) − η′(0)‖ ≤ (d+ 1)‖y − y′‖`ñ∞ =: D0‖y − y′‖`ñ∞ .

9
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Suppose we have proved that ‖η(j−1) − η′(j−1)‖ ≤ Dj−1‖y − y′‖`ñ∞ . Then, similarly to Case
1 (since ReLU is a Lipschitz function with a Lipschitz constant L = 1), we obtain that

‖η(j) − η′(j)‖ ≤ ‖Aj(η(j−1) − η′(j−1))‖+ ‖(Aj −A′j)η′(j−1)‖+ ‖b(j) − b′(j)‖

≤ W‖y‖`ñ∞‖η
(j−1) − η′(j−1)‖+W‖y − y′‖`ñ∞‖η

′(j−1)‖+ ‖y − y′‖`ñ∞
≤ (Ww(n)Dj−1 + (d+ 2)[Ww(n)]j + 1)‖y − y′‖`ñ∞
=: Dj‖y − y′‖`ñ∞ .

Thus, ‖η(j) − η′(j)‖ ≤ Dj‖y− y′‖`ñ∞ , where Dj = Ww(n)Dj−1 + (d+ 2)[Ww(n)]j + 1. Since
D0 = d+ 1 and

D1 = Ww(n)D0 + (d+ 2)Ww(n) + 1 < (d+ 2)(2Ww(n) + 1),

we obtain by induction that

Dn < (d+ 2)

(
n[Ww(n)]n +

n∑
i=0

[Ww(n)]i

)
< (d+ 2)(n+2)[Ww(n)]n,

where we have used that 2 ≤Ww(n). Finally, we have

‖Φσ(y)−Φσ(y′)‖C(Ω) = ‖η(n) − η′(n)‖ ≤ Dn‖y−y′‖`ñ∞ < (d+2)(n+ 2)[Ww(n)]n‖y−y′‖`ñ∞ .

In both Case 1 and Case 2, the Lipschitz constant Ln is such that we can find constants
c1, c2 > 0 with the property 2c1n(1+log2 w(n)) < Ln < 2c2n(1+log2 w(n)) and the proof is
completed. �

Remark 4 Note that one can follow the same arguments as in Case 2 and prove Theorem
3 when every coordinate of σ̄, see (2.2), is chosen to be either σ(t) = ReLU(t) or σ(t) = t,
and this choice can change from layer to layer.

3.2 Shallow neural networks

In this section, we consider SNNs and prove that they are also Lipschitz mappings. The
following theorem holds.

Theorem 5 Let X be a Banach space such that C([0, 1]d) ⊂ X is continuously embedded in
X. Then the mapping Ψσ : (B

`W̃∞
(w(W )), ‖ ·‖

`W̃∞
)→ X, defined in (2.3), is an LW -Lipschitz

mapping, that is

‖Ψσ(y)−Ψσ(y′)‖X ≤ c0‖Ψσ(y)−Ψσ(y′)‖C(Ω) ≤ LW ‖y − y′‖`W̃∞ , y, y′ ∈ B
`W̃∞

(w(W )),

with constant LW = CWw(W ), where C = C(d, σ, c0), w(W ) ≥ 1, and σ is either the
ReLU function or a bounded Lipschitz function.

Proof: We follow the proof of Theorem 3. In Case 1 we have

LW = c0C1 = c0(L2Ww(W )(d+1)+LWC̃+L) ≤ CWw(W ), C = c0(L2(d+1)+LC̃ + L),

and in Case 2 we have

LW = c0D1= c0((2d+ 3)Ww(W ) + 1) ≤ CWw(W ), C = c0(2d+ 4),

provided w(W ) ≥ 1. �
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4. Bounds for Lipschitz widths and the limitations of NN approximation

In this section, we obtain estimates from below for Lipschitz widths with large Lipschitz
constants and apply them in the case of deep and shallow NNs.

4.1 Bounds from below for Lipschitz widths

We start our investigation with the observation, that the Lipschitz width dγn(K)X , γ > 0,
is bounded from below by the fixed width d(2n+1)γ(K, Zn)X with respect to any chosen in
advance norm ‖ · ‖Zn on Rn by paying the price of the slightly bigger Lipschitz constant
(2n + 1)γ. Note that dγn(K)X is defined as infimum over all norms in Rn, and thus the
lemma below provides a way for calculating lower estimates for the Lipschitz width since
we can perform our computations using our favorable (easy to handle) norm Zn.

Lemma 6 For any compact subset K of X, any γ > 0, any n ∈ N, and any norm ‖ · ‖Zn
on Rn we have that

d(2n+1)γ(K, Zn)X ≤ dγn(K)X .

Proof: We provide the proof in the Appendix. �

Remark 7 In the above inequality we may choose the Zn norm to be the `n2 norm, in which
case ρ ≤

√
n, see (Albiac and Kalton, 2016, Theorem 13.1.5). Thus, for any compact subset

K of X, any γ > 0, and any n ∈ N, we have that

d(2
√
n+1)γ

n (K)X ≤ d(2
√
n+1)γ(K, `n2 )X ≤ dγn(K)X .

We now proceed with the investigation of other bounds from below for the Lipschitz
widths by first recalling the following proposition, see (Petrova and Wojtaszczyk, 2023, Prop
3.8).

Proposition 8 Let K ⊂ X be a compact set and let εn(K)X > ηn, n ∈ N, where (ηn)∞n=1

is a sequences of real numbers decreasing to zero. If for some m ∈ N and δ > 0 we have
that dγm(K)X < δ, then

ηm log2(3γδ−1)<2δ. (4.1)

This proposition was used in Petrova and Wojtaszczyk (2023) to prove bounds from below
for the Lipschitz widths dγnn (K)X of the compact set K in the cases γn = 2ϕ(n), ϕ(n) =
const, see (Petrova and Wojtaszczyk, 2023, Theorem 3.9) and ϕ(n) = c′n, see (Petrova and
Wojtaszczyk, 2023, Theorem 6.3), provided we have information about the entropy numbers
of K. The next theorem is a generalization of Theorem 6.3 from Petrova and Wojtaszczyk
(2023) for the case of a general function ϕ.

Theorem 9 For any compact set K ⊂ X, we consider the Lipschitz width dγnn (K)X with
Lipschitz constant γn = 2ϕ(n), where ϕ(n) ≥ c log2 n for some fixed constant c > 0. Then
the following holds:

(i) εn(K)X &
(log2 n)β

nα
, n ∈ N ⇒ dγnn (K)X & [log2(nϕ(n))]β[nϕ(n)]−α, n ∈ N,

(4.2)

11
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where α > 0, β ∈ R.

(ii) εn(K)X & [log2 n]−α, n ∈ N⇒ dγnn (K)X & [log2(nϕ(n))]−α, n ∈ N,
(4.3)

where α > 0.

Proof: We provide the proof in the Appendix. �

4.2 Bounds from below for DNN approximation

In this section we consider Banach spaces X such that C([0, 1]d) is continuously embedded
in X. Let us denote by

E(f,Σ0,σ(w(n)))X := ‖f‖X , E(f,Σn,σ(w(n)))X := inf
y∈Bñ`∞ (w(n))

‖f − Φσ(y)‖X , n ∈ N,

the error of approximation of a function f by the outputs Φσ(y) ∈ Σn,σ(w(n)) of the DNN
with parameters y, for which ‖y‖`ñ∞ ≤ w(n), LWw(n) ≥ 2, measured in ‖ · ‖X . We then
denote by

E(K,Σn,σ(w(n)))X := sup
f∈K

E(f,Σn,σ(w(n)))X , n ≥ 0,

the error for the class K. It follows from Lemma 2 and Theorem 3 that

E(K,Σn,σ(w(n)))X ≥ dγnn (K)X , with γn = 2cn(1+log2 w(n)) =: 2ϕ(n), c > 0. (4.4)

The latter estimate shows that bounds from below for the error E(K,Σn,σ(w(n)))X can
be obtained by using bounds from below for dγnn (K)X , and thus provides a way to study
the theoretical limitations of DNNs with ReLU or bounded Lipschitz activation functions
and w(n) bounds for their parameters. We next apply the results obtained in §4.1 to the
special case of DNNs.

Remark 10 It follows from (4.4), Lemma 6 with γn = 2cn(1+log2 w(n)), and the monotonicity
with respect to γ of the fixed Lipschitz width that for any compact subset K of a Banach
space X,

E(K,Σn,σ(w(n)))X ≥ dγnn (K)X ≥ d(2n+1)γn(K, Zn)X ≥ d2c1n(1+log2 w(n))
(K, Zn)X ,

where ‖ · ‖Zn is any norm on Rn.

The following Table 1 shows the relation (for sufficiently large n) between the bound w(n)
and the parameter γn = 2ϕ(n) of the Lipschitz width dγnn (K)X from (4.4), where ϕ(n) =
cn(1 + log2w(n)).

The next corollary follows from (4.4) and Theorem 9 when ϕ(n) = cn(1 + log2w(n)),
c > 0.

Corollary 11 Let Σn,σ(w(n)) be the set of outputs of a DNN with depth n, fixed width
W , bounded L-Lipschitz or ReLU activation function σ, and weights and biases bounded
by w(n), where LWw(n) ≥ 2 (L = 1 when σ =ReLU). Then, the error of approximation

12
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w(n) ϕ(n) = cn(1 + log2w(n)) γn = 2ϕ(n)

C ≥ 1 c′n, c′ > 0 λn, λ > 1

Cnδ, C, δ > 0 c′n log2 n, c′ > 0 2c
′n log2 n, c′ > 0

C2cn
ν
, C, c, ν > 0 c′nν+1, c′ > 0 2c

′nν+1
, c′ > 0

Table 1: Relation between w(n), ϕ(n) and γn.

E(K,Σn,σ(w(n)))X of a compact subset K of a Banach space X by the outputs Σn,σ(w(n))
satisfies the following estimates from below, provided we know the following information
about the entropy numbers εn(K)X of K:

εn(K)X &
(log2 n)β

nα
, n ∈ N ⇒ E(K,Σn,σ(w(n)))X &

[log2 n+ log2(1 + log2w(n))]β

[n2(1 + log2w(n))]α
, n ∈ N,

εn(K)X & [log2 n]−α, n ∈ N ⇒ E(K,Σn,σ(w(n)))X & [log2 n+log2(1+log2w(n))]−α, n ∈ N.

In particular, if w(n) = Cnδ, with δ > 0, we have:

εn(K)X & [log2 n]βn−α, n ∈ N ⇒ E(K,Σn,σ(Cnδ))X & [log2 n]β−αn−2α, n ∈ N,

εn(K)X & [log2 n]−α, n ∈ N ⇒ E(K,Σn,σ(Cnδ))X & [log2 n]−α, n ∈ N,

and when w(n) = C2cn
ν
, with C, c > 0, ν ≥ 0, we have:

εn(K)X & [log2 n]βn−α, n ∈ N ⇒ E(K,Σn,σ(C2cn
ν
))X & [log2 n]βn−(2+ν)α, n ∈ N,

εn(K)X & [log2 n]−α, n ∈ N ⇒ E(K,Σn,σ(C2cn
ν
))X & [log2 n]−α, n ∈ N.

4.3 Bounds from below for shallow neural network approximation

In this section, we consider Banach spaces X such that C([0, 1]d) is continuously embedded
in X. Let us denote by

E(f,ΞW,σ(w(W )))X := ‖f‖X , W = 0, 1,

E(f,ΞW,σ(w(W )))X := inf
y∈BW̃`∞ (w(W ))

‖f −Ψσ(y)‖X , W ≥ 2,

the error of approximation of a function f by the outputs Ψσ(y) ∈ ΞW,σ(w(W )) of the SNN
with width W , parameters y for which ‖y‖

`W̃∞
≤ w(W ), w(W ) ≥ 1, measured in the norm

of the Banach space X, and by

E(K,ΞW,σ(w(W )))X := sup
f∈K

E(f,ΞW,σ(w(W )))X , W ≥ 0,

the error for the class K. Note that the sets ΞW,σ(w(W )) are nested, namely

ΞW,σ(w(W )) ⊂ ΞW+1,σ(w(W )),

13
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and therefore E(f,ΞW+1,σ(w(W )))X ≤ E(f,ΞW,σ(w(W )))X .
It follows from Lemma 2 and Theorem 5 that

E(K,ΞW,σ(w(W )))X ≥ dγWW (K)X , with γW = 2c(log2W+log2 w(W )) =: 2ϕ(W ), (4.5)

and thus estimates from below for the error E(K,ΞW,σ(w(W )))X can be obtained by using
bounds from below for dγWW (K)X . We next apply the results obtained in §4.1 to the special
case of SNNs.

Remark 12 It follows from (4.5), Lemma 6 with γW = 2c(log2W+log2 w(W )), and the mono-
tonicity with respect to γ of the fixed Lipschitz width that for any compact subset K of a
Banach space X,

E(K,ΞW,σ(w(W )))X ≥ dγWW (K)X ≥ d(2W+1)γW (K, ZW )X ≥ d2c1(log2W+log2 w(W ))
(K, ZW )X ,

where c1 > 0 is a fixed constant and ‖ · ‖ZW is any norm on RW .

As in the case of DNNs, we create a table showing the relation (for sufficiently large W )
between the bound w(W ) and the parameter γW = 2ϕ(W ) of the Lipschitz width dγWW (K)X
from (4.5), where ϕ(W ) = c(log2W + log2w(W )).

w(W ) ϕ(W ) = c(log2W + log2w(W )) γW = 2ϕ(W )

CW δ, C, δ ≥ 0 c′ log2W , c′ > 0 2c
′ log2W

C2cW
ν
, C, c, ν > 0 c′W ν , c′ > 0 2c

′W ν
, c′ > 0

Table 2: Relation between w(W ), ϕ(W ) and γW , SNNs

The next corollary follows from (4.5) and Theorem 9 when ϕ(W ) = c(log2W + log2w(W )),
c > 0.

Corollary 13 Let ΞW,σ(w(W )) be the set of outputs of a SNN with width W , bounded
L-Lipschitz or ReLU activation function σ, and w(W ) ≥ 1 bound on its parameters. Then
the error of approximation E(K,ΞW,σ(w(W )))X of a compact subset K of a Banach space X
by ΞW,σ(w(W )) satisfies the following bounds from below, given the behavior of its entropy
numbers εW (K)X , W ∈ N:

εW (K)X &
(log2W )β

Wα
⇒ E(K,ΞW,σ(w(W )))X &

[log2W + log2(log2W + log2w(W ))]β

[W (log2W + log2w(W ))]α
,

εW (K)X & [log2W ]−α ⇒ E(K,ΞW,σ(w(W )))X & [W (log2W + log2w(W ))]−α, W ∈ N.

In particular, if w(W ) = CW δ, with δ ≥ 0, we have:

εW (K)X & [log2W ]βW−α ⇒ E(K,ΞW,σ(CW δ))X & [log2W ]β−αW−α, W ∈ N,

εW (K)X & [log2W ]−α ⇒ E(K,ΞW,σ(CW δ))X & [log2W ]−α, W ∈ N,
and when w(W ) = C2cW

ν
, with C ≥ 1, c > 0, ν > 0, we have:

εW (K)X & [log2W ]βW−α ⇒ E(K,ΞW,σ(C2cW
ν
))X & [log2W ]βW−(1+ν)α, W ∈ N,

εW (K)X & [log2W ]−α ⇒ E(K,ΞW,σ(C2cW
ν
))X & [log2W ]−α, W ∈ N.
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Remark 14 Let Ω be the unit Euclidean ball in Rd and let us denote by

Pd1 := {ReLU(ω · x+ b) : ω ∈ Sd−1, b ∈ [c1, c2] ⊂ R} ⊂ L2(Ω),

Sd−1 := {w ∈ Rd : ‖w‖`d2 = 1},

and consider the closure of the convex, symmetric hull of Pd1 , that is

K = {
n∑
j=1

cjhj , hj ∈ Pd1 ,
n∑
j=1

|aj | ≤ 1}.

We also denote by EW (K)L2(Ω) the error EW (K)L2(Ω) := E(K,ΞW,ReLU(C))X of approx-
imation of the class K by the outputs ΞW,ReLU(C) of a SNN with width W , bounded by
C parameters, and a ReLU activation function, measured in the X = L2(Ω) norm. Then,
Corollary 2 from Siegel and Xu (2022) applied in the case k = 1 states that for any δ > 1

2 + 3
2d

we have
sup
W≥1

W δEW (K)L2(Ω) =∞.

In this particular case, we can apply our theory since we know the entropy numbers of the
class K. Indeed, it follows from Theorem 9 in Siegel and Xu (2022) that for d ≥ 2,

εW (K)L2(Ω) ≥W−
1
2
− 3

2d .

It follows then from Corollary 13 with β = 0 and α = 1
2 + 3

2d that

EW (K)L2(Ω) ≥ [W log2W ]−
1
2
− 3

2d ,

and therefore we arrive at the same conclusion.

5. Bounds for the entropy numbers via Lipschitz widths and the error of
neural network approximation

So far, we have been investigating the behavior of the Lipschitz widths given the behav-
ior of the entropy numbers of a class K. We can ask the inverse question, namely, what
does the asymptotic behavior of the Lipschitz widths tell us about the entropy numbers of
K? Any results in this direction could be viewed as inverse theorems, and in particular,
as generalized inverse theorems for NNA. Historically, inverse theorems have been used in
approximation theory to characterize approximation spaces (and describe them as certain
interpolation spaces), see (DeVore and Lorentz, 1993, Theorem 5.1, Chapter 7) and (De-
Vore, 1998, Theorem 1). Thus, providing certain inverse theorems for DNNA and SNNA
could possibly pave the way to a complete characterization of the spaces of functions that
are well approximated via these NNs.

5.1 Upper bounds for entropy numbers via Lipschitz widths

We start with a lemma that is an extension of Lemma 3.7 from Petrova and Wojtaszczyk
(2023).
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Lemma 15 If K ⊂ X is a compact set, γn = 2ϕ(n), and dγnn (K)X < ε/2, then we have the
following bound for the entropy number

εr(K)X ≤ ε, where r ≥ dn(ϕ(n) + log2(6/ε))e.

In particular:

(i) Let dγnn (K)X = 0 for some n ∈ N. Then for any k ∈ N such that k > ϕ(n), we have

εnk(K)X ≤ 6 · 2ϕ(n)−k = 6 · γn2−k. (5.1)

(ii) Let γn = 2cn
p[log2 n]q for some p ≥ 0 and q ∈ R.

• If for some α > 0, β ∈ R, we have 0 < dγnn (K)X . [log2 n]βn−α, n ∈ N, then

– when p > 0 and q ∈ R, or p = 0 and q ≥ 1, we have

εn(K)X . n
−α/(1+p)[log2 n]

β+ αq
1+p , n ∈ N;

– when p = 0 and q < 1, we have

εn(K)X . n
−α[log2 n]α+β, n ∈ N;

• If for some c > 0, we have 0 < dγnn (K)X . 2−cn, n ∈ N, then

– when 0 ≤ p < 1 and q ∈ R, or p = 1 and q ≤ 0, we have

εn(K)X . 2−c
√
n, n ∈ N;

– when p > 1 and q ∈ R or p = 1, q > 0, we have

εn(K)X . 2−c1n
1/(p+1)[log2 n]−q/(p+1)

, n ∈ N.

Proof: We provide the proof in the Appendix. �

Remark 16 It follows from (4.4) that in Lemma 15 we can take ε = 6E(K,Σn,σ(w(n)))X
or ε = 6E(K,ΞW,σ(w(W )))X if both quantities are positive and obtain that

εr(K)X ≤ 6E(K,Σn,σ(w(n)))X , r ≥ dcn2(1 + log2w(n))− log2(E(K,Σn,σ(w(n)))X))e,

or εr(K)X ≤ 6E(K,ΞW,σ(w(W )))X for values of r that satisfy the inequality

r ≥ dcW (log2W + log2w(W ))− log2(E(K,ΞW,σ(w(W )))X))e.

The case E(K,Σn,σ(w(n)))X = 0 or E(K,ΞW,σ(w(W )))X = 0 is the same as when the
Lipschitz width dγnn (K)X = 0, provided C([0, 1]d) is continuously embedded in X.
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5.2 Upper bounds for entropy numbers via DNN approximation rates.

Let us now consider a compact set K ⊂ X, where C([0, 1]d) is continuously embedded in
X. The next corollary is a direct consequence of Lemma 15.

Corollary 17 Let Σn,σ(w(n)) be the set of outputs of a DNN with depth n, fixed width W ,
ReLU or bounded L-Lipschitz activation function σ and a bound w on its parameters, where
LWw(n) ≥ 2. The following holds:
(i) Let E(K,Σn,σ(w(n)))X . [log2 n]βn−α, n ∈ N for some α > 0 and β ∈ R.

• When w(n) = Cnδ, C > 0, δ > 0, we have

εn(K)X . n
−α

2 [log2 n]β+α
2 , n ∈ N. (5.2)

• When w(n) = C2cn
ν
, C, c > 0, ν ≥ 0, we have

εn(K)X . n
− α
ν+2 [log2 n]β, n ∈ N. (5.3)

(ii) Let E(K,Σn,σ(w(n)))X . 2−cn, n ∈ N for some c > 0.

• When w(n) = Cnδ, with C, δ > 0, we have

εn(K)X . 2−c1
√
n/
√

log2 n, n ∈ N. (5.4)

• When w(n) = C2cn
ν
, C, c > 0, ν ≥ 0, we have

εn(K)X . 2−c1n
1/(ν+2)

, n ∈ N. (5.5)

Proof: The proof follows directly from Lemma 15 and inequality (4.4). Note that in
Lemma 15 we require that dγnn (K)X > 0. However, it could happen that for some n we have
dγnn (K)X = 0. Then, we proceed as follows:

• When w(n) = Cnδ, we have that, see Table 1, ϕ(n) = c′n log2 n, and therefore we can
use (5.1) for k = 2c′n log2 n to derive that ε2c′n2 log2 n

(K)X ≤ 6 · 2−c′n log2 n. For any m
large enough, we can find n = n(m), such that

2c′n2 log2 n ≤ m < 2c′(n+ 1)2 log2(n+ 1) < c1n
2 log2 n,

and therefore
εm(K)X ≤ ε2c′n2 log2 n

(K)X ≤ 6 · 2−c′n log2 n.

Note that for these n = n(m)

−c′n log2 n ≤ −
c′

c1

m

n
, n .

√
m√

log2 n
, log2 n � log2m ⇒

−n log2 n . −
√
m
√

log2m,

and thus
εm(K)X ≤ 6 · 2−c̃

√
m
√

log2m,

which agrees with (5.2) and (5.4).
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• When w(n) = C2cn
ν
, we have that, see Table 1, ϕ(n) = c′nν+1, and therefore we can

use (5.1) for k = 2c′nν+1, to obtain that

ε2c′nν+2(K)X ≤ 6 · 2−c′nν+1 ⇒ εn(K)X ≤ C · 2−c1
√
n.

For any m large enough, we can find n = n(m), such that

2c′nν+2 ≤ m < 2c′(n+ 1)ν+2 < c1n
ν+2 ⇒ m1/(ν+2) � n,

and therefore

εm(K)X ≤ ε2c′nν+2(K)X ≤ 6 · 2−c′nν+1
. 2−c̃m

ν+1
ν+2

,

which agrees with (5.3) and (5.5).

�

5.3 Upper bounds for entropy numbers via SNN approximation rates

In this section, we study classes K for which E(K,ΞW,σ(w(W )))X ≤ ξW for general se-
quences (ξW ) with non-negative terms and X is a Banach space such that C([0, 1]d) ⊂
X is continuously embedded in X. Since ΞW,σ(w(W )) ⊂ ΞW+1,σ(w(W )), we require
(ξW ) to be non-increasing sequence with lim

W→∞
ξW = 0. We consider the sequences ξW =

C[log2W ]βW−α and ξW = C2−cW , and SNNs with ReLU or bounded Lipschitz activation
function and bounds on the NN parameters w(W ) = CW δ, δ ≥ 0 and w(W ) = C2cW

ν
,

ν > 0. Clearly when δ = 0 we have w(W ) = C. It follows from Table 2 that we have

dγWW (K)X ≤ ξW , γW = 2c
′ log2W , δ ≥ 0,

dγWW (K)X ≤ ξW , γW = 2c
′W ν

,

and we can apply Lemma 15 with p = 0, q = 1 (when w(W ) = CW δ), and p = ν, q = 0
(when w(W ) = C2cW

ν
). More precisely, we have the following corollary.

Corollary 18 Let K ⊂ X be a compact subset of a Banach space X, where X is such that
C([0, 1]d) ⊂ X is continuously embedded in X. Let ΞW,σ(w(W )) be the set of outputs of a
SNN with ReLU or bounded Lipschitz activation function σ and a bound w(W ) ≥ 1 on its
weights. Then the following holds:
(i) Let E(K,ΞW,σ(w(W )))X . [log2W ]βW−α, W ∈ N, for some α > 0 and β ∈ R.

• When w(W ) = CW δ, C > 0, δ ≥ 0, we have

εW (K)X .W
−α[log2W ]β+α, W ∈ N. (5.6)

• When w(W ) = C2cW
ν
, C, c > 0, ν > 0, we have

εW (K)X .W
− α
ν+1 [log2W ]β, W ∈ N. (5.7)

(ii) Let E(K,ΞW,σ(w(W )))X . 2−cW , W ∈ N, for some c > 0.
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• When w(W ) = CW δ, with C > 0, δ ≥ 0, we have

εW (K)X . 2−c1
√
W , W ∈ N. (5.8)

• When w(W ) = C2cW
ν
, C, c, ν > 0, we have

εW (K)X . 2−c1W
1/(ν+1)

, W ∈ N. (5.9)

Proof: The statement follows from Lemma 15 and (4.5). Lemma 15 requires dγWW (K)X > 0.
If for some W we have dγWW (K)X = 0, we proceed as follows:

• When w(W ) = CW δ, we have that, see Table 2, ϕ(W ) = c′ log2W , and therefore we
can use (5.1) for k = W + c′ log2W to derive that

εW (W+c′ log2W )(K)X ≤ 6 · 2−W .

For any m large enough, we can find W = W (m), such that

W 2 < W (W + c′ log2W ) ≤ m < (W + 1)(W + 1 + c′ log2(W + 1)) < c1W
2,

and therefore

εm(K)X ≤ εW (W+c′ log2W )(K)X ≤ 6 · 2−W < 6 · 2−c̃
√
m, (5.10)

which agrees with (5.6) and (5.8).

• When w(W ) = C2cW
ν
, we have ϕ(W ) = c′W ν and we can use (5.1) for values

k = c′W ν +W ν+1 = W ν(c′ +W ), to obtain that

εc′W ν(c′+W )(K)X ≤ 6 · 2−W ν+1
.

For any m large enough, we can find W = W (m), such that

W ν+1 < W ν(c′ +W ) ≤ m < (W + 1)ν(c′ +W + 1) ≤ c1W
ν+1,

and therefore

εm(K)X ≤ εc′W ν(c′+W )(K)X ≤ 6 · 2−′W ν+1
. 2−c̃m,

which agrees with (5.7) and (5.9).

The proof is completed. �

Remark 19 Similar statement as Corollary 18 was proven in Theorem 10 from Siegel and
Xu (2022) in the case σW = CW−α for classes

K = {f =
n∑
j=1

cjhj : hj ∈ D,
n∑
j=1

|aj | ≤ 1},

which are the closure of the convex, symmetric hull of dictionaries D satisfying specific
properties and for SNNs with certain activation functions.
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5.4 Approximation classes for DNNs

Recall that if f ∈ X and A is a subset of the Banach space X, the distance between f and
A is defined as dist(f,A)X := infg∈A ‖f − g‖X . Clearly, we have that

E(f,Σn,σ(w(n)))X = dist(f,Φσ(Bñ
`∞(w(n)))X ,

where the sets Φσ(Bñ
`∞

(w(n))) ⊂ X are compact with respect to the uniform norm C(Ω),
see Theorem 3.

Let ξ := (ξn)∞n=1 be a sequence of non-negative numbers such that inf
n
ξn = 0 (in par-

ticular, we can have limn→∞ ξn = 0). We denote by Nξ,σ(w) the set of functions that
are approximated by functions from Σn,σ(w(n)) with accuracy ξn for every n ≥ 0. More
precisely,

Nξ,σ(w) := {f ∈ X : E(f,Σn,σ(w(n)))X ≤ ξn, ∀n ≥ 0},

which can be written equivalently as

Nξ,σ(w) =

∞⋂
n=0

Vn(ξ), Vn(ξ) := {f ∈ X : dist(f,Φσ(Bñ
`∞(w(n)))X ≤ ξn}.

Then, if X is such that C(Ω) is continuously embedded in X, we can apply Lemma 30 (see
the Appendix) to obtain that Nξ,σ(w) is a (possibly empty) compact subset of X. In what
follows, we show that there are choices of sequences ξ and DNNs with bounds w on their
parameters for which the compact sets Nξ,σ(w) 6= ∅.

Remark 20 According to Remark 4, the set Σs
n,σ(w(n)) of outputs of a DNN where at

each layer one uses σ̄ = (σ0, σ, . . . , σ, σ0) with σ0(t) = t, and σ =ReLU, see (2.1), satisfy
Theorem 3. Therefore, all theory developed so far holds for Σs

n,σ(w(n)).

Let us now consider the case when Ω = [0, 1] and σ =ReLU. If we denote by H the hat
function H(t) = 2(t−0)+−4(t− 1

2)+ and by H◦k this function composed with itself k times,
then, for properly selected w(n), we have the inclusion {ψn :=

∑n
k=1 ckH

◦k} ⊂ Σs
n,σ(w(n)),

see Figure 5.1.

1

1

0

2

2

-4

2

2

-4

2c1 2c2-4c1 -4c2

. . .

. . .

. . .

. . .

a

2cn
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Figure 5.1: Computational graph for ψn

Recall that the set T defined as

T :=

{
f : f =

∞∑
k=1

ckH
◦k,

∞∑
k=1

|ck| <∞

}
,
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is called the Takagi class, see Allaart and Kawamurau (2011). Clearly

R := {fλ =

∞∑
k=1

λ−kH◦k, |λ| > 1} ⊂ T ,

and it is a well known fact that the Takagi function T = f2 and that t(1 − t) = f4(t), see
Allaart and Kawamurau (2011). The elements of R can be approximated with exponential
accuracy by outputs of Σs

n,σ(w(n)) with w(n) = C. Therefore, in this case the set Nξ̃,σ(w),

with ξ̃ = (C2−cn)∞n=1 is non-empty, and for every η = (ηn)∞n=1 with the property that
infn ηn = 0 and C2−cn ≤ ηn for all n ≥ 0, we have ∅ 6= Nξ̃,σ(w) ⊂ Nη,σ(w).

Now, let us return to the relation between the error E(Nξ,σ(w),Σn,σ(w(n)))X and
the Lipschitz width. It follows from the definition of Nξ,σ(w) that for every n ≥ 0,
E(Nξ,σ(w),Σn,σ(w(n)))X ≤ ξn, and therefore (4.4) gives that

dγnn (Nξ,σ(w))X ≤ ξn, with γn = 2cn(1+log2 w(n)). (5.11)

One can now apply Lemma 15 and derive estimates for the entropy numbers of the compact
set Nξ,σ(w). Such estimates can be viewed as inverse theorems for DNN approximation.

To simplify the presentation, let us consider the special sequences ξn = C[log2 n]βn−α

and ξn = C2−cn, and DNNs with depth n, fixed width W , ReLU or bounded Lipschitz
activation function and bounds on the NN parameters w(n) = Cnδ, δ ≥ 0 and w(n) =
C2cn

ν
, ν ≥ 0, see Table 1. Note that the case ν = 0 covers the case w(n) = C. We apply

Corollary 17 to the class K = Nξ,σ(w) and obtain the following result.

Corollary 21 The entropy numbers of the compact set Nξ,σ(w) that consists of all functions
approximated in the norm of X with accuracy ξn by the outputs of a DNN with depth n,
fixed width W , ReLU or bounded L-Lipschitz activation function and bounds on the NN
parameters w such that LWw(n) ≥ 2 satisfy the following inequalities for the listed special
choices of w and sequences (ξ):

• If C, c, α, δ > 0, ν ≥ 0, and β ∈ R, we have

εn(Nξ,σ(Cnδ))X . n
−α

2 [log2 n]β+α
2 , n ∈ N, where ξ = (ξn) = (C[log2 n]βn−α),

εn(Nξ,σ(C2cn
ν
))X . n

− α
ν+2 [log2 n]β, n ∈ N, where ξ = (ξn) = (C[log2 n]βn−α).

• If C, c, α, δ > 0, ν ≥ 0, and β ∈ R, we have

εn(Nξ,σ(Cnδ))X . 2−c1
√
n/
√

log2 n, n ∈ N, where ξ = (ξn) = (C2−cn),

εn(Nξ,σ(C2cn
ν
))X . 2−c1n

1/(ν+2)
, n ∈ N, where ξ = (ξn) = (C2−cn).
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Remark 22 The above estimates hold also for the sets λNξ,σ(w) = {λf : f ∈ Nξ,σ(w)}
with λ > 1, where the constants involved depend on λ. Indeed, the fact that f ∈ Vn(ξ)
implies the inequality

dist(λf,Φσ(Bñ
`∞(λw(n))))X ≤ λξn,

since λΦσ(Bñ
`∞

(w(n))) ⊂ Φσ(Bñ
`∞

(λw(n))). Then, according to (4.4) and the monotonicity
of Lipschitz widths, we have

dγ
′
n
n (λNξ,σ(w))X ≤ λξn, with γ′n := 2c(λ)n(1+log2 w(n)) > 2cn(1+log2(λw(n))),

and we can apply Lemma 15 or Corollary 17.

5.5 Approximation classes for SNNs

We consider Banach spaces X such that C([0, 1]d) ⊂ X is continuously embedded in X. We
denote by Aξ,σ(w) ⊂ X the approximation class

Aξ,σ(w) := {f ∈ X : E(f,ΞW,σ(w(W )))X ≤ ξW , ∀W ≥ 0},

or equivalently written as

Aξ,σ(w) =
∞⋂

W=0

VW (ξ), VW (ξ) := {f ∈ X : dist(f,Ψσ(BW̃
`∞(w(W )))X ≤ ξW }.

As in the case of DNNs, Aξ,σ(w) is a compact subset of X, see Lemma 30. Its Lipschitz
widths, see (4.5), satisfy the inequalities

dγWW (Aξ,σ(w))X ≤ ξW , with γW = 2c(log2W+log2 w(W )), W ∈ N. (5.12)

We next apply Corollary 18 in the case K = Aξ,σ(w) and derive the following statement.

Corollary 23 The entropy numbers of the approximation class Aξ,σ(w) that consists of all
functions approximated in the norm of X with accuracy ξW , W ∈ N, by the outputs of a
SNN with width W , ReLU or bounded Lipschitz activation function and bounds on the NN
parameters w(W ) = CW δ, δ ≥ 0 or w(W ) = C2cW

ν
, C, c > 0, ν > 0, satisfy the following

inequalities:

• If C,C ′, α, ν > 0, δ ≥ 0, β ∈ R, we have

εW (Aξ,σ(CW δ))X .W
−α[log2W ]β+α, W ∈ N, where

ξ = (ξW ) = (C ′[log2W ]βW−α), (5.13)

εW (Aξ,σ(C2cW
ν
))X .W

− α
ν+1 [log2W ]β, W ∈ N, where

ξ = (ξW ) = (C ′[log2W ]βW−α). (5.14)

• If C,C ′, c, ν > 0, δ ≥ 0, we have

εW (Aξ,σ(CW δ))X . 2−c1
√
W , W ∈ N, where ξ = (ξW ) = (C ′2−cW ),

εW (Aξ,σ(C2cW
ν
))X . 2−c1W

1/(ν+1)
, W ∈ N, where ξ = (ξW ) = (C ′2−cW ).
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6. Further study of Lipschitz widths with large Lipschitz constants

So far, we have used Lipschitz widths as a tool to obtain estimates from below for the
error of approximation of a compact set K via deep and shallow NNs. However, Lipschitz
widths are a subject of interest on their own. We have studied in Petrova and Wojtaszczyk
(2023) Lipschitz widths with Lipschitz constants γ = const and γ = γn = λn, λ > 1.
In this section, we will complete this study by including Lipschitz widths with constants
γn = 2ϕ(n). We start with the following theorem, which is an application of Theorem 3.3
from Petrova and Wojtaszczyk (2023).

Theorem 24 Let K ⊂ X be a compact subset of a Banach space X, n ∈ N, and dγnn (K)X be
the Lipschitz width for K with Lipschitz constant γn = 2ϕ(n), where ϕ(n)→∞ as n→∞.
Then, we have

d2ϕ(n)

n (K)X ≤ εndϕ(n)
2
e(K)X , where n ≥ n0(K). (6.1)

In particular,

(i) εn(K)X . [log2 n]βn−α, n ∈ N ⇒ dγnn (K)X . [log2(nϕ(n))]β[nϕ(n)]−α, n ∈ N, (6.2)

where α > 0, β ∈ R;

(ii) εn(K)X . [log2 n]−α, n ∈ N, α > 0 ⇒ dγnn (K)X . [log2(nϕ(n))]−α, n ∈ N; (6.3)

(iii) εn(K)X . 2−cn
α
, n ∈ N, 0 < α < 1 ⇒ dγnn (K)X . 2−c(nϕ(n))α , n ∈ N. (6.4)

Proof: Indeed, it follows from (Petrova and Wojtaszczyk, 2023, Theorem 3.3) that for any
compact subset K ⊂ X of a Banach space X and any n ∈ N we have that

d2krad(K)
n (K)X ≤ εkn(K)X , k = 1, 2, . . . . (6.5)

We choose k = k(n) to be such that

2krad(K) ≤ 2ϕ(n) < 2k+1rad(K) < 2k+`,

where rad(K) < 2`−1, then k > ϕ(n)− ` > dϕ(n)
2 e for n ≥ n0, n0 = n0(K) big enough. Then

dγnn (K)X ≤ d2krad(K)
n (K)X ≤ εkn(K)X ≤ εndϕ(n)

2
e(K)X , for n ≥ n0(K),

and therefore (6.1) holds. Estimates (6.2), (6.3) and (6.4) follow from (6.1). Note that n0

depends only on rad(K) and on how fast ϕ(n) grows to infinity. �

Theorem 24 and Theorem 9 can be combined in the next corollary which can be viewed
as a generalization of Corollary 6.4 from Petrova and Wojtaszczyk (2023). The latter covers
the particular case ϕ(n) = cn.
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Corollary 25 Let K ⊂ X be a compact set of a Banach space X and the function ϕ : N→ R
be such that ϕ(n) ≥ c log2 n for some fixed constant c > 0. Let dγnn (K)X be the Lipschitz
width of K with Lipschitz constant γn = 2ϕ(n). Then the following holds:

εn(K)X � [log2 n]βn−α, n ∈ N ⇒ dγnn (K)X � [log2(nϕ(n))]β[nϕ(n)]−α, n ∈ N,

εn(K)X � [log2 n]−α n ∈ N ⇒ dγnn (K)X � [log2(nϕ(n))]−α, n ∈ N,

where α > 0, β ∈ Rn.

It follows from Theorem 3.1 from Petrova and Wojtaszczyk (2023) that when γ is inde-
pendent on n, i.e γ = const (this case is excluded in Corollary 25 because of the condition
ϕ(n) ≥ c log2 n), we do not have matching lower and upper bounds for dγn(K)X in the case
when εn(K)X � [log2 n]βn−α, namely we have

εn(K)X . [log2 n]βn−α, n ∈ N, α > 0, β ∈ R ⇒ dγn(K)X . [log2 n]βn−α, , n ∈ N,
εn(K)X & [log2 n]βn−α, n ∈ N, α > 0, β ∈ R ⇒ dγn(K)X & [log2 n]β−αn−α, n ∈ N.

It is still an open question whether the upper bound for dγn(K)X in this case can be im-
proved to dγn(K)X . [log2 n]β−αn−α. The following example, constructed in Petrova and
Wojtaszczyk (2023), is in support of this conjecture. The compact subset K(σ) ⊂ c0 of the
Banach space c0 of all sequences that converge to 0, equipped with the `∞ norm, defined
as

K(σ) := {σjej}∞j=1 ∪ {0}, σj := (log2(j + 1))−1,

where (ej)
∞
j=1 are the standard basis in c0 has entropy numbers εn(K(σ))c0 � n−1 and

Lipschitz width dγn(K(σ))c0 � n−1[log2(n+ 1)]−1, γ = const.

Corollary 26 It follows from Lemma 6 and Corollary 25 that if a compact subset K ⊂ X
of a Banach space X has entropy numbers εn(K)X � [log2 n]βn−α or εn(K)X � [log2 n]−α,
then for any c1, c̃ > 0 and a, a1 > 0, we have

d2c̃n

n (K)X � d2c1n(K, `n∞)X , d2an log2 n

n (K)X � d2a1n log2 n
(K, `n∞)X ,

where the constants in � depend on c̃ and c1, or a and a1, respectively.

Proof: We consider the case when γn = 2c̃n (the case γn = 2an log2 n is similar). We take
any c1 > 0 and fix c ≤ c1. Then, for n big enough we have c1n ≥ cn+ log2(2n+ 1) and it
follows from the monotonicity of the fixed Lipschitz widths and Lemma 6 that

d2c1n

n (K)X ≤ d2c1n(K, `n∞)X ≤ d(2n+1)2cn(K, `n∞)X ≤ d2cn

n (K)X .

On the other hand, d2cn
n (K)X � d2c1n(K)X � d2c̃n(K)X , see Corollary 25, and therefore

d2c1n(K, `n∞)X � d2cn

n (K)X � d2c̃n

n (K)X .

The proof is completed. �

We can further refine Theorem 24 in some cases and the following lemma holds.
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Lemma 27 Let γn = 2ϕ(n) with ϕ : [1,∞) → R an increasing non-negative function such
that ϕ(n)→∞ as n→∞ and dγnn (K)X ≥ c02−ϕ(n) for some c0 > 0. Then, for n sufficiently
large, we have that

dγ8n8n (K)X ≤ ε8ndϕ(8n)
2
e(K)X ≤ 3dγnn (K)X . (6.6)

In particular, if dγnn (K)X � [log2(nϕ(n))]β[nϕ(n)]−α, and

• if the function ϕ is such that there is a constant c1 > 1 for which sup
n∈N

ϕ(c1n)

ϕ(n)
<∞

then

εm(K)X � [log2m]βm−α, m ∈ N.

• if for every c > 1, sup
n∈N

ϕ(cn)

ϕ(n)
=∞, then the lower and upper bound in (6.6) are

asymptotically different in the sense that

dγnn (K)X
dγ8n8n (K)X

&


[
ϕ(8n)
ϕ(n)

]α [
log2

ϕ(8n)
ϕ(n)

]−β
, β > 0,

[
ϕ(8n)
ϕ(n)

]α
, β ≤ 0.

Proof: Following the proof of Lemma 15 and using the fact that dγnn (K)X ≥ c02−ϕ(n), we
obtain for the choice ε = 3dγnn (K)X > 0 that the entropy numbers εr(K)X ≤ 3dγnn (K)X ,
with

r = dn(ϕ(n) + log2(2[dγnn (K)X ]−1))e ≤ dn(2ϕ(n) + c̃)e ≤ d4nϕ(n)e, (6.7)

provided n is sufficiently large, and thus

εd4nϕ(n)e(K)X ≤ 3dγnn (K)X .

On the other hand, Theorem 24, gives that

dγ8n8n (K)X ≤ ε8ndϕ(8n)
2
e(K)X .

We derive (6.6) from the monotonicity of the entropy numbers, the latter two inequal-
ities and the fact that ϕ, as an increasing non-negative function, satisfies the condition
8ndϕ(8n)

2 e ≥ d4nϕ(n)e.
Now, let dγnn (K)X � [log2(nϕ(n))]β[nϕ(n)]−α. If there is a constant c1 > 1 for which

the quantity sup
n∈N

ϕ(c1n)

ϕ(n)
<∞, then Lemma 31 (see the Appendix) gives that sup

n∈N

ϕ(c0n)

ϕ(n)
is finite for all c0 > 1 and the conclusion follows from Lemma 32 (see the Appendix) with

c = 8 and ak = εk(K)X . If for all c0 > 1 we have sup
n∈N

ϕ(c0n)

ϕ(n)
=∞, then we apply again

Lemma 32 to complete the proof. �
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Remark 28 All functions ϕ from Table 1 or Table 2 satisfy the condition sup
n∈N

ϕ(c1n)

ϕ(n)
<∞

for all c1 > 1, and therefore it follows from Lemma 27 that for γn = 2ϕ(n) with ϕ being any
of these functions,

dγnn (K)X � [log2(nϕ(n))]β[nϕ(n)]−α, n ∈ N, α > 0, β ∈ R ⇒ εn(K)X � [log2 n]βn−α, n ∈ N.

Observe that Lemma 27 does not cover the case when γn = const, that is, ϕ(n) = const,
because the Lipschitz width dγn(K)X → 0 as n → ∞, and therefore would not satisfy the
condition dγn(K)X ≥ c02−ϕ(n) = C. We discuss this case separately in the lemma that
follows.

Lemma 29 Let K ⊂ X be a compact set, γ = const, (ξn) be a sequence of positive numbers
such that ξn → 0 as n → ∞, and dγn(K)X ≥ ξn. Then we have that for some positive
constants c, c1,

dc1ξ
−c
n

n (K)X ≤ εcdn log2(ξ−1
n )e(K)X ≤ 3dγn(K)X . (6.8)

In particular, if ξn = 2−n, we have dc12cn
n (K)X ≤ εcn2(K)X ≤ 3dγn(K)X , and when ξn = n−α

we have dc1n
cα

n (K)X ≤ εcdn log2 ne(K)X ≤ 3dγn(K)X .

Proof: Again, it follows from the proof of Lemma 15 that for ε = 3dγn(K)X ≥ 3ξn > 0 the
entropy numbers εr(K)X ≤ 3dγn(K)X , with

r = dn(log2 γ + log2(2[dγn(K)X ]−1))e ≤ cdn log2(ξ−1
n )e,

if n is large enough, and therefore

εcdn log(ξ−1
n )e(K)X ≤ 3dγn(K)X . (6.9)

We take kn to be the smallest integer such that cdn log(ξ−1
n )e ≤ nkn. From (Petrova and

Wojtaszczyk, 2023, Th. 3.3), (6.9), and the monotonicity of entropy numbers and Lipschitz
widths we get

dc1ξ
−c
n

n (K)X ≤ d2kn rad(K)
n (K)X ≤ εnkn(K)X ≤ εcdn log2(ξ−1

n )e(K)X ≤ 3dγn(K)X ,

where we have used in the first inequality the definition of kn, namely that

cdn log(ξ−1
n )e > n(kn − 1).

The proof is completed. �

7. Conclusion

In this paper, we further develop the theory of Lipschitz widths for a compact set K in
a Banach space X to include Lipschitz mappings with large Lipschitz constants. The
theory is then applied to NNs to obtain Carl’s type inequalities for deep and shallow neural
network approximation, where the error is measured in the Banach space norm ‖ · ‖X and
the requirement for X is that C([0, 1]d) ⊂ X is continuously embedded in X. In fact,
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this method can be used to obtain Carl’s type inequalities for any feed-forward NN with
predetermined relation between the width W and depth n of this network.

Our analysis is executed by utilizing the growth of the `m∞ norm of the parameters of

the NN, namely ‖y‖`m∞ ≤ w(m) (with m = ñ or m = W̃ ) for a given function w. Note
that all results for NN approximation utilize the behavior of the Lipschitz width dγmm (K)X ,
which is defined as the infimum of the fixed Lipschitz width dγm(K, Ym) over all possible
norms Ym in Rm. Therefore, all results will hold no matter what norm we choose to bound
the NN parameters, i.e. all statements will hold if instead of ‖y‖`m∞ ≤ w(m), we choose
‖y‖Ym ≤ w(m), where Ym is our favorite norm.

Our estimates can be applied to any novel or classical classes of functions as long as we
know estimates on their entropy numbers.
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Appendix

In this section we provide the proofs of some of the theorems and lemmas we use in the
paper.

Proof of Lemma 2: We fix a norm ‖ · ‖Yn on Rn and take any r > 0 and map
Ln : (BYn(r), ‖ · ‖Yn) → X with Lipschitz constant γ/r. We consider the onto r-Lipschitz
map η : BYn(1) → BYn(r), defined as η(y) = ry. Clearly, Ln ◦ η : (BYn(1), ‖ · ‖Yn) → X is
γ-Lipschitz. Therefore we have

dγ(K, Yn)X ≤ sup
f∈K

inf
y∈BYn (1)

‖f − Ln ◦ η(y)‖X = sup
f∈K

inf
y∈BYn (r)

‖f − Ln(y)‖X ,

which gives
dγ(K, Yn)X ≤ inf

Ln,r>0
sup
f∈K

inf
y∈BYn (r)

‖f − Ln(y)‖X , (.1)

where the infimum is taken over r > 0 and all γ/r-Lipschitz maps Ln : (BYn(r), ‖·‖Yn)→ X.
Observe that we can argue in the another direction too. For fixed δ > 0, we take a

γ-Lipschitz mapping L′n : (BYn(1), ‖ · ‖Yn)→ X such that

sup
f∈K

inf
y∈BYn (1)

‖f − L′n(y)‖X ≤ dγ(K, Yn)X + δ.

We fix r > 0, define the 1/r-Lipschitz mapping η from BYn(r) onto BYn(1) as η(y) = y/r
and consider the γ/r-Lipschitz mapping L′n ◦ η : (BYn(r), ‖ · ‖Yn)→X. Since L′n ◦ η is a
γ/r-Lipschitz mapping and we have

inf
Ln,r>0

sup
f∈K

inf
y∈BYn (r)

‖f−Ln(y)‖X ≤ sup
f∈K

inf
y∈BYn (r)

‖f−L′n◦η(y)‖ = sup
f∈K

inf
y∈BYn (1)

‖f−L′n(y)‖,

which gives that

inf
Ln,r>0

sup
f∈K

inf
y∈BYn (r)

‖f − Ln(y)‖X ≤ dγ(K, Yn)X + δ.

Since δ is arbitrary, the above inequality and (.1) prove the lemma. �
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Proof of Lemma 6: It is known, see (Tomczak-Jaegermann, 1989, Prop. 37.1), that
for any two n-dimensional Banach spaces Y1 and Y2 there exists a constant ρ ≤ n, ρ = ρ(n),
and an onto linear map T : Y1 → Y2 such that ‖T‖ · ‖T−1‖ = ρ. By suitable rescaling we
can assume that ‖T‖ = 1 and ‖T−1‖ = ρ.

Let (Rn, ‖.‖Yn) be the space determined from the norm ‖ · ‖Yn in Theorem 1. From the
above we infer that there exists a linear map T with the properties

T : (Rn, ‖.‖Zn)→ (Rn, ‖.‖Yn), ‖T‖ = 1, ‖T−1‖ = ρ.

We now define the mapping

φ(y) := t(y)Ty, where t(y) :=
‖y‖Zn
‖Ty‖Yn

.

Since ‖φ(y)‖Yn = ‖y‖Zn , we conclude that φ : (BZn(1), ‖·‖Zn)→ (BYn(1), ‖·‖Yn). Moreover,
φ is an onto mapping since for every y′ ∈ BYn(1), there is

y =
‖y′‖Yn
‖T−1y′‖Zn

T−1y′ ∈ BZn(1), such that φ(y) = y′.

Note that t(y) ≤ ρ since ‖y‖Zn = ‖T−1(Ty)‖Zn ≤ ‖T−1‖‖Ty‖Yn = ρ‖Ty‖Yn , and

|t(y)− t(z)| ≤
∣∣∣∣ ‖y‖Zn‖Ty‖Yn

− ‖y‖Zn
‖Tz‖Yn

∣∣∣∣+

∣∣∣∣ ‖y‖Zn‖Tz‖Yn
− ‖z‖Zn
‖Tz‖Yn

∣∣∣∣
=

‖y‖Zn
‖Ty‖Yn‖Tz‖Yn

|‖Tz‖Yn − ‖Ty‖Yn |+
1

‖Tz‖Yn
|‖z‖Zn − ‖y‖Zn |

≤ t(y)

‖Tz‖Yn
‖T (z − y)‖Yn +

1

‖Tz‖Yn
‖z − y‖Zn ≤

ρ+ 1

‖Tz‖Yn
‖z − y‖Zn .

Therefore, for every y, z ∈ BZn(1), using the above two inequalities, we obtain that

‖φ(y)− φ(z)‖Yn ≤ t(y)‖T (y − z)‖Yn + |t(y)− t(z)|‖Tz‖Yn
≤ ρ‖y − z‖Zn + (ρ+ 1)‖y − z‖Zn = (2ρ+ 1)‖y − z‖Zn ,

which shows that φ is a (2ρ+ 1)-Lipschitz mapping.

Now, if Ln : (BYn(1), ‖ · ‖Yn) → X is any γ-Lipschitz mapping, then the composition
Ln ◦ φ : (BZn(1), ‖ · ‖Z)→ X is a (2ρ+ 1)γ-Lipschitz mapping for which

d(2ρ+1)γ(K, Zn)X ≤ sup
f∈K

inf
y∈BZn (1)

‖f − Ln ◦ φ(y)‖X = sup
f∈K

inf
y∈BYn (1)

‖f − Ln(y)‖X .

Next, we take the infimum over Φn and obtain

d(2ρ+1)γ(K, Zn)X ≤ dγ(K,Yn)X = dγn(K)X ,

which completes the proof since ρ ≤ n and the Lipschitz width is monotone with respect to
the Lipschitz constant. �
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Proof of Theorem 9: We prove the theorem by contradiction and start with (i). If
(4.2) does not hold for some constant C1, then there exists a strictly increasing sequence of
natural numbers (nk)

∞
k=1, such that

pk :=
d
γnk
nk (K)X [nkϕ(nk)]

α

[log2(nkϕ(nk))]β
→ 0 as k →∞.

To simplify the notation, we denote Pk := nkϕ(nk) and we then write

d
γnk
nk (K)X =

pk [log2 Pk]
β

Pαk
<

2pk [log2 Pk]
β

Pαk
=: δk, k = 1, 2, . . . .

We also denote Qk := log2(3γnkδ
−1
k ) and apply Proposition 8 with ηn = c1(log2 n)βn−α and

δ = δk to obtain

c1 [log2(nkQk)]
β nk

−αQ−αk ≤ 4
pk [log2 Pk]

β

[Pk]α
.

We rewrite the latter inequality as

p−1
k

[
log2(nkQk)

log2 Pk

]β
≤ 4

c1

[
Qk
ϕ(nk)

]α
. (.2)

In what follows, we denote by C a generic constant whose value may change every time.
Observe that

Qk = c+ ϕ(nk) + log2(p−1
k ) + α log2 Pk − β log2(log2 Pk)

� ϕ(nk) + log2(p−1
k ) + log2 Pk � ϕ(nk) + log2(p−1

k ) + log2 nk.

Since for all k’s we have log2 nk ≤ cϕ(nk), then

Cϕ(nk) ≤ Qk ≤ C(ϕ(nk) + log2(p−1
k )), (.3)

and therefore [
Qk
ϕ(nk)

]α
≤ C

[
ϕ(nk) + log2(p−1

k )

ϕ(nk)

]α
≤ C

[
1 + log2(p−1

k )
]α
. (.4)

We now consider the following cases.
Case 1: β ≥ 0. It follows from (.3) that

log2(nkQk)

log2 Pk
≥ C log2 Pk

log2 Pk
= C,

which combined with (.2) and (.4) gives

p−1
k ≤

4

c1

[
log2(nkQk)

log2 Pk

]−β [ Qk
ϕ(nk)

]α
≤ C

[
1 + log2(p−1

k )
]α
,

which contradicts the fact that p−1
k →∞.
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Case 2: β < 0. It follows from (.3) that

log2(nkQk)

log2 Pk
≤ C

log2(nk(ϕ(nk) + log2(p−1
k )))

log2 Pk
, (.5)

and we consider two cases.
Case 2.1: If for infinitely many k’s we have log2(p−1

k ) ≤ ϕ(nk), then for those k’s (.5)
becomes

log2(nkQk))

log2 Pk
≤ C log2(nk(2ϕ(nk)))

log2 Pk
≤ C,

and (.2) gives

p−1
k ≤ 4

c1

[
log2(nkQk))

log2 Pk

]−β [
1 + log2(p−1

k )
]α ≤ C [1 + log2(p−1

k )
]α
,

which contradicts the fact that p−1
k →∞.

Case 2.2: If for infinitely many k’s we have log2(p−1
k ) ≥ ϕ(nk) ≥ c log2 nk, then (.5)

becomes

log2(nkQk)

log2 Pk
≤ C log2(nk log2(p−1

k )) = C(log2 nk + log2(log2(p−1
k )))

≤ C(log2(p−1
k ) + log2(log2(p−1

k )))≤ C log2(p−1
k ),

and leads to

p−1
k ≤ 4

c1

[
log2(nkQk))

log2 Pk

]−β [
1 + log2(p−1

k )
]α ≤ C [log2(p−1

k )
]−β [

1 + log2(p−1
k )
]α
,

which contradicts the fact that p−1
k →∞.

To prove (ii), we repeat the argument for (i), namely, we assume that (ii) does not hold,
and therefore, there exists a strictly increasing sequence of natural numbers (nk)

∞
k=1, such

that
ek := dγnnk(K)X [Dk]

α → 0 as k →∞,

where Dk := log2(nkϕ(nk)). We write

d
γnk
nk (K)X = ek[Dk]

−α < 2ek[Dk]
−α =: δk, k = 1, 2, . . . , (.6)

and use Proposition 8 with ηn = c1(log2 n)−α to derive c1 [log2(nkQk)]
−α ≤ 4ekD

−α
k , where

as in (1) we have the notation Qk := log2(3γnkδ
−1
k ). We rewrite this inequality as

e−1
k ≤

4

c1

[
log2(nkQk)

Dk

]α
. (.7)

Since log2 nk ≤ cϕ(nk), we have

Qk = log2(1.5) + ϕ(nk) + log2(e−1
k ) + α log2Dk

≤ C[ϕ(nk) + log2(e−1
k ) + log2(log2 nk + log2(ϕ(nk)))]

≤ C[ϕ(nk) + log2(e−1
k ) + log2(ϕ(nk) + log2(ϕ(nk)))] ≤ C[ϕ(nk) + log2(e−1

k )],
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and (.7) becomes

e−1
k ≤ C

[
log2(nk(ϕ(nk) + log2(e−1

k )))

Dk

]α
. (.8)

Case 1: If for infinitely many values of k we have log2(e−1
k ) ≤ ϕ(nk), then e−1

k ≤ C, which
contradicts with the fact that e−1

k →∞ as k →∞.

Case 2: If for infinitely many values of k we have log2(e−1
k ) ≥ ϕ(nk) ≥ c log2 nk, then for

those k’s we get Dk ≥ C, so (.8) becomes

e−1
k ≤ C

[
log2(nk(ϕ(nk) + log2(e−1

k )))
]α

= C
[
log2 nk + log2(ϕ(nk) + log2(e−1

k ))
]α

≤ C
[
log2(e−1

k ) + log2(log2(e−1
k ))

]α ≤ C [log2(e−1
k )
]α
,

which also contradicts with the fact that e−1
k →∞ as k →∞. The proof is completed. �

Proof of Lemma 15: It follows from Proposition 3.6 in Petrova and Wojtaszczyk (2023)
that if dγnn (K)X < ε/2, then

γn ≥
1

6
εN1/n

ε (K) ⇒ Nε(K) ≤

[
6 · 2ϕ(n)

ε

]n
≤ 2r,

where Nε(K) is the ε covering number of K (the cardinality of the minimal ε-covering of K)
and

r = r(n) = dn(ϕ(n) + log2(6/ε))e

is the smallest integer that this inequality holds. We rewrite the above as εr(K)X ≤ ε.
If dγnn (K)X = 0, then for any k ∈ N such that k > ϕ(n), we take ε = 6 · 2ϕ(n)−k and

obtain r = nk and

εnk(K)X ≤ 6 · 2ϕ(n)−k = 6 · γn2−k.

This is an optimal estimate since for the ball Kn := {y ∈ Rn : ‖y‖`n2 ≤ γn} of radius γn
in Rn, we have that dγnn (Kn)X = 0 since for the γn-Lipschitz mapping Φ(y) = γny we have
Kn = Φ(B`n2 (1)). On the other hand, it is a well known fact that for any integer s we have,
see Carl and Stephani (1990),

γn2−s/n ≤ εs(Kn)X ≤ 4γn2−s/n.

Now we continue with the other cases of the behavior of the Lipschitz width dγnn (K)X
under the assumption that γn = 2cn

p[log2 n]q . In the case when ε = 3dγnn (K)X with dγnn (K)X >
0, we obtain that εr(K)X ≤ 3dγnn (K)X , where

r(n) = dn(ϕ(n) + log2(2[dγnn (K)X ]−1))e ≤ dn(2ϕ(n)− log2(dγnn (K)X))e. (.9)

In the case when 0 < dγnn (K)X . [log2 n]βn−α, it follows from (.9) that

r(n) . dnp+1[log2 n]q + nα log2 n− nβ log2(log2 n)e . dnp+1[log2 n]q + n log2 ne

provided n is sufficiently large.
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Case 1: p > 0 and q ∈ R or p = 0 and q ≥ 1. For this range of p and q we have

r(n) . n1+p[log2 n]q.

In this case, for each k ∈ N large enough, we consider n = n(k), defined as

n = dk1/(p+1)[log2 k]−q/(p+1)e < 2k1/(p+1)[log2 k]−q/(p+1),

and for k large enough we have

r(n) .
[
k1/(p+1)[log2 k]−q/(p+1)

]p+1
[log2(k1/(p+1)[log2 k]−q/(p+1))]q

= k[log2 k]−q
[
(p+ 1)−1 log2 k −

q

p+ 1
log2(log2 k)

]q
.

Note that
(p+ 1)−1 log2 k −

q

p+ 1
log2 log2 k � log2 k, (.10)

and therefore
r(n) . k[log2 k]−q [log2 k]q = k

Since εk(K)X is a monotone decreasing sequence, we have that

εck(K)X ≤ εr(n)(K)X ≤ 3dγnn (K)X . [log2 n]βn−α

. [log2(k1/(p+1)[log2 k]−q/(p+1))]β[k1/(p+1)[log2 k]−q/(p+1)]−α

=

[
1

p+ 1
log2 k −

q

p+ 1
log2(log2 k)

]β
k−α/(p+1)[log2 k]qα/(p+1)

It follows from (.10) that

εck(K)X . [log2 k]β k−α/(p+1)[log2 k]qα/(p+1) = k−α/(p+1) [log2 k]
β+ αq

p+1 .

Case 2: p = 0 and q < 1. For this range of p and q we have r(n) . n log2 n. In this
case, for each k ∈ N large enough we consider n = n(k), given as

n = dk[log2 k]−1e < 2k[log2 k]−1,

and for k large enough we have

r(n) . k[log2 k]−1 log2(k[log2 k]−1) = k[log2 k]−1 [log2 k − log2(log2 k)] .

Using the fact that log2 k− log2(log2 k) � log2 k, we conclude that r(n) . k, and as in Case
1, we have that

εck(K)X ≤ εr(n)(K)X ≤ 3dγnn (K)X . [log2 n]βn−α . [log2(k[log2 k]−1)]β[k[log2 k]−1]−α

= [log2 k − log2(log2 k)]β k−α[log2 k]α . k−α[log2 k]β+α,

and the proof for this particular case is completed.
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Now, when 0 < dγnn (K)X . 2−cn, it follows from (.9) that

r(n) . n(ϕ(n) + n) . dnp+1[log2 n]q + n2e.

Case 1: 0 ≤ p < 1 and q ∈ R or p = 1 and q ≤ 0. For this range of p and q we have
r(n) . n2. In this case, for each k ∈ N large enough we consider n = n(k) given by
n = d

√
ke ≤ 2

√
k, and for k large enough we have r(n) . k and thus

εc̃k(K)X ≤ εr(n)(K)X ≤ 3dγnn (K)X . 2−cn . 2−c
√
k.

Case 2: p > 1 and q ∈ R or p = 1 and q > 0. In this case r(n) . np+1[log2 n]q, and
for each k ∈ N large enough, we define n = n(k) via

n = dk1/(p+1)[log2 k]−q/(p+1)e < 2k1/(p+1)[log2 k]−q/(p+1),

and for k large enough, as before, we have

r(n) .
[
k1/(p+1)[log2 k]−q/(p+1)

]p+1
[log2(k1/(p+1)[log2 k]−q/(p+1))]q

= k[log2 k]−q
[
(p+ 1)−1 log2 k −

q

p+ 1
log2(log2 k)

]q
. k[log2 k]−q [log2 k]q = k.

Therefore, we obtain

εc̃k(K)X . d
γn
n (K)X . 2−cn ≤ 2−c[k[log2 k]−q ]1/(p+1)

.

This completes the proof of the lemma. �
We now state and proof a lemma that we used in §5.4 and §5.5.

Lemma 30 Let Σn, n ∈ N, be compact subsets of a Banach space Y which is continuously
embedded in the Banach space X and let (ξn)∞n=1 be a sequence of non-negative numbers such
that infn ξn = 0 ( in particular limn→∞ ξn = 0). If Vn := {f ∈ X : dist(f,Σn)X ≤ ξn},
then the set K :=

⋂∞
n=1 Vn is compact in X.

Proof: Since each Σn is a compact set, each Vn is a closed and bounded subset of X. This
implies that K is closed and bounded (possibly empty) subset of X. To prove that K is
compact, we argue via contradiction. Let us assume that there exists δ > 0 and a sequence
of elements (fj)

∞
j=1 ⊂ K such that ‖fj − fj′‖X ≥ δ whenever j 6= j′. Let us fix n such

that ξn ≤ δ/3. Since (fj)
∞
j=1 ⊂ Vn, for j ∈ N we have fj = vj + qj , where vj ∈ Σn and

‖qj‖X ≤ ξn. Thus

‖vj − vj′‖X = ‖fj − fj′ − qj + qj′‖X ≥ ‖fj − fj′‖X − ‖qj‖X − ‖qj′‖X ≥ δ − 2ξn ≥ δ/3,

which means that δ/3 ≤ ‖vj − vj′‖X ≤ C‖vj − vj′‖Y , and thus Σn is not compact. The
proof is completed. �

We next state a simple lemma that we use in the proof of Lemma 32.

Lemma 31 The following holds
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• The function fα,β : [1,∞) → R, defined as fα,β(t) := t−α[log2 t]
β, for α > 0, β ∈ R

is bounded, monotonically decreasing on [1,∞) when β ≤ 0 and on [2β/α,∞) when
β ≥ 0.

• If ϕ : [1,∞)→ R is an increasing non-negative function then

∃ c1 > 1, such that sup
n∈N

ϕ(c1n)

ϕ(n)
<∞ ⇔ ∀ c > 1, sup

n∈N

ϕ(cn)

ϕ(n)
<∞.

Proof: The proof is simple calculus and we omit it. �

Lemma 32 Let (an) be a monotone non-increasing sequence and ϕ : [1,∞) → R be an
increasing non-negative function such that ϕ(n) → ∞ as n → ∞. If there is a constant
c > 1 such that

An :=
[log2(cnϕ(cn))]β

[cnϕ(cn)]α
. acnd 1

2
ϕ(cn)e .

[log2(nϕ(n))]β

[nϕ(n)]α
=: Bn, (.11)

then

• if the function ϕ is such that there is a constant c1 > 1 for which sup
n∈N

ϕ(c1n)

ϕ(n)
<∞

then am � (log2m)βm−α, m = 1, 2, . . . .

• if there is c > 1 such that sup
n∈N

ϕ(cn)

ϕ(n)
=∞, then the lower and upper bound in (.11)

are asymptotically different in the sense that

Bn
An
&


[
ϕ(cn)
ϕ(n)

]α [
log2

ϕ(cn)
ϕ(n)

]−β
, β > 0,

[
ϕ(cn)
ϕ(n)

]α
, β ≤ 0.

Proof: It follows from Lemma 31 that the quantity sup
n∈N

ϕ(c1n)

ϕ(n)
can be either finite for some

c1 > 1 (and therefore for all c > 1) or infinite for every c1 > 1. Let us first consider the

former case, which, according to the same lemma, gives that sup
n∈N

ϕ(cn)

ϕ(n)
:= ρ = ρ(c) <∞.

We next bound the quantity Bn
An

as

Bn
An

= cα
[

log2(nϕ(n))

log2(cnϕ(cn))

]β [ϕ(cn)

ϕ(n)

]α
=: cαRβnS

α
n ≤ C̃,

since Sn ≤ ρ and

1 ≤ R−1
n =

log2(cnϕ(cn))

log2(nϕ(n))
≤ log2(cρ) + log2(nϕ(n))

log2(nϕ(n))
= 1 +

log2(cρ)

log2 nϕ(n)
≤ c̃,
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for n large enough. Thus, (.11) becomes

An . acnd 1
2
ϕ(cn)e . An. (.12)

We now fix k and choose n = n(k) such that cnd1
2ϕ(cn)e < k ≤ c(n + 1)d1

2ϕ(c(n + 1))e.
Clearly, because of the monotonicity of (ak) and (.12), for such k we have

An+1 . ak . An. (.13)

Next, let us consider the ratio

An
An+1

=

[
log2(cnϕ(cn))

log2(c(n+ 1)ϕ(c(n+ 1)))

]β [(
1 +

1

n

)
ϕ(c(n+ 1))

ϕ(cn)

]α
=: P βnQ

α
n.

Note that AnAn+1
−1 ≤ C1. Indeed, since

ϕ(c(n+ 1))

ϕ(cn)
≤ ϕ(2cn)

ϕ(cn)
≤ ϕ(2cn)

ϕ(n)
=
ϕ(2cn)

ϕ(2n)

ϕ(2n)

ϕ(n)
≤ ρ(c)ρ(2),

we have

Qn =

(
1 +

1

n

)
ϕ(c(n+ 1))

ϕ(cn)
≤ 3

2
ρ(c)ρ(2),

and

1 ≤ P−1
n =

log2(c(n+ 1)ϕ(c(n+ 1)))

log2(cnϕ(cn))
≤ log2(2cnρ(c)ρ(2)ϕ(cn))

log2(cn) + log2(ϕ(cn))

=
1 + log2(cn) + log2(ϕ(cn)) + log2(ρ(c)ρ(2))

log2(cn) + log2 ϕ(cn)
= 1 +

log2(ρ(c)ρ(2))

log2(cn) + log2 ϕ(cn)
≤ 2,

for n large enough. Then, we can rewrite (.13) as

An . ak . An, for cnd1
2
ϕ(cn)e < k ≤ c(n+ 1)d1

2
ϕ(c(n+ 1))e.

For any k in this interval we have that

c

2
nϕ(cn) < k ≤ c(n+ 1)

(
1

2
ϕ(c(n+ 1)) + 1

)
< c(n+ 1)ϕ(c(n+ 1))

for n = n(k) big enough. Therefore, it follows from Lemma 31 that

fα,β(2k) ≤ fα,β(cnϕ(cn)) = An . ak . An . An+1= fα,β(c(n+ 1)ϕ(c(n+ 1))) ≤ fα,β(k),

which implies that ak � k−α[log2 k]β with constants depending on ρ, α and β.

Finally, in the case when there is a c > 1 such that sup
n∈N

ϕ(cn)

ϕ(n)
=∞ (and therefore this

holds for every c > 1), we have that

Bn
An

= cα
[

log2(nϕ(n))

log2(cnϕ(cn))

]β [ϕ(cn)

ϕ(n)

]α
≥ cα

[
ϕ(cn)

ϕ(n)

]α
, for β ≤ 0.
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When β > 0 we write ϕ(cn) = k(n)ϕ(n) and have

Bn
An

= cα[k(n)]α
[

log2(nϕ(n))

log2 c+ log2(k(n)) + log2(nϕ(n))

]β
.

We consider n large enough so that nϕ(n) ≥ c.
Case 1: If k(n) ≥ nϕ(n) we have that

Bn
An
& [log2(nϕ(n))]β

[k(n)]α

[3 log2(k(n))]β
&

k(n)α

[log2(k(n))]β
,

for n large enough.
Case 2: If k(n) < nϕ(n) we obtain that

Bn
An
& [k(n)]α

[
log2(nϕ(n))

2 log2(nϕ(n)) + log2 c

]β
≥ [k(n)]α3−β & [k(n)]α,

which concludes the proof of the lemma. We do not know whether in the case when

sup
n∈N

ϕ(cn)

ϕ(n)
=∞, the discrepancy of the behavior of Bn

An
for positive and negative β’s is

supported by examples or is due to our approach. �
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