
Journal of Machine Learning Research 24 (2023) 1-43 Submitted 1/23; Revised 7/23; Published 7/23

Atlas: Few-shot Learning with
Retrieval Augmented Language Models

Gautier Izacard1,2,∗,† gautier@inflection.ai
Patrick Lewis1,∗,† patrick@cohere.com
Maria Lomeli1 marialomeli@meta.com
Lucas Hosseini1,† hoss@meta.com
Fabio Petroni1,† fabiopetroni@meta.com
Timo Schick1,† schick@meta.com
Jane Dwivedi-Yu1 janeyu@meta.com
Armand Joulin1,† ajoulin@meta.com
Sebastian Riedel1,3,† sriedel@meta.com
Edouard Grave1,† egrave@meta.com
1 Meta AI, 2 ENS, PSL University & Inria, 3 University College London

Editor: Ivan Titov

Abstract
Large language models have shown impressive few-shot results on a wide range of tasks.
However, when knowledge is key for such results, as is the case for tasks such as question
answering and fact checking, massive parameter counts to store knowledge seem to be needed.
Retrieval-augmented models are known to excel at knowledge intensive tasks without the
need for as many parameters, but it is unclear whether they work in few-shot settings.
In this work we present Atlas, a carefully designed and pre-trained retrieval-augmented
language model able to learn knowledge intensive tasks with very few training examples.
We perform evaluations on a wide range of tasks, including MMLU, KILT and Natural
Questions, and study the impact of the content of the document index, showing that it can
easily be updated. Notably, Atlas reaches over 42% accuracy on Natural Questions using
only 64 examples, outperforming a 540B parameter model by 3% despite having 50x fewer
parameters.
Keywords: retrieval augmented language models, information retrieval, language models

1. Introduction

Large language models (LLMs) are impressive few-shot learners (Brown et al., 2020; Rae
et al., 2021; Hoffmann et al., 2022; Chowdhery et al., 2022). They are able to learn new
tasks with very few examples or even from instructions alone. For this generalisation ability
to emerge, the key ingredients are scaling both the parameter count of the model, and the
size of the training data. Large language models owe this improvement to both a larger
computational budget, enabling more complex reasoning, and the ability to memorize more
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information related to downstream tasks from the larger training data. While it is intuitive
to assume that increased reasoning abilities lead to better generalisation, and hence few-shot
learning, the same is not true for in-parameter memorisation. Specifically, it is unclear to
what extent effective few-shot learning requires vast knowledge in the parameters of the
model.

In this paper, we investigate whether few-shot learning requires models to store a large
amount of information in their parameters, and if memorisation can be decoupled from
generalisation. To do so, we leverage the fact that memory can be outsourced and replaced by
an external non-parametric knowledge source by employing a retrieval-augmented architecture.
These models employ a non-parametric memory, for example a neural retriever over a large,
external, potentially non-static knowledge source to enhance a parametric language model.
In addition to their memorisation abilities, such architectures are attractive due to a number
of other established advantages in terms of adaptability, interpretability and efficiency (Guu
et al., 2020; Lewis et al., 2020; Yogatama et al., 2021; Borgeaud et al., 2021, inter alia).
However, retrieval-augmented models have yet to demonstrate compelling few-shot learning
capabilities. In this work we address this gap, and present Atlas, a retrieval-augmented
language model capable of strong few-shot learning, despite having lower parameter counts
than other powerful recent few-shot learners.

Atlas retrieves relevant documents based on the current context by using a general-
purpose dense retriever using a dual-encoder architecture, based on the Contriever (Izacard
et al., 2022). The retrieved documents are processed, along with the current context, by a
sequence-to-sequence model using the Fusion-in-Decoder architecture (Izacard and Grave,
2021a) that generates the corresponding output. We study the impact of different techniques
to train Atlas on its few-shot performance on a range of downstream tasks, including
question answering and fact checking. We find that jointly pre-training the components is
crucial for few-shot performance, and we carefully evaluate a number of existing and novel pre-
training tasks and schemes for this purpose. Atlas achieves strong downstream performance
in both few-shot and resource-rich settings. For example, with only 11B parameters, Atlas
achieves an accuracy of 42.4% on Natural Questions using 64 training examples (45.1% using
a Wikipedia-only index), outperforming PaLM (Chowdhery et al., 2022), a 540B parameter
model by almost 3 points, and 64.0% in a full data set setting with a Wikipedia index,
establishing a new state of the art by 8.1 points.

In summary we make the following contributions:

• A thorough study on how to design and train retrieval-augmented language models,
with a focus on downstream few-shot learning and sample efficiency.

• The findings of this study lead to a retrieval-augmented language model, called Atlas,
that exhibits few-shot abilities that emerge at lower scale than standard LLM.

• We provide an exploration of fine-tuning strategies to efficiently adapt both the retriever
and the language model to the task at hand.

• Thorough downstream experiments in few-shot settings, demonstrating state-of-the-art
results on few-shot Natural Questions (+2.8%), TriviaQA (+3.3%), FEVER (+5.1%),
and results on par with models with 15× more parameters on MMLU.
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Figure 1: We introduce Atlas, a retrieval-augmented language model that exhibits strong
few-shot performance on knowledge tasks, and uses retrieval during both pre-
training and fine-tuning.

• Experiments investigating full data set finetuning, setting new state-of-the-art results
in Natural Questions (+8.1%), TriviaQA (+9.3%) and 5 KILT Tasks.

• Experiments demonstrating the updateability and interpretability characteristics of
Atlas.

• Experiments demonstrating that a compressed index using product quantisation
achieves comparable performance as an uncompressed index while resulting in a 5x
memory reduction.

Our code, pre-trained Atlas checkpoints, and various supporting data are available at
https://github.com/facebookresearch/atlas

2. Method

Our approach follows the text-to-text framework (Raffel et al., 2019). This means that all
the tasks are framed as follows: the system gets a text query as input, and generates a text
output. For example, in the case of question answering, the query corresponds to the question
and the model needs to generate the answer. In the case of classification tasks, the query
corresponds to the textual input, and the model generates the lexicalized class label, that is
the word corresponding to the label. We give more examples of downstream tasks, from the
KILT benchmark in Figure 2. As many natural language processing tasks require knowledge,
our goal is to enhance standard text-to-text models with retrieval, which, as we hypothesise
in the introduction, may be crucial to endow models with few-shot capabilities.

2.1 Architecture

Our model is based on two sub-models: the retriever and the language model. When
performing a task, from question answering to generating Wikipedia articles, our model starts
by retrieving the top-k relevant documents from a large corpus of text with the retriever.
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Task Query Output
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False

Question
Answering

who is playing the halftime show at super bowl 2016 Coldplay

Entity Linking NTFS-3G is an open source <E>cross-platform</E>
implementation of the Microsoft Windows NTFS file
system with read-write support.

Cross-platform
software

Figure 2: Examples of query and output pairs for different tasks from KILT.

Then, these documents are fed to the language model, along with the query, which in turns
generates the output. Both the retriever and the language model are based on pre-trained
transformer networks, which we describe in more detail below.

2.1.1 Retriever

Our retriever module is based on the Contriever (Izacard et al., 2022), an information
retrieval technique based on continuous dense embeddings. The Contriever uses a dual-
encoder architecture, where the query and documents are embedded independently by a
transformer encoder (Huang et al., 2013; Karpukhin et al., 2020). Average pooling is applied
over the outputs of the last layer to obtain one vector representation per query or document.
A similarity score between the query and each document is then obtained by computing the
dot product between their corresponding embeddings. The Contriever model is pre-trained
using the MoCo contrastive loss (He et al., 2020), and uses unsupervised data only. As shown
in the following section, an advantage of dense retrievers is that both query and document
encoders can be trained without document annotation, using standard techniques such as
gradient descent and distillation.

2.1.2 Language Model

For the language model, we rely on the T5 sequence-to-sequence architecture (Raffel et al.,
2019). We rely on the Fusion-in-Decoder modification of sequence-to-sequence models, and
process each document independently in the encoder (Izacard and Grave, 2021a). We then
concatenate the outputs of the encoder corresponding to the different documents, and perform
cross-attention over this single sequence in the decoder. Following Izacard and Grave (2021a),
we concatenate the query to each document in the encoder. Another way to process the
retrieved documents in the language model would be to concatenate the query and all the
documents, and to use this long sequence as input of the model. Unfortunately, this approach
does not scale with the number of documents, since the self-attention in the encoder results
in a quadratic complexity with respect to the number of documents.
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2.2 Training Objectives for the Retriever

In this section, we discuss four different loss functions to train the retriever jointly with the
language model. We consider loss functions that leverage the language model to provide
supervisory signal to train the retriever. In other words, if the language model finds a
document useful when generating the output, the retriever objective should encourage the
retriever to rank said document higher. This allows us to train models using only query
and output pairs from the task of interest, without relying on document annotations. For
example, in the case of fact checking, a model only requires pairs of claims and corresponding
verdicts but no documents containing the evidence to back up the verdict. In practice, we
can apply this approach on any task, including self-supervised pre-training. As shown in
the experimental section, pre-training is critical for obtaining models that exhibit few-shot
learning abilities.

2.2.1 Attention Distillation (ADist)

The first loss that we consider is based on the attention scores of the language model, and is
heavily inspired by Izacard and Grave (2021b). The main idea is that the cross-attention
scores between the input documents and the generation can be used as a proxy of the
importance of each input document when generating the output. In particular, Izacard and
Grave (2021b) showed that these scores can be aggregated across attention heads, layers
and tokens for a given document to obtain a single score for each document. Then, these
scores are distilled into the retriever by minimizing the KL-divergence with the probability
distribution pretr over the top-K documents {dk}1,...,K obtained from the retriever:

pretr (d | q) =
exp(s(d,q)/θ)∑K

k=1 exp(s(dk,q)/θ)
, (1)

where s is the dot-product between the embedding vectors of the query and documents and
θ is a temperature hyperparameter.

In the original paper, to obtain a relevance score per document it was proposed to
use the pre-softmax scores from the decoder cross-attentions, and average across heads,
layers and tokens. Here, we use the pre-softmax score multiplied by the norm of the
values, an alternative which gives slightly stronger results. First, let us briefly review the
Fusion-in-Decoder model (FiD, Izacard and Grave, 2021a). The underlying architecture
is a sequence-to-sequence model, composed of an encoder and a decoder. The encoder
independently processes K different text inputs (input(dk))1≤k≤K , where input(d) is the
concatenation of the input query and the retrieved document d. The output representations of
the encoder are then concatenated to form a global representation X of dimension (

∑
k `k)×d,

where `k is the length of input(dk) and d is the dimension of the hidden representations
of the model. Then, the decoder processes this representation as a regular autoregressive
model, alternating self-attention, cross-attention and feed-forward modules.

Only the cross-attention module explicitly takes as input the global output representation
X of the encoder. If H ∈ Rd denotes the output of the previous self-attention layer of the
decoder, the cross-attention operation consists in the following operations. First, queries Q,
keys K and values V are computed by applying linear transformations:

Q = WQH, K = WKX, V = WV X.
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Then a similarity score between the query at position i, Qi, and the key at position j, Kj , is
obtained by computing the dot-product between these two elements, and normalized over
the dimension:

αi,j = QT
i Kj , α̃i,j =

exp(αi,j)∑
m exp(αi,m)

.

A new representation is obtained as a sum of the values, weighted by the attention probabilities,
before going through a final linear transformation Wo:

Oi = WO

∑
j

α̃i,jVi,j .

This describes the single-head attention case, in the case of multi-head attention with nh
heads, the output of the cross-attention layer can be written as:

Oi =

nh∑
h=1

WO,h

∑
j

α̃h,i,jVj,h.

For the layer l and the head h, we use the quantity α̃l,h,i,j‖Vl,h,j‖2 as the measure of relevance
for the input token at position j relatively to the generated token at position i. We average
these scores over all attention heads, layers, tokens of the generation and tokens of the input
segment input(d) to obtain an attention score scoreattn(d) for each document d:

scoreattn(d) = mean
h,l,i,j∈inputk

αl,h,i,j‖Vl,h,j‖2.

We apply the Softmax operator over the resulting scores, to obtain a distribution pattn(d)
over the top-K retrieved documents:

pattn(d) =
exp (scoreattn(d))∑
k exp (scoreattn(dk))

.

We then minimize the KL-divergence between pattn, and the distribution pretr from the
retriever defined in Equation 1:

KL(pattn ‖ pretr) =

K∑
k=1

pattn(dk) log

(
pattn(dk)

pretr(dk)

)
.

Here, this loss is only used to optimize the parameters of the retriever, and not the lan-
guage model. When using recent deep learning frameworks, this is achieved by applying a
StopGradient operator on pattn.

2.2.2 End-to-end Training of Multi-Document Reader and Retriever
(EMDR2)

Next, we consider the method introduced by Sachan et al. (2021), which is inspired by the
expectation-maximization algorithm, treating retrieved documents as latent variables. Given
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a query q, the corresponding output a and the set DK of top-K retrieved documents with
the current retriever, the EMDR2 loss to train the retriever is

− log

[
K∑
k=1

plm(a | q,dk)pretr(dk | q)

]
,

where pretr is again the probability over the top-K documents obtained with the retriever, as
defined by Equation 1. Again, only the parameters of the retriever are updated by applying a
StopGradient operator around plm. One should note that the probability distribution over
documents that minimizes this loss function is an indicator of the document corresponding
to the highest probability of the output according to the language model. Finally, in practice,
the EMDR2 loss function is applied at the token level, and not at the sequence level.

2.2.3 Likelihood Distillation (LDist)

Third, we discuss a simpler loss function which is inspired by the objectives from the attention
distillation and EMDR2 methods (Izacard and Grave, 2021b; Sachan et al., 2021). More
precisely, we want to train the retriever to predict how much each document would improve
the ability of the language model to predict the output, given the query. To this end, we
minimize the KL-divergence between the documents distribution of the retriever (Eqn. 1),
and the documents posterior distribution according to the language model conditioned on a
single document and using a uniform prior:

pLDist(dk) ∝ pLM (a | dk,q).

Using the Softmax operator, we have that

pLDist(dk) =
exp(log pLM (a | dk,q))∑K
i=1 exp(log pLM (a | di,q))

.

2.2.4 Leave-one-out Likelihood Distillation (LOOL)

Finally, we propose an objective based on how much worse the prediction of the language
model gets when removing one of the top-k retrieved documents. To do so, we compute the
log probability of the output for each subset of k-1 documents, and use the negative value as
relevance score for each document. Following the previous loss function, we use the softmax
operator to obtain a probability distribution over documents:

plool(dk) =
exp(− log pLM (a | DK \ {dk},q))∑K
i=1 exp(− log pLM (a | DK \ {di},q))

.

As before, we then minimize the KL-divergence between this distribution, and the one
obtained with retriever. This loss is more expensive to compute than LDist and EMDR,
but, like ADist, employs the language model more closely to the way it is trained: the LM
is trained to be conditioned on a set of K documents. For LOOL, the language model is
conditioned on (K − 1) documents, rather than a single document as in EMDR2 and LDist.

For all losses, we can also use a temperature hyperparameter when computing the target
or retriever distributions to control the distribution’s peakiness of, which might be important
for some tasks or losses. Indeed, for LDist and LOOL, the likelihood of the output may not
vary much when conditioning on different documents, especially in the case of long outputs.
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2.3 Pretext Tasks

In this section, we describe pretext tasks that can be used to jointly pre-train the retriever
and the language model using only unsupervised data.

2.3.1 Prefix Language Modeling

First, we consider a standard language modeling task as a potential pre-training objective.
To cast language modeling in the text-to-text framework, we consider a chunk of N words,
and split this chunk in two sub-sequences of equal length N/2. Then, the first sub-sequence
is used as the query, and the second corresponds to the output. We thus retrieve relevant
documents by using the first sub-sequence of N/2 tokens, to generate the output.

2.3.2 Masked Language Modeling

Second, we consider masked language modeling, as formulated by Raffel et al. (2019). Again,
starting from a chunk of N words, we sample k spans of average length 3 tokens, leading
to a masking ratio of 15%. We then replace each span by a different special token. The
model is then trained to generate the masked spans, each span beginning with the special
sentinel mask token that was inserted in the input sequence. We retrieve documents using
the masked query, but replace the special mask tokens with a mask token supported by the
retriever vocabulary.

2.3.3 Title to Section Generation

Finally, we consider a more abstractive generation task, generating sections from Wikipedia
articles, given the article and section title. Here, the query corresponds to the title of the
article, together with the title of the section, and the output corresponds to the text of the
section. We exclude sections “See also”, “References”, “Further reading” and “External links”.

2.4 Efficient Retriever Fine-tuning

Retrieval is facilitated by using a document index, which is a pre-computed collection of the
document embeddings for all the documents in the retrieval corpus. When jointly training
the retriever and language model, the index needs to be updated regularly, otherwise, the
embeddings of the documents stored in the index become stale relative to the updated
retriever. This means that we need to recompute the embeddings for the full collection of
documents regularly during training to keep the index fresh, which can be computationally
expensive for large indices. This is particularly true at fine-tuning time, where the number of
training examples could be small relative to the number of documents in the index. Training
the retriever could thus add an important computational overhead compared to standard
language model finetuning. In this section, we analyse strategies that might make this process
more efficient, alleviating the need to re-compute the embeddings of all the documents too
often.
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2.4.1 Full Index Update

Let us start by analysing the overhead due to updating the index compared to using a fixed
retriever. To compare the computation time of different models, we will make the following
assumption: the time required to perform a forward pass on a document with a model of P
parameters is O(P ). While this computation model may seem naive, the main assumption
is that document sizes are constant.1 Since we split long documents into passages with
similar number of words, and use padding when processing documents of different sizes, this
assumption is reasonable in practice. Let K be the number of documents that are retrieved
and processed by the language model, Plm be the number of parameters of the language
model and B the batch size. Each training step has a complexity of 4×B ×K × Plm.2

Next, let N be the number of documents in the index, and Pretr be the number of
parameters of the retriever. Then, re-computing the full index has a complexity of N ×Pretr.
If we refresh the index every R training steps, we obtain the following overhead:

N × Pretr

4×B ×K × Plm ×R
.

If we use the BERT base architecture for our retriever and T5-XL for our language model,
we get Pretr

Plm
≈ 1

25 , leading to the overhead:

N

100×B ×K ×R
.

If we use an index containing 37M documents (the size of our Wikipedia index), train with
a batch size of 64 with 20 retrieved documents and refresh the index every 1000 steps, this
results in an overhead of ∼ 30%.

2.4.2 Re-ranking

A second strategy is to retrieve a larger number of documents L with the retriever, and to
re-embed and rerank these documents with the up-to-date retriever, and pass the resulting
top-K to the language model. In that case, the overhead of reranking the top-L documents
is equal to B × L× Pretr. Since we perform this operation at every time step, the overhead
is equal to

L× Pretr

4×K × Plm
.

Using the same assumption as before, we finally get that the overhead is of the order of
L

100×K . If we re-rank 10x more documents than what the language model processes (that is
L = 10×K), we get an overhead of 10%. However, note that if many updates are performed
on the retriever, the index might still need to be fully updated, as the true top-k documents
may not be retrieved in the top-L results from the stale index. In practice, it is possible to
track the positions of the top-K re-ranked documents in the top-L, and estimate when the
index needs to be updated.

1. See Hoffmann et al. (2022) for more details about the computation of the FLOPS corresponding to the
forward and backward passes of transformer networks.

2. There is a factor 4 to account for the backward pass and activation checkpointing.
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2.4.3 Query-side Fine-tuning

Finally, the last strategy is to decouple the encoding of the queries and documents as done
in Guu et al. (2020). In this case, we fix the parameters corresponding to the document
encoder, and only train the parameters corresponding to the query encoder. Thus, the
embeddings of documents are fixed, and we do not need to refresh the index, and thus there
is no computational overhead. As we will see in practice, the impact of fixing the documents
encoder varies greatly for different tasks when a large training data set is available. For
most of the few-shot settings that we consider, query-side finetuning does not have large
performance impact, and sometimes even slightly improves performance.

3. Related Work

In this section we first review the literature on retrieval in language models, before giving an
overview on few-shot learning in natural language processing.

3.1 Retrieval-augmented models in Natural Language Processing

There has been a long line of work studying the effect and potential benefits of retrieval
augmentation for NLP tasks.

3.1.1 Retrieval for Knowledge Intensive Tasks

Previous work has shown that retrieval improves performance across a variety of tasks
such as question answering (Voorhees, 1999; Chen et al., 2017; Kwiatkowski et al., 2019),
fact checking (Thorne et al., 2018), dialogue (Dinan et al., 2019) or citation recommenda-
tion (Petroni et al., 2022). Historically, this information retrieval step was implemented using
term-matching methods, such as TF-IDF or BM25 (Jones, 1972; Robertson et al., 1995).
For open-domain question answering (Voorhees, 1999), documents are often retrieved from
Wikipedia (Chen et al., 2017). Recently, dense retrievers based on neural networks have
become popular. These usually follow a dual-encoder architecture (Yih et al., 2011; Huang
et al., 2013; Shen et al., 2014), where queries and passages are encoded independently as
vectors, and relevance is computed using the inner product or Euclidean distance. Popular
supervised retrievers include DPR (Karpukhin et al., 2020), which is trained to discriminate
the relevant passage among negative passages, and extensions such as ANCE (Xiong et al.,
2021) which improved the hard negatives mining process. We refer the reader to Yates et al.
(2021) for a survey of dense retrieval techniques.

After retrieval, the relevant documents are processed to produce the final output. In
open-domain QA, models can extract a span of text from retrieved documents as the
answer (Chen et al., 2017; Clark and Gardner, 2018; Wang et al., 2019; Karpukhin et al.,
2020), a method inspired by reading comprehension (Richardson, 2013; Rajpurkar et al.,
2016). Recently, generating the answer as free-form text, using a seq2seq model conditioned
on retrieved documents have become prevalent (Lewis et al., 2020; Izacard and Grave, 2021a;
Min et al., 2020). These architectures have also been shown to reduce hallucination in
dialogue agents (Shuster et al., 2021).
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3.1.2 Retriever training

The need for expensive query-document annotations for training the retriever can be bypassed,
by leveraging signals from the language model, or using unsupervised learning. REALM (Guu
et al., 2020) and RAG (Lewis et al., 2020) jointly train the retriever and language model by
modelling documents as latent variable, and minimizing the objective with gradient descent.
REALM pre-trains end-to-end with an MLM approach but uses an extractive BERT-style
model (Devlin et al., 2019). Guu et al. (2020) also explore a query-side finetuning at
finetuning time to avoid index refreshes, which is also explored in the context of phrase-based
retrieval by Lee et al. (2021b). Izacard and Grave (2021a) proposed to use cross-attention
scores as supervision with knowledge distillation. Sachan et al. (2021) perform joint training
of the reader and the retriever by leveraging the likelihood of the output generated by the
reader. Sachan et al. (2021) and Lee et al. (2021a) both employ salient span masking to
pre-train retrievers, leveraging the likelihood and attention scores from the language model.
The inverse cloze task was proposed by Lee et al. (2019) to pre-train dense retrievers in an
unsupervised way. Paranjape et al. (2021) propose a method to train retrieval-augmented
generators using a second “informed” retriever with access to the output, which the test-time
retriever can be distilled from, and Hofstätter et al. (2022) recently proposed a training set
filtering/weighting approach to train stronger retrieval-augmented generators. Izacard et al.
(2022) explored different contrastive learning methods to train retrievers, while Ram et al.
(2022) used recurring spans within a document to create pseudo-positive query-document
pairs.

3.1.3 Retrieval-augmented language models

Continuous cache models (Grave et al., 2017b) defines a probability distribution over recent
tokens, by computing the similarity between previous and current representations of tokens.
This distribution is then interpolated with the distribution of the language model, to improve
predictions. Later, the amount of tokens used to compute this distribution was extended to a
much larger memory by leveraging approximate nearest neighbors search (Grave et al., 2017a).
The related kNN-LM model (Khandelwal et al., 2020) replaced LSTMs by transformer
networks, and scaled the memory to billions of tokens, leading to strong performance
improvements. More recently, RETRO (Borgeaud et al., 2021) extended these by scaling the
retrieval memory to trillions of tokens, and changing the model architecture to take retrieved
documents as input.

3.1.4 Retrieval-Augmentation with Search Engines

Recently, different works have proposed to train large language models to interact with a
search engine, by generating text queries, and using the retrieved documents as additional
context (Nakano et al., 2021; Thoppilan et al., 2022; Shuster et al., 2022). In the context
of few-shot question answering, Lazaridou et al. (2022) used the question to perform a
search query, and retrieved documents are added to the prompt of a large language model
performing in-context learning.
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3.2 Few-shot Learning

Few-shot learning, the task of learning from very few examples, has been studied for decades
(Thrun and Pratt, 1998; Fink, 2005; Vinyals et al., 2016), but has recently seen an explosion
of interest in NLP with the arrival of large pre-trained models.

3.2.1 In-context Learning with Large Language Models

Providing language models with natural language descriptions of tasks, as proposed by
Radford et al. (2019) has led to significant developments in few-shot learning. GPT-3 (Brown
et al., 2020) demonstrated the ability of large language models to perform few-shot predictions,
where the model is given a description of the task in natural language with few examples.
Scaling model size, data and compute is crucial to enable this learning ability, leading to the
further development of large models (Lieber et al., 2021; Rae et al., 2021; Smith et al., 2022;
Chowdhery et al., 2022; Smith et al., 2022). Hoffmann et al. (2022) revisited the scaling law
from Kaplan et al. (2020), suggesting that training on more data with a smaller model may
be more effective, resulting in Chinchilla, a 70B parameter model with improved parameter
efficiency.

3.2.2 Few-shot Finetuning and Prompt-based Learning

The above models perform few-shot learning with in-context instructions without training the
parameters of the language model. Few-shot learning can also be accomplished by combining
textual templates (“prompts”) and various forms of model finetuning, either fully updating
a model’s parameters, for example for classification (Schick and Schütze, 2021a; Schick
and Schutze, 2021; Gao et al., 2021; Tam et al., 2021) or generation (Schick and Schütze,
2021b). Prompts themselves can be optimized, for example by search (Jiang et al., 2020;
Shin et al., 2020) or by only updating parts of the model (Logan et al., 2021), or learning
“soft-prompts” (Lester et al., 2021; Li and Liang, 2021). Due to its simplicity, in this work we
either employ simple prompts or simply feed in inputs without preprocessing, and perform
full-model finetuning, a method similar to Le Scao and Rush (2021).

4. Experiments

In this section, we report empirical evaluations of our language models on few-shot learning.
We start by introducing our experimental setup, describing our evaluation benchmarks in
section 4.1, and giving the training details of our models in section 4.2. Then, we perform an
ablation study to compare the different technical choices leading to our main model. We
finally evaluate this model, called Atlas, on different natural language understanding tasks
in few-shot and full data set settings.

4.1 Benchmarks

To evaluate our retrieval-augmented language models we consider the following benchmarks,
which include different tasks.
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4.1.1 Knowledge-Intensive Language Tasks (KILT)

First, we use the KILT evaluation suite (Petroni et al., 2020), containing 11 data sets
corresponding to 5 tasks: fact checking, question answering, dialog generation, entity
linking and slot-filling. To be solved, these different tasks require knowledge about the
world, which can be found in Wikipedia. We evaluate our model on the following tasks
and data sets included in KILT: question answering: Natural Questions (Kwiatkowski
et al., 2019), TriviaQA (Joshi et al., 2017) and HotpotQA (Yang et al., 2018); slot filling:
Zero Shot RE (Levy et al., 2017) and T-REx (Elsahar et al., 2018); entity linking: AIDA
CoNLL-YAGO (Hoffart et al., 2011); dialogue: Wizard of Wikipedia (Dinan et al., 2019);
and fact checking: FEVER (Thorne et al., 2018). The KILT versions of these data sets differ
from their original versions, as instances requiring knowledge not present in the August 2019
Wikipedia dump have been removed.

4.1.2 Massively-Multitask Language Understanding (MMLU)

Our second main evaluation benchmark is MMLU (Hendrycks et al., 2021), which contains
57 multi-choice question answering data sets (referred to as domains), sourced from real
examinations designed for humans. These cover a very broad range of topics, for example
high school mathematics, professional law, logical fallacies and clinical knowledge and can be
broadly categorized in four subsets: humanities, social sciences, STEM and “other”. We focus
on few-shot learning, and the authors of the benchmarks suggest to use 5 training examples
per domain. Beyond the 5-shot setting, We also consider three additional settings. The first
is a zero-shot setting, with no training data at all. The second, which we call multi-task
few-shot, is where we train a single model on the 5-shot data from all tasks, hence leading to
a training set of 285 examples. The last, which we call transfer learning, leverages additional
training examples from other multiple-choice QA tasks provided by the MMLU authors,
namely MCTest (Richardson et al., 2013), RACE (Lai et al., 2017), ARC (Clark et al., 2018)
and OBQA (Mihaylov et al., 2018) leading to a training set of 95k examples.

4.1.3 Additional Benchmarks

Additionally, we report results on the original open-domain versions of the popular Natural
Questions (Kwiatkowski et al., 2019), and TriviaQA (Joshi et al., 2017) data sets. Generated
answers are evaluated with the standard exact match metric (EM), as used by Rajpurkar
et al. (2016). A generated answer is considered correct if it matches any answer of the list
of acceptable answers after normalization. This normalization step consists in lowercasing
and removing articles, punctuation and duplicated whitespaces. We also evaluate our model
on the original version of FEVER (Thorne et al., 2018), which presents fact checking as a
three-way classification problem for textual claims (either “Supported”: the text is supported
by evidence in Wikipedia, “refuted”: the claim is not consistent with evidence in Wikipedia,
or “not enough info”, where there is insufficient evidence to make a judgement). We also
perform experiments to assess temporal sensitivity of our models. Here, we construct a
data set from TempLAMA (Dhingra et al., 2022), consisting of a set of time-sensitive cloze
questions on a range of topics, where the answer changes from 2017 to 2020. We assess the
accuracy of our models when supplied with a index from 2017 vs 2020 to assess to what
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degree models faithfully reflect the content of the index supplied to them at test time, and
how effective updating the index is as a continual learning or model updateability method.

4.2 Technical Details

We now describe the procedure for pre-training and fine-tuning our models. We focus on the
setting used for the ablation studies performed in Section 4.3 and Section 4.4. We give more
details about the hyperparameters used for our final model later.

4.2.1 Pre-training

For the pre-training, we initialize the retriever module using the unsupervised Contriever
model (Izacard et al., 2022), which uses the BERT base architecture. We initialize the
language model with the T5 pre-trained weight (Raffel et al., 2019). As the original T5
pre-trained model included supervised data in the training set, we use the version 1.1 models
which were trained on unlabeled text only. Specifically, we initialize from the T5-lm-adapt
variants due to their improved stability.

For the ablation studies performed in Section 4.3 and Section 4.4, we use T5-XL which
contains 3B weights. We pre-train all our models for 10,000 iterations, using AdamW with a
batch size of 64 and a learning rate of 10−4 for the reader and 10−5 for the retriever with
linear decay and 1,000 warmup steps. We refresh the index every 1,000 steps. This means
that the index is recomputed 10 times during the pre-training, leading to an overhead of
around 30%, compared to training with a fixed retriever. We set the number of retrieved
documents to 20. We detail the hyperparameters used for the training of our final model at
the beginning of Section 5.

4.2.2 Fine-tuning

When performing a downstream task, either in a few-shot setting or with a large training
set, we employ fine-tuning to adapt our models to these tasks. For the few-shot KILT
ablation experiments, we perform a fixed number of fine-tuning iterations, instead of using
early-stopping. More precisely, we decided to use 50 iterations for the 64-shot setting and
200 iterations in the 1024-shot setting. In both cases, we use a batch size of 32 examples, a
learning rate of 4× 10−5 with linear decay and 5 warmup steps for both the reader and the
retriever.

4.2.3 Unlabeled Data Sets

Finally, we discuss the unlabeled text data sets that we use to train our models, which form
the retrieval index. First, we consider the Dec. 20, 2021 Wikipedia dump, for which we keep
the lists and infoboxes, which are linearized by adding a semi-colon separator between the
entries. We split articles by section, and split long sections into passages of equal sizes and
containing less than 200 words. This leads to a total of 37M passages, containing 78 words
in average. We also use documents from the 2020-10 common crawl dump, preprocessed
with the CCNet pipeline (Wenzek et al., 2020). We perform additional document filtering, in
a similar fashion to Gopher (Rae et al., 2021). More precisely, we filter documents based
on document length, average word length, ratio of alphanumeric characters and number of
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64-shot 1024-shot

MLM NQ WoW FEVER Avg. NQ WoW FEVER Avg.

Closed-book 1.083 6.5 14.1 59.0 26.5 10.7 16.5 75.3 34.2
No joint pre-training - 9.0 14.1 67.0 30.0 9.9 16.6 78.3 34.9
Fixed retriever 0.823 39.9 14.3 72.4 42.2 45.3 17.9 90.0 51.1
ADist 0.780 40.9 14.4 73.8 43.0 46.2 17.2 90.9 51.4
EMDR2 0.783 43.3 14.6 72.1 43.3 44.9 18.3 85.7 49.6
LDist 0.783 45.0 15.0 77.0 45.7 44.9 17.9 90.2 51.0
LOOL 0.766 41.8 15.0 74.4 43.7 47.1 17.9 87.5 50.8

Table 1: Loss function ablation. We compare different loss functions to pre-train the retriever
jointly with the language model. We compare different loss functions to pre-train
the retriever jointly with the language model. We use the prefix MLM task for
pre-training. Fine-tuning is performed with query-side fine-tuning and the loss used
for pre-training. Best result is bold, second highest underlined.

repeated tokens. This leads to a total of 350M passages. The same passages are used for the
index and model pre-training. During pre-training, we ensure the passage we are training on
is filtered out from the retrieved documents, to prevent the model from simply retrieving the
passage it is de-nosing/generating, and trivially using it to solve the pre-training task.

4.3 Pre-training Loss and Tasks

We start our ablation study by comparing different pre-training tasks and objective functions
to jointly train the retriever and the language model. Our goal here is to answer the following
research questions:

(RQ 1) Does jointly pre-training the whole model lead to better few-shot performance?

(RQ 2) What is the best objective function for the retriever, and the best pretext task?

We start by comparing the training objectives of the retriever, introduced in Section 2.2, by
pre-training models using the masked language modelling task. We evaluate these models on
a subset of the 64-shot and 1024-shot KILT benchmark: Natural Questions, FEVER and
Wizard of Wikipedia, along with three baselines: a “closed-book” model, a model without
joint pre-training, and a model pre-trained with a fixed retriever. The closed-book baseline
is a non-retrieval-augmented T5 model, initialized with T5-XL, and further pre-trained on
the same data as the other models with the masked language modelling task to ensure that
all models are trained on a similar amount of tokens. Finally, the closed-book model is
fine-tuned without retrieval augmentation. For the baseline without joint pre-training: the
reader is also pre-trained without retrieval, and the retriever is initialized at finetuning from
Contriever and trained with the LDist loss. Similarly the model pre-trained with a fixed
retriever is fine-tuned with the LDist loss. We report results in Table 1. First, we note the
poor performance of the closed-book baseline, indicating the importance of augmentation.
Next, we observe that pre-training our model with retrieval is important to obtain good
performance on few-shot tasks. Indeed, all models that include retrieval during pre-training

15



Izacard, Lewis, Lomeli, Hosseini, Petroni, Schick, Dwivedi-Yu, Joulin, Riedel, Grave

64-shot 1024-shot

NQ WoW FEVER Avg. NQ WoW FEVER Avg.

Prefix Language Modelling 41.0 14.5 64.9 40.1 44.7 17.9 86.0 49.5
Masked Language Modelling 42.7 14.9 69.7 42.4 44.7 18.3 88.8 50.6
Title-to-section generation 41.1 15.2 66.1 40.8 45.4 17.9 84.6 49.3

Table 2: Pretext task ablation. We compare different pretext tasks, used to jointly pre-train
our models. Examples are randomly sampled from the training set of the KILT
version of the data set. We report the exact match on Natural Questions, the F1
score on Wizard of Wikipedia and the accuracy on FEVER.

64-shot 1024-shot

Index Training data NQ WoW FEVER Avg. NQ WoW FEVER Avg.

Wiki Wiki 42.7 14.9 69.7 42.4 44.7 18.3 88.8 50.6
Wiki CCNet 40.9 15.3 67.3 41.2 44.8 18.4 88.1 50.4
CCNet Wiki 32.9 14.5 72.1 39.8 37.8 17.1 85.8 46.9
CCNet CCNet 38.4 14.9 70.1 41.1 42.0 17.3 88.9 49.4

Table 3: Index content ablation. In this table, we report results for models where the content
of the index was changed between the pre-training and the fine-tuning.

strongly outperform the baseline without joint pre-training. Next, we compare a model
that was pre-trained with a fixed retriever, and models using the various retriever training
objectives. On the MLM validation metric corresponding to the pre-training objective, we
observe that jointly training the retriever leads to strong improvements. This effect tends
to be less marked on 64-shot downstream tasks, and almost non-existent for 1024-shot. We
believe that this is evidence that the biggest impact of pre-training is on the language model,
which learns to use and aggregate information from the retrieved documents. Lastly, we
do not observe significant systematic differences between the different retriever training
objectives. We thus decide adopt use Likelihood Distillation for subsequent experiments, as
it tends to be more stable than EMDR2 or ADist, and more computationally efficient than
LOOL.

Next, we compare the different self-supervised pretext tasks introduced in Section 2.3
in Table 2. Here we observe similar results for all three tasks, with a small advantage for
masked language modelling. Thus, in what follows, we adopt masked language modelling for
pre-training.

Finally, we consider different combinations of data sources—Wikipedia and common
crawl—for the index and training data during pre-training. In all cases, we use the Wikipedia
2021 dump as the index when performing few-shot fine-tuning. We report results in Table 3.
First, we observe that using a Wikipedia-based index leads to better downstream performance.
There could be two explanations for this: first, as we use Wikipedia for the few-shot tasks,
the model might be better adapted when trained using the same data. Another explanation
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64-shot 1024-shot

NQ WoW FEVER Avg. NQ WoW FEVER Avg.

Standard fine-tuning 44.3 14.9 73.2 44.1 47.0 18.4 89.7 51.7
Top-100 re-ranking 44.2 14.6 75.4 44.7 47.1 18.7 88.9 51.6
Query-side fine-tuning 45.0 15.0 77.0 45.7 44.9 17.9 90.2 51.0
Fixed retriever 36.8 14.5 72.0 41.1 38.0 17.7 89.3 48.3

Table 4: Retriever fine-tuning ablation. Here, we compare different strategies to fine-tune
the retriever in a few-shot setting.

might be that Wikipedia is a higher-quality and denser source of knowledge than common
crawl. Second, when using a common crawl index, we observe that pre-training on Wikipedia
data leads to lower performance than using common crawl data. We believe that the primary
reason is that the distribution mismatch between the two domains leads to generally-less
relevant retrieved documents. In turn, this probably means that the pre-training is less
efficient, because the language model does not leverage as much information from the
documents. In the following, we decide to combine the data from both domains for the index
and the pre-training data to extend the coverage.

4.4 Fine-tuning

In this section, we perform an ablation study on how to apply our models on downstream
tasks, which relies on fine-tuning. In particular, we want to investigate the following research
question:

(RQ 3) How to efficiently fine-tune Atlas on tasks with limited training data?

To answer this question, we compare the different strategies to fine-tune the retriever module,
described in Section 2.4. We report results in Table 4. First, as for pre-training, we observe
that keeping the retriever fixed during fine-tuning leads to a significant performance drops,
for both 64- and 1024-shot settings. Second, the re-ranking strategy (row 2) leads to very
similar results to fully updating the index (row 1), while being significantly more efficient.
Lastly, fine-tuning only the query encoder also leads to strong results: in particular, in the
64-shot setup, this is slightly stronger than performing full fine-tuning, which we attribute to
there being less opportunity for over-fitting. On the other hand, on the 1024-shot setting,
performing a full fine-tuning leads to stronger results, especially on Natural Questions. In
the following, we use query-side fine-tuning for experiments with less than 64 examples, and
standard fine-tuning for larger data sets.

5. Training and Evaluating Atlas

In this section, we apply the findings from the ablations of the previous sections to train a
family of Atlas models, ranging from 770M to 11B parameters. More specifically, we use
the Likelihood Distillation objective function, along with the masked language modelling
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5-shot 5-shot (multi-task) Full / Transfer

770M 3B 11B 770M 3B 11B 770M 3B 11B

Closed-book T5 29.2 35.7 36.1 26.5 40.0 43.5 42.4 50.4 54.0
Atlas 38.9 42.3 43.4 42.1 48.7 56.4 56.3 59.9 65.8

∆ +9.8 +6.6 +7.3 +15.6 +8.7 +12.9 +13.9 +9.5 +11.8

Table 5: Performance on MMLU as a function of model size. We report performance of
Atlas on MMLU as a function of model size and compare it to closed-book T5.

pretext task. We pre-train these models using a mix of Wikipedia and Common Crawl data,
for both the training data and content of the index. During pre-training, the reader generates
based on 20 documents retrieved using the re-ranking strategy described in 2.4. For this we
first retrieve 100 documents from the index containing embeddings, which are potentially
stale, then these documents are re-embed and re-ranked using the up-to-date retriever. The
index is updated every 2,500 steps. We pre-train models for 10,000 iterations using AdamW
with a batch size of 128. While training longer continued to improve perplexity, we did not
observe further improvements on downstream tasks after finetuning by training longer.

5.1 MMLU Results

As mentioned in section 4.1, we consider four setting for MMLU: 1) a zero-shot setting where
we directly apply the pre-trained model with no few-shot finetuning 2) a 5-shot setting,
where we finetune a model using 5 training examples for each of the 57 domains 3) a 5-shot
multitask setting, where, rather than finetuning a model independently for each domain, we
train a single model to perform all tasks and 4) a setting with access to a number of auxiliary
data sets, with 95K total training examples. We train the models to generate the letter
corresponding to the correct answer option (‘A’, ‘B’, ‘C’ or ‘D’), and pick the answer with the
most likely of the 4 letters at test time. Full technical details can be found in appendix A.1.

5.1.1 Performance vs Parameters

We start by comparing Atlas to closed-book models of different sizes for 5-shot, 5-shot
multitask and the full setting, and report results in Table 5. Across these settings, Atlas out-
performs the closed-book baselines by between 6.6 and 15.6 points, demonstrating consistent
utility of retrieval for few-shot language understanding across 57 domains. The closed-book
T5 struggles to perform significantly better than random (25%) in few-shot settings with
770M parameters, whereas the equivalent Atlas achieves around 40%, significantly better
than random, despite its small size. All models improve with more data, but interestingly,
the 770M models do not benefit as much from few-shot multitask learning compared to
larger models (for closed-book, it actually loses 3 points) suggesting smaller models struggle
to grasp the synergies between the tasks in the few-shot setting. Larger models exploit
the multi-task setting well, with Atlas improving more than closed-book. For example,
Atlas-11B improves by 13 points (43.4 → 56.4), but equivalent closed-book only improves
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by 7 (36.1 → 43.5). Finally, on the transfer learning setting, all models improve, but the
relative gaps between closed-book at Atlas models remain similar.

5.1.2 De-biasing

When finetuning, we permute which answer option appears with which answer letter to
reduce over-fitting and encourage a uniform prior over answer letters. However, the model
may still exhibit a bias towards some letters, especially in few-shot settings, so we also include
a second ‘de-biased’ inference mode in addition the standard inference used above. Here,
we run 4 forward passes, one for each cyclic permutation of the answer letter-answer option
assignment in the question, for example the answer option assigned to letter ‘A’ becomes
‘B’, what was ‘B’ becomes ‘C’ etc.3 We then sum the 4 probabilities to obtain the final
prediction, which reduces spurious bias towards one of the answer letters (further details
in appendix A.1). The results are shown in Table 6. We find that in zero-shot and 5-shot
settings, de-biasing is very effective, improving results by 10.3 and 4.5 points respectively.
When more training data is available, the need for de-biasing decreases, leading to only 0.2
point improvement in the multi-task and full data settings.

5.1.3 Comparison to Published Works

Next, we compare our Atlas-11B results with de-biasing to recently reported results
with state-of-the-art large language models such as GPT-3 or Chinchilla, which required
significantly more amount of computation to train. We report results in Table 7. We
find that Atlas is able to perform significantly better than random in zero-shot, and in
conjunction with de-biased inference, achieves zero-shot scores that exceed 5-shot results
reported with GPT3 in the literature (47.1% vs 43.9%) (Hendrycks et al., 2021). For the
5-shot setting, Atlas outperforms GPT-3 by 4%, while using 15× less parameters, and 10×
less pre-training compute.4 When multitask-training on the combined 5-shot data, Atlas
improves to 56.6% close to the 5-shot performance of Gopher (60.0%). Finally, on the full
data setting, where we train on auxiliary data recommended by the MMLU authors, Atlas
reaches an overall accuracy of 65.6%, close to the state-of-the-art. Interestingly, in this setup,
Atlas significantly outperforms GPT-3, while on the 5-shot setting, their performance is
similar.

5.2 Open-domain Question Answering Results

Next we evaluate Atlas on two open-domain question answering benchmarks: Natural
Questions and TriviaQA. We compare to prior work, both in a few-shot setting using
64 examples, and using the full training set, and report results in Table 8. On these
benchmarks, which require high-degree of memorisation, we clearly see the benefits of retrieval-
augmentation. Atlas-11B obtains state-of-the-art results on 64-shot question answering,
for both Natural Questions and TriviaQA. In particular, it outperforms significantly larger

3. Exploring all answer option permutations would involve 24 forward passes, which improves results by an
additional ∼1% over the 4 cyclic permutations, but requires much more compute, so we exclude it here,
see Appendix A.1

4. Atlas’s pre-training compute is dominated by the T5 pre-training. The computational requirements for
the retrieval-augmented pre-train is orders of magnitude lower
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Zero-shot 5-shot 5-shot (multi-task) Full / Transfer

Standard Inference 36.8 43.4 56.4 65.8
De-biased Inference 47.1 47.9 56.6 66.0

Table 6: Standard versus de-biased inference for MMLU. These results are reported for
Atlas-11B, using cyclic permutations for de-biasing, which increases inference costs
by a factor of 4×.

Setting Model Params FLOPS All Hum. Soc. Sci. STEM Other

zero-shot Atlas 11B 3.5e22 47.1 43.6 54.1 38.0 54.4

5-shot

GPT-3 175B 3.1e23 43.9 40.8 50.4 36.7 48.8
Gopher 280B 5.0e23 60.0 56.2 71.9 47.4 66.1
Chinchilla 70B 5.0e23 67.5 63.6 79.3 55.0 73.9
Atlas ∗ 11B 3.5e22 47.9 46.1 54.6 38.8 52.8

5-shot MT Atlas 11B 3.5e22 56.6 50.1 66.4 46.4 66.2

Transfer
UnifiedQA 11B 3.3e22 48.9 45.6 56.6 40.2 54.6
GPT-3 175B 3.1e23 53.9 52.5 63.9 41.4 57.9
Atlas 11B 3.5e22 66.0 61.1 77.2 53.2 74.4

Table 7: Comparison to state-of-the-art on MMLU. ∗For the 5-shot setting, Atlas uses
fine-tuning, while previous works use in-context learning. The Atlas model uses
de-biased inference. FLOPS refers to total the amount of computation necessary
to train the model, including pre-training and/or fine-tuning. 5-shot MT refers to
training a single model on multiple tasks, using 5 examples per task.

models, such as PaLM, or models that required significantly more training compute such as
Chinchilla. When using the full training set, Atlas also obtains state-of-the-art results, for
example improving the accuracy on Natural Questions from 55.9% to 60.4%. This result is
obtained using an index comprised of CCNet and the December 2021 Wikipedia corpora,
our default setting for the index. In section 6.2 we consider using indexes composed of
Wikipedia corpus archived at different dates, and demonstrate an additional +3.6% on
Natural Questions when using an index which is temporally matched to Natural Questions.
We report performance as a function of model size as well as detailed hyperparameters in
Appendix A.2.

Atlas also compares favorably to recent work exploring retrieval-augmented few-shot
question answering with very large models. Lazaridou et al. (2022) explore Natural Questions
in a 15-shot setup using Gopher, augmenting questions with 50 passages retrieved using
Google Search. This method consists of generating 4 candidate answers from each retrieved
passages, and then re-ranking using either a score inspired by RAG (Lewis et al., 2020) or a
more expensive approach. This method (not shown in our tables) achieves exact match scores
of 32.7% (RAG) and 38.4% (Ensemble), requiring 50 (RAG) or 450 (Ensemble) forward
passes of Gopher-280B per test-time question. Atlas, using the same 15 training examples
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NQ TriviaQA filtered TriviaQA unfiltered

Model 64-shot Full 64-shot Full 64-shot Full

GPT-3 (Brown et al., 2020) 29.9 - - - 71.2 -
Gopher (Rae et al., 2021) 28.2 - 57.2 - 61.3 -
Chinchilla (Hoffmann et al., 2022) 35.5 - 64.6 - 72.3 -
PaLM (Chowdhery et al., 2022) 39.6 - - - 81.4 -
RETRO (Borgeaud et al., 2021) - 45.5 - - - -
FiD (Izacard and Grave, 2021a) - 51.4 - 67.6 - 80.1
FiD-KD (Izacard and Grave, 2021b) - 54.7 - 73.3 - -
R2-D2 (Fajcik et al., 2021) - 55.9 - 69.9 - -
Atlas 42.4 60.4 74.5 79.8 84.7 89.4

Table 8: Comparison to state-of-the-art on question answering. We report results on Natural
Questions, and on TriviaQA for both the filtered set, commonly used for open-
domain question answering and the unfiltered hidden set for which evaluation is
accessible online: https://competitions.codalab.org/competitions/17208. For the
64-shot setting, our model uses fine-tuning, while the other models use prompting.

and 50 passages achieves 38.7 EM, despite having 25× fewer parameters, and requiring
comparatively negligible compute.

5.3 FEVER Results

We report results on the original 3-class FEVER fact checking test set in Table 9. We
consider a 64-shot setting, with training examples uniformly sampled from the full training
set. Unlike the development and test sets, the train set is imbalanced, with more positive
labels than negative, posing a challenge for few-shot learning. In this setting, we achieve an
accuracy of 64.3%. We also report a 15-shot setting, with 5 examples uniformly sampled
from each class to compare with published results from Gopher (Rae et al., 2021), where
Atlas scores 56.2%, outperforming Gopher by 5.1 points. Lastly we fine-tune our model on
the full training set, and achieve a score of 78%, within 1.5% of the ProoFVer, which uses a
specialized architecture, a retriever trained with sentence-level annotations, and is supplied
with the Wikipedia corpus released with FEVER, whereas Atlas retrieves from CCNet and
the December 2021 Wikipedia dump. If we give Atlas an index comprised of the FEVER
Wikipedia corpus, we set a new state-of-the-art of 80.1%

5.4 KILT Results

Finally we evaluate Atlas on KILT, a benchmark composed of several different knowledge
intensive tasks, which was described in section 4.1. We report results on test sets in Table 10
for which evaluation is available online.5 The KILT versions of data sets are filtered, and
thus results on Natural Questions, TriviaQA and FEVER reported elsewhere are not directly
comparable on KILT. We consider both a 64-shot setting and a full fine-tuning setting, in both
cases we train Atlas individually on each data set. More details on the hyperparameters and

5. https://eval.ai/web/challenges/challenge-page/689
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15-shot 65-shot Full data set

Gopher (Rae et al., 2021) 51.1 - -
ProoFVer (Krishna et al., 2022) - - 79.5
Atlas 56.2 64.3 78.0 / 80.1†

Table 9: Comparison to state-of-the-art on FEVER. We report accuracy on FEVER test
set, for which evaluation is available here: https://competitions.codalab.org/
competitions/18814. For the few-shot settings, our model uses fine-tuning while
other models use prompting. †uses an index composed of the FEVER Wikipedia
corpus.

Model AIDA FEV T-REx zsRE NQ HoPo TQA WoW
acc acc acc acc em em em f1

GENRE (Cao et al., 2021) 89.9 - - - - - - -
Sphere (Piktus et al., 2021) - 89.0 81.7 74.2 51.6 38.3 72.7 15.5
SEAL (Bevilacqua et al., 2022) - 89.5 83.6 74.6 53.7 40.5 70.9 18.3
Re2G (Glass et al., 2022) - 89.6 87.7 - 51.7 - 76.3 18.9
FID+RS (Hofstätter et al., 2022) - 92.2 85.2 83.7 61.2 39.1 84.6 20.6

Atlas, 64-shot 66.5 87.1 58.9 74.9 43.6 34.7 76.4 15.5
Atlas, full train set 90.6 93.5 85.1 80.8 61.3 50.6 84.0 21.6

Table 10: Downstream results on the KILT hidden test sets. Downstream metrics are
accuracy (AIDA CoNLL-YAGO, FEVER, T-REx, zero-shot RE), exact match
(Natural Questions, HotpotQA, TriviaQA), or F1 (Wizard of Wikipedia).

development set results are reported in Appendix A.3. For 64-shot, we greatly exceed random
performance, and are even competitive with some fully-finetuned models on the leaderboard,
such as for FEVER, where our 64-shot Atlas is only 2-2.5 points behind Sphere, SEAL
and Re2G, and outperforms Sphere and SEAL on zero-shot RE. In the full data set setting,
Atlas is within 3% to the state-of-the-art for 3 data sets, and sets the state-of-the-art in
the remaining five data sets.

6. Analysis

In this section we discuss specific aspects of Atlas as a retrieval-augmented language model.
First, we analyse retrieved documents to interpret Atlas generations. Second, we probe the
updateability and temporal sensitivity of Atlas when the content of the index is modified.

6.1 Interpretability and Leakage

An advantage of semi-parametric models like Atlas is the ability to inspect retrieved items
to aid interpretability. To better understand how well Atlas retrieves, and how it uses
retrieved passages, we examine the retrieved passages for multi-task few-shot MMLU. As
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Figure 3: MMLU Retrieval Analysis. Left: Fraction of sources of top 30 retrieved passages
for MMLU from CCNet, Wikipedia passages and info boxes for the 5-shot multitask
Atlas. Center: How often the text of the correct MMLU answer option appears
in retrieved passages, as a function of the number of retrieved passages. Right:
MMLU accuracy as a function of answer occurrence frequency in retrieved passages
set

shown in the left panel of Figure 3, the model retrieves the majority of its passages from
CCNet (85% on average). Wikipedia makes up about 15% of retrieved passages, which is
higher than we would expect under a uniform prior, given Wikipedia only makes up about
10% of the index. The fraction of Wikipedia retrieval varies between MMLU domains, with
the model using Wikipedia to a greater extent for STEM domains, and least for social
sciences. The domain making the greatest use of Wikipedia is “abstract algebra” (73%), and
the least is “moral scenarios” (3%). We also note that the MMLU-finetuned Atlas does not
make significant use of Wikipedia infobox passages.

We can also analyse the content of passages to assess how they may be useful for
accomplishing the downstream task. The middle panel of Figure 3 shows how often retrieved
documents contain the text of the correct answer option. There being at least one mention
of the correct answer choice in 30% of test questions in the top 25 passages.6 The right panel
shows that the accuracy on MMLU increases when the correct answer option text occurs
more frequently in retrieved passages, rising from 55% for questions when the answer option
does not appear, to 77% for questions mentioned more than 15 times.

A human analysis of retrieved documents revealed that documents are helpful for an-
swering questions in a number of different ways. Manual inspection of a sample of 50
correctly-answered questions revealed that 44% contained at least partially useful background
information. These are documents that would improve the likelihood of a non-expert human
answering correctly, such as contextual clues surrounding a quotation from a question, or
helpful numerical figures for quantity-based questions, which help to narrow down the answer
options to a smaller range. In a further 26% of cases, a passage contained all the necessary
information to answer the question, stated in a straightforward way. If read competently,
such passages make the question simple to answer, and often include information such as

6. Note: Depending on the question, it may not be important or useful to retrieve the exact text of the
answer in MMLU, and as such, a hits@k value of 30% does not imply that retrieval fails to surface useful
information in 70% of cases
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canonical definitions, or the exact numerical answer requested in the question. 28% of
retrieval sets did not contain obvious information which would make the question easier.
Finally, 2% contained the verbatim question in a passage, together with its answer.

Given that MMLU has been created from pre-existing exams, it is possible that these
questions appear on the open web. Models trained on web data (or, in our case, retrieving
from it) run the risk of answering correctly not through generalisation, but by verbatim
memorisation, which could lead to misleadingly high scores. In some very large language
models, which can verbatim memorize and recall large parts of their pre-training data (Carlini
et al., 2021), efforts have sometimes been made to filter occurrences of downstream instances
from pre-training data, but this has not been performed for MMLU in the literature. In
order to assess the prevalence of MMLU leakage in our index, we manually checked retrieval
results for questions where the longest n-gram overlap between the question (without answer
options) and a passage was at least 75% the length of the question. This resulted in an
estimate of leakage of 2.8% of questions from our CCNet corpus.

A benefit of retrieval-augmented models such as Atlas is the editability of its knowledge
(see Section 6.2 for additional analysis). To estimate pure, non-leaked performance, we
can filter out any potentially-leaked passages from retrieved results and rerun the language
model. The MMLU score drops slightly when controlling for this leakage from 56.4 to 55.8%
(-.5%).We note that our CCNet corpus is relatively small compared to the pre-trained corpora
of recent very large models, which are trained on up to 1.4 trillion tokens (Hoffmann et al.,
2022), 35x the size of our index, making it likely that models trained on corpora of that size
would observe more MMLU leaked examples, but detecting such leakage is challenging in
non-retrieval-augmented models.

6.2 Temporal Sensitivity and Updateability

A benefit of retrieval-augmented models is that they can be kept up-to-date without retraining,
by updating or swapping their index at test time. To assess the effectiveness of this
mechanism in Atlas, we first construct a data set of time-sensitive questions derived from
TempLAMA (Dhingra et al., 2022). TempLAMA is a collection of templated cloze questions
derived from Wikidata and Wikipedia where the correct answer changes over time. We select
a subset of questions from this data set which have a different answer in 2017 and 2020, for
example, Question: Theo Walcott plays for ___ Answer: Arsenal F.C. (2017), Everton
F.C. (2020), and form a small training set of 248 training, 112 development and 806 test
questions.

Using this data set, we finetune closed-book T5-XXL and Atlas using the questions
and the 2017 answers, supplying Atlas with a 2017 Wikipedia index, and then measure
exact match accuracy on the 2017 test set. The results can be found in the first row and first
two columns of Table 11. We first observe that, as expected, Atlas greatly outperforms T5
(57.7% c.f. 12.1%). We also note that, as desired, both T5 and Atlas almost never generate
an answer from 2020 when trained with the 2017 answers, scoring 2.8% and 1.5% respectively
(first row, second two columns of Table 11). However, as shown in row 2, we can swap the
Atlas index to a 2020 Wikipedia index, without retraining, and find that Atlas updates its
predictions accordingly, with 2020 accuracy rising to a similar level to its 2017 performance
(53.1%), whereas the purely parametric T5 has no such updateability mechanism.
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2017 Test Set Acc. 2020 Test Set Acc.

Train Set Test-time Index Closed-book Atlas Closed-book Atlas

2017 answers 2017 12.1 57.7 2.9 1.5
2020 12.1 10.2 2.9 53.1

2020 answers 2017 4.8 50.1 3.6 4.2
2020 4.8 3.5 3.6 60.5

Table 11: Results on our TempLAMA-derived data set.
We report performance for a static, closed-book T5-11B, as well as Atlas-11B supplied with
a test-time Wikipedia index from 2017 or 2020. We evaluate models finetuned on a small
training set of 248 time-sensitive cloze-question-answer pairs, using answers either from 2017
or 2020. Good models should score highly when the test set year matches the year of the

test-time index, and score low otherwise.

Dec. 2017 Dec. 2018 Aug. 2019 Dec. 2020 Dec. 2021

64-shot 44.7 45.1 44.1 44.0 41.3
Full 63.2 64.0 62.4 61.1 59.6

Table 12: Impact of index data temporality on Natural Questions. We report exact match
performance on Natural Questions using different Wikipedia dumps in the index.
We observe that the dump from December 2018, commonly used for Natural
Questions, leads to the best result.

This demonstrates that Atlas can be faithful and condition strongly on its supplied index.
Furthermore, this zero-shot updateability mechanism has the useful property of staying
up-to-date without requiring up-to-date annotated data, or continuous, lifelong pre-training,
as would be may required for a large parametric-only model. Rows 3 and 4 of Table 11
complete the picture, where this time we train with 2020 answers, and demonstrate Atlas
can zero-shot transfer backwards in time to 2017 effectively too (50.1%). Interestingly, T5 is
unable to answer questions from 2020 well, even when trained with 2020 answers (3.6%),
likely because it was pre-trained on data pre-dating 2020 (Dodge et al., 2021).

We also examine temporal effects for Natural Questions. Natural Questions is a data
set composed of search queries collected via the Google search engine in a short period
of time. Thus data have a strong temporal bias, with a lot of questions about the 2018
World Cup for example. Moreover some questions are ambiguous without specification of
the temporal context. For instance, for the question “when did ireland last beat england
at twickenham”, the expected answer is 2018 in Natural Questions, while Ireland also beat
England at Twickenham in 2022 as well as many other times before. In Table 12, we report
results obtained by finetuning Atlas using different Wikipedia dumps for the index. We
observe that the 2018 December Wikipedia dump, which is close to the date of data collection,
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Figure 4: Index Compression: Atlas-3B 64-shot NQ performance (left column: Retrieval
Recall@50, right column: QA Exact Match score), as a function of index size,
for different levels of quantisation. The right-most point in each plot represents
the uncompressed index. Top Row: Wikipedia + CCNet Index. Bottom Row:
Wikipedia Index.

leads to the best results for both few-shot and full fine-tuning. In particular, it leads to a
new state-of-the-art of 64.0 EM on Natural Questions.

6.2.1 Index Compression

Maintaining dense retrieval indices can be memory-intensive, especially as the number of
indexed items is scaled. In this section, we briefly analyse the memory requirements of
Atlas’s index in the case of a) a Wikipedia index and b) the combined CCNet and Wikipedia
index used in most of the experiments above.

There are two sources of memory pressure for Atlas’s retrieval component—the passages
themselves, and the document embedding index. The tokenized passages, once binarized,
require 11GB and 130GB of storage for the Wikipedia and combined indices respectively.
These passages do not need to be stored in expensive GPU RAM, and could even be memory-
mapped to disk, sharded across nodes or compressed if required, and thus do not represent
a limiting hardware challenge in this context. The embedding index itself, however, must
be stored in GPU RAM for fast search, and thus its size is more sensitive. In the above
experiments, we perform exact search over our index, which is achieved by sharding the
index over all the the available GPUs, and computing the search in parallel. The index is
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stored at fp16 precision, resulting in a total GPU memory requirement of 49 GB and 587
GB for the Wikipedia and combined indices, respectively.

This large GPU memory requirement for the index limits accessibility and ease of
deployment. However, many index compression techniques are available for nearest neighbour
search, which can often dramatically reduce memory requirements at the cost of some retrieval
accuracy. Following Izacard et al. (2020), we explore the effect of Product Quantization (PQ,
Jegou et al., 2010), a popular lossy compression technique on Atlas-3B’s accuracy for the
64-shot NQ task at different compression levels.

The results are shown in Figure 4. We find that substantial compression is possible
before the onset of significant performance degradation. Namely, the Wikipedia index can be
compressed from 49GB to 4GB with negligible drop in retrieval precision and exact match.
Likewise, the combined index can be compressed from 587GB to 50GB without serious
degradation, indicating that the combined index could be loaded onto a single 80GB GPU.

7. Discussion

In this paper, we introduce Atlas, a large retrieval-augmented language model. By jointly
pre-training the retriever module and the language model, we show that Atlas has strong
few-shot learning capabilities on a wide range of knowledge intensive tasks, including Natural
Questions, TriviaQA, FEVER, 8 KILT tasks and 57 MMLU tasks. For example, Atlas-11B
reaches more than 42% accuracy on Natural Questions and 84.7% on TriviaQA when training
on 64 examples, which is an improvement of almost 3 points compared to PaLM, a 540B
parameter model, which required 50x more pre-training compute. We also provided detailed
ablations and analyses for what factors are important when training such retrieval-augmented
models, and demonstrated Atlas’s updateability, interpretability and controlability ca-
pabilities. Lastly, we demonstrated that Atlas is also powerful in full data set settings
obtaining a new state-of-the-art results on Natural Questions, TriviaQA, FEVER, and 5
KILT tasks. The few-shot results presented in this paper were obtained by fine-tuning
Atlas on few examples, rather than using in-context learning. In context learning presents
significant practical advantages over fine-tuning, as it does not change the model weights.
The development of retrieval-augmented language models preserving the ability of their
non-augmented counterparts to generalize from few in-context examples and instructions
is a crucial challenge toward general retrieval-augmented language models and their wider
adoption.

Appendix A. Training details and Additional Results

In this appendix we present additional results and provide details about the parameters used
to fine-tune models on MMLU, question answering data sets and KILT tasks.

A.1 MMLU

Here, we report results on the 57 MMLU domains, details about the fine-tuning and how the
model predictions are de-biased.
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A.1.1 Featurization

MMLU consists of multiple choice questions with four possible lexicalized answer options.
We represent the input using the following template:

question: {question text}

options: (A) {answer 1} (B) {answer 2} (C) {answer 3} (D) {answer 4}

answer: [MASK_0]

and train the model to generate the mask token followed by the letter of the correct answer:

[MASK_0] {correct answer option letter}

This format closely matches the format of MLM pre-training objective, aiding few-shot
learning. When training, we permute the order of the answer options, that is shuffling
which answer option appears as letter A etc. This helps reduce overfitting, and encourages a
uniform prior on the letters.

A.1.2 Standard Inference

Once trained we obtain predictions from the model by selecting the pre-softmax logits for the
tokens A, B, C and D, and performing a softmax over them to obtain a distribution over the
4 answer options. For standard inference, we then simply return the answer corresponding
to the argmax of this distribution.

A.1.3 De-biased Inference

As mentioned in the main text, even though our model is finetuned with data that encourages
a uniform prior over answer letters (by permuting which answer option letter is used with
which lexical answer option text in training data), this may not be enough to ensure the
model has no residual bias towards specific letters. Consider answers a, questions q and a
nuisance variable z ∈ Z, which represents the ordering of the answer options or, equivalently,
which answer letter gets assigned to which answer option text. There are 4 answer options
in MMLU, and thus |Z| = 24 unique ways they can be ordered, or assigned to given letters.
Running our model with our standard inference for a question q, corresponds to calculating
p(a|q = q, z = z) for the answer ordering z that happens to appear in the data set. We
can control for z by running the model with all possible answer orderings in the input,
and marginalizing: p(a|q = q) =

∑
z′∈Z p(a|q = q, z = z′)p(z = z′|q = q), and assuming

p(z = z′|q = q) is uniform (no answer ordering is more likely than another), this reduces to
simply p(a|q = q) ∝

∑
z′∈Z p(a|q = q, z = z′). This procedure requires 24 forward passes, one

for each answer ordering, so is 24× slower than standard inference. Table 13 shows the result
of applying the full permutation de-biasing, which leads to an 12% improvement zero-shot
and 6% in 5-shot performance overall. Empirically, using only the cyclic permutations of the
answer order provided in the original data set (of which there are 4) works nearly as well,
which is what we report in the main paper, and only increases inference compute by a factor
of 4, rather than 24. Cyclic permutation de-biasing improves over standard inference by 10%
in zero-shot and 5% in 5-shot. Empirically, de-biased inference is largely unnecessary when
training in the 5-shot multitask or full data set setting, as there is enough data for the model
to learn a more uniform prior over the letters.
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Setting Model All Hum. Soc. Sci. STEM Other

zero-shot
Standard 36.8 37.5 39.0 30.2 39.7
All permutations 48.5 45.7 55.2 39.4 54.4
Cyclic Permutations 47.1 43.6 54.1 38.0 54.9

5-shot
Standard 43.4 41.8 49.3 33.9 48.8
All permutations 49.0 46.0 56.1 40.5 54.6
Cyclic Permutations 47.9 46.1 54.6 38.8 52.8

Table 13: MMLU scores with de-biasing.

A.1.4 Evaluation

We evaluate by following the method of Hendrycks et al. (2021), namely, micro-averaging
across all 57 domains to obtain overall accuracy. We quote the results of GPT3 (Brown
et al., 2020) and UnifiedQA (Khashabi et al., 2020) from the MMLU leaderboard at https:
//github.com/hendrycks/test. For Chinchilla and Gopher, we calculate the scores on the
categories using the full MMLU results from Hoffmann et al. (2022).

A.1.5 Index

The index used for MMLU for all MMLU experiments in the main paper comprised of
concatenation of the Wikipedia passages, Wikipedia info boxes and Common Crawl indices,
for a total of 387M passages. We can assess the importance of the index by running a model
without the common crawl data, leading to a 5-shot multitask result of 52.8%, compared to
56.4% for the full model, a drop of 3.6%. This indicates that whilst the Wikipedia data is
sufficient do well on the task, the addition of the CCNet data improves results further.

A.1.6 Hyperparameters and Development Data

Selecting hyperparameters is challenging in few-shot settings. We do not assume access to an
in-domain development set for the 5-shot task. Instead, we determine a set of hyperparameters
for the 5-shot task using data from RACE, one of the auxiliary data sets provided by MMLU.
Here, we sample 5 sets of 5-shot training data, and for each model size, we explore batch
size {32, 64}, learning rates for the language model and retriever {(5e-5, 1e-5), (4e-5, 4e-
5)}, retriever temperature {0.1, 0.01} and a fixed number of training steps {16, 32, 64, 128},
picking the setting that achieves strongest RACE validation scores. Having determined these
hyperparameters, we apply them directly to the 5-shot MMLU task. For the 5-shot multi-task
and full/transfer settings, we use the same batch size, temperatures and learning rates as
the 5-shot task, but use a set of 285 MMLU validation examples (5 per domain) in order to
determine the total number of training steps and for early stopping. The hyperparameters
selected in the MMLU experiments can be found in Table 14. We use query-side finetuning
for the 5-shot and 5-shot multitask settings, and top-128 reranking for the full setting. For
all MMLU runs we retrieve 30 documents.
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770M 3B 11B

Batch size 64 64 64
Learning rate (5e-5, 1e-5) (5e-5, 1e-5) (5e-5, 1e-5)
Retriever Temperature 0.1 0.1 0.1
5-shot train steps 64 32 16
5-shot (multitask) max train steps 2000 500 250
Full / transfer max train steps 5000 2000 2000

Table 14: Hyperparameters for MMLU

Run # All Hum. Soc. Sci. STEM Other

1 45.2 40.6 54.1 37.1 51.1
2 45.1 39.8 54.4 37.1 52.0
3 45.0 40.0 54.1 37.7 51.1
4 45.6 41.3 54.7 37.0 51.6
5 44.3 40.6 50.7 38.1 49.8

Ave: 45.0± 0.5 40.5± 0.6 53.6± 1.6 37.4± 0.5 51.1± 0.8

Table 15: Interrun Variance for 5-shot MMLU using Atlas-11B

A.1.7 Inter-run Variance

few-shot learning is well-known to suffer from high variance. In the main paper, we quote
the result obtained with our first run. In order to assess the effect of noise and variance, we
ran the 5-shot experiment with Atlas 5 times.7 We observe high variance for individual
domains, sometimes as high as 20%, however, once aggregated across all 57 domains, the
inter-run variance is low. The overall scores for these different runs, when using the same
hyperparameters are shown in Table 15. Due the effects of averaging over the many domains
that comprise MMLU, the inter-run variance is quite modest on the aggregated metrics, with
a std deviation of 0.5 in this experiment.

A.1.8 Closed-Book Baselines

The closed book baselines we compare Atlas to in Table 5 are initialized from the same
T5 model as their respective Atlas, and then pre-trained with MLM for the same number
of steps (10K) using the same pre-training data as Atlas, for fairer comparison. The
same procedure as for Atlas was used to determine hyperparameters for MMLU for the
closed-book models.

7. This experiment was performed with a slightly different index to the main experiments, which achieves a
stronger result
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A.1.9 Full Results

Tables 16 and 17 shows the full MMLU scores for each domain for Atlas and the closed
book T5 respectively. The full results for the cyclic-permutation-de-biased Atlas-XXL can
be found in Table 18.

A.2 Question Answering

We report additional training details on question answering tasks, as well as results obtained
with models of different sizes.

A.2.1 Training Details

For question answering, similarly to the MMLU experiments, we format the input using the
following template:

question: {question text} answer: [MASK_0]

and train the model to generate the mask token followed by the answer:

[MASK_0] {answer}.

We generate answers using greedy decoding. For both training and testing, we retrieve 40
passages, and truncate the result of the concatenation between the query and the passages
to 384 tokens.

For few-shot fine-tuning we train Atlas for 30 steps using 64 random samples from the
train sets. The retriever is trained using query-side fine-tuning. We select the model after 30
training steps. We use AdamW with a batch size of 32 and a learning rate of 4× 10−5 with
linear decay and 5 iterations of warmup for both the language model and the retriever.

For the fine-tuning on the full data sets, we train the model for 5k gradient steps and
refresh the index every 500 steps for the first 1,000 training steps and every 2k training steps
afterwards. We use AdamW with a batch size of 64 and a learning rate of 4 × 10−5 with
linear decay and 5 iterations of warmup for both the language model and the retriever. We
evaluate models every 500 steps and select the best one on the validation set based on the
exact match score.

A.2.2 Impact of Scaling

In Table 19, we report performance on Natural Questions and TriviaQA as a function of the
number of parameters in the reader module. Both for few-shot learning and full fine-tuning
we observe strong improvements by scaling the size of the reader module. However we
can notice sign of saturation when finetuning on full data sets, with limited gains when
scaling from 3B to 11B parameters (+0.6% on Natural Questions, +0.5% on TriviaQA).
While performance improves substantially when scaling from 3B to 11B parameters with 64
training samples, with +3.7% and +1.2% improvement on Natural Questions and TriviaQA
respectively. For these experiments we use a setup similar to the one use in Table 8, except
that we use an index composed of the December 2018 Wikipedia dump processed as described
in section 4.2.
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5-shot 5-shot (multi-task) Full / Transfer

770M 3B 11B 770M 3B 11B 770M 3B 11B
All 38.9 42.3 43.4 42.1 48.7 56.4 56.3 59.9 65.8

Humanities 37.3 40.0 41.9 37.7 46.4 50.0 50.9 53.0 60.3
Social Sciences 41.7 46.8 49.3 47.5 53.7 65.6 66.0 70.8 77.2

STEM 32.3 35.0 33.9 34.4 39.4 46.2 44.8 50.7 53.4
Other 44.9 48.1 48.8 50.4 55.9 66.6 65.5 68.1 74.4

abstract algebra 30.0 27.0 28.0 27.0 31.0 30.0 22.0 27.0 33.0
anatomy 28.9 50.4 45.2 44.4 57.8 64.4 57.8 68.9 69.6

astronomy 55.3 59.9 59.2 52.6 66.4 67.8 69.1 78.3 79.6
business ethics 49.0 51.0 48.0 50.0 62.0 60.0 51.0 70.0 68.0

clinical knowledge 41.9 44.9 40.0 46.8 54.3 64.9 64.2 72.5 74.0
college biology 38.2 45.8 50.0 36.8 52.1 63.2 63.2 72.2 78.5

college chemistry 32.0 29.0 29.0 31.0 33.0 38.0 45.0 39.0 45.0
college computer science 33.0 35.0 30.0 23.0 29.0 30.0 43.0 48.0 47.0

college mathematics 31.0 31.0 28.0 29.0 27.0 34.0 32.0 29.0 36.0
college medicine 31.2 35.8 38.2 50.3 40.5 52.0 60.1 59.5 63.6
college physics 20.6 26.5 31.4 21.6 28.4 39.2 27.5 44.1 42.2

computer security 53.0 50.0 55.0 49.0 61.0 64.0 69.0 71.0 76.0
conceptual physics 34.9 41.7 37.4 40.9 43.4 57.0 53.2 58.3 59.6

econometrics 28.9 21.1 27.2 26.3 25.4 34.2 28.9 37.7 36.8
electrical engineering 26.9 31.7 31.7 38.6 44.1 51.7 61.4 60.7 67.6

elementary mathematics 25.9 28.8 29.4 29.6 30.2 32.8 29.6 35.5 33.9
formal logic 34.9 33.3 33.3 23.0 30.2 29.4 34.1 38.9 34.1
global facts 28.0 34.0 34.0 36.0 40.0 49.0 50.0 49.0 52.0

high school biology 24.8 37.7 27.7 48.7 57.1 66.5 66.5 76.8 81.9
high school chemistry 34.5 31.0 31.0 31.5 36.5 48.3 44.8 52.2 52.2

high school computer science 31.0 39.0 28.0 37.0 42.0 42.0 50.0 59.0 57.0
high school european history 42.4 49.7 53.3 50.9 58.2 69.7 70.9 73.9 80.0

high school geography 38.9 42.4 50.0 46.5 56.6 69.2 74.2 80.8 82.8
high school gov. and pol. 57.5 60.6 60.1 52.9 64.8 76.7 80.8 85.5 91.7

high school macroeconomics 32.8 39.7 44.9 39.0 45.6 57.2 55.1 63.1 66.7
high school mathematics 30.7 33.0 35.6 28.1 27.8 37.0 30.7 34.8 37.0

high school microeconomics 34.5 42.9 45.4 44.1 51.7 68.9 63.4 70.2 81.1
high school physics 18.5 24.5 22.5 25.8 25.8 33.1 27.2 30.5 39.7

high school psychology 52.8 61.1 59.8 56.7 67.2 79.4 76.3 84.0 87.0
high school statistics 39.8 29.6 34.7 27.3 34.7 38.0 37.0 43.1 45.8
high school us history 43.6 49.0 55.9 46.1 57.8 59.8 62.7 72.5 76.5

high school world history 48.1 52.7 59.9 48.1 66.2 65.4 70.0 78.5 79.7
human aging 46.2 44.8 39.5 48.0 55.2 60.1 56.1 68.2 73.1

human sexuality 41.2 43.5 27.5 46.6 51.1 59.5 77.1 72.5 81.7
international law 54.5 57.9 60.3 55.4 72.7 73.6 81.8 82.6 85.1

jurisprudence 38.9 55.6 32.4 53.7 60.2 73.1 76.9 73.1 81.5
logical fallacies 43.6 54.0 57.1 44.2 58.3 70.6 64.4 73.0 76.7

machine learning 36.6 34.8 28.6 31.3 37.5 46.4 36.6 47.3 50.9
management 45.6 51.5 52.4 48.5 52.4 81.6 78.6 75.7 87.4

marketing 59.4 67.1 70.5 66.7 74.4 83.8 83.8 83.3 91.9
medical genetics 50.0 53.0 58.0 56.0 61.0 75.0 68.0 78.0 81.0

miscellaneous 63.0 64.2 68.8 64.0 72.4 84.3 85.4 83.9 90.9
moral disputes 37.0 41.3 41.3 40.8 50.3 60.1 61.9 66.2 73.7
moral scenarios 24.7 24.7 26.5 21.9 26.9 26.6 23.8 23.8 35.8

nutrition 40.9 45.1 45.1 49.0 52.3 67.0 64.7 68.6 76.8
philosophy 48.6 50.5 56.3 49.8 59.2 69.5 70.4 73.0 77.8
prehistory 45.7 50.0 52.8 54.9 64.8 74.4 69.8 75.0 80.6

professional accounting 28.4 33.0 34.0 35.1 34.0 45.7 43.6 46.1 51.8
professional law 32.4 33.5 34.8 30.4 37.6 39.1 41.5 41.5 50.5

professional medicine 29.4 26.1 27.6 34.6 40.8 52.2 47.8 43.4 59.6
professional psychology 37.7 43.0 50.2 45.1 51.0 60.6 59.5 62.4 74.0

public relations 40.0 46.4 44.5 51.8 54.5 66.4 63.6 66.4 68.2
security studies 35.1 33.5 38.8 44.1 39.6 57.6 60.8 61.6 72.2

sociology 45.3 51.2 51.2 52.7 60.2 69.2 74.1 78.6 85.1
us foreign policy 58.0 70.0 73.0 63.0 63.0 74.0 80.0 80.0 83.0

virology 34.3 34.3 32.5 38.0 42.8 45.2 47.6 49.4 53.0
world religions 65.5 69.0 71.9 70.2 82.5 80.1 83.6 83.6 87.1

Table 16: MMLU Test set scores for Atlas for each model size and each of the 57 domains.
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5-shot 5-shot (multi-task) Full / Transfer

770M 3B 11B 770M 3B 11B 770M 3B 11B
All 29.2 35.7 36.1 26.5 40.0 43.5 42.4 50.4 54.0

Humanities 30.5 35.4 35.5 27.3 38.5 41.6 41.0 48.6 51.3
Social Sciences 29.7 38.0 39.4 24.8 43.8 48.9 48.6 57.8 64.7

STEM 29.0 31.4 30.8 26.5 32.8 35.8 33.4 40.6 41.7
Other 26.7 37.7 38.6 27.0 45.0 48.5 46.8 55.2 59.1

abstract algebra 26.0 23.0 21.0 29.0 30.0 26.0 23.0 29.0 26.0
anatomy 21.5 40.0 40.7 27.4 39.3 45.9 35.6 43.7 42.2

astronomy 37.5 38.8 37.5 27.6 39.5 41.4 36.2 50.7 55.3
business ethics 29.0 54.0 42.0 26.0 47.0 55.0 53.0 64.0 60.0

clinical knowledge 32.5 33.6 40.0 28.7 44.2 47.9 45.3 52.8 57.7
college biology 29.9 34.7 34.0 29.9 34.7 40.3 38.2 46.5 52.1

college chemistry 37.0 22.0 32.0 20.0 35.0 33.0 36.0 34.0 36.0
college computer science 28.0 35.0 34.0 28.0 27.0 36.0 31.0 44.0 35.0

college mathematics 31.0 29.0 27.0 22.0 34.0 27.0 30.0 33.0 32.0
college medicine 24.3 34.7 34.1 27.2 40.5 40.5 35.8 41.6 48.6
college physics 33.3 23.5 23.5 22.5 19.6 26.5 22.5 32.4 24.5

computer security 36.0 42.0 46.0 31.0 49.0 52.0 50.0 65.0 61.0
conceptual physics 26.4 35.7 30.2 23.4 30.6 32.8 34.5 37.4 43.8

econometrics 26.3 21.9 28.9 17.5 19.3 24.6 29.8 25.4 29.8
electrical engineering 31.0 33.1 31.7 31.0 31.0 36.6 41.4 47.6 51.7

elementary mathematics 26.2 27.5 28.0 27.0 31.2 33.3 25.9 31.2 35.5
formal logic 34.1 34.1 31.7 15.1 34.9 31.0 31.7 38.1 42.1
global facts 32.0 30.0 25.0 34.0 34.0 27.0 28.0 34.0 30.0

high school biology 22.6 31.9 29.7 27.1 41.6 50.0 43.5 57.7 60.6
high school chemistry 27.1 26.6 27.6 28.6 31.5 29.1 30.5 36.5 38.9

high school computer science 26.0 32.0 25.0 33.0 37.0 45.0 45.0 55.0 48.0
high school european history 34.5 43.0 42.4 24.2 60.0 59.4 58.2 69.1 76.4

high school geography 31.3 40.4 36.9 24.7 45.5 50.5 56.1 66.7 74.2
high school gov. and pol. 28.0 49.2 51.3 19.2 56.0 59.6 55.4 70.5 75.6

high school macroeconomics 25.6 37.7 32.1 26.7 42.3 43.6 41.0 51.5 56.4
high school mathematics 35.9 35.2 35.9 28.1 26.7 31.1 27.8 36.7 31.9

high school microeconomics 27.3 29.8 36.1 20.6 35.7 42.9 42.9 50.8 60.5
high school physics 21.9 25.2 22.5 24.5 28.5 29.1 27.8 31.1 27.8

high school psychology 26.1 46.4 51.0 24.8 54.3 60.2 56.3 67.3 76.1
high school statistics 27.8 33.3 33.3 17.6 30.6 33.8 32.9 33.3 37.0
high school us history 30.4 39.7 45.6 27.5 46.1 58.3 51.0 63.2 72.5

high school world history 42.6 50.6 41.8 29.1 54.0 64.6 66.7 72.2 73.8
human aging 28.3 37.2 29.6 26.0 45.3 46.2 46.6 57.0 62.8

human sexuality 29.8 34.4 41.2 25.2 42.0 44.3 51.1 58.0 59.5
international law 57.9 57.9 41.3 44.6 57.9 58.7 62.8 71.9 71.1

jurisprudence 30.6 33.3 34.3 32.4 49.1 52.8 55.6 67.6 74.1
logical fallacies 40.5 55.8 46.6 25.8 51.5 62.0 43.6 69.3 71.2

machine learning 33.0 34.8 36.6 29.5 35.7 37.5 32.1 37.5 42.9
management 21.4 29.1 40.8 24.3 47.6 50.5 60.2 69.9 70.9

marketing 38.9 58.5 60.7 31.2 67.9 75.6 69.2 79.9 85.9
medical genetics 26.0 36.0 36.0 29.0 43.0 44.0 40.0 54.0 50.0

miscellaneous 24.5 45.2 46.4 27.1 52.2 58.2 51.3 64.6 72.7
moral disputes 32.4 37.3 38.7 28.6 43.4 43.4 49.7 64.7 64.7
moral scenarios 24.7 24.7 24.7 23.0 23.9 24.7 23.8 24.0 23.8

nutrition 30.1 33.0 34.6 25.8 42.5 44.1 50.3 55.6 61.1
philosophy 28.6 32.5 37.3 31.2 38.9 45.0 44.1 56.6 59.2
prehistory 33.6 37.0 41.4 27.5 39.8 50.6 41.0 51.5 57.7

professional accounting 21.3 28.0 30.5 25.9 35.5 34.0 37.2 41.5 42.2
professional law 28.2 33.4 34.0 27.6 35.4 35.5 38.3 43.0 45.6

professional medicine 19.5 26.5 24.3 20.2 32.0 37.9 38.6 40.8 46.0
professional psychology 27.8 32.8 32.8 26.6 39.5 43.6 38.4 48.0 58.3

public relations 22.7 43.6 40.0 21.8 47.3 56.4 50.0 55.5 60.0
security studies 37.6 26.1 31.0 20.4 34.7 44.1 56.3 61.6 66.9

sociology 43.3 41.8 38.8 30.8 45.8 52.7 60.2 66.7 72.1
us foreign policy 49.0 57.0 66.0 38.0 56.0 61.0 59.0 75.0 76.0

virology 29.5 26.5 34.3 30.1 36.1 39.8 44.0 46.4 41.6
world religions 24.0 40.9 47.4 32.7 49.1 57.3 48.0 63.7 70.2

Table 17: MMLU Test set scores for the T5 closed book baseline for each model size and
each of the 57 domains.
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Domain zero-shot 5-shot 5-shot (multi-task) Full / Transfer

All 47.1 47.9 56.6 66.0

Humanities 43.6 46.1 50.1 61.1
Social Sciences 54.1 54.6 66.4 77.2

STEM 38.0 38.8 46.4 53.2
Other 53.9 52.8 66.2 74.4

abstract algebra 22.0 26.0 31.0 31.0
anatomy 48.9 47.4 62.2 70.4

astronomy 61.8 62.5 68.4 81.6
business ethics 60.0 57.0 62.0 70.0

clinical knowledge 50.6 49.4 66.4 72.8
college biology 51.4 53.5 61.1 77.8

college chemistry 36.0 39.0 39.0 45.0
college computer science 32.0 32.0 33.0 49.0

college mathematics 30.0 35.0 35.0 34.0
college medicine 44.5 41.0 52.6 67.6
college physics 24.5 26.5 37.3 42.2

computer security 59.0 59.0 68.0 76.0
conceptual physics 37.0 41.3 57.0 60.0

econometrics 20.2 20.2 36.8 37.7
electrical engineering 37.9 40.0 50.3 65.5

elementary mathematics 31.2 28.0 30.7 36.5
formal logic 27.8 27.0 32.5 35.7
global facts 41.0 43.0 51.0 53.0

high school biology 53.2 56.5 68.7 83.2
high school chemistry 41.9 41.4 49.3 51.2

high school computer science 40.0 36.0 46.0 60.0
high school european history 56.4 58.8 68.5 80.6

high school geography 57.1 59.6 71.2 81.3
high school gov. and pol. 67.9 67.9 77.2 90.2

high school macroeconomics 46.9 48.5 57.9 65.9
high school mathematics 28.1 28.9 34.1 31.5

high school microeconomics 51.7 51.7 68.9 82.4
high school physics 26.5 25.8 32.5 41.1

high school psychology 66.2 65.5 78.9 86.8
high school statistics 31.5 30.1 43.1 45.8
high school us history 57.8 54.9 64.7 77.5

high school world history 59.1 62.9 65.4 79.3
human aging 48.4 50.7 60.5 70.4

human sexuality 55.7 54.2 61.8 84.0
international law 66.1 72.7 71.9 84.3

jurisprudence 61.1 64.8 72.2 81.5
logical fallacies 54.6 57.7 71.2 77.9

machine learning 37.5 39.3 43.8 44.6
management 56.3 56.3 79.6 89.3

marketing 72.2 73.1 84.6 91.9
medical genetics 55.0 58.0 71.0 81.0

miscellaneous 69.7 67.8 83.8 90.4
moral disputes 45.1 46.8 60.1 72.3
moral scenarios 24.5 30.3 25.8 38.5

nutrition 56.5 53.9 67.0 77.1
philosophy 56.3 57.6 70.7 77.2
prehistory 59.3 60.5 71.6 78.7

professional accounting 35.1 33.0 42.2 50.7
professional law 36.3 38.4 39.4 51.7

professional medicine 35.7 33.1 52.2 60.7
professional psychology 47.7 49.3 60.9 74.0

public relations 54.5 53.6 68.2 68.2
security studies 47.3 45.7 59.2 73.9

sociology 62.2 62.7 71.6 84.6
us foreign policy 64.0 68.0 73.0 83.0

virology 39.8 40.4 44.6 51.8
world religions 77.2 74.9 80.7 87.1

Table 18: MMLU Test set scores for the de-biased Atlas-XXL using cyclic permutations
for each of the 57 domains for zero-shot, 5 shot, 5-shot-multitask and the transfer
setting.

34



Atlas: Few-shot Learning with Retrieval Augmented Language Models

Number of parameters 220M 770M 3B 11B

Natural Questions 64-shot 27.0 35.4 41.3 45.1
Natural Questions full 54.1 60.8 63.4 64.0

TriviaQA 64-shot 55.3 65.0 70.2 71.4
TriviaQA full 71.8 74.9 77.5 78.0

Table 19: Impact of model size on question answering data sets. We report exact
match performance on the test sets of Natural Questions and TriviaQA filtered de-
pending on the number of parameters in the reader module. For these experiments
the index contains the December 2018 Wikipedia dump.

A.3 KILT

For the results on KILT reported in Table 10 we fine-tune Atlas individually on each data
set. We format the input using a template similar to the one used for question answering:

question: {query text} answer: [MASK_0]

and train the model to generate the mask token followed by the expected output:

[MASK_0] {output}.

We retrieve 20 passages and generate answer using greedy decoding. In KILT, FEVER is a
two-way classification task of claims. We lexicalize the “SUPPORTS” (resp. ‘REFUTES”)
label into “true” (respectively “false”).

For few-shot fine-tuning we train Atlas for 30 steps using 64 random samples from the
train sets. The retriever is trained using query-side fine-tuning. We evaluate models every
5 steps and select the best one on the development set based on the reported metric. We
use AdamW with a batch size of 32 and a learning rate of 4× 10−5 with linear decay and 5
iterations of warmup for both the language model and the retriever.

For the fine-tuning on the full data sets, the model is trained for 5k gradient steps. We
evaluate models every 500 steps and select the best one on the development set based on
the reported metric. The index is refreshed every 500 step for the first 1000 iterations, and
every 2k steps afterwards. We use AdamW with a batch size of 64 and a learning rate of
4× 10−5 with linear decay and 500 iterations of warmup for both the language model and
the retriever.

We report results on the development sets in Table 20.

References

M. Bevilacqua, G. Ottaviano, P. Lewis, S. Yih, S. Riedel, and F. Petroni. Autoregressive
search engines: Generating substrings as document identifiers. In NeurIPS, 2022. URL
https://openreview.net/forum?id=Z4kZxAjg8Y.

S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. v. d. Driessche,
J.-B. Lespiau, B. Damoc, A. Clark, D. d. L. Casas, A. Guy, J. Menick, R. Ring, T. Hennigan,

35

https://openreview.net/forum?id=Z4kZxAjg8Y


Izacard, Lewis, Lomeli, Hosseini, Petroni, Schick, Dwivedi-Yu, Joulin, Riedel, Grave

Model AIDA FEV T-REx zsRE NQ HoPo TQA WoW
acc acc acc acc em em em f1

Atlas 64-shot 69.0 88.1 58.5 60.2 44.2 34.1 77.1 15.4
Atlas full data set 92.7 94.4 84.8 80.9 63.4 51.4 84.4 21.0

Table 20: Downstream results on the KILT dev sets. Downstream metrics are accuracy
(AIDA CoNLL-YAGO, FEVER, T-REx, zero-shot RE), exact match (Natural
Questions, HotpotQA, TriviaQA), or F1 (Wizard of Wikipedia).

S. Huang, L. Maggiore, C. Jones, A. Cassirer, A. Brock, M. Paganini, G. Irving, O. Vinyals,
S. Osindero, K. Simonyan, J. W. Rae, E. Elsen, and L. Sifre. Improving language models
by retrieving from trillions of tokens, 2021. URL https://arxiv.org/abs/2112.04426.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. Language models are few-shot learners, 2020. URL https://arxiv.org/
abs/2005.14165.

N. D. Cao, G. Izacard, S. Riedel, and F. Petroni. Autoregressive entity retrieval. In ICLR,
2021. URL https://openreview.net/forum?id=5k8F6UU39V.

N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. B.
Brown, D. Song, Úlfar Erlingsson, A. Oprea, and C. Raffel. Extracting training data
from large language models. In USENIX Security Symposium, 2021. URL https://www.
usenix.org/conference/usenixsecurity21/presentation/carlini-extracting.

D. Chen, A. Fisch, J. Weston, and A. Bordes. Reading Wikipedia to answer open-domain
questions. In ACL, 2017. URL https://aclanthology.org/P17-1171.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao,
P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope,
J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat,
S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito,
D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick,
A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee,
Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern,
D. Eck, J. Dean, S. Petrov, and N. Fiedel. Palm: Scaling language modeling with pathways,
2022. URL https://arxiv.org/abs/2204.02311.

C. Clark and M. Gardner. Simple and effective multi-paragraph reading comprehension. In
ACL, 2018. URL https://aclanthology.org/P18-1078.

36

https://arxiv.org/abs/2112.04426
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=5k8F6UU39V
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://aclanthology.org/P17-1171
https://arxiv.org/abs/2204.02311
https://aclanthology.org/P18-1078


Atlas: Few-shot Learning with Retrieval Augmented Language Models

P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord. Think
you have solved question answering? try arc, the ai2 reasoning challenge, 2018. URL
https://arxiv.org/abs/1803.05457.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL, 2019.

B. Dhingra, J. R. Cole, J. M. Eisenschlos, D. Gillick, J. Eisenstein, and W. W. Cohen.
Time-aware language models as temporal knowledge bases. TACL, 2022. URL https:
//aclanthology.org/2022.tacl-1.15.

E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli, and J. Weston. Wizard of wikipedia:
Knowledge-powered conversational agents. In ICLR, 2019. URL https://openreview.
net/forum?id=r1l73iRqKm.

J. Dodge, M. Sap, A. Marasović, W. Agnew, G. Ilharco, D. Groeneveld, M. Mitchell, and
M. Gardner. Documenting large webtext corpora: A case study on the colossal clean crawled
corpus. In EMNLP, 2021. URL https://aclanthology.org/2021.emnlp-main.98.

H. Elsahar, P. Vougiouklis, A. Remaci, C. Gravier, J. Hare, F. Laforest, and E. Simperl.
T-REx: A large scale alignment of natural language with knowledge base triples. In LREC,
2018. URL https://aclanthology.org/L18-1544.

M. Fajcik, M. Docekal, K. Ondrej, and P. Smrz. R2-D2: A modular baseline for open-domain
question answering. In Findings of EMNLP, 2021. URL https://aclanthology.org/
2021.findings-emnlp.73.

M. Fink. Object classification from a single example utilizing class relevance met-
rics. In NIPS, 2005. URL https://proceedings.neurips.cc/paper/2004/file/
ef1e491a766ce3127556063d49bc2f98-Paper.pdf.

T. Gao, A. Fisch, and D. Chen. Making pre-trained language models better few-shot learners.
In ACL-IJCNLP, 2021. URL https://aclanthology.org/2021.acl-long.295.

M. Glass, G. Rossiello, M. F. M. Chowdhury, A. R. Naik, P. Cai, and A. Gliozzo. Re2g:
Retrieve, rerank, generate, 2022. URL https://arxiv.org/abs/2207.06300.

E. Grave, M. Cisse, and A. Joulin. Unbounded cache model for online language modeling
with open vocabulary, 2017a. URL https://arxiv.org/abs/1711.02604.

E. Grave, A. Joulin, and N. Usunier. Improving neural language models with a continuous
cache. In ICLR, 2017b. URL https://openreview.net/forum?id=B184E5qee.

K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang. Realm: Retrieval-augmented
language model pre-training. arXiv:2002.08909, 2020. URL https://arxiv.org/abs/
2002.08909.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In CVPR, 2020.

37

https://arxiv.org/abs/1803.05457
https://aclanthology.org/2022.tacl-1.15
https://aclanthology.org/2022.tacl-1.15
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://aclanthology.org/2021.emnlp-main.98
https://aclanthology.org/L18-1544
https://aclanthology.org/2021.findings-emnlp.73
https://aclanthology.org/2021.findings-emnlp.73
https://proceedings.neurips.cc/paper/2004/file/ef1e491a766ce3127556063d49bc2f98-Paper.pdf
https://proceedings.neurips.cc/paper/2004/file/ef1e491a766ce3127556063d49bc2f98-Paper.pdf
https://aclanthology.org/2021.acl-long.295
https://arxiv.org/abs/2207.06300
https://arxiv.org/abs/1711.02604
https://openreview.net/forum?id=B184E5qee
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909


Izacard, Lewis, Lomeli, Hosseini, Petroni, Schick, Dwivedi-Yu, Joulin, Riedel, Grave

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt.
Measuring massive multitask language understanding. In ICLR, 2021. URL https:
//openreview.net/forum?id=d7KBjmI3GmQ.

J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol, B. Taneva, S. Thater,
and G. Weikum. Robust disambiguation of named entities in text. In EMNLP, 2011. URL
https://aclanthology.org/D11-1072.

J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L.
Casas, L. A. Hendricks, J. Welbl, A. Clark, T. Hennigan, E. Noland, K. Millican, G. v. d.
Driessche, B. Damoc, A. Guy, S. Osindero, K. Simonyan, E. Elsen, J. W. Rae, O. Vinyals,
and L. Sifre. Training compute-optimal large language models, 2022. URL https:
//arxiv.org/abs/2203.15556.

S. Hofstätter, J. Chen, K. Raman, and H. Zamani. Multi-task retrieval-augmented text
generation with relevance sampling, 2022. URL https://arxiv.org/abs/2207.03030.

P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep structured
semantic models for web search using clickthrough data. In CIKM, 2013.

G. Izacard and E. Grave. Leveraging passage retrieval with generative models for open
domain question answering. In EACL, 2021a. URL https://aclanthology.org/2021.
eacl-main.74.

G. Izacard and E. Grave. Distilling knowledge from reader to retriever for question answering.
In ICLR, 2021b. URL https://openreview.net/forum?id=NTEz-6wysdb.

G. Izacard, F. Petroni, L. Hosseini, N. De Cao, S. Riedel, and E. Grave. A memory efficient
baseline for open domain question answering, 2020. URL https://arxiv.org/abs/2012.
15156.

G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin, and E. Grave.
Unsupervised dense information retrieval with contrastive learning. TMLR, 2022. URL
https://openreview.net/forum?id=jKN1pXi7b0.

H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE
TPAMI, 2010.

Z. Jiang, F. F. Xu, J. Araki, and G. Neubig. How can we know what language models know?
TACL, 2020. URL https://aclanthology.org/2020.tacl-1.28.

K. S. Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation, 1972.

M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. TriviaQA: A large scale distantly supervised
challenge dataset for reading comprehension. In ACL, 2017. URL https://aclanthology.
org/P17-1147.

J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford,
J. Wu, and D. Amodei. Scaling laws for neural language models, 2020. URL https:
//arxiv.org/abs/2001.08361.

38

https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://aclanthology.org/D11-1072
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2207.03030
https://aclanthology.org/2021.eacl-main.74
https://aclanthology.org/2021.eacl-main.74
https://openreview.net/forum?id=NTEz-6wysdb
https://arxiv.org/abs/2012.15156
https://arxiv.org/abs/2012.15156
https://openreview.net/forum?id=jKN1pXi7b0
https://aclanthology.org/2020.tacl-1.28
https://aclanthology.org/P17-1147
https://aclanthology.org/P17-1147
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361


Atlas: Few-shot Learning with Retrieval Augmented Language Models

V. Karpukhin, B. Oğuz, S. Min, L. Wu, S. Edunov, D. Chen, and W.-t. Yih. Dense
passage retrieval for open-domain question answering. arXiv:2004.04906, 2020. URL
https://arxiv.org/abs/2004.04906.

U. Khandelwal, O. Levy, D. Jurafsky, L. Zettlemoyer, and M. Lewis. Generalization
through memorization: Nearest neighbor language models. In ICLR, 2020. URL
https://openreview.net/forum?id=HklBjCEKvH.

D. Khashabi, S. Min, T. Khot, A. Sabharwal, O. Tafjord, P. Clark, and H. Hajishirzi.
UNIFIEDQA: Crossing format boundaries with a single QA system. In Findings of
EMNLP, 2020. URL https://aclanthology.org/2020.findings-emnlp.171.

A. Krishna, S. Riedel, and A. Vlachos. ProoFVer: Natural logic theorem proving for fact
verification. TACL, 2022. URL https://aclanthology.org/2022.tacl-1.59.

T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M.-W. Chang, A. M.
Dai, J. Uszkoreit, Q. Le, and S. Petrov. Natural questions: A benchmark for question
answering research. TACL, 2019. URL https://aclanthology.org/Q19-1026.

G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. RACE: Large-scale ReAding comprehen-
sion dataset from examinations. In EMNLP, 2017. URL https://aclanthology.org/
D17-1082.

A. Lazaridou, E. Gribovskaya, W. Stokowiec, and N. Grigorev. Internet-augmented language
models through few-shot prompting for open-domain question answering, 2022. URL
https://arxiv.org/abs/2203.05115.

T. Le Scao and A. Rush. How many data points is a prompt worth? In NAACL-HLT, 2021.
URL https://aclanthology.org/2021.naacl-main.208.

H. Lee, A. Kedia, J. Lee, A. Paranjape, C. D. Manning, and K.-G. Woo. You only need one
model for open-domain question answering, 2021a. URL https://arxiv.org/abs/2112.
07381.

J. Lee, M. Sung, J. Kang, and D. Chen. Learning dense representations of phrases at scale.
In ACL-IJCNLP, 2021b. URL https://aclanthology.org/2021.acl-long.518.

K. Lee, M.-W. Chang, and K. Toutanova. Latent retrieval for weakly supervised open domain
question answering. In ACL, 2019. URL https://aclanthology.org/P19-1612.

B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt
tuning. In EMNLP, 2021. URL https://aclanthology.org/2021.emnlp-main.243.

O. Levy, M. Seo, E. Choi, and L. Zettlemoyer. Zero-shot relation extraction via reading
comprehension. In CoNLL, 2017. URL https://aclanthology.org/K17-1034.

P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis,
W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela. Retrieval-augmented generation for
knowledge-intensive nlp tasks. In NeurIPS, 2020. URL https://proceedings.neurips.
cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf.

39

https://arxiv.org/abs/2004.04906
https://openreview.net/forum?id=HklBjCEKvH
https://aclanthology.org/2020.findings-emnlp.171
https://aclanthology.org/2022.tacl-1.59
https://aclanthology.org/Q19-1026
https://aclanthology.org/D17-1082
https://aclanthology.org/D17-1082
https://arxiv.org/abs/2203.05115
https://aclanthology.org/2021.naacl-main.208
https://arxiv.org/abs/2112.07381
https://arxiv.org/abs/2112.07381
https://aclanthology.org/2021.acl-long.518
https://aclanthology.org/P19-1612
https://aclanthology.org/2021.emnlp-main.243
https://aclanthology.org/K17-1034
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf


Izacard, Lewis, Lomeli, Hosseini, Petroni, Schick, Dwivedi-Yu, Joulin, Riedel, Grave

X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
ACL-IJCNLP, 2021. URL https://aclanthology.org/2021.acl-long.353.

O. Lieber, O. Sharir, B. Lenz, and Y. Shoham. Jurassic-1: Technical details and evaluation.
Technical report, AI21 Labs, 2021.

I. R. L. Logan, I. Balavzevi’c, E. Wallace, F. Petroni, S. Singh, and S. Riedel. Cutting down
on prompts and parameters: Simple few-shot learning with language models, 2021. URL
https://arxiv.org/abs/2106.13353.

T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. In EMNLP, 2018. URL https://
aclanthology.org/D18-1260.

S. Min, J. Michael, H. Hajishirzi, and L. Zettlemoyer. AmbigQA: Answering ambiguous open-
domain questions. In EMNLP, 2020. URL https://aclanthology.org/2020.emnlp-main.
466.

R. Nakano, J. Hilton, S. A. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju,
W. Saunders, X. Jiang, K. Cobbe, T. Eloundou, G. Krueger, K. Button, M. Knight,
B. Chess, and J. Schulman. Webgpt: Browser-assisted question-answering with human
feedback, 2021. URL https://arxiv.org/abs/2112.09332.

A. Paranjape, O. Khattab, C. Potts, M. Zaharia, and C. D. Manning. Hindsight: Posterior-
guided training of retrievers for improved open-ended generation, 2021. URL https:
//arxiv.org/abs/2110.07752.

F. Petroni, P. Lewis, A. Piktus, T. Rocktäschel, Y. Wu, A. H. Miller, and S. Riedel. How
context affects language models’ factual predictions. arXiv:2005.04611, 2020. URL
https://arxiv.org/abs/2005.04611.

F. Petroni, S. Broscheit, A. Piktus, P. Lewis, G. Izacard, L. Hosseini, J. Dwivedi-Yu,
M. Lomeli, T. Schick, P.-E. Mazaré, A. Joulin, E. Grave, and S. Riedel. Improving
wikipedia verifiability with ai, 2022. URL https://arxiv.org/abs/2207.06220.

A. Piktus, F. Petroni, V. Karpukhin, D. Okhonko, S. Broscheit, G. Izacard, P. Lewis, B. Oğuz,
E. Grave, W.-t. Yih, and S. Riedel. The web is your oyster - knowledge-intensive nlp
against a very large web corpus, 2021. URL https://arxiv.org/abs/2112.09924.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are
unsupervised multitask learners. OpenAI Technical Report, 2019.

J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S. Henderson,
R. Ring, S. Young, E. Rutherford, T. Hennigan, J. Menick, A. Cassirer, R. Powell, G. v. d.
Driessche, L. A. Hendricks, M. Rauh, P.-S. Huang, A. Glaese, J. Welbl, S. Dathathri,
S. Huang, J. Uesato, J. Mellor, I. Higgins, A. Creswell, N. McAleese, A. Wu, E. Elsen,
S. Jayakumar, E. Buchatskaya, D. Budden, E. Sutherland, K. Simonyan, M. Paganini,
L. Sifre, L. Martens, X. L. Li, A. Kuncoro, A. Nematzadeh, E. Gribovskaya, D. Donato,

40

https://aclanthology.org/2021.acl-long.353
https://arxiv.org/abs/2106.13353
https://aclanthology.org/D18-1260
https://aclanthology.org/D18-1260
https://aclanthology.org/2020.emnlp-main.466
https://aclanthology.org/2020.emnlp-main.466
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2110.07752
https://arxiv.org/abs/2110.07752
https://arxiv.org/abs/2005.04611
https://arxiv.org/abs/2207.06220
https://arxiv.org/abs/2112.09924


Atlas: Few-shot Learning with Retrieval Augmented Language Models

A. Lazaridou, A. Mensch, J.-B. Lespiau, M. Tsimpoukelli, N. Grigorev, D. Fritz, T. Sotti-
aux, M. Pajarskas, T. Pohlen, Z. Gong, D. Toyama, C. d. M. d’Autume, Y. Li, T. Terzi,
V. Mikulik, I. Babuschkin, A. Clark, D. d. L. Casas, A. Guy, C. Jones, J. Bradbury,
M. Johnson, B. Hechtman, L. Weidinger, I. Gabriel, W. Isaac, E. Lockhart, S. Osin-
dero, L. Rimell, C. Dyer, O. Vinyals, K. Ayoub, J. Stanway, L. Bennett, D. Hassabis,
K. Kavukcuoglu, and G. Irving. Scaling language models: Methods, analysis & insights
from training gopher, 2021. URL https://arxiv.org/abs/2112.11446.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer, 2019.
URL https://arxiv.org/abs/1910.10683.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. SQuAD: 100,000+ questions for machine
comprehension of text. In EMNLP, 2016. URL https://aclanthology.org/D16-1264.

O. Ram, G. Shachaf, O. Levy, J. Berant, and A. Globerson. Learning to retrieve passages
without supervision. In NAACL-HLT, 2022. URL https://aclanthology.org/2022.
naacl-main.193.

M. Richardson. MCTest: A Challenge Dataset for the Open-
Domain Machine Comprehension of Text. In EMNLP, 2013.
URL https://www.microsoft.com/en-us/research/publication/
mctest-challenge-dataset-open-domain-machine-comprehension-text/.

M. Richardson, C. J. Burges, and E. Renshaw. MCTest: A challenge dataset for the open-
domain machine comprehension of text. In EMNLP, 2013. URL https://aclanthology.
org/D13-1020.

S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, M. Gatford, et al. Okapi at
TREC-3. NIST Special Publication Sp, 1995.

D. S. Sachan, S. Reddy, W. Hamilton, C. Dyer, and D. Yogatama. End-to-end training
of multi-document reader and retriever for open-domain question answering, 2021. URL
https://arxiv.org/abs/2106.05346.

T. Schick and H. Schutze. It’s not just size that matters: Small language models are also
few-shot learners, 2021. URL https://arxiv.org/abs/2009.07118.

T. Schick and H. Schütze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In EACL, 2021a. URL https://aclanthology.org/2021.
eacl-main.20.

T. Schick and H. Schütze. Few-shot text generation with natural language instructions. In
EMNLP, 2021b. URL https://aclanthology.org/2021.emnlp-main.32.

Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. Learning semantic representations using
convolutional neural networks for web search. In WWW, 2014.

41

https://arxiv.org/abs/2112.11446
https://arxiv.org/abs/1910.10683
https://aclanthology.org/D16-1264
https://aclanthology.org/2022.naacl-main.193
https://aclanthology.org/2022.naacl-main.193
https://www.microsoft.com/en-us/research/publication/mctest-challenge-dataset-open-domain-machine-comprehension-text/
https://www.microsoft.com/en-us/research/publication/mctest-challenge-dataset-open-domain-machine-comprehension-text/
https://aclanthology.org/D13-1020
https://aclanthology.org/D13-1020
https://arxiv.org/abs/2106.05346
https://arxiv.org/abs/2009.07118
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20
https://aclanthology.org/2021.emnlp-main.32


Izacard, Lewis, Lomeli, Hosseini, Petroni, Schick, Dwivedi-Yu, Joulin, Riedel, Grave

T. Shin, Y. Razeghi, R. L. Logan IV, E. Wallace, and S. Singh. AutoPrompt: Eliciting
Knowledge from Language Models with Automatically Generated Prompts. In EMNLP,
2020. URL https://aclanthology.org/2020.emnlp-main.346.

K. Shuster, S. Poff, M. Chen, D. Kiela, and J. Weston. Retrieval augmentation reduces
hallucination in conversation, 2021. URL https://arxiv.org/abs/2104.07567.

K. Shuster, M. Komeili, L. Adolphs, S. Roller, A. D. Szlam, and J. Weston. Language models
that seek for knowledge: Modular search & generation for dialogue and prompt completion,
2022. URL https://arxiv.org/abs/2203.13224.

S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper, Z. Liu, S. Prab-
humoye, G. Zerveas, V. Korthikanti, E. Zhang, R. Child, R. Y. Aminabadi, J. Bernauer,
X. Song, M. Shoeybi, Y. He, M. Houston, S. Tiwary, and B. Catanzaro. Using deepspeed
and megatron to train megatron-turing nlg 530b, a large-scale generative language model,
2022. URL https://arxiv.org/abs/2201.11990.

D. Tam, R. R. Menon, M. Bansal, S. Srivastava, and C. Raffel. Improving and simplifying
pattern exploiting training, 2021. URL https://arxiv.org/abs/2103.11955.

R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos,
L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng, A. Ghafouri, M. Menegali, Y. Huang, M. Krikun,
D. Lepikhin, J. Qin, D. Chen, Y. Xu, Z. Chen, A. Roberts, M. Bosma, V. Zhao, Y. Zhou,
C.-C. Chang, I. Krivokon, W. Rusch, M. Pickett, P. Srinivasan, L. Man, K. Meier-Hellstern,
M. R. Morris, T. Doshi, R. D. Santos, T. Duke, J. Soraker, B. Zevenbergen, V. Prabhakaran,
M. Diaz, B. Hutchinson, K. Olson, A. Molina, E. Hoffman-John, J. Lee, L. Aroyo,
R. Rajakumar, A. Butryna, M. Lamm, V. Kuzmina, J. Fenton, A. Cohen, R. Bernstein,
R. Kurzweil, B. Aguera-Arcas, C. Cui, M. Croak, E. Chi, and Q. Le. Lamda: Language
models for dialog applications, 2022. URL https://arxiv.org/abs/2201.08239.

J. Thorne, A. Vlachos, C. Christodoulopoulos, and A. Mittal. FEVER: a large-scale
dataset for fact extraction and VERification. In NAACL-HTL, 2018. URL https:
//aclanthology.org/N18-1074.

S. Thrun and L. Pratt. Learning to Learn: Introduction and Overview, page 3–17. Kluwer
Academic Publishers, USA, 1998. ISBN 0792380479.

O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D. Wierstra. Matching networks
for one shot learning. In NIPS, 2016. URL https://proceedings.neurips.cc/paper/
2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf.

E. M. Voorhees. The TREC-8 question answering track report. In LREC, 1999. URL
http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf.

Z. Wang, P. Ng, X. Ma, R. Nallapati, and B. Xiang. Multi-passage BERT: A globally
normalized BERT model for open-domain question answering. In EMNLP-IJCNLP, 2019.
URL https://aclanthology.org/D19-1599.

42

https://aclanthology.org/2020.emnlp-main.346
https://arxiv.org/abs/2104.07567
https://arxiv.org/abs/2203.13224
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2103.11955
https://arxiv.org/abs/2201.08239
https://aclanthology.org/N18-1074
https://aclanthology.org/N18-1074
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/90e1357833654983612fb05e3ec9148c-Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf
https://aclanthology.org/D19-1599


Atlas: Few-shot Learning with Retrieval Augmented Language Models

G. Wenzek, M.-A. Lachaux, A. Conneau, V. Chaudhary, F. Guzmán, A. Joulin, and E. Grave.
CCNet: Extracting high quality monolingual datasets from web crawl data. In LREC,
2020. URL https://aclanthology.org/2020.lrec-1.494.

L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. N. Bennett, J. Ahmed, and A. Overwijk.
Approximate nearest neighbor negative contrastive learning for dense text retrieval. In
ICLR, 2021. URL https://openreview.net/forum?id=zeFrfgyZln.

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning.
Hotpotqa: A dataset for diverse, explainable multi-hop question answering, 2018. URL
https://arxiv.org/abs/1809.09600.

A. Yates, R. Nogueira, and J. Lin. Pretrained Transformers for Text Ranking: BERT and
Beyond. In WSDM, 2021.

W.-t. Yih, K. Toutanova, J. C. Platt, and C. Meek. Learning discriminative projections for
text similarity measures. In CoNLL, 2011. URL https://aclanthology.org/W11-0329.

D. Yogatama, C. de Masson d’Autume, and L. Kong. Adaptive semiparametric language
models. TACL, 2021. URL https://aclanthology.org/2021.tacl-1.22.

43

https://aclanthology.org/2020.lrec-1.494
https://openreview.net/forum?id=zeFrfgyZln
https://arxiv.org/abs/1809.09600
https://aclanthology.org/W11-0329
https://aclanthology.org/2021.tacl-1.22

	Introduction
	Method
	Architecture
	Retriever
	Language Model

	Training Objectives for the Retriever
	Attention Distillation (ADist)
	End-to-end Training of Multi-Document Reader and Retriever (EMDR2)
	Likelihood Distillation (LDist)
	Leave-one-out Likelihood Distillation (LOOL)

	Pretext Tasks
	Prefix Language Modeling
	Masked Language Modeling
	Title to Section Generation

	Efficient Retriever Fine-tuning
	Full Index Update
	Re-ranking
	Query-side Fine-tuning


	Related Work
	Retrieval-augmented models in Natural Language Processing
	Retrieval for Knowledge Intensive Tasks
	Retriever training
	Retrieval-augmented language models
	Retrieval-Augmentation with Search Engines

	Few-shot Learning
	In-context Learning with Large Language Models
	Few-shot Finetuning and Prompt-based Learning


	Experiments
	Benchmarks
	Knowledge-Intensive Language Tasks (KILT)
	Massively-Multitask Language Understanding (MMLU)
	Additional Benchmarks

	Technical Details
	Pre-training
	Fine-tuning
	Unlabeled Data Sets

	Pre-training Loss and Tasks
	Fine-tuning

	Training and Evaluating Atlas
	MMLU Results
	Performance vs Parameters
	De-biasing
	Comparison to Published Works

	Open-domain Question Answering Results
	FEVER Results
	KILT Results

	Analysis
	Interpretability and Leakage
	Temporal Sensitivity and Updateability
	Index Compression


	Discussion
	Training details and Additional Results
	MMLU
	Featurization
	Standard Inference
	De-biased Inference
	Evaluation
	Index
	Hyperparameters and Development Data
	Inter-run Variance
	Closed-Book Baselines
	Full Results

	Question Answering
	Training Details
	Impact of Scaling

	KILT


