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Abstract

In this paper, we consider a class of nonconvex-nonconcave minimax problems, i.e., NC-PL
minimax problems, whose objective functions satisfy the Polyak- Lojasiewicz (PL) condition
with respect to the inner variable. We propose a zeroth-order alternating gradient descent
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queries to obtain an ε-stationary point of ZO-AGDA and ZO-VRAGDA algorithm for
solving NC-PL minimax problem is upper bounded by O(ε−2) and O(ε−3), respectively.
To the best of our knowledge, they are the first two zeroth-order algorithms with the
iteration complexity gurantee for solving NC-PL minimax problems.
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1. Introduction

Consider nonconvex minimax problems under both the deterministic setting, i.e.,

min
x

max
y
f(x, y), (1)

and the stochastic setting with the objective function being an expectation function, i.e.,

min
x

max
y
g(x, y) = Eξ∼PG(x, y; ξ), (2)

where f(x, y), G(x, y; ξ) : Rd1 × Rd2 → R are smooth functions, possibly nonconvex in
variable x and nonconcave in variable y, ξ is a random variable following an unknown
distribution P, and E denotes the expectation function.

Recently, many applications such as adversarial attacks on deep neural networks (DNNs),
reinforcement learning, robust training, hyperparameters tuning and bandit convex opti-
mization in machine learning or deep learning fields (Chen et al., 2017; Finlay and Oberman,
2019; Snoek et al., 2012) are nonconvex minimax optimization problems in which only the
objective function but not the gradient information is available. In this paper, we consider
the same setting that the gradient of the function in the problems (1) and (2) cannot be
obtained directly, and the corresponding algorithm is called zeroth-order algorithm.

There are some existing works that focus on zeroth-order algorithms for solving minimax
optimization problems under the nonconvex-strongly concave setting. For example, for
solving (1) (resp. (2)), Wang et al. (2020) proposed two single-loop algorithms, i.e., ZO-
GDA and ZO-GDMSA (resp. ZO-SGDA and ZO-SGDMSA), and the total number of calls
of the zeroth-order oracle to obtain an ε-stationary point is bounded by O(κ5(d1 + d2)ε−2)
(resp. O(κ5(d1 +d2)ε−4)) and O(κ(d1 +κd2 log(ε−1))ε−2) (resp. O(κ(d1 +κd2 log(ε−1))ε−4))
respectively, where κ is the condition number. For solving (2), Liu et al. (2020) proposed an
alternating projected stochastic gradient descent-ascent method called ZO-Min-Max which
can find an ε-stationary point with the total complexity of O((d1 + d2)ε−6). There are
some multi-loop algorithms combined with variance-reduced or momentum techniques are
also proposed to solve (2). For example, Xu et al. (2020) proposed a variance reduced
gradient descent ascent (ZO-VRGDA) algorithm, which achieves the total complexity of
O(κ3(d1 + d2)ε−3), and Huang et al. (2020) proposed an accelerated momentum-based
descent ascent (Acc-ZOMDA) method with the total complexity of O(κ3(d1 + d2)3/2ε−3).

Under nonconvex-concave setting, the only zeroth-order algorithm that we know is the
ZO-AGP algorithm proposed by Xu et al. (2023a) and its iteration complexity is bounded
by O(ε−4) with the number of function value estimation per iteration being bounded by
O(d1 + d2).

1.1 Related Works

We give a brief review on first-order algorithms for solving minimax optimization problems.
For solving convex-concave minimax optimization problems, there are many existing works.
For instance, Nemirovski (2004) proposed a mirror-prox algorithm and Nesterov (2007) pro-
posed a dual extrapolation algorithm to solve smooth convex-concave minimax problems.
An extra-gradient algorithm and an optimistic gradient descent ascent algorithm to solve bi-
linear and strongly convex-strongly concave minimax optimization problems were proposed
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in (Mokhtari et al., 2020), and both of them own the iteration comlexity of O(κ log(1/ε)).
Lin et al. (2020b) proposed a near optimal algorithm for solving convex-concave minimax
optimization problems, which achieves a iteration complexity of O(ε−1). For nonconvex-
strongly concave minimax problems, Luo et al. (2020) proposed a stochastic recursive gradi-
ent descent ascent (SREDA) algorithm, and the gradient complexity of which is Õ(κ3ε−3).
For general nonconvex-concave minimax problem, many nested-loop algorithms have been
proposed in (Rafique et al., 2021; Nouiehed et al., 2019; Thekumparampil et al., 2019; Kong
and Monteiro, 2021; Ostrovskii et al., 2021; Yang et al., 2020b). To the best of our knowl-
edge, Lin et al. (2020b) proposed an accelerated algorithms called MINIMAX-PPA, which
has the best iteration complexity of Õ(ε−2.5) till now. Several single-loop methods were
also proposed to solve the problem. GDA-type algorithms (Chambolle and Pock, 2016;
Ho and Ermon, 2016; Daskalakis et al., 2017; Daskalakis and Panageas, 2018; Gidel et al.,
2018; Letcher et al., 2019; Lin et al., 2020a; Lu et al., 2020; Pan et al., 2021; Shen et al.,
2022; Zhang et al., 2020), which run a gradient descent step on x and a gradient ascent
step on y simultaneously at each iteration. Xu et al. (2023b) proposed a unified single-loop
alternating gradient projection (AGP) algorithm for solving nonconvex-(strongly) concave
and (strongly) convex-nonconcave minimax problems, which can find an ε-stationary point
with the gradient complexity of O(ε−4).

Now we give a brief introduction about variance reduced algorithms for minimax opti-
mization. The variance reduced technique was first proposed for sloving general minimiza-
tion optimization problem, and many classical algoritms including SAGA, SVRG, SARAH,
SPIDER and SpiderBoost all employ variance reduced technique (Defazio et al., 2014; Reddi
et al., 2016; Johnson and Zhang, 2013; Allen-Zhu and Hazan, 2016; Allen-Zhu, 2017; Nguyen
et al., 2017a,b, 2021; Fang et al., 2018; Wang et al., 2018). For nonconvex-strongly con-
cave minimax optimization, several variance reduction methods have been proposed for
solving minimax optimization, such as PGSVRG (Rafique et al., 2021), the SAGA-type
algorithm (Wai et al., 2019), and SREDA (Luo et al., 2020). However, to the best of our
knowledge, there are no zeroth-order algorithms utilizing variance reduction techniques for
solving general nonconvex-concave minimax optimization problems.

In this paper, we consider a class of nonconvex-nonconcave minimax problems, i.e., the
nonconvex-PL (NC-PL) minimax problems, for which we assume f(x, y) in (1) and (2)
satisfies the Polyak- Lojasiewicz (PL) condition with respect to y, which is the same as in
(Nouiehed et al., 2019; Yang et al., 2020b,a). This condition was originally introduced by
(Polyak, 1963) and is proved to be weaker than strong convexity in (Karimi et al., 2016).
The PL condition has also drawn much attention in machine learning and deep learning
problems, and has been shown to hold in linear quadratic regulators (Fazel et al., 2018), as
well as overparametrized neural networks (Liu et al., 2022). For NC-PL minimax problems,
we propose a zeroth-order alternating gradient descent ascent (ZO-AGDA) algorithm and a
zeroth-order variance reduced alternating gradient descent ascent (ZO-VRAGDA) algorithm
for solving (1) and (2) with the total number of function value queries of O(ε−2) and
O(ε−3) respectively. To the best of our knowledge, they are the first two zeroth-order
algorithms with the complexity gurantee for solving NC-PL minimax problems under both
the deterministic and the stochastic setting.
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2. Preliminaries

2.1 Notations

Throughout the paper, we use the following notations. 〈x, y〉 denotes the inner product
of two vectors of x and y. ‖ · ‖ denotes the Euclidean norm. We use Rd1 to denote the
space of d1 dimension real valued vectors. Eu(·) means the expectation over the random
vector u, E(u,ξ)(·) means the joint expectation over the random vector u and the random
variable ξ, and E(U,B) denotes the joint expectation over the set U of random vectors and
the set B of random variables {ξ1, · · · , ξb}. Denote Φ(x) = max

y
f(x, y), Φ∗ = min

x
Φ(x) and

Ψ(x) = max
y
g(x, y), Ψ∗ = min

x
Ψ(x).

2.2 Zeroth-Order Gradient Estimator

For solving problems (1) and (2), since the gradient information is not available directly,
we first introduce the idea of uniform smoothing gradient estimator (UniGE). Specifically,
for (1), the UniGE of ∇xf(x, y) and ∇yf(x, y) are respectively defined as

∇̂xf(x, y) =
f(x+ µ1u, y)− f(x, y)

µ1/d1
u, (3)

∇̂yf(x, y) =
f(x, y + µ2v)− f(x, y)

µ2/d2
v, (4)

where µ1, µ2 are two smoothing parameters, u ∈ Rd1 and v ∈ Rd2 are random vectors that
are generated from the uniform distribution over d1-dimensional and d2-dimensional unit
sphere respectively. For convenience, for any u ∈ Rd1 and v ∈ Rd2 , we denote

fµ1(x, y) = Euf(x+ µ1u, y),

fµ2(x, y) = Evf(x, y + µ2v).

Note that Eu(∇̂xf(x, y)) = ∇xfµ1(x, y) and Ev(∇̂yf(x, y)) = ∇yfµ2(x, y) by Lemma 5 in
(Ji et al., 2019).

Similarly, for (2), given B = {ξ1, · · · , ξr} and B̄ = {ζ1, · · · , ζr} drawn i.i.d. from an
unknown distribution P, we respectively define the UniGE of ∇xG(x, y, ξ) and ∇yG(x, y, ζ)
as

∇̂xG(x, y;B) =
1

r

r∑
i=1

∇̂xG(x, y; ξi) =
1

r

r∑
i=1

G(x+ µ1ui, y; ξi)−G(x, y; ξi)

µ1/d1
ui,

∇̂yG(x, y; B̄) =
1

r

r∑
i=1

∇̂yG(x, y; ζi) =
1

r

r∑
i=1

G(x, y + µ2vi; ζi)−G(x, y; ζi)

µ2/d2
vi,

where ui ∈ Rd1 and vi ∈ Rd2 are random vectors generated from the uniform distribution
over d1-dimensional and d2-dimensional unit sphere respectively. We also denote that

gµ1(x, y) = E(u,ξ)G(x+ µ1u, y; ξ),

gµ2(x, y) = E(v,ζ)G(x, y + µ2v; ζ)

4



Zeroth-Order AGDA Algorithms for Nonconvex-Nonconcave Minimax Problems

for any u ∈ Rd1 and v ∈ Rd2 .

Note that for any random variable ξ, we have E(u,ξ)[∇̂xG(x, y; ξ)] = ∇xgµ1(x, y) and

E(v,ζ)[∇̂yG(x, y; ζ)] = ∇ygµ2(x, y) by Lemma 5 in (Ji et al., 2019). Then obviously we

have E(U,B)[∇̂xG(x, y;B)] = ∇xgµ1(x, y) and E(V,B̄)[∇̂yG(x, y; B̄)] = ∇ygµ2(x, y) where U =
{u1, · · · , ur} and V = {v1, · · · , vr}.

Actually, there are two major zeroth-order gradient estimators that are usually used
in previous exisiting works. One is the UniGE, which has also been used in some other
existing works, e.g., (Liu et al., 2020; Bravo et al., 2018; Ji et al., 2019; Huang et al., 2020;
Xu et al., 2023a). Another commonly used zeroth-order gradient estimator is Gaussian
gradient estimator (Ghadimi et al., 2016; Nesterov and Spokoiny, 2017; Fazel et al., 2018),
which can not lead to a better iteration complexity than that of UniGE when used in the
two proposed algorithms that shown in the following sections.

3. A Zeroth-Order Algorithm for Deterministic NC-PL Minimax
Problems

The alternating gradient descent ascent (AGDA) algorithm is a well-known method for
solving minimax problems, and has widely been studied in (Letcher et al., 2019; Chambolle
and Pock, 2016; Daskalakis et al., 2017; Daskalakis and Panageas, 2018; Lin et al., 2020a).
ZO-AGDA algorithm is a randomized version of AGDA algorithm, and is not a new algo-
rithm, which has been proposed in (Liu et al., 2020; Wang et al., 2020). However, the two
existing zeroth-order versions of the AGDA algorithm are designed and analyzed for solving
nonconvex-strongly concave minimax problems. For NC-PL minimax problems, there is no
existing algorithms with complexity guarantee before. In this section, we propose a zeroth-
order alternating gradient descent ascent (ZO-AGDA) algorithm for solving (1), i.e., the
deterministic NC-PL problem, and analyze its iteration complexity. The detailed algorithm
is listed as follows. For simplicity, in the following analysis, we denote st = ∇̂xf(xt, yt) and

Algorithm 1 (ZO-AGDA Algorithm)

Step 1 Input x1, y1, α, β; Set t = 1.

Step 2 Perform the following update for xt:

xt+1 = xt − α∇̂xf(xt, yt) (5)

with ∇̂xf(xt, yt) being defined as in (3);
Step 3 Perform the following update for yt:

yt+1 = yt + β∇̂yf(xt+1, yt) (6)

with ∇̂yf(xt+1, yt) being defined as in (4);
Step 4 If converges, stop; otherwise, set t = t+ 1, go to Step 2.

wt = ∇̂yf(xt+1, yt).
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3.1 Technical Preparations

In this section, we analyze the iteration complexity of the ZO-AGDA algorithm for solving
(1).

Firstly, we give some mild assumptions for (1).

Assumption 1 For any fixed x,max
y
f(x, y) has a nonempty solution set and a finite op-

timal value. f(x, y) satisfies the Polyak- Lojasiewicz (PL) condition in y, i.e., ∀x, y, there
exists a µ > 0 such that ‖∇yf(x, y)‖2 > 2µ [max

y
f(x, y)− f(x, y)].

Assumption 2 f(x, y) has Lipschitz continuous gradients, i.e., there exists a constant
l > 0 such that ∀x1, x2 ∈ Rd1, y1, y2 ∈ Rd2,

‖∇xf(x1, y1)−∇xf(x2, y2)‖ 6 l[‖x1 − x2‖+ ‖y1 − y2‖],
‖∇yf(x1, y1)−∇yf(x2, y2)‖ 6 l[‖x1 − x2‖+ ‖y1 − y2‖].

Lemma 1 (Lemma 4.1(a) in (Gao et al., 2018)) If Assumption 2 holds, then fµ1(x, y)
and fµ2(x, y) have Lipschitz continuous gradients, and it holds that

‖∇xfµ1(x, y)−∇xf(x, y)‖2 6
µ2

1d
2
1l

2

4
, (7)

‖∇yfµ2(x, y)−∇yf(x, y)‖2 6
µ2

2d
2
2l

2

4
, (8)

E‖d1[f(x+ µ1u, y)− f(x, y)]

µ1
u‖2 6 2d1‖∇xf(x, y)‖2 +

µ2
1d

2
1l

2

2
, (9)

E‖d2[f(x, y + µ2v)− f(x, y)]

µ2
v‖2 6 2d2‖∇yf(x, y)‖2 +

µ2
2d

2
2l

2

2
. (10)

Lemma 2 (Lemma A.5 in (Nouiehed et al., 2019) ) If Assumptions 1 and 2 hold,
then ∇Φ(x) = ∇xf(x, y∗(x)), for any y∗(x) ∈ arg max

y
f(x, y), and Φ(·) is L-smooth with

L := l + l2

2µ .

Lemma 3 If Assumptions 1 and 2 hold, then for any given x and y, we have

‖∇xf(x, y)−∇Φ(x)‖2 6 κ2‖∇yf(x, y)‖2, (11)

where κ = l/µ.

Proof If Assumptions 1 and 2 hold, then by Theorem 1 in (Karimi et al., 2016), for any
given x, and ∀y,

‖∇yf(x, y)‖ > µ‖ŷ∗(x, y)− y‖, (12)

where ŷ∗(x, y) = arg min{‖y − y∗(x)‖ | y∗(x) ∈ arg max
y

f(x, y)}. Then, by Assumption 2

and (12), we obtain

‖∇xf(x, y)−∇Φ(x)‖2 6 l2‖y − ŷ∗(x, y)‖2 6 κ2‖∇yf(x, y)‖2.
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3.2 Complexity Analysis

We first give the ε-stationary point definition of (1) as follows, which is also used in (Yang
et al., 2022).

Definition 4 x̂ is an ε-stationary point of (1) if E‖∇Φ(x̂)‖ 6 ε.

Lemma 5 Denote Vt = 3
2Φ(xt)− 1

2f(xt, yt). If Assumptions 1 and 2 hold, and if β 6 1
4d2L

,

α 6 min{ β
32κ2

, 1
10d1L

}, we get

EVt − EVt+1 >
α

4
E‖∇Φ(xt)‖2 −

θ1

4
µ2

1 −
3d2

2L
2β

16
µ2

2, (13)

where θ1 = (5d1L+ 3
2α + 3

2L+ d2L)d2
1L

2α2.

Proof By Assumption 2 and (6), we can get

f(xt+1, yt+1) > f(xt+1, yt) + 〈∇yf(xt+1, yt), yt+1 − yt〉 −
l

2
‖yt+1 − yt‖2

= f(xt+1, yt) + 〈∇yf(xt+1, yt), βωt〉 −
l

2
β2‖ωt‖2.

Similarly, by Assumption 2 and (5), we have

f(xt+1, yt) ≥ f(xt, yt) + 〈∇xf(xt, yt), xt+1 − xt〉 −
l

2
‖xt+1 − xt‖2

= f(xt, yt)− 〈∇xf(xt, yt), αst〉 −
l

2
α2‖st‖2.

Taking expectation of the above two inequalities, we get

Ef(xt+1, yt+1)− Ef(xt+1, yt)

> βE〈∇yf(xt+1, yt),∇yfu(xt+1, yt)〉 −
l

2
β2E‖ωt‖2, (14)

and

Ef(xt+1, yt)− Ef(xt, yt)

> −αE〈∇xf(xt, yt),∇xfu(xt, yt)〉 −
l

2
α2E‖st‖2. (15)

Combining (14) and (15), we obtain

Ef(xt+1, yt+1)− Ef(xt, yt)

> βE〈∇yf(xt+1, yt),∇yf(xt, yt)〉 −
l

2
β2E‖wt‖2

− αE〈∇xf(xt, yt),∇xfµ(xt, yt)〉 −
l

2
α2E‖st‖2

=
β

2
E‖∇yf(xt+1yt)‖2 −

β

2
E‖∇yf(xt+1,yt)−∇yfµ(xt+1, yt)‖2

+
β

2
E‖∇yfµ(xt+1, yt)‖2 −

l

2
β2E‖wt‖2 +

α

2
E‖∇xf(xt, yt)−∇xfµ(xt, yt)‖2

− α

2
E‖∇xf(xt, yt)‖2 −

α

2
E‖∇xfµ(xt, yt)‖2 −

l

2
α2E‖st‖2, (16)
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where the last equality is due to a simple fact that 2〈a, b〉 = ‖a + b‖2 − ‖a‖2 − ‖b‖2. By
L-smoothness of Φ in Lemma 2 and (5), we get

Φ(xt+1) 6 Φ(xt) + 〈∇Φ(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= Φ(xt)− α〈∇Φ(xt), st〉+
L

2
α2‖st‖2.

Taking expectation of both side and using the fact that 2〈a, b〉 = ‖a+ b‖2−‖a‖2−‖b‖2, we
get

EΦ(xt+1)− EΦ(xt)

6 −αE〈∇Φ(xt),∇xfµ(xt, yt)〉+
L

2
α2E‖st‖2

=
α

2
E‖∇Φ(xt)−∇xfµ(xt, yt)‖2 (17)

− α

2
E‖∇Φ(xt)‖2 −

α

2
E‖∇xfµ(xt, yt)‖2 +

L

2
α2E‖st‖2

6 αE‖∇Φ(xt)−∇xf(xt, yt)‖2 + αE‖∇xf(xt, yt)−∇xfµ(xt, yt)‖2

− α

2
E‖∇Φ(xt)‖2 −

α

2
E‖∇xfµ(xt, yt)‖2 +

L

2
α2E‖st‖2

6 ακ2‖∇yf(xt, yt)‖2 + αE‖∇xf(xt, yt)−∇xfµ(xt, yt)‖2

− α

2
E‖∇Φ(xt)‖2 −

α

2
E‖∇xfµ(xt, yt)‖2 +

L

2
α2E‖st‖2, (18)

where the second last inequailty is by the Cauchy-Schwarz inequality and the last inequality
is by Lemma 3. Combining (16) and (18) and by the definition of Vt, after rearranging the
terms, we can get that

EVt − EVt+1

>
3α

4
E‖∇Φ(xt)‖2 +

3α

4
E‖∇xfµ(xt, yt)‖2

− 3L

4
α2E‖st‖2 −

3α

2
κ2E‖∇yf(xt, yt)‖2

− 3α

2
E‖∇xf(xt, yt)−∇xfµ(xt, yt)‖2 +

β

4
E‖∇yf(xt+1, yt)‖2

− l2

4
β2E‖ωt‖2 −

α

4
E‖∇xfµ(xt, yt)‖2 −

l

4
α2E‖st‖2

− β

4
E‖∇yf(xt+1, yt)−∇yfµ(xt+1, yt)‖2 −

α

4
E‖∇xf(xt, yt)‖2

>
3α

4
E‖∇Φ(xt)‖2 +

α

2
E‖∇xfµ(xt, yt)‖2 − Lα2E‖st‖2

− 3α

2
κ2E‖∇yf(xt, yt)‖2 −

3α

2
E‖∇xf(xt, yt)−∇xfµ(xt, yt)‖2

+ (
β

4
− β2

2
d2L)E‖∇yf(xt+1, yt)‖2 −

β

4
E‖∇yf(xt+1, yt)−∇yfµ(xt+1, yt)‖2

− α

4
E‖∇xf(xt, yt)‖2 −

L3

8
β2µ2

2d
2
2, (19)
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where the second inequality is due to that β
4 −

β2

2 d2L > 0 when β 6 1
4d2L

and by replacing
l with L since l 6 L and (10) in Lemma 1. On the other hand, by the Cauchy-Schwarz
inequality and (11) in Lemma 3, we have

‖∇xf(xt, yt)‖2 6 2‖∇xf(xt, yt)−∇Φ(xt)‖2 + 2‖∇Φ(xt)‖2

6 2κ2‖∇yf(xt, yt)‖2 + 2‖∇Φ(xt)‖2. (20)

By using a simple inequality that ‖a‖2 > ‖b‖2/2−‖a−b‖2, Assumption 2 and the definition
of st, we can easily get

‖∇yf(xt+1, yt)‖2 >
1

2
‖∇yf(xt, yt)‖2 − ‖∇yf(xt+1, yt)−∇yf(xt, yt)‖2

>
1

2
‖∇yf(xt, yt)‖2 − l2α2‖st‖2. (21)

Denote G1 = Lα2 + (β4 −
β2

2 d2L)L2α2 and G2 = β
8 −

L
4 d2β

2 − 2ακ2. By plugging (20) and
(21) into (19) and rearranging all the terms, we obtain

EVt − EVt+1

>
α

4
E‖∇Φ(xt)‖2 +

α

2
E‖∇xfµ(xt, yt)‖2 −G1E‖st‖2

+G2E‖∇yf(xt, yt)‖2 −
3α

2
E‖∇xf(xt, yt)−∇xfµ(xt, yt)‖2

− β

4
E‖∇yf(xt+1, yt)−∇yfµ(xt+1, yt)‖2 −

L3

8
β2µ2

2d
2
2. (22)

By (9) in Lemma 1, we can compute that

E‖st‖2 6 4d1E‖∇xf(xt, yt)−∇xfµ(xt, yt)‖2 + 4d1E‖∇xfµ(xt, yt)‖2 +
µ2

1d
2
1l

2

2
. (23)

By plugging (23) into (22),

EVt − EVt+1

>
α

4
E‖∇Φ(xt)‖2 + (

α

2
− 4d1G1)E‖∇xfµ(xt, yt)‖2

+G2E‖∇yf(xt, yt)‖2 − (
3α

2
+ 4d1G1)E‖∇xf(xt, yt)−∇xfµ(xt, yt)‖2

− β

4
E‖∇yf(xt+1, yt)−∇yfµ(xt+1, yt)‖2 −

µ2
1

2
G1d

2
1l

2 − L3

8
β2µ2

2d
2
2. (24)

When β 6 1
4d2L

6 1
L and α 6 min{ β

32κ2
, 1

10d1L
}, it can be easily checked that α

2 −4d1G1 > 0,
3α
2 + 4d1G1 6 3

2α + 4d1α
2L+ d1βL

2α2, and G2 = β
8 (1− 2βLd2)− 2ακ2 > β

16 − 2ακ2 > 0.
The proof is then completed by combining (24) and (8) in Lemma 1.

Denote T (ε) := min{t | E‖∇Φ(xt)‖ 6 ε}, which means the minimal number of iterations to
obtain an ε-stationary point.
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Theorem 6 Suppose that Assumptions 1 and 2 hold, and Φ∗ exists and is a finite value.

Let µ1 =
√
αε

2
√
θ1
, µ2 =

√
αε√

3βd2L
. If α 6 min{ β

32κ2
, 1

10d1L
} and β 6 1

4d2L
, we have

T (ε) 6
4[3Φ(x0)− f(x0, y0)− 2Φ∗]

αε2
.

Proof Telescoping and rearranging (13), we get

T (ε)−1∑
t=0

E‖∇Φ(xt)‖2

6
4

α

[
V0 −min

x,y

(
3

2
Φ(x)− 1

2
f(x, y)

)]
+
θ1

α
µ2

1T (ε) +
3d2

2L
2β

4α
µ2

2T (ε).

By the definitions of T (ε), µ1 and µ2, we have

ε2 6
4

αT (ε)

[
V0 −min

x,y

(
3

2
Φ(x)− 1

2
f(x, y)

)]
+
ε2

2

6
4

αT (ε)
[V0 − Φ∗] +

ε2

2
(25)

=
2

αT (ε)
[3Φ(x0)− f(x0, y0)− 2Φ∗] +

ε2

2
, (26)

where the second inequality is due to Φ(x) > f(x, y) by the definition of Φ(x). The proof
is completed by (26).

By choosing β = 1
4d2L

and α = min{ β
32κ2

, 1
10d1L

} in Theorem 6, we can easily compute

that µ1 = O(
√

κ2d2+d1
d2+d1

· ε
d1L

), µ2 = O( µ
1+µ
√
d1d2
· ε
d2L2 ) and T (ε) = O((κ2d2 + d1)Lε−2),

which means the iteration complexity of Algorithm 1 to find an ε-stationary point for (1)
is O(ε−2). Hence, by (3) and (4), the total number of function value queries of Algorithm
1 is 4 ∗ T (ε) which is the same order of O(ε−2).

4. A Zeroth-order Algorithm for Stochastic NC-PL Minimax Problems

In this section, we propose a new zeroth-order gradient descent ascent method with variance
reduction (ZO-VRAGDA) for solving (2), under the setting that only noisy function values
can be used. At each iteration, we approximate the the first order gradient by a zeroth-
order gradient estimator, and using variance reduction technique to improve the algorithm
which is similar to that in (Fang et al., 2018). Detailedly, we choose a relatively large
batch size in zeroth-order gradient estimator every q iterations, while a small batch size at
other iterations. The detailed algorithm is shown as in Algorithm 2. Note that the first-
order version of Algorithm 2 is similar to the VR-SMDA algorithm proposed in (Huang
et al., 2021). The main difference is that yt in Algorithm 2 is updated by xt instead of
xt−1 that used in the VR-SMDA algorithm. In other words, Algorithm 2 is a zeroth-order
alternating GDA algorithm, whereas the VR-SMDA algorithm is a first-order simultaneous
GDA algorithm.

Next, we give some mild assumptions for (2) which are also used in (Yang et al., 2022).
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Algorithm 2 (ZO-VRAGDA)

Step 1 Input x0, y0, q, α, β, B, b; Set t = 0.
Step 2 If mod (t, q) = 0, generate B samples, i.e., Bt = {ξit}Bi=1 and compute

mt = ∇̂xG(xt, yt;Bt); (27)

Otherwise, generate b samples, i.e., It = {ξit}bi=1 and compute

mt = ∇̂xG(xt, yt; It)− ∇̂xG(xt−1, yt−1; It) +mt−1; (28)

Update xt+1:
xt+1 = xt − αmt. (29)

Step 3 If mod (t, q) = 0, generate B samples, i.e., B̄t = {ζit}Bi=1 and compute

nt = ∇̂yG(xt+1, yt; B̄t); (30)

Otherwise, generate b samples, i.e., Īt = {ζit}bi=1 and compute

nt = ∇̂yG(xt+1, yt; Īt)− ∇̂yG(xt, yt−1; Īt) + nt−1. (31)

Update yt+1:
yt+1 = yt + βnt. (32)

Step 4 If converges, stop; otherwise, set t = t+ 1, go to Step 2.

Assumption 3 g(x, y) satisfies all the assumptions in Assumption 1.

Assumption 4 The variance of the zeroth-order stochastic gradient estimator is bounded,
i.e., there exists a constant σ > 0 such that for all x and y, it has

E(u,ξ)‖∇̂xG(x, y; ξ)−∇xgµ1(x, y)‖2 6 σ2,

E(v,ζ)‖∇̂yG(x, y; ζ)−∇ygµ2(x, y)‖2 6 σ2.

By Assumption 4, we can easily compute that E‖∇̂xG(x, y;B) − ∇xgµ1(x, y)‖2 6 σ2

r and

E‖∇̂yG(x, y; B̄)−∇ygµ2(x, y)‖2 6 σ2

r .

Assumption 5 For each component G(x, y; ξ) has Lipschitz continuous gradients, i.e.,
there exists a constant l̄ > 0 such that ∀x1, x2 ∈ Rd1, y1, y2 ∈ Rd2,

‖∇xG(x1, y1; ξ)−∇xG(x2, y2; ξ)‖ 6 l̄[‖x1 − x2‖+ ‖y1 − y2‖],
‖∇yG(x1, y1; ζ)−∇yG(x2, y2; ζ)‖ 6 l̄[‖x1 − x2‖+ ‖y1 − y2‖].

Lemma 7 g(x, y) has Lipschitz continuous gradients with constant l̄. Moreover, Ψ(·) is

L̄-smooth with L̄ := l̄ + l̄2

2µ .

11
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Proof By Jensen’s inequality and Assumption 5, ∀x1, x2 ∈ Rd1 , y1, y2 ∈ Rd2 , we have

‖∇xg(x1, y1)−∇xg(x2, y2)‖
=‖E[∇xG(x1, y1, ξ)−∇xG(x2, y2, ξ)]‖
6E‖∇xG(x1, y1, ξ)−∇xG(x2, y2, ξ)‖
6l̄[‖x1 − x2‖+ ‖y1 − y2‖].

Similarly, we can prove that ‖∇yg(x1, y1)−∇yg(x2, y2)‖ 6 l̄[‖x1−x2‖+‖y1−y2‖]. Moreover,

we can similarly prove that Ψ(·) is L̄-smooth with L̄ := l̄ + l̄2

2µ by Lemma 2.

Next, we analyze the iteration complexity of the ZO-VRAGDA algorithm for solving (2).

Definition 8 x̄ is an ε-stationary point of (2) if E‖∇Ψ(x̄)‖ 6 ε.

Lemma 9 If Assumption 5 holds, we have

Eg(xt+1, yt+1) >Eg(xt, yt) +
β

2
E‖∇yg(xt+1, yt)‖2 −

α

2
E‖∇xg(xt, yt)‖2

− β

2
E‖∇yg(xt+1, yt)− nt‖2 +

α

2
E‖∇xg(xt, yt)−mt‖2

+
β

2
(1− l̄β)E‖nt‖2 −

α

2
(1 + αl̄)E‖mt‖2. (33)

Proof Firstly, by Lemma 7 and (32), we have

Eg(xt+1, yt+1)− Eg(xt+1, yt)

> E〈∇yg(xt+1, yt), yt+1 − yt〉 −
l̄

2
E‖yt+1 − yt‖2

= E〈∇yg(xt+1, yt), βnt〉 −
l̄

2
β2E‖nt‖2

=
β

2
E‖nt‖2 +

β

2
E‖∇yg(xt+1, yt)‖2

− β

2
E‖∇yg(xt+1, yt)− nt‖2 −

l̄β2

2
E‖nt‖2

=
β

2
E‖∇yg(xt, yt)‖2 −

β

2
E‖∇yg(xt+1, yt)− nt‖2 +

β

2
(1− l̄β)E‖nt‖2, (34)

where the second last equality is by a simple fact that 〈ā, b̄〉 = 1
2‖ā‖

2 + 1
2‖b̄‖

2 − 1
2‖ā− b̄‖

2,
∀ā, b̄. Similarly, by Lemma 7 and (29), we obtain

Eg(xt+1, yt)− Eg(xt, yt)

>E〈∇xg(xt, yt), xt+1 − xt〉 −
l̄

2
E‖xt+1 − xt‖2

=− E〈∇xg(xt, yt), αmt〉 −
l̄

2
α2E‖mt‖2

=
α

2
E‖∇xg(xt, yt)−mt‖2 −

α

2
E‖∇xg(xt, yt)‖2 −

α

2
E‖mt‖2 −

l̄

2
α2E‖mt‖2

=
α

2
E‖∇xg(xt, yt)−mt‖2 −

α

2
E‖∇xg(xt, yt)‖2 −

α

2
(1 + αl̄)E‖mt‖2. (35)

12



Zeroth-Order AGDA Algorithms for Nonconvex-Nonconcave Minimax Problems

We complete the proof by adding (34) and (35).

Lemma 10 Suppose Assumptions 4 and 5 hold. Set pt = dt/qe. We have

E‖∇xgµ(xt, yt)−mt‖2

6
3d1 l̄

2

b

t−1∑
i=(pt−1)q

(E‖xi+1 − xi‖2 + E‖yi+1 − yi‖2) +
t−1∑

i=(pt−1)q

3l̄2µ2
1d

2
1

2b
+
σ2

B
, (36)

E‖∇ygµ(xt+1, yt)− nt‖2

6
3d2 l̄

2

b

t−1∑
i=(pt−1)q

(E‖xi+2 − xi+1‖2 + E‖yi+1 − yi‖2) +

t−1∑
i=(pt−1)q

3l̄2µ2
2d

2
2

2b
+
σ2

B
. (37)

Proof Denote ∇xGI(x, y) = ∇xgµ(x, y)− ∇̂xG(x, y; I) for a given index set I. Firstly, by
(28), for any index jt that satisfies (pt − 1)q + 1 ≤ jt ≤ t− 1, we have

E‖∇xgµ(xjt , yjt)−mjt‖2

=E‖∇xgµ(xjt , yjt)−mjt−1 − (mjt −mjt−1)‖2

=E‖∇xgµ(xjt−1, yjt−1)−mjt−1 +∇xGIjt (xjt , yjt)−∇xGIjt (xjt−1, yjt−1)‖2

=E‖∇xgµ(xjt−1, yjt−1)−mjt−1‖2

+ E‖∇xGIjt (xjt , yjt)−∇xGIjt (xjt−1, yjt−1)‖2, (38)

where the last equality is due to E[∇xGIjt (x, y)] = 0. Note that if {ξi}bi=1 are i.i.d. random

variables with zero mean, then E‖1
b

∑b
i=1 ξi‖2 = 1

bE‖ξi‖
2 for any i ∈ {1, · · · , b}. Then, by

using this fact, for any element ξ′jt ∈ Ijt , we have

E‖∇xGIjt (xjt , yjt)−∇xGIjt (xjt−1, yjt−1)‖2

=
1

b
E‖∇xgµ(xjt , yjt)− ∇̂xG(xjt , yjt ; ξ

′
jt)

−∇xgµ(xjt−1, yjt−1) + ∇̂xG(xjt−1, yjt−1; ξ′jt)‖
2

6
1

b
E‖∇̂xG(xjt , yjt ; ξ

′
jt)− ∇̂xG(xjt−1, xjt−1; ξ′jt)‖

2, (39)

where the last inequality is due to E‖ξ − E[ξ]‖2 = E‖ξ‖2 − ‖E[ξ]‖2 6 E‖ξ‖2. On the other
hand, by Assumption 5 and (102) in the proof of Lemma 29 in (Huang et al., 2020), we
have

E‖∇̂xG(xjt , yjt ; ξ
′
jt)− ∇̂xG(xjt−1, yjt−1; ξ′jt)‖

2

6
3l̄2µ2

1d
2
1

2
+ 3d1 l̄

2E(‖xjt − xjt−1‖2 + ‖yjt − yjt−1‖2). (40)
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Combing (38), (39) and (40), we obtain

E‖∇xgµ(xjt , yjt)−mjt‖2

6 E‖∇xgµ(xjt−1, yjt−1)−mjt−1‖2

+
1

b
[
3l̄2µ2

1d
2
1

2
+ 3d1 l̄

2E(‖xjt − xjt−1‖2 + ‖yjt − yjt−1‖2)]. (41)

Similar to the proof of (41), we have

E‖∇ygµ(xjt+1, yjt)− njt‖2

6E‖∇ygµ(xjt , yjt−1)− njt−1‖2

+
1

b
[
3l̄2µ2

2d
2
2

2
+ 3d2 l̄

2E(‖xjt+1 − xjt‖2 + ‖yjt − yjt−1‖2)]. (42)

Telescoping (41) and (42) over jt from (pt − 1)q + 1 to t, we have

E‖∇xgµ(xt, yt)−mt‖2

6E‖∇xgµ(x(pt−1)q, y(pt−1)q)−m(pt−1)q‖2

+
3d1 l̄

2

b

t−1∑
i=(pt−1)q

(E‖xi+1 − xi‖2 + E‖yi+1 − yi‖2) +

t−1∑
i=(pt−1)q

3l2µ2
1d

2
1

2b
(43)

and

E‖∇ygµ(xt+1, yt)− nt‖2

6E‖∇ygµ(x(pt−1)q+1, y(pt−1)q)− n(pt−1)q‖2

+
3d2 l̄

2

b

t−1∑
i=(pt−1)q

(E‖xi+2 − xi+1‖2 + E‖yi+1 − yi‖2) +

t−1∑
i=(pt−1)q

3l2µ2
2d

2
2

2b
. (44)

After plugging (27) and (30) into (43) and (44) respectively, by Assumption 4, and combing
(43) and (44), we complete the proof.

14



Zeroth-Order AGDA Algorithms for Nonconvex-Nonconcave Minimax Problems

Lemma 11 Suppose Assumptions 3, 4 and 5 hold. Let Ft = 3
2Ψ(xt)− 1

2g(xt, yt). Then we
have

EFt − EFt+1

>
α

4
E‖∇Ψ(xt)‖2 + [

α

2
(1− 2αL̄)− β

4
l̄2α2]E‖mt‖2

− 15αd1 l̄
2

2b

t−1∑
i=(pt−1)q

(α2E‖mi‖2 + β2E‖ni‖2)

− 3βd2 l̄
2

2b

t−1∑
i=(pt−1)q

[(2α2 + 6d1 l̄
2α4)E‖mi‖2 + (6d1 l̄

2α2β2 + β2)E‖ni‖2]

+ (
β

8
− 2ακ2)E‖∇yg(xt, yt)‖2 +

β

4
(1− l̄β)E‖nt‖2 −

5αµ2
1 l̄

2d2
1

8
− βµ2

2 l̄
2d2

2

8

−
t−1∑

i=(pt−1)q

(
9µ2

1α
2βd2

1d2 l̄
4

2b
+

15αl̄2µ2
1d

2
1

4b
+

3βl̄2µ2
2d

2
2

4b
)− (

5α

2
+
β

2
)
σ2

B
. (45)

Proof By L̄-smoothness of Ψ in Lemma 7, (29) and 〈ā, b̄〉 = 1
2‖ā‖

2 + 1
2‖b̄‖

2 − 1
2‖ā − b̄‖

2,
we get

EΨ(xt+1)

6EΨ(xt) + E〈∇Ψ(xt), xt+1 − xt〉+
L̄

2
E‖xt+1 − xt‖2

=EΨ(xt)− E〈∇Ψ(xt), αmt〉+
L̄

2
α2E‖mt‖2

=EΨ(xt) +
α

2
E‖∇Ψ(xt)−mt‖2 −

α

2
E‖∇Ψ(xt)‖2 −

α

2
E‖mt‖2 +

L̄

2
α2E‖mt‖2

=EΨ(xt) +
α

2
E‖∇Ψ(xt)−mt‖2 −

α

2
E‖∇Ψ(xt)‖2 −

α

2
(1− αL̄)E‖mt‖2

6EΨ(xt) + αE‖∇Ψ(xt)−∇xg(xt, yt)‖2 + αE‖∇xg(xt, yt)−mt‖2

− α

2
E‖∇Ψ(xt)‖2 −

α

2
(1− αL̄)E‖mt‖2, (46)

where in the last inequality we use the Cauchy-Schwarz inequality. Next, by mutiplying 3
2

and −1
2 on both sides of (46) and (33) respectively and then adding them together, after
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rearranging the terms and by the definition of Ft, we can obtain that

EFt − EFt+1

>
3α

4
E‖∇Ψ(xt)‖2 +

α

4
(2− 3αL̄− αl̄)E‖mt‖2 −

α

4
E‖∇xg(xt, yt)‖2

− 3α

2
E‖∇Ψ(xt)−∇xg(xt, yt)‖2 −

5α

4
E‖∇xg(xt, yt)−mt‖2

+
β

4
E‖∇yg(xt+1, yt)‖2 −

β

4
E‖∇yg(xt+1, yt)− nt‖2 +

β

4
(1− l̄β)E‖nt‖2

>
α

4
E‖∇Ψ(xt)‖2 +

α

2
(1− 2αL̄)E‖mt‖2 − 2αE‖∇Ψ(xt)−∇xg(xt, yt)‖2

− 5α

4
E‖∇xg(xt, yt)−mt‖2 +

β

4
E‖∇yg(xt+1, yt)‖2

− β

4
E‖∇yg(xt+1, yt)− nt‖2 +

β

4
(1− l̄β)E‖nt‖2, (47)

where the second inequality is by l̄ 6 L̄ and the fact that −1
2‖∇xg(xt, yt)‖2 > −‖∇Ψ(xt)−

∇xg(xt, yt)‖2 − ‖∇Ψ(xt)‖2. Next, by the Cauchy-Schwarz inequality, (29) and Assumption
5, we have

E‖∇yg(xt+1, yt)‖2

=E‖∇yg(xt+1, yt)−∇yg(xt, yt) +∇yg(xt, yt)‖2

>
E‖∇yg(xt, yt)‖2

2
− E‖∇yg(xt+1, yt)−∇yg(xt, yt)‖2

>
E‖∇yg(xt, yt)‖2

2
− l̄2α2E‖mt‖2. (48)

By (11) in Lemma 3, we get

E‖∇Ψ(xt)−∇xg(xt, yt)‖2 6 κ2E‖∇yg(xt, yt)‖2. (49)

By the Cauchy-Schwarz inequality, we have

E‖∇xg(xt, yt)−mt‖2 6 2E‖∇xg(xt, yt)−∇xgµ(xt, yt)‖2

+ 2E‖∇xgµ(xt, yt)−mt‖2, (50)

E‖∇yg(xt+1, yt)− nt‖2 6 2E‖∇yg(xt+1, nt)−∇ygµ(xt+1, yt)‖2

+ 2E‖∇ygµ(xt+1, yt)− nt‖2. (51)
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By plugging (48)-(51) into (47), we have

EFt − EFt+1

>
α

4
E‖∇Ψ(xt)‖2 + [

α

2
(1− 2αL̄)− β

4
l̄2α2]E‖mt‖2

− 5α

2
E‖∇xg(xt, yt)−∇xgµ(xt, yt)‖2 −

5α

2
E‖∇xgµ(xt, yt)−mt‖2

− β

2
E‖∇yg(xt+1, yt)−∇ygµ(xt+1, yt)‖2 −

β

2
E‖∇ygµ(xt+1, yt)− nt‖2

+ [
β

8
− 2ακ2]E‖∇yg(xt, yt)‖2 +

β

4
(1− l̄β)E‖nt‖2

>
α

4
E‖∇Ψ(xt)‖2 + [

α

2
(1− 2αL̄)− β

4
l̄2α2]E‖mt‖2

− 15αd1 l̄
2

2b

t−1∑
i=(pt−1)q

(E‖xi+1 − xi‖2 + E‖yi+1 − yi‖2)−
t−1∑

i=(pt−1)q

15αl̄2µ2
1d

2
1

4b

− 3βd2 l̄
2

2b

t−1∑
i=(pt−1)q

(E‖xi+2 − xi+1‖2 + E‖yi+1 − yi‖2)−
t−1∑

i=(pt−1)q

3βl̄2µ2
2d

2
2

4b

− 5αµ2
1 l̄

2d2
1

8
− βµ2

2 l̄
2d2

2

8
+ (

β

8
− 2ακ2)E‖∇yg(xt, yt)‖2 +

β

4
(1− l̄β)E‖nt‖2

− (
5α

2
+
β

2
)
σ2

B
, (52)

where the last inequaliy is by Lemma 10 and (8) in Lemma 1. Next, we estimate the upper
bound for E‖xi+2 − xi+1‖2, E‖xi+1 − xi‖2 and E‖yi+1 − yi‖2 in the right hand side of (52)
when (pt − 1)q ≤ i ≤ t− 1. By (29), (28) and the Cauchy-Schwarz inequality, we have

E‖xi+2 − xi+1‖2

=α2E‖mi+1‖2 6 2α2E‖mi‖2 + 2α2E‖mi+1 −mi‖2

=2α2E‖mi‖2 + 2α2E‖∇̂xG(xi+1, yi+1; Ii)− ∇̂xG(xi, yi;Ii)‖2

62α2E‖mi‖2 +
2α2

b

b∑
j=1

E‖∇̂xG(xi+1, yi+1; ξji )− ∇̂xG(xi, yi; ξ
j
i )‖

2, (53)

where the last inequality is by the fact that E‖
∑b

i=1 ηi‖2 6 b
∑b

i=1 E‖ηi‖2 for i.i.d random
variables {η1, · · · , ηb}. By (102) in the proof of Lemma 29 in (Huang et al., 2020), we have
that

E‖∇̂xG(xi+1, yi+1; ξ′i)− ∇̂xG(xi, yi; ξ
′
i)‖2

6
3l̄2µ2

1d
2
1

2
+ 3d1 l̄

2E(‖xi+1 − xi‖2 + ‖yi+1 − yi‖2). (54)

By pluggging (54) into (53), and using (29) and (32), we obtain

E‖xi+2 − xi+1‖2

6(2α2 + 6d1 l̄
2α4)E‖mi‖2 + 6d1 l̄

2α2β2E‖ni‖2 + 3l̄2α2µ2
1d

2
1. (55)
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The proof is then completed by plugging (55) into (52), and using E‖xi+1−xi‖2 = α2E‖mi‖2
and E‖yi+1 − yi‖2 = β2E‖ni‖2.

Set µ1 = ε√
35d21L̄

2+576κ2d21d2L̄
2

= O( ε

κd1d
1
2
2 L̄

), µ2 = ε√
112κ2d22L̄

2
= O( ε

κd2L̄
), q = b = κ

ε and

B = (40+128κ2)σ2

ε2
.

Theorem 12 Suppose Assumptions 3, 4 and 5 hold. If β 6 1
C with C = L̄ + 30d1L̄ +

6d2L̄+ 36d1d2L̄, α = β
16κ2

, we have

T (ε) 6
8[3Ψ(x0)− g(x0, y0)− 2Ψ∗]

αε2
. (56)

Proof Telescoping and rearranging (45), by l̄ 6 L̄ and q = b, we get

F0 − EFT (ε)

>
α

4

T (ε)−1∑
t=0

E‖∇Ψ(xt)‖2 +H1

T (ε)−1∑
t=0

E‖mt‖2 +H2

T (ε)−1∑
t=0

E‖nt‖2

+ [
β

8
− 2ακ2]

T (ε)−1∑
t=0

E‖∇yg(xt, yt)‖2 − [
5α

2
+
β

2
]
σ2

B
T (ε)− 15αL̄2d2

1

4
µ2

1T (ε)

− 3βL̄2d2
2

4
µ2

2T (ε)− 5αL̄2d2
1

8
µ2

1T (ε)− βL̄2d2
2

8
µ2

2T (ε)− 9α2βd2
1d2L̄

4

2
µ2

1T (ε), (57)

where H1 = [α2 (1− 2αL̄)− α2βL̄2

4 − 15α3d1L̄2

2 − 3βd2L̄2

2 (2α2 + 6α4d1L̄
2)], H2 = [β4 (1− L̄β)−

15αβ2d1L̄2

2 − 3β3d2L̄2

2 − 9α2β3d1d2L̄
4]. If β 6 1

C and α = β
16κ2

6 1
C , then H1 > α

2 − α
2L̄(5

4 +
15
2 d1 + 3d2 + 9d1d2) > 0, H2 > β

4 − β
2L̄(1

4 + 15
2 d1 + 3

2d2 + 9d1d2) > 0 and β
8 − 2ακ2 = 0.

Then from (57), we immediately have

F0 − EFT (ε)

>
α

4

T (ε)−1∑
t=0

‖∇Ψ(xt)‖2 − (
5

2
α+ 8ακ2)

σ2

B
T (ε)− 35

8
αL̄2µ2

1d
2
1T (ε)

− 14ακ2L̄2µ2
2d

2
2T (ε)− 72ακ2L̄2µ2

1d
2
1d2T (ε).

By the definition of T (ε), and the setting of µ1, µ2 and B, we have

ε2 6
4

αT (ε)

[
F0 −min

x,y

(
3

2
Ψ(x)− 1

2
g(x, y)

)]
+

3

4
ε2

6
4

αT (ε)
[F0 −Ψ∗] +

3

4
ε2

6
2

αT (ε)
[3Ψ(x0)− g(x0, y0)− 2Ψ∗] +

3

4
ε2, (58)

where the second inequality is due to Ψ(x) > g(x, y) by the definition of Ψ(x). The proof
is completed by (58).
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Figure 1: Performance of five tested algorithms for solving WGAN problem.

By choosing β = 1
C in Theorem 12, we can easily compute that T (ε) = O(κ2d1d2L̄ε

−2)

which implies the total number of function value queries are (4B
q + (q−1)8b

q ) ∗ T (ε) =

O(κ3d1d2L̄ε
−3) by the choices of b = κ

ε , B = (40+128κ2)σ2

ε2
and q = κ

ε for Algorithm 2
to find an ε-stationary point for (2).

5. Numerical Experiments

In this section, we consider a stochastic version of Algorithm 1 where ∇̂xf(xt, yt) and
∇̂yf(xt+1, yt) are replaced by ∇̂xG(xt, yt;Bt) and ∇̂yG(xt+1, yt; B̄t) with Bt = {ξit}Bi=1 and
B̄t = {ζit}Bi=1 respectively. We denote it as ZO-SAGDA algorithm. We test two numerical
experiments to show the efficiency of ZO-SAGDA algorithm and ZO-VRAGDA algorithm
for solving a Wasserstein GAN problem and a robust polynomial optimization problem.

5.1 Wasserstein GAN Problem

In this section, we first consider the following WGAN problem (Arjovsky et al., 2017),

min
ϕ1,ϕ2

max
φ1,φ2

f(ϕ1, ϕ2, φ1, φ2) , E(xreal,z)∼D(Dφ(xreal)−Dφ(Gϕ1,ϕ2(z)))− λ‖φ‖2,

where Gϕ1,ϕ2(z) = ϕ1 + ϕ2z, Dφ(x) = φ1x + φ2x
2, φ = (φ1, φ2), xreal is generated from a

normal distribution with mean ϕ∗1 = 0 and variance ϕ∗2 = 0.1 which are also the optimal
solutions, and variable z is generated from a normal distribution with mean 0 and variance
1. Set λ = 0.001 which is the same as that in (Yang et al., 2022).

We compare ZO-SAGDA algorithm and ZO-VRAGDA algorithm with three first-order
algorithms, i.e., SAGDA (Yang et al., 2022), Adam (Kingma and Ba, 2014) and RM-
Sprop (Tieleman and Hinton, 2012). Set B = 100 for all five tested algorithms. We set
q = b = 10, α = 0.1, β = 0.5 in ZO-VRAGDA, α = 0.1, β = 0.5 in ZO-SAGDA and
τ1 = 0.1, τ2 = 0.5 in SAGDA respectively. All the parameters of Adam algorithm and
RMSprop algorithm are chosen the same as that in (Kingma and Ba, 2014) and (Tieleman
and Hinton, 2012) respectively.

Figure 1 shows the average distance between ϕ and ϕ∗, the average change of the gradient
of the objective function with respect to x and y respectively of all the five test algorithms
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Figure 2: Performance of three algorithms for solving robust polynomial optimization prob-
lem.

as the number of iterations changes over 10 independent runs. The shaded part around 5
curves denotes the standard deviation. From Figure 1, we can find that both the proposed
ZO-SAGDA algorithm and the ZO-VRAGDA algorithm outperform Adam algorithm and
RMSprop algorithm, and approximate the performance of SAGDA algorithm which is a
first-order GDA algorithm.

5.2 Robust Polynomial Optimization Problem

We consider the following robust polynomial optimization problem (Bertsimas et al., 2010),

max
x∈C

min
‖y‖2≤0.5

f(x,y) := −2 (x1 − y1)6 + 12.2 (x1 − y1)5 − 21.2 (x1 − y1)4

− 6.2 (x1 − y1) + 6.4 (x1 − y1)3 + 4.7 (x1 − y1)2 − (x2 − y2)6

+ 11 (x2 − y2)5 − 43.3 (x2 − y2)4 + 10 (x2 − y2) + 74.8 (x2 − y2)3

− 56.9 (x2 − y2)2 + 4.1 (x1 − y1) (x2 − y2) + 0.1 (x1 − y1)2 (x2 − y2)2

− 0.4 (x2 − y2)2 (x1 − y1)− 0.4 (x1 − y1)2 (x2 − y2) , (59)

where C = {x1 ∈ (−0.95, 3.2), x2 ∈ (−0.45, 4.4)}.
We use the following regret function versus iteration t to measure the quality of the

solution obtained by three tested algorithms, which is also used in (Liu et al., 2020), i.e.,

Regret(t) = min
‖y‖2≤0.5

f (x∗,y)− min
‖y‖2≤0.5

f(x(t),y), (60)

where x(t) is the tth iteration point generated by the tested algorithm, x∗ = [−0.195, 0.284]T

and min‖y‖2≤0.5 f(x∗,y) = −4.33.
We compare ZO-SAGDA algorithm and ZO-VRAGDA algorithm with the SAGDA al-

gorithm (Yang et al., 2022), which is a first-order algorithm. Set B = 50 for all three tested
algorithms. We set q = 2, b = 10, α = 0.1, β = 0.1 in ZO-VRAGDA, α = 0.1, β = 0.1
in ZO-SAGDA and τ1 = 0.1, τ2 = 0.1 in SAGDA respectively. Note that, for ZO-SAGDA
algorithm and ZO-VRAGDA algorithm, instead of the exact function value, we use the
noisy function value with an additional normal distribution random noise with mean 0 and
variance 0.5 at each iteration.
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Figure 2 shows the average minimum achieved regret function value and the number of
function queries up to the tth iteration over 5 independent runs, which is the same as that
used in (Liu et al., 2020). From Figure 2, we can find that the performance of ZO-SAGDA
algorithm and ZO-VRAGDA algorithm is similar to that of SAGDA algorithm, which is a
first order algorithm. Moreover, the number of function value computation of ZO-VRAGDA
algorithm is much less than that of ZO-SAGDA algorithm at each iteration.

6. Conclusions and Discussions

In this paper, we propose a zeroth-order alternating gradient descent ascent (ZO-AGDA)
algorithm and a zeroth-order variance reduced alternating gradient descent ascent (ZO-
VRAGDA) algorithm for solving a class of nonconvex-nonconcave minimax problems, i.e.,
NC-PL minimax problem, under the deterministic and the stochastic setting respectively.
The total number of function value queries to obtain an ε-stationary point of ZO-AGDA and
ZO-VRAGDA algorithm for solving NC-PL minimax problem is upper bounded by O(ε−2)
and O(ε−3) respectively, both of which match the iteration complexity of the corresponding
first-order algorithms. To the best of our knowledge, ZO-AGDA and ZO-VRAGDA are
the first two zeroth-order algorithms with the complexity gurantee for solving NC-PL min-
imax problems. Our numerical results further demonstrate the efficiency of the proposed
algorithms which approximate the performance of the corresponding first-order algorithms.

Furthermore, note that there is another zeroth-order gradient estimator based on Gaus-
sian smoothing technique that proposed in (Nesterov and Spokoiny, 2017) which can be
used to estimate the true gradient similar as that in (3) and (4). For the corresponding
algorithms, we also can obtain the same total complexity result with Theorem 6 and The-
orem 12 that shown in Section 3 and Section 4 respectively. For the brevity of the article,
we omit the detailed proofs.

For more general nonconvex-nonconcave minimax problems that the PL conditions are
not satisfied, it is worthy of further in-depth study whether the iteration complexity of the
proposed algorithm can be guaranteed or not.
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