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Abstract
Undirected probabilistic graphical models represent the conditional dependencies, or Markov
properties, of a collection of random variables. Knowing the sparsity of such a graphical
model is valuable for modeling multivariate distributions and for efficiently performing
inference. While the problem of learning graph structure from data has been studied
extensively for certain parametric families of distributions, most existing methods fail
to consistently recover the graph structure for non-Gaussian data. Here we propose an
algorithm for learning the Markov structure of continuous and non-Gaussian distributions.
To characterize conditional independence, we introduce a score based on integrated Hessian
information from the joint log-density, and we prove that this score upper bounds the
conditional mutual information for a general class of distributions. To compute the score,
our algorithm sing estimates the density using a deterministic coupling, induced by a
triangular transport map, and iteratively exploits sparse structure in the map to reveal
sparsity in the graph. For certain non-Gaussian datasets, we show that our algorithm
recovers the graph structure even with a biased approximation to the density. Among
other examples, we apply sing to learn the dependencies between the states of a chaotic
dynamical system with local interactions.
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1 Introduction

Consider a collection of random variables Z = (Z1, . . . , Zd) with probability measure νπ and
Lebesgue density π. An undirected graphical model is a representation of the conditional
independence structure, or Markov properties, satisfied by Z. In particular, it is a graph
G = (V,E) where the set of vertices V = {1, . . . , d} contains the indices of the random
variables and where the set of edges E encodes the statistical dependence structure of Z in
the following way: for any disjoint subsets A, B, and C of V , ZA and ZB are conditionally
independent given ZC if C separates A and B in the graph G. That is, if after removing
nodes C from G, there is no path between sets A and B in the resulting graph, then the
conditional independence property

ZA ⊥⊥ ZB |ZC (1)

holds. In this case, we say that G is an independence map (I-map), or Markov network, for
νπ. In this work, we focus on minimal I-maps, which are the sparsest I-maps for νπ. Our
objective is to identify the minimal I-map of νπ using samples from νπ

Learning the Markov properties of a distribution, given a set of data drawn from it, is useful
for various reasons. Undirected graphs can reveal hierarchical and cyclic interactions between
the variables (Epskamp et al., 2018; Shen et al., 2009). These graph structures have been used
to interpret datasets from many application areas such as handwriting recognition (Fotak
et al., 2011; Fischer et al., 2013), natural language processing (Biemann, 2006; Mihalcea and
Radev, 2011), protein folding (Thomas et al., 2008), and many more (Bloom and Golomb,
1977; Saaty and Busacker, 1965). The graphical model also defines efficient factorizations of
high-dimensional distributions by representing the density as a product of potential functions
that each depend on low-dimensional subsets of variables (Wainwright et al., 2007). In some
fields, such as image processing and spatial statistics, the Markov structure of the problem
may be immediately recognizable (Koller and Friedman, 2009), and exploiting the structure
of the undirected graphical model greatly simplifies algorithms for inference and prediction.

Previous work in learning probabilistic graphical models has mainly focused on certain
parametric families of distributions (Drton and Maathuis, 2017). For Gaussian random
variables, the conditional independence properties are encoded by the sparsity of the inverse
covariance, or precision, matrix. That is, the (i, j) entry of the precision matrix is zero
if and only if variables Zi and Zj are conditionally independent given the rest. Thus,
learning the graph reduces to identifying the support of the non-zero entries in the precision
matrix. An active area of research considers how to learn the graph with (very) sparse data
relative to the dimension d of the variables. One of the best-known methods to tackle this
problem is the graphical lasso (glasso), introduced by Banerjee et al. (2008); Yuan and Lin
(2007), which solves an `1-penalized maximum likelihood estimation problem for the precision
matrix. One popular method for finding the glasso estimator is the coordinate descent
algorithm of Friedman et al. (2008). In the case of discrete random variables, approaches for
finding sparse graphs include `1-penalized logistic regression (Wainwright et al., 2007), and
the estimation of a generalized covariance matrix whose inverse (via its support) encodes
conditional independence properties (Loh and Wainwright, 2012).

In the case of continuous and non-Gaussian data, the connection between the inverse
covariance matrix and conditional independence is lost. Outside of the Gaussian setting, a
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regularized score matching method was proposed to learn sparse graphs for distributions within
the exponential family (Lin et al., 2016). Recently, a large class of multivariate graphical
models was considered by combining node-wise conditional distributions in the exponential
family (Yang et al., 2015; Suggala et al., 2017). Another area of research has proposed
semiparametric methods based on Gaussian copulas to model non-Gaussian data (Liu
et al., 2009). In this case, the observations are assumed to come from marginal nonlinear
transformations of a multivariate Gaussian random vector with known Markov properties.
The marginal transformations yield potentially non-Gaussian marginal distributions while
at the same time preserving the I-map of the original multivariate Gaussian distribution.
Per Sklar’s theorem, any multivariate distribution can be written in terms of a copula
and the univariate marginals (Nelsen, 2007). Recently, these copulas were extended to fit
models based on elliptical distributions (Liu et al., 2012b). However, the specific families
of copulas that can be easily or explicitly described remain rather limited (Asmussen and
Glynn, 2007). Moreover, data generated via Gaussian copula transformations may fail to
fully test a structure learning algorithm’s ability to handle non-Gaussianity.

So far, there has been relatively little work for general non-Gaussian distributions outside
of the exponential family. The current paper is concerned with providing a mathematical and
algorithmic framework to describe and identify the Markov properties of a continuous and
non-Gaussian distribution. As an expansion of our NeurIPS paper, Morrison et al. (2017),
the main contributions are as follows.

First, we establish a framework which allows for the description and computation of
conditional independence properties in the non-Gaussian setting. This is represented by a new
conditional independence score matrix Ω: each entry Ωij is a score for the independence of
Zi and Zj conditioned on the remaining variables. Each score Ωij is defined by the expected
magnitude of certain mixed derivatives—in other words, integrated Hessian information—
from the joint density π. For strictly positive and continuously differentiable π, this score is
zero if and only if Zi and Zj are conditionally independent. We also show that, under certain
assumptions, the score provides an upper bound for the conditional mutual information, a
widely used measure of conditional dependence. To compute Ω given only samples from
π, an estimate of the joint density is needed. This is achieved via a transport map—a
transformation that deterministically couples one probability measure to another.

Second, we expand the use and analysis of an algorithm called sing (Sparsity Identification
in Non-Gaussian distributions). A key element of the algorithm is a thresholding scheme,
and thus we propose a class of threshold estimators that are consistent for graph recovery.
The success of the algorithm also depends on a strong and explicit connection between the
sparsity of the graph and the sparsity of triangular transport maps associated with π. This
connection is exploited to iteratively reveal sparsity in the graph. We show numerically that
this iterative algorithm provides an improved estimator for the conditional independence
score, compared to a non-iterative approach that does not account for the structure in the
map.

Third, we explore the relationship between the distribution in question and how to learn
its corresponding graph. Because there exist an infinite number of probability distributions
with the same minimal I-map, intuitively it should be easier to identify the graph than
to estimate the entire joint distribution. We refer to this notion as the information gap.
Through several empirical and analytical studies, we explore the extent to which this notion
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is in fact true and discuss its consequences for graph identification. Moreover, we see how
this notion can be directly exploited by the algorithm. That is, in some cases, we still
recover the correct graph even with a biased approximation to the density resulting from a
constrained parameterization for the transport map. On the other hand, it is also possible
that constraining the form of the map yields an incorrect graph. We show examples of both
cases in Section 6.

The remainder of the paper is organized as follows. Section 2 introduces the conditional
independence score and its connections to conditional mutual information. Section 3 describes
a sample-based estimator for the score based on a transport map approximation to the density.
Section 4 introduces our first algorithm for learning the Markov structure, and proposes a
class of threshold estimators that are consistent for this structure. To take advantage of
the connection between the sparsity of the graph and the transport map, Section 5 presents
the iterative algorithm sing. Section 6 demonstrates the performance of the algorithm on
a variety of numerical examples and explores the notion of the information gap. Section 7
provides a discussion and outlook on future research directions. Finally, Appendix A contains
the proof of our main result on the conditional independence score, Appendix B collects the
proofs of results related to transport maps, and Appendix C contains the proof of consistency
for the graph estimator.

2 Measures of conditional independence

An alternative to the global Markov properties (1) for characterizing conditional independence
are the pairwise Markov properties. A distribution for Z = (Z1, . . . , Zd) satisfies a pairwise
Markov property between two variables when the associated nodes are not connected in the
graph G = (V,E). That is, given two variables Zi and Zj for i 6= j, the lack of an edge
between nodes i and j means the two variables are conditionally independent given the
remaining variables:

(i, j) /∈ E ⇐⇒ Zi ⊥⊥ Zj |Z−ij .
Here Z−ij denotes the random vector obtained by removing the ith and jth components
from Z. The pairwise Markov property is, in general, weaker than the global, but when
the density is strictly positive, i.e., π(z) > 0 ∀z ∈ Rd, the global and the pairwise Markov
properties are equivalent (see Lauritzen, 1996). In this paper, we restrict our attention to
this setting.

By definition, Zi ⊥⊥ Zj |Z−ij means that the joint conditional density π(zi, zj |z−ij) =
π(zi, zj , z−ij)/

∫
π(z′i, z

′
j , z−ij)dz

′
idz
′
j factorizes as the product of the conditional marginals

π(zi, zj |z−ij) = π(zi|z−ij)π(zj |z−ij), (2)

where π(zi|z−ij) =
∫
π(zi, zj |z−ij)dzj and π(zj |z−ij) =

∫
π(zi, zj |z−ij)dzi. Thus, Zi ⊥⊥

Zj |Z−ij allows the joint density to factorize as π(z) = π(zi|z−ij)π(zj |z−ij)π(z−ij). If we
further assume that π is continuously differentiable, this yields

∂i∂j log π(z) = 0, (3)

for any z ∈ Rd. Conversely, if a strictly positive continuously differentiable π(z) satisfies (3)
for any z ∈ Rd, then π(zi, zj |z−ij) necessarily factors as in (2) so that Zi ⊥⊥ Zj |Z−ij . The
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characterization (3) of conditional independence has been already observed in Lemma 4.1 of
Spantini et al. (2018). Based on (3), we propose to measure the conditional independence of
Zi and Zj by the score Ωij ≥ 0 defined as

Ωij :=

∫
|∂i∂j log π(z)|2 π(z)dz. (4)

A similar measure also appears in Morrison et al. (2017) under the name of “generalized
precision,” the difference being the square inside the integral.1 For a strictly positive and
continuously differentiable density π, the condition Ωij = 0 yields (3) so that Zi and Zj are
conditionally independent. That is, the sparsity pattern of Ω gives the Markov structure of
π. The entries of Ω also provide a natural score for conditional independence: a value of Ωij

near zero means that Zi and Zj are nearly conditionally independent, whereas a large value
of Ωij means that Zi and Zj are strongly conditionally dependent. In Section 4.2, we will
use this interpretation to estimate the Markov structure of π by thresholding the entries of
an estimator for Ω.

We can relate the magnitude of score Ωij to another popular measure of conditional
independence, the conditional mutual information (CMI). The CMI I(Zi;Zj |Z−ij) is defined
as the expected (with respect to Z−ij) Kullback–Leibler divergence from the product of the
marginal conditionals π(zi|z−ij) and π(zj |z−ij) to the joint conditional π(zi, zj |z−ij); that
is,

I(Zi;Zj |Z−ij) =

∫ (∫
π(zi, zj |z−ij) log

π(zi, zj |z−ij)
π(zi|z−ij)π(zj |z−ij)

dzidzj
)
π(z−ij)dz−ij (5)

=

∫
log

(
π(zi, zj |z−ij)

π(zi|z−ij)π(zj |z−ij)

)
π(z)dz. (6)

The CMI is widely adopted in part due to its information theoretic interpretations. The
following theorem shows that I(Zi;Zj |Z−ij) can in fact be bounded above by Ωij . This result
relies on logarithmic Sobolev inequalities.

Definition 1 A probability density function π on Rd satisfies the logarithmic Sobolev in-
equality if there exists a constant C <∞ such that∫

h log
h∫
hdπ

dπ ≤ C

2

∫
‖∇ log h‖22 hdπ, (7)

holds for any continuously differentiable function h : Rd → R>0. Here ‖ · ‖2 denotes the
canonical Euclidean norm on Rd. The smallest constant C = C(π) such that (7) holds is
called the logarithmic Sobolev constant of π.

Theorem 2 Let π be a strictly positive continuously differentiable probability density function
on Rd. Assume that all the conditional densities of the form π(·|z−i) : zi 7→ π(zi|z−i) and
π(·, ·|z−ij) : (zi, zj) 7→ π(zi, zj |z−ij) satisfy the logarithmic Sobolev inequality with constants
uniformly bounded by some constant C0 <∞, meaning

C(π(·|z−i)) ≤ C0 and C(π(·, ·|z−ij)) ≤ C0, (8)

1. In this paper, we no longer use the term “generalized precision,” but keep the same notation Ω to denote
the new conditional independence score.
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for all z−i ∈ Rd−1 and z−ij ∈ Rd−2 and for all 1 ≤ i 6= j ≤ d. Then

I(Zi;Zj |Z−ij) ≤ C2
0 Ωij , (9)

holds for any i 6= j.

The proof of Theorem 2 is provided in Appendix A.
Let us now comment on assumption (8) of Theorem 2. In general, there is no simple

way to compute exactly the logarithmic Sobolev constant of a density. The Holley–Stroock
perturbation criterion (Holley and Stroock, 1976) and the Bakry–Émery criterion (Bakry and
Émery, 1985) are commonly used to bound the logarithmic Sobolev constant. Following Zahm
et al. (2022), one can combine these two criteria to show that if there exists a log-concave
probability density π0 and two scalars α > 0 and β <∞ such that απ0(z) ≤ π(z) ≤ βπ0(z)
for any z ∈ Rd, then π satisfies (8) with constant

C0 =
β

αλ
, (10)

where λ > 0 is a lower bound for the smallest eigenvalue of −∇2 log π0(z) for any z ∈ Rd.
We refer the reader to Zahm et al. (2022, Section 2.2) for more details and examples of
probability densities that satisfy the above conditions.

Remark 3 (Gaussian case) Suppose that Z ∼ N (m,Σ) is a Gaussian vector with mean
m ∈ Rd and non-singular covariance Σ ∈ Rd×d. Because π(z) ∝ exp(−1

2(z −m)>Σ−1(z −
m)) we have

Ωij = (Σ−1)2
ij , (11)

and so the sparsity pattern of the precision matrix Σ−1 gives the Markov structure of Z. This
is a well known property of Gaussian vectors; see for instance Proposition 3.3.6. in Drton
et al. (2008). This also explains the name “generalized precision” in Morrison et al. (2017).

Next we show how sharp the inequality (9) is for a d = 2 dimensional Gaussian vector
Z = (Z1, Z2) with covariance given Σ = ( 1 ρ

ρ 1 ) for some correlation −1 ≤ ρ ≤ 1. One can
compute the (conditional) mutual information analytically I(Z1;Z2|Z−12) = I(Z1;Z2) =
−1

2 log(1− ρ2) and the score Ω12 = ( ρ
1−ρ2 )2. It remains to compute C0. Using the formula

(10) with β = α = 1 (since π is log-concave we can chose π0 = π), we obtain C0 =
λmin(−∇2 log π(z))−1 = λmax(Σ). Because λmax(Σ) ≤ 2, we then have

I(Z1;Z2) = −1

2
log(1− ρ2)

(9)
≤ C2

0Ω12 = λmax(Σ)2

(
ρ

1− ρ2

)2

≤ 4

(
ρ

1− ρ2

)2

.

We complete this section by comparing the computational cost of evaluating the CMI with
that of evaluating the conditional independence score Ωij , for one variable pair (Zi, Zj). Given
the joint density π(z), computing the CMI requires the ability to evaluate the normalized
conditional density π(zi, zj |z−ij) and the two normalized marginal conditionals, π(zi|z−ij) and
π(zj |z−ij), for any value of zi, zj ∈ R, z−ij ∈ Rd−2. Breaking this down further, evaluating
π(zi, zj |z−ij) requires integrating the joint density with respect to (zi, zj), while the marginal
densities involve further integration with respect to the zi and zj variables individually. Then
one must take an outer expectation over z. Evaluating the CMI therefore requires computing
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nested integrals, which is known to be challenging without additional structure (Rainforth
et al., 2018). In practice, information theoretic quantities that involve nested integration, such
as CMI, are approximated using nested Monte Carlo (NMC) estimators. Given a budget of n
samples, the best-case root-mean-squared error of NMC converges at a slow asymptotic rate
of O(n−1/3). Moreover, as these Monte Carlo estimators involve the repeated computation
of normalizing constants, controlling variance requires the construction of suitable biasing
distributions for importance sampling (Gelman and Meng, 1998), often in a way that depends
on the conditioning variables (Feng and Marzouk, 2019).

On the other hand, computing the score entry Ωij requires evaluating a single mixed
derivative of the log density log π(z) for any z ∈ Rd. In computing derivatives of the log
density, we only require access to the unnormalized π(z). Moreover, the outer expectation of
the score can be approximated with standard non-nested Monte Carlo estimators, converging
at the usual O(n−1/2) rate. Samples can be drawn directly from the target π, and no
importance sampling of any kind is required. For these reasons, in this work we focus on
efficiently estimating the score matrix rather than computing the CMI.

In either case, evaluating the CMI or the conditional independence score requires an
explicit functional form of the joint density π. In a setting where we only have access to
samples from π, many structure learning algorithms rely on density estimation techniques
as a step to learn the Markov structure. In general, density estimation in high dimensions,
especially for non-Gaussian data, can become computationally expensive. Thus, a major
question becomes: What is an efficient or advantageous way to represent the density given
the goal of learning the Markov structure of a distribution? To answer this, we rely on a
particular method of density estimation, using transport maps.

3 Transport maps

Given a target probability measure νπ and a reference probability measure νη, both on Rd,
a transport map S : Rd → Rd is a measurable function that defines a deterministic coupling
between these two measures (Villani, 2008). For random variables Z ∼ νπ and X ∼ νη, this
map ensures S(Z) = X in distribution. If this map is invertible, we can sample from π by
generating i.i.d. samples {xl}l>0 from η and evaluating the inverse map at these samples to
obtain i.i.d. samples S−1(xl) from π. The measure of S(Z) is known as the pushforward
measure of νπ through S and is denoted by S]νπ. If the measure νπ has density π, the
density of the pushforward measure is denoted by S]π. Similarly, the measure of S−1(X) is
known as the pullback measure of νη through S and is denoted by S]νη. If the measure νη
has density η, the density of the pullback measure is denoted by S]η. For a diffeomorphism
S (i.e., a differentiable bijective map with differentiable inverse), the pullback density S]η is
given by:

S]η(z) = η ◦ S(z)| det∇S(z)|, (12)

where det∇S(z) denotes the determinant of the Jacobian of the map S at z, and ◦ represents
the composition operator.

In general, there may exist many different transport maps that couple two arbitrary
probability distributions. Optimal transport identifies one such map by minimizing an
integrated transportation cost that represents the effort of “moving” samples from one
distribution to another (Peyré et al., 2019). We will instead consider transport maps with
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triangular structure, and show how to learn such maps given only samples from the target
density π. Triangular structure will confer several advantages, which we detail below. Besides
the structure of the map, another important degree of freedom is the choice of reference
distribution. For the remainder of this paper, we choose a standard Gaussian reference,
νη = N (0, Id). As we will see below, this choice, coupled with triangular structure, leads to
useful simplicity in the optimization problem used to build estimators of the map. Moreover,
the fact that νη is a product measure guarantees that the triangular transport map inherits
sparsity from the Markov structure of νπ (Spantini et al., 2018). This connection will
be exploited when we discuss our iterative algorithm for learning the graphical model in
Section 5.

3.1 Lower triangular transport maps

We consider triangular transports between smooth and strictly positive densities π and η on Rd.
In this setting,2 Rosenblatt (1952); Knothe (1957); Bogachev et al. (2005) showed that there
exists a unique monotone lower triangular map S—known as the Knothe-Rosenblatt (KR)
rearrangement—such that S]η = π. A monotone lower triangular map S is a multivariate
function of the form

S(z) =


S1(z1)
S2(z1, z2)
S3(z1, z2, z3)
...
Sd(z1, . . . . . . , zd)

 ,
where the kth component Sk only depends on the first k input variables z1:k := (z1, . . . , zk),
and the map ξ 7→ Sk(z1, . . . , zk−1, ξ)—the restriction of the component onto its first k − 1
inputs—is monotone increasing for all (z1, . . . , zk−1) ∈ Rk−1. We denote the space of such
lower triangular maps as S∆.

For differentiable triangular maps, the Jacobian determinant of S can be easily evaluated
as the product of its partial derivatives, i.e., det∇S =

∏d
k=1 ∂kS

k. This enables the pullback
density in (12) to be efficiently evaluated. For more discussion on the advantages of a
triangular structure for S we refer the reader to Marzouk et al. (2016).

Remark 4 (Gaussian case) Suppose that Z ∼ π = N (0,Σ) is a Gaussian vector with non-
singular covariance and X ∼ η = N (0, Id). Let LTL = Σ−1 be the Cholesky decomposition
of the inverse covariance matrix of Z. Then, L is a linear operator that maps samples z ∼ π
from the target density to samples x ∼ η from the reference density, and similarly, L−1 maps
x to z. That is,

Lz = x, L−1x = z.

Thus, Lz is an example of a linear lower triangular transport map S(z). We note that other
non-triangular transformations also map z to x (e.g., any inverse square root of Σ−1), but L
is the unique lower triangular map.

More generally, an affine transport map is sufficient to represent Gaussian target distribu-
tions. On the other hand, nonlinear maps S can represent non-Gaussian target distributions.

2. More generally, we only need the measures νπ, νη to be absolutely continuous with respect to the Lebesgue
measure on Rd (see Santambrogio, 2015).
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3.2 Diagonal transport maps

Diagonal maps D : Rd → Rd are one class of lower triangular transport maps where each
map component Dk depends only on the kth input variable zk.

Let νρ be an arbitrary measure with density ρ. While the pullback measure of νρ through
a general lower triangular transport map S has a different Markov structure than νρ, the
pullback measure of νρ through a diagonal map has the same Markov structure as νρ. This
is formalized in the following proposition, which we prove in Appendix B.

Proposition 5 Let νρ be a measure with strictly positive density ρ that is Markov with
respect to G, and let D be a differentiable diagonal transport map. Then, the pullback measure
D]νρ is also Markov with respect to G.

If the pullback density π = D]ρ satisfies the hypotheses in Theorem 2, we can also
observe this property of diagonal transformations in the conditional independence score of
π. The following proposition shows that the entries of the score matrix are related to the
mixed partial derivatives of the log-density of ρ and the derivatives of the diagonal map
components.

Proposition 6 Let ρ be a strictly positive continuously differentiable density and let D and
its inverse be differentiable diagonal transport maps. Then, the conditional independence
score of the pullback density D]ρ is:

Ωij =

∫ ∣∣∂i∂j log ρ(x) ∂i(D
i)−1(xi)∂j(D

j)−1(xj)
∣∣2 ρ(x)dx. (13)

This result is proved in Appendix B.

Remark 7 (Gaussian case) Suppose that ρ is a multivariate Gaussian density with non-
singular covariance Σ ∈ Rd×d. Then the conditional independence score of D]ρ has the
form:

Ωij = (Σ−1)2
ij

∫ ∣∣∂i(Di)−1(xi)∂j(D
j)−1(xj)

∣∣2 ρ(x)dx.

Thus, if the transformation D is strictly increasing so that Di(zi) 6= 0 for all i, then the
support of Ω is identical to the support of the inverse covariance matrix, i.e., Ωij = 0 if and
only if (Σ−1)ij = 0. Furthermore, each nonzero entry of the conditional independence score
Ωij is proportional to (Σ−1)2

ij.

The pullback of a multivariate Gaussian density ρ through a diagonal map D is an
example of a Gaussian copula. It is well known that Gaussian copulas preserve the Markov
properties of ρ, while introducing non-Gaussianity via nonlinear diagonal transformations.
This class of distributions was considered in the context of structure learning in Liu et al.
(2009) and will be studied numerically in Section 6.
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3.3 Monotone transport map parameterizations

To approximate the KR rearrangement between a pair of densities on Rd, we consider a
differentiable and monotone increasing representation for the map. Monotonicity is enforced
component-wise by ensuring the derivative of the kth component Sk with respect to the kth
variable is a strictly positive function, i.e., ∂kSk(z1, . . . , zk) > 0 for all (z1, . . . , zk) ∈ Rk. A
general parameterization that guarantees monotonicity of Sk is:

Sk(z1, . . . , zk) = ck(z1, . . . , zk−1) +

∫ zk

0
g (hk (z1, . . . , zk−1, t)) dt, (14)

for some positive function g : R→ R+ and functions ck : Rk−1 → R and hk : Rk → R (Ramsay,
1998). Two common choices for g in (14) are g(x) = exp(x) and g(x) = x2, which result in
the “integrated exponential” and the the “integrated squared” parameterizations, respectively.
In this work, we use the integrated squared parameterization because of its computational
advantage of closed-form integration under certain choices for hk (Spantini et al., 2018;
Brennan et al., 2020). Following Baptista et al. (2023), we parameterize the functions ck and
hk using linear expansions

ck(z) =
∑
j

ck,jψj(z), hk(z) =
∑
j

hk,jφj(z), (15)

in terms of tensor product Hermite functions (ψj , φj) and unknown coefficients α = (ck,j , hk,j).
We note that recent methods for autoregressive density estimation alternatively represent
the functions ck and hk using neural networks (Papamakarios et al., 2017; Jaini et al., 2019).

In practice, we truncate the expansions in (15) by prescribing a maximum total degree β
for the multivariate Hermite functions in ck and hk. We denote the space of lower-triangular
maps with total degree β as Sβ∆. As expected, a higher degree provides a richer basis for
density estimation, but requires more computational effort to optimize and more samples to
accurately estimate the coefficients. Here we follow the convention in Spantini et al. (2018)
where a map of degree β uses basis functions up to degree β for ck and β − 1 for hk, since
the latter is then integrated once. To include affine maps within the space Sβ∆, we also
include constant and linear functions with respect to each variable in the expansions (15).
Computations in Section 6 using the transport map parameterizations above are performed
using the publicly-available software TransportMaps.3

3.4 Optimization of the transport map

We complete the discussion of transport maps by describing the optimization procedure for
finding the map. After defining a maximum polynomial degree for the basis functions within
each map component, the resulting map Sα ∈ Sβ∆ is parameterized by a finite number of
coefficients α ∈ Rp. In this subsection we include the subscript α on S to emphasize the
map’s parametric dependence.

A computational approach to find the KR rearrangement that was explored in Marzouk
et al. (2016) is to minimize the Kullback–Leibler divergence DKL(π||S]η) = Eπ[log(π/S]η)]

3. http://transportmaps.mit.edu
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from the pullback density S]η to π over the space of monotone increasing triangular maps
S∆. After parameterizing the maps with coefficients α, this is equivalent to solving

α∗ = argmin
α

DKL

(
π||S]αη

)
= argmax

α
Eπ
[
logS]αη(Z)

]
(16)

As shown in Marzouk et al. (2016); Parno and Marzouk (2018), for standard Gaussian η
and lower triangular S, this optimization problem is separable across the map components
S1, . . . , Sd. In addition, when using the parameterizations in Section 3.3 for each map
component, the optimization problem is unconstrained and differentiable with respect to
the coefficients α. Therefore, in practice we can use an iterative method such as BFGS to
find the optimal solution (Nocedal and Wright, 2006). While the problem is not in general
convex in α, suitable choices of g in (14) can ensure that the problem has a unique global
minimizer (Baptista et al., 2023).

Given i.i.d. data {zl}nl=1 from π, we can approximate the expectation in (16) and maximize
the likelihood associated with this data set. That is,

α̂ = argmax
α

1

n

n∑
l=1

logS]αη(zl), (17)

= argmax
α

1

n

n∑
l=1

d∑
k=1

[
−1

2
Skα(zl1:k)

2 + log ∂kS
k
α(zl1:k)

]
.

where the last equality follows from the form of the standard Gaussian reference density η.
The optimal solution α̂ in (17) is the maximum likelihood estimate (MLE) of α∗. Here we
assume that the solutions of (16) and (17) are unique.

Under suitable regularity conditions on the log-likelihood in (17), α̂ is a consistent
estimator of α∗. Furthermore, it is a random variable that converges in distribution as
n→∞ to a normal random vector given by

√
n (α̂−α∗) d−→ N

(
0,Γ(α∗)−1

)
, (18)

where Γ(α) ∈ Rp×p is the non-singular Fisher information matrix (Casella and Berger, 2002)
for the transport map representation of the density π with coefficients α. Entry (i, j) of the
Fisher information matrix is given by

Γ(α)ij := −Eπ
[
∂αi∂αj logS]αη(Z)

]
. (19)

We conclude this section with a description of the closed-form solution to (17) when the
coefficients parameterize transport maps Sα(z) that are affine in z. A proof of this result is
presented in Appendix B.

Proposition 8 (Affine map optimization) Suppose π is an arbitrary continuous density
on Rd, and let {zl}nl=1 be a sample drawn from π with n ≥ d. If the map components
are restricted to be affine functions of the input variables (i.e., polynomial degree β = 1),
maximizing the log-likelihood function that follows from the pullback density in (17) yields a
Gaussian approximation to π given by S]α̂η = N (m̂, Σ̂) with empirical mean m̂ = 1

n

∑n
l=1 z

l

and empirical covariance matrix Σ̂ = 1
n

∑n
l=1(zl − m̂)(zl − m̂)T .

11
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4 Learning the Markov structure

In this section, we present our first algorithm for learning the edge set of a minimal I-map for
νπ. This algorithm uses the transport map representation of the target density π to compute
the conditional independence score Ω. In Section 4.1 we define a sample-based estimator
for Ω and in Section 4.2 we present a thresholding procedure to identify the sparsity of
Ω. Section 4.3 presents the complete algorithm for learning the edges in the graph, and
Section 4.4 shows that this procedure is consistent.

4.1 Computation of Ω

After optimizing the coefficients, the pullback density S]α̂η defines an approximation to the
target density π. The conditional independence score Ωij in (4) is then estimated as

Ω̂ij = Eπ|∂i∂j logS]α̂η(Z)|2. (20)

We can approximate the expectation above using n i.i.d. samples {zl}nl=1 from π, yielding a
sample-based estimator of Ω̂:

Ω̃ij =
1

n

n∑
l=1

|∂i∂j logS]α̂η(zl)|2. (21)

In this work we estimate Ω̂ using the same n samples from π as those used in (17) to estimate
the map coefficients α̂. Reusing the samples produces a biased approximation of the non-zero
values of Ω̂ at finite n. We observe in our numerical experiments, however, that this bias has
no significant impact on the estimation of the sparsity pattern of Ω.

4.2 Threshold estimator of Ω

As a result of the sample-based approximations of S and Ω̂, the sparsity pattern of Ω̃ will
not exactly match that of Ω. For instance, a zero entry in Ω may result in a small but
numerically non-zero entry in Ω̃. To account for this mismatch, we introduce a threshold
estimator Ω defined as

Ωij =

{
Ω̃ij , Ω̃ij ≥ τij
0, otherwise

, (22)

for some τij > 0. Threshold estimators are commonly used for sparse covariance matrix
estimation (see Cai and Liu (2011)) and τij is usually chosen proportional to the standard
deviation of Ω̃ij . The rationale behind this choice is to threshold the entries of Ω̃ whose
standard deviation makes them indistinguishable from zero.

To compute the standard deviation or variance of Ω̃ij , empirical estimation is not feasible
since we only have a unique realization of Ω̃ij . Instead we approximate its variance with

V(Ω̃ij) ≈
1

n

(
∇αΩ̃ij

)T
Γ(α)−1

(
∇αΩ̃ij

) ∣∣∣
α=α̂

:=
υ̃2
ij

n
, (23)

where Γ(α) is the Fisher information in (19) and ∇αΩ̃ij |α=α̂ denotes the gradient of
α 7→ Ω̃ij(α) = 1

n

∑n
i=1 |∂i∂j logS]αη(zl)|2 evaluated at α̂. We assume here that α 7→ Ω̃ij(α)

12
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is a continuously differentiable function of the parameters α for each entry (i, j). The variance
approximation in (23) is inspired by the delta method (Oehlert, 1992), which exploits the
fact that, given a sequence of random variables θn ∈ Rp satisfying

√
n (θn − θ) D−→ N (0,Λ)

and a continuously differentiable function g : Rp → R such that ∇g(θ) 6= 0, we have
√
n (g (θn)− g (θ))

D−→ N
(
0,∇g(θ)TΛ∇g(θ)

)
. Here we consider θn to be the map coefficients

α̂ and g to be the sample-based score estimator Ω̃ij . The main difference between (23) and
the variance predicted by the delta method is that we evaluate the gradients and the Fisher
information at the estimated map coefficients α̂ because the limiting coefficients α∗ are
unknown in practice.

For the threshold in (22), we then use

τij = f(n)
υ̃ij√
n
, (24)

where f(n) is a function that increases slowly with n. In our numerical experiments, we
will choose f(n) ∝ √log n. In Section 4.4, we will justify this choice by identifying a class
of functions f that make the resulting threshold estimator Ω a consistent estimator of the
sparsity pattern of Ω as n→∞.

4.3 Non-iterative sing algorithm

The tools above suffice to build an algorithm to learn the Markov structure of a continuous,
non-Gaussian distribution. Algorithm 1 learns the graph structure from the support of the
threshold estimator Ω for the conditional independence score. We refer to this sequence
of steps as the non-iterative Sparsity Identification in Non-Gaussian distributions (n-sing)
algorithm. In Section 5 we propose an iterative version of this algorithm that uses the
sparsity of Ω to define improved estimators for the map and the resulting score matrix Ω.

Algorithm 1: Non-iterative Sparsity Identification in Non-Gaussian distributions
(n-sing)

Input : i.i.d. sample {zl}nl=1 ∼ π, maximum polynomial degree β, threshold scaling
function f

Output :Edge set Ên of minimal I-map for νπ

1 Compute transport map: Sα̂ = argmax
Sα∈Sβ∆

∑n
l=1 logS]αη(zl)

2 Estimate Ω: Ω̃ij = 1
n

∑n
l=1 |∂i∂j logS]α̂η(zl)|2

3 Threshold Ω̃, with τij = f(n)υ̃ij/
√
n, to yield Ω

4 Compute Ên: (i, j) ∈ Ên if Ωij 6= 0

4.4 Analysis of consistency

Here we establish conditions under which the proposed threshold estimator is consistent for
recovering the edge set E of the minimal I-map for νπ. For simplicity, we consider a variant
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of n-sing that uses an exact expectation Ω̂ij = Eπ|∂i∂j logS]α̂η(Z)|2 in step 2 of Algorithm 1.
Using the finite-sample approximation Ω̃ij would complicate but not fundamentally change
the following analysis. We also assume that the map parameterization is sufficiently rich to
recover the target density exactly, i.e., that there exists a map Sα∗ ∈ Sβ∆ with coefficients
α∗ ∈ Rp, for some polynomial degree β, such that π = (Sα∗)

]η, where α∗ is obtained from
the solution of (16). Intuitively, since the maximum likelihood estimate α̂ converges to α∗

as n→∞ (recall (18)), each entry Ω̂ij of the estimated score matrix should then converge
to the true score Ωij :

Ω̂ij = Eπ|∂i∂j logS]α̂η(Z)|2 −→
n→∞

Eπ|∂i∂j logS]α∗η(Z)|2 = Ωij .

We will formalize this notion within the analysis below.
To recover the support of Ω from Ω̂, we consider the threshold estimator

Ωij = Ω̂ij 1(Ω̂ij > τij), with τij = f(n)υ̂ij/
√
n, (25)

where υ̂2
ij := (∇αΩ̂ij)

TΓ(α)−1(∇αΩ̂ij)|α=α̂. A proper choice of f is critical to guaranteeing
that the support of the threshold estimator Ω converges to the support of Ω with increasing
n. For instance, when Ωij = 0, both Ω̂ij and υ̂ij/

√
n go to zero at the same rate as n→∞.

As a result, the event {Ω̂ij > υ̂ij/
√
n} asymptotically occurs with a constant non-zero

probability, resulting in false positive edges. The role of f(n) in this case is to adjust the rate
of convergence of the threshold to ensure that Ω̂ij < τij asymptotically, i.e., that there are no
false positives. A similar argument holds for false negatives. The following proposition gives
sufficient conditions on f to guarantee the recovery of the edge set in the minimal I-map for
νπ. The proof is provided in Appendix C.

Proposition 9 For the threshold estimator (25), let f be a function such that f(n)→∞
and f(n)/

√
n → 0 as n → ∞. Then the edge set Ên returned by the associated n-sing

algorithm is a consistent estimator of E, i.e., P(Ên = E)→ 1 as n→∞.

The main idea behind this result is to show that the probability of false positives (i.e.,
type 1 errors) or false negatives (i.e., type 2 errors) converges to zero with the prescribed
threshold. As demonstrated above, the occurrence of these events is determined by the
magnitude of the estimated score Ω̂ij relative to the threshold τij , or, equivalently, by
the magnitude of the ratio

√
nΩ̂ij/υ̂ij in comparison to f(n). For each pair (i, j), we

consider the function g(α) = Eπ|∂i∂j logS]αη(z)|2 and analyze the asymptotic statistics of
the ratio

√
nΩ̂ij/υ̂ij =

√
ng(α̂)/(∇αg(α̂)TΓ(α̂)−1∇αg(α̂))1/2 as a function of the estimated

map coefficients α̂. When the variables Zi and Zj are conditionally dependent, we have
g(α∗) = Ωij 6= 0, and we assume that the gradient ∇αg(α

∗) 6= 0. Then, the limiting
distribution of the ratio is Gaussian by an application of the delta method. On the other
hand, when Zi and Zj are conditionally independent, we have not only g(α∗) = Ωij = 0 but
also ∇αg(α∗) = 0, because both of these terms depend on ∂i∂j log π(z), which is zero for all
z ∈ Rd. Thus both Ω̂ij and υ̂ij approach zero, and their ratio becomes singular as n→∞.
In this case, the delta method is no longer valid; instead, we must consider the asymptotic
distribution of singular Wald statistics, as analyzed in Drton et al. (2016); Pillai and Meng
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(2016). Here, to characterize the limiting distribution, we assume that ∇2
αg(α

∗) 6= 0, but
higher-order derivatives could also be considered if this condition does not hold. Under
the asymptotic distributions for these two scenarios, we show that the probabilities of false
positives and false negatives converge to zero given the conditions above on the function f
in (25).

While Proposition 9 guarantees the threshold estimator is consistent for any f satisfying
the criteria above, the selected f may affect the algorithm’s finite-sample performance. A
function f that grows more quickly with n will produce higher thresholds and reduce the
probability of false positive edges, while a more slowly growing function will produce lower
thresholds and reduce the probability of false negative edges. Future work will investigate
the impact of these choices on finite-sample bounds, i.e., the number of samples required by
the algorithm to recover the graph with high probability.

5 Improved estimator for the Markov structure

In Section 4 we showed how to estimate the conditional independence score using a transport
map representation of the target density. This transport map is a lower-triangular function
and thus is a sparse map where each component does not depend on all of its input variables.
However, when the target measure νπ satisfies conditional independence properties, the
transport map we seek to approximate can inherit additional sparse structure (see Spantini
et al., 2018, Section 5). In this Section, we take advantage of this connection between the
sparsity of the graph and the sparsity of the transport map to present an iterative algorithm
for learning the graph.

5.1 Sparsity of the transport map

For a lower triangular function S, the sparsity pattern of the map, IS , is defined in Spantini
et al. (2018) as:

IS := {(j, k) : j < k, ∂jS
k = 0}. (26)

That is, the sparsity pattern is the set of all integer pairs (j, k) with j < k, such that the kth
component of the map does not depend on the jth input variable.4 The complement of this
set, i.e.,

IcS := {(j, k) : j < k, ∂jS
k 6= 0}, (27)

determines the active variables of the map. That is, if (j, k) ∈ IcS , then the kth component
of the map must depend on the jth input variable. We denote the set of lower triangular
maps that respect the sparsity pattern given by IS as SIS ⊂ S∆.

Given a target density π, Spantini et al. (2018) showed that the Markov structure of νπ
yields a tight lower bound on the sparsity pattern IS of the KR rearrangement that pulls
back η to π. Knowledge of this sparsity can be used when solving the variational problem
in (16) by restricting the feasible domain to transport maps with a reduced set of active
variables. To determine this sparsity pattern, we perform a series of graph operations on
the minimal I-map G of the target measure νπ. These operations define the active variables
for each map component based on a sequence of intermediate graphs (Gk). The graph Gk is

4. The lower triangular function also satisfies ∂jSk = 0 for all j > k by construction.
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identical to the graph obtained in the variable elimination algorithm before marginalizing
node k according to the elimination ordering (d, d− 1, . . . , 1). However, we emphasize that
this sparsity pattern is identified only by inspecting the graph, without actually performing
variable elimination or additional computation (e.g., marginalization) on the joint density.
We restate the relevant part of this result below.5

Theorem 10 (Spantini et al. (2018), Theorem 3 (Part 1)) Let X ∼ νη, Z ∼ νπ
with Lebesgue absolutely continuous measures νη, νπ, and let νη be a product measure
on Rd. Moreover, assume that νπ is globally Markov with respect to G, and define, recursively,
the sequence of graphs (Gk)dk=1 as: (1) Gd := G and (2) for all 1 ≤ k < d, Gk−1 is obtained
from Gk by removing node k and by turning its neighborhood Nb(k,Gk) into a clique. Then
the following holds:

1. If IS is the sparsity pattern of the transport map S, then

ÎS ⊂ IS , (28)

where ÎS is the set of integer pairs (j, k) such that j /∈ Nb(k,Gk).

Remark 11 The sequence of elimination steps performed on the graph in Theorem 10 are
equivalent to the steps taken by the symbolic Cholesky factorization of a sparse symmetric
matrix to identify the nonzero structure of its triangular Cholesky factor; see Lülfesmann
et al. (2010) for more details on this equivalence. Thus, the sparsity bound ÎS identified by
Theorem 10 corresponds to the symbolically predicted sparsity of the Cholesky factor of a
symmetric matrix whose (j, k)th entry is zero if Zj ⊥⊥ Zk|Z−jk.

5.2 Ordering variables in the map

In the process above, the sparsity pattern of the map decreases (relative to that of the original
I-map G) when adding edges to the intermediate graphs Gk to create cliques. These edges
produce fill-in. Fill-in will occur unless G is chordal and the variable ordering corresponds to
the perfect elimination ordering (Rose et al., 1976). Whether or not G is chordal, the amount
of fill-in is dependent on the ordering of the input variables. For example, consider the graph
and variable ordering in Figure 1a. The corresponding lower bound for the sparsity pattern
of the map is

ÎS = {(1, 4), (2, 4), (1, 5), (2, 5), (3, 5)}, (29)

and the dependence of each map component on the input variables is

S(z) =


S1(z1)
S2(z1, z2)
S3(z1, z2, z3)
S4( z3, z4)
S5( z4, z5)

 . (30)

5. Parts 2 and 3 of Theorem 3 in Spantini et al. (2018) provide sparsity bounds for the transport map S−1,
which are related to the marginal independence of νπ and do not concern the current work.
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Figure 1: (a) A sparse graph with an optimal node ordering; (b) Suboptimal ordering induces
extra edges.

With the variable ordering shown in Figure 1a, no edges are added during the process to
identify ÎS and the resulting transport map is more sparse than a dense lower-triangular
map. In contrast, using the suboptimal ordering shown in Figure 1b, edges must be added
to the induced graph, shown in dashed lines. The associated sparsity pattern is now
ÎS = {(1, 5), (2, 5)}, and hence the transport map is predicted to be less sparse.

With a larger set ÎS , we can simplify the parameterization of the map and reduce the
size of the coefficient vector α; this in turn reduces the variance of the estimator α̂ (17), for
any given sample size n (see demonstrations in Morrison et al., 2017, Section 3.2). Thus, it
is worthwhile to find a variable ordering that maximizes the sparsity of the map. A variable
ordering is equivalent to a permutation ϕ : [d]→ [d] of the nodes in the graph. Spantini et al.
(2018) presented an optimization problem for identifying the permutation that induces the
least fill-in—specifically, the largest cardinality of the resulting sparsity bound |ÎS |. This
optimization problem is in general NP-complete (Yannakakis, 1981). Nevertheless, several
heuristics have been proposed to construct permutations based only on the graph G, including
weighted min-fill and min-degree orderings (Koller and Friedman, 2009).

Given a matrix whose sparsity defines the Markov structure of νπ, an optimal variable
ordering can be identified from its sparse Cholesky factorization. From Remark 11, we have
that the variable dependence in the transport map identified by Theorem 10 corresponds
to the fill-in added to the Cholesky factor L of a sparse matrix Σ−1 = LTL encoding the
Markov structure. As a result, finding an ordering that minimizes fill-in in the graph can
be cast as seeking a permutation matrix P so that PΣ−1P T = LTL where L is as sparse as
possible; see Raskutti and Uhler (2018) for consistency guarantees when solving this ideal
problem with estimators of Σ−1.

Remark 12 In the setting of Gaussian Markov random fields (Rue and Held, 2005), we can
take the matrix Σ−1 to be the (sparse) precision matrix of the Gaussian distribution N (0,Σ).
Following Remark 4, the lower-triangular Cholesky factor L of Σ−1 defines a linear transport
map S(z) = Lz that pulls back the reference distribution N (0, Id) to the target N (0,Σ). Our
goal is to seek a variable ordering that yields the map with sparsest variable dependence, i.e.,
the Cholesky factor L with the largest number of zero entries.

For arbitrary non-Gaussian distributions, the sparsity of the conditional independence
score after thresholding, Ω, provides an estimate of the Markov structure of νπ. We therefore
can find a good ordering by seeking a permutation that induces minimum fill-in in the
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symbolic Cholesky factorization of Ω. We use standard heuristics to solve this problem,
which are implemented in software packages such as cholmod (Davis, 2008). The cholmod
package uses both the approximate minimum degree algorithm and the nested dissection
algorithm implemented in the metis graph partitioning library (Karypis and Kumar, 1998)
to identify candidate orderings, and then chooses the variable ordering that induces the
fewest non-zero entries in the Cholesky factor of Ω. We use this ordering scheme for the
numerical examples in Section 6.

5.3 The iterative sing algorithm

In Section 5.1 we saw how sparsity in the graph implies sparsity in the transport map. To
take advantage of this sparsity, we need to know the Markov structure of the target density
π. This Markov structure is not available a priori given only samples from π. However, the
n-sing algorithm from Section 4 can provide an initial estimate of this Markov structure,
based on a dense lower triangular map S (i.e., with IS = ∅). This Markov structure can
be used to identify a new variable ordering, and a corresponding bound ÎS on the sparsity
pattern of the transport map via Theorem 10. We can then enforce this sparsity bound to
compute a new estimate of the transport map, and in turn obtain a new threshold estimate
of the Markov structure of π. We repeat this procedure until the sparsity of the estimated
graph no longer changes. This defines an iterative application of n-sing that we call the
sing algorithm.6 The formal steps of sing are presented in Algorithm 2.

The first steps of sing are identical to the n-sing algorithm. The rationale for the
remaining steps, and for subsequent iterations, is essentially to exploit sparsity for variance
reduction. Sparsity in the graph, coupled with a good variable ordering, leads to sparsity
in the map, i.e., a smaller number of active variables. As noted above, such a map can be
described by fewer coefficients α; a maximum likelihood estimate of these coefficients—based
on the same finite sample from π as in previous iterations—in turn has a smaller variance,
as observed in Morrison et al. (2017). Thus, the iterations of the sing algorithm provide
improved estimators of the target density and of the conditional independence score for the
goal of learning the graph.

Remark 13 For a multivariate Gaussian target density π = N (0,Σ), the sing algorithm
with affine maps (i.e., polynomial degree β = 1) alternates between estimating a sparse
Cholesky factor of the inverse covariance matrix (see Proposition 8 and Remark 4) and
defining a threshold estimator for Σ−1 to learn the Markov structure of π. The sparsity
of the Cholesky factor is dependent on the sparsity of Σ−1 and the ordering of the input
variables. Recently, several methods have also been proposed to learn sparse Cholesky factors
of a sparse inverse covariance matrix for the goal of density estimation in the Gaussian
setting. These methods are based on `1-penalized maximum likelihood estimation (Huang
et al., 2006), banded sparsity patterns for the Cholesky factor (Bickel et al., 2008; Levina
et al., 2008), and combinations of multiple variable orderings (Kang and Deng, 2020).

To conclude, let us comment on the stopping criterion used in Algorithm 2. During the
procedure, the edges in the estimated graph can change freely. For instance, we do not impose
any constraint on the edge set Êt at iteration t (e.g., Êt ⊆ Êt−1) or on the sparsity pattern

6. The sing algorithm first appeared with slight modifications in Morrison et al. (2017).
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of the map. Nevertheless, we have observed in most of our numerical experiments that the
cardinality of estimated edges |Êt| decreases until the algorithm finds a good estimate for E.
Thus, checking that |Êt| is non-decreasing works well as a practical stopping criterion.

Algorithm 2: Sparsity Identification in Non-Gaussian distributions (sing)

Input : i.i.d. sample {zl}nl=1 ∼ π, maximum polynomial degree β, threshold scaling
function f

Output :Edge set Ên of minimal I-map for νπ

Define :Sβ
Î1

= Sβ∆, |Ê0| = d(d− 1)/2, t = 1

1 while |Êt| is decreasing do
2 Compute transport map: Sα̂ = argmax

Sα∈SβÎt

∑n
l=1 logS]αη(zl)

3 Estimate Ω: (Ω̃t)ij = 1
n

∑n
l=1 |∂i∂j logS]α̂η(zl)|2

4 Threshold Ω̃t with τij = f(n)(υ̃t)ij/
√
n, to yield Ω

t

5 Compute |Êt| where (i, j) ∈ Êt if (Ω
t
)ij 6= 0

6 Find permutation of the variables ϕt+1 (using, e.g., cholmod)
7 Identify sparsity pattern of subsequent map Ît+1

8 t← t+ 1

9 Set Ên = Êt

6 Examples

In this section we apply the sing algorithm to learn the Markov structure of several non-
Gaussian datasets. Section 6.1 presents results for the butterfly distribution and demonstrates
the value of an iterative algorithm for recovering the Markov structure. Section 6.2 applies
sing to data from nonparanormal distributions that were considered in Liu et al. (2009).
Surprisingly, affine transport map approximations to the target density (i.e., with polynomial
degree β = 1) work well for these nonparanormal examples, even with highly non-Gaussian
marginals. In Section 6.3 we use an analytical example to further investigate why a linear
map might still work for non-Gaussian data. We then examine a generalization of the
nonparanormal setting in Section 6.4, where the target distribution is given by a diagonal
transformation of a non-Gaussian base distribution. In these examples, we use the approxima-
tion class of the transport map that represents the base density also to approximate the target
density, and still recover the correct graph. Finally, in Sections 6.5 and 6.6 we consider two
application-oriented examples: a higher-dimensional physics-based dataset arising from the
Lorenz-96 dynamical system and a data set that captures interactions in a protein-signaling
network. The code to reproduce the results is available at github.com/baptistar/SING.

In all of our numerical experiments, we parameterize the transport maps using the inte-
grated squared representation introduced in Section 3.3, thereby enforcing the monotonicity
of each map component by construction. Within the sing algorithm, we use the ordering
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heuristics described in Section 5.2 to identify a good permutation at each iteration. Following
the analysis in Section 4.4, we set the threshold to f(n) = c

√
log n where c ∈ R is a constant.

While c can be chosen via cross-validation to improve empirical performance, any value is
consistent for learning the graph, and we set c = 1 in our numerical investigations. Before
running sing, we standardize each variable in the dataset by subtracting the empirical mean
and dividing by the empirical standard deviation. This normalization step ensures all of the
variables are on a similar scale and improves empirical performance.

To quantitatively evaluate the results of the sing algorithm for recovering the Markov
structure using samples from π, we measure the errors in the estimated edge sets Ê (in
examples where the true edge set E is available). For each graph, we measure the number of
false positives: edges that are in Ê and not in E (Type 1 errors) and the number of false
negatives: edges in E that are not in Ê (Type 2 errors). In the figures below, we report
the mean type 1 and 2 errors across 25 runs of the algorithm with independent batches of
samples, as well as the 95% confidence interval for the mean.

6.1 Butterfly distribution

The first example consists of r i.i.d. pairs of random variables (Pi, Qi), where:

Pi ∼ N (0, 1) (31)
Qi = WiPi, with Wi ∼ N (0, 1), Wi ⊥⊥ Pi, i = 1, . . . , r. (32)

One such pair of random variables, or a variation of the above, is a commonly used example
to illustrate how two random variables can be uncorrelated but not independent.

Figures 2a–2b show the minimal I-map and corresponding adjacency matrix of the graph
for r = 5 pairs, with the variables ordered as P1, Q1, . . . , P5, Q5. Figure 2c shows the one-
and two-dimensional marginal densities for one pair (Pi, Qi). Each one-dimensional marginal
is symmetric and unimodal, but the two-dimensional marginal (shown as samples) displays
strongly non-Gaussian behavior.
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Figure 2: (a) The undirected graphical model; (b) Adjacency matrix of true graph (dark
blue corresponds to an edge, off-white to no edge); (c) One- and two-dimensional marginal
densities for one pair (Pi, Qi).
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6.1.1 Graph identification

Figure 3 shows the progression of the identified graph (based on the sparsity of the estimated
conditional independence score) over the iterations of sing, with n = 3000 samples and a
polynomial degree β = 3. The variables in the data set are initially permuted, to verify
that sing identifies a good ordering. After the first iteration of the algorithm (the output
of the n-sing algorithm), the estimator for the conditional independence score has the
block diagonal pattern in Figure 3b, but the off-diagonals of Ω are not yet zero, resulting in
many extra edges. In the next iterations, the algorithm leverages the sparsity of the graph
estimated thus far to reveal sparsity in the transport map and improve the estimator for Ω
in Figures 3c and 3d, thereby removing all erroneous edges. After the fifth iteration, the
sparsity of the graph (and thus the size of the edge set) has not changed and the algorithm
returns the the correct graph in Figure 3e.
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Figure 3: (a) Adjacency matrix of original graph under random permutation; (b) Entrywise
logarithm of the thresholded score matrix Ω (white indicates a zero entry for Ω) after iteration
1; (c) Iteration 3; (d) Iteration 5; (e) Adjacency matrix of the graph after iteration 5. sing
returns the correct graph with β = 3.

In contrast, assuming that the data follow a normal or nonparanormal distribution returns
the incorrect graph, as illustrated by the experiments in Figure 4. If the data were normal,
then a linear map (β = 1) would suffice. However, sing with β = 1 (Figure 4(a)) yields not
only an incorrect graph, but in fact fails to detect any edges at all. This result does not improve
with increasing n, and incorrectly implies that all ten variables are marginally independent.
Furthermore, this result indicates that methods based on precision matrix estimation that
assume the data to be Gaussian (e.g., glasso) will also fail to recover the correct graph in
this example, as demonstrated in Morrison et al. (2017). Similarly, algorithms that assume
the data to be Gaussian after a (possibly nonlinear) diagonal transformation of the marginals
do not recover the correct graph for this dataset; see Figures 4b-4d. These algorithms
transform the data marginal using either the empirical cumulative distribution functions
(CDFs) in Figure 4b, or rank-based quantities such as the Spearman’s rho and Kendall’s
tau statistics (that are only based on the sample ordering and do not require computing
CDFs) in Figures 4c and 4d, respectively. After computing these transformations, Liu et al.
(2009, 2012a) showed that a glasso estimator applied with a correlation coefficient matrix
of the transformed data will consistently estimate the graph for nonparanormal data. For the
distribution considered in Figure 4 which is outside of this class, however, these algorithms
consistently miss the edges between each pair of non-Gaussian variables.
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Figure 4: When the data are assumed (a) normal (i.e., using β = 1) or nonparanormal using
(b) empirical CDF marginal transformations, (c) Spearman correlations or (d) Kendall-Tau
correlations, all ten variables are incorrectly found to be independent or to have spurious
dependencies.

Another important comment on this example is that the underlying density estimation
problem is quite challenging: the exact transport map that characterizes π in this case would
in fact require an infinite expansion of polynomials. That is, no transport map with finite
polynomial degree β can perfectly represent π. However, the correct graph can be identified
with β = 3. Thus, in this case, allowing for some nonlinearity in the map is sufficient. A
linear map does not work at all, but β also need not be excessively high.7

6.1.2 Computational cost

Here we provide details on the runtime and memory requirements of applying sing to
the butterfly dataset. We have observed that memory usage is relatively consistent across
different data sets and computing setups. Runtime can vary more widely, although it tends
to be on the order of seconds to just a few minutes.

The tables in Appendix D provide specific memory usage with n = 1000 samples for
different dataset dimensions d and maximum polynomial degrees β. The tables break down
the memory required for: (i) maximum likelihood estimation of the map coefficients, (ii)
estimating the score, and (iii) estimating the variance of the score, all for the first two
iterations of sing. We observe that variance estimation (see equation (23)) is the main
contributor to memory usage. This is not surprising because the variance estimate relies
on computing derivatives of Ω̃ with respect to map parameters, and Ω̃ already contains
second derivatives of the log density with respect its arguments. Evaluations of the resulting
derivatives rely on a tensor whose size has quartic growth with respect to the number of
variables d. We also note that the first iteration of sing uses the most memory by far. After
each iteration, sing may remove active variables from the map, making subsequent iterations
less memory intensive. During the first iteration, we do not assume any sparsity of the map
or the graph, and hence this iteration is the most costly.

Though our current implementation of the algorithm can be memory intensive, we
emphasize that there are no theoretical limits to recovering the exact graph with sing
(assuming the transport map class is appropriate); indeed, even the one-step algorithm will
recover the correct graph in the limit of infinite samples. (This is in contrast with many

7. A tutorial on this example is provided online by Transport Maps Team (2018).
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existing methods that make distributional assumptions, usually related to Gaussianity.)
Though our present focus is on establishing essential features of the provably consistent
algorithm, it is natural to then seek approximations that could lessen computational cost
in practice. Some options are to use a lower β than absolutely necessary, to devise further
approximations to the variance of Ω̃, or to exploit prior knowledge that imposes some sparsity
on the initial transport map. Another natural extension, which would significantly reduce
memory usage, is to devise a local version of sing that employs neighborhood selection. We
comment further on this possibility in Section 7.

6.2 Nonparanormal data: Gaussian CDF and power transformations

Now we test sing on data from nonparanormal distributions with arbitrary Markov struc-
tures. Let Dk : R → R be a monotone and differentiable transformation for k = 1, . . . , d.
Following Liu et al. (2009), we say that Z = (Z1, Z2, . . . , Zd) has a nonparanormal distribu-
tion with measure νπ and density π when D(Z) = (D1(Z1), D2(Z2), . . . , Dd(Zd)) follows a
multivariate Gaussian distribution with measure νρ and density ρ = N (0,Σ). We refer to
this Gaussian as the “base” distribution in the following subsections. The transformation
D acts component-wise on each variable, and thus defines a diagonal transport map that
pushes forward π to ρ (or equivalently D pulls back ρ to π). From the result in Proposition 5
for diagonal maps, the minimal I-maps of νπ and of νρ are equivalent. Thus the Markov
structure of the target distribution is prescribed by the sparsity of the precision matrix Σ−1

of ρ, but the data can have very non-Gaussian features (see Figure 5b for one example).
Within the field of structure learning from non-Gaussian data, this type of nonparanormal
distribution (also known as a Gaussian copula) is a test case for algorithms that handle
non-Gaussianity.

To generate data from a nonparanormal distribution with an arbitrary graph structure,
we follow the steps in Liu et al. (2009). First, a random sparse graph G = (V,E) is generated.
For each node i ∈ (1, . . . , d), we associate a pair of random variables (Y

(1)
i , Y

(2)
i ) ∈ [0, 1]2 to

i where
Y

(l)
1 , Y

(l)
2 , . . . Y

(l)
d ∼ U [0, 1] (33)

for l = 1, 2. Then, each pair of nodes (i, j) is included in the edge set E with probability

P((i, j) ∈ E) =
1√
2π

exp

(‖yi − yj‖22
2s

)
, (34)

where s is a parameter that controls the sparsity of the graph, yk ≡ (y
(1)
k , y

(2)
k ) is a sample of

(Y
(1)
k , Y

(2)
k ), and ‖ · ‖2 represents the Euclidean norm. In our numerical experiments we set

s = 3 and limit the maximum degree of the graph, i.e., the number of the edges incident
to each node, to be four. A realization of a graph generated according to this procedure is
shown in Figure 5a. After defining the graph, the entries of the inverse covariance Σ−1 are
given by:

Σ−1
ij =


1 i = j

0.245 (i, j) ∈ E
0 otherwise.

(35)
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We note that with maximum degree four, the value 0.245 ensures that the inverse covariance
matrix is positive definite by the Gershgorin circle theorem.

To sample from νπ, we generate i.i.d. samples xl from ρ and apply the inverse diagonal
transformation to generate i.i.d. samples zl = D−1(xl) from π. In this work we consider two
possibilities for the function D as in Liu et al. (2009): a scaled Gaussian CDF and a power
transformation. We now detail how we construct the two functions Dk.

Gaussian CDF transformation. Let f0 : R → [0, 1] be the univariate Gaussian CDF
with mean µf0 and standard deviation σf0 , i.e.,

f0(t) = Φ

(
t− µf0

σf0

)
, (36)

where Φ is the univariate standard Gaussian CDF. The inverse CDF transformation F k =
(Dk)−1 applied to the kth variable is defined as:

F k(xk) = σk

 f0(xk)−
∫
f0(t)Φ′

(
t−µk
σk

)
dt√∫ (

f0(y)−
∫
f0(t)Φ′

(
t−µk
σk

)
dt
)2

Φ′
(
y−µk
σk

)
dy

+ µk. (37)

In our experiments we apply the same transformation to each marginal by setting µf0 = 0.05,
σf0 = 0.4, µk = 0 and σk =

√
Σkk. A representative marginal PDF of π is shown (as a

histogram) in Figure 5b. Each marginal displays very non-Gaussian behavior as a result of
the nonlinearity in the function F k.
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Figure 5: (a) The true minimal I-map of νπ. (b) A histogram of one of the marginals from
the nonparanormal dataset. In this case, the data has bimodal, non-Gaussian behavior.

Power transformation. Let f0(t) = sign(t)|t|a, for a > 0. The inverse power transforma-
tion F k = (Dk)−1 applied to the kth variable is defined as

F k(xk) = σk

 f0(xk − µk)√∫
(f0(t− µk))2Φ

(
t−µk
σk

)
dt

+ µk. (38)
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We set µk and σk as above in the CDF transformation, and set a = 3.

Surprisingly, the conditional independence properties of these nonparanormal distributions
are recovered with a linear map. As seen in Figure 6a for the Gaussian CDF transformation,
we recover the correct graph with n = 3000 samples and a polynomial degree β = 1. Figure 6b
shows that the correct graph is also returned with β = 2. While a transport map with higher
polynomial degree could be used, a biased approximation to π based on a β = 1 map in this
case is sufficient for learning the graph. We note that the dominant entries of the inverse
of the empirical covariance matrix of the data, shown in Figure 6c, for this example also
reveal the true graph—just as the sparsity of the precision matrix would in the Gaussian
case. The next subsection will investigate this connection further. But the inverse of the
empirical covariance contains many noisy and non-zero entries as compared to the final score
matrix Ω, as shown in Figure 6d; the latter benefits from the thresholding process in sing
and the resulting sparsification of the transport map used to estimate the target density.
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Figure 6: (a) Recovered graph with β = 1. The correct graph is returned. (b) The recovered
graph with β = 2 is also correct, but Hermite functions of polynomial degree two in the
transport map are unnecessary. (c) Entrywise logarithm of the inverse of the empirical
covariance matrix of the data. (d) Entrywise logarithm of Ω for β = 1.

Figure 7 shows the errors made by the sing algorithm versus the sample size n for both
the Gaussian CDF and the power transformation, with β = 1. For both transformations,
the number of type 1 errors (i.e., erroneous edges that are not present in the true graph) is
always zero for all n, and the number of type 2 errors (i.e., undetected edges that are present
in the true graph) decreases to zero as n increases.

6.3 Nonparanormal data: cubic transformation

In this section we investigate the effect of biased approximations to the target density when
learning the graph. We consider a simplified form of the power transformation applied to a
3-dimensional Gaussian vector X ∈ R3. Let X ∼ ρ = N (0,Σρ) where the precision and the
covariance matrix are given by

Σ−1
ρ =

 1 0.2 0
0.2 1 0.2
0 0.2 1

 , Σρ = 0.92

0.96 −0.2 0.04
−0.2 1 −0.2
0.04 −0.2 0.96

 (39)

From the sparsity pattern of the precision matrix, the random variables satisfy X1 ⊥⊥ X3|X2.
The corresponding graph is a chain connecting nodes X1 to X2 and X2 to X3.
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Figure 7: Type 1 and 2 errors for recovering the graph of a nonparanormal distribution
versus sample size n for the (a) Gaussian CDF, and (b) power transformation using β = 1.

We now consider a component-wise monotonic transformation (i.e., a diagonal transport
map) given by F k(xk) = x3

k for k = 1, 2, 3. The transformed random variable Z =
F (X) = (F 1(X1), F 2(X2), F 3(X3)) is non-Gaussian with density π = F]ρ. By the result of
Proposition 6 for diagonal transformations, π satisfies the conditional independence property
Z1 ⊥⊥ Z3|Z2, and the Markov structure of π is equivalent to the Markov structure of ρ.

To characterize the target density, suppose we approximate π by the pullback of a
standard Gaussian density through a triangular transport map with polynomial degree
β = 1. Using Proposition 8 with n → ∞, the approximate density is a multivariate
Gaussian distribution N (µπ,Σπ) with mean µπ = Eπ[Z] = Eρ[F (X)] = 0 and covariance
Σπ = Eπ[ZZT ] = Eρ[F (X)F (X)T ]. Each entry of the covariance matrix can be expressed
analytically in terms of σij = (Σρ)ij as

(Σπ)ij = 9σiiσjjσij + 6σ3
ij , (40)

since each entry is in fact a higher-order moment of the multivariate Gaussian distribution
νρ. As a result, we can also analytically compute the inverse of Σπ, which is given by

Σ−1
π =

 5.96× 10−2 6.99× 10−3 −5.56× 10−4

6.99× 10−3 5.36× 10−2 6.99× 10−3

−5.56× 10−4 6.99× 10−3 5.96× 10−2

 , (41)

up to three significant digits. The (1,3) entry of Σ−1
π is not zero, so in principle a Gaussian

approximation to π will not recover the correct graph. The (1,3) entry is still quite small,
however—and, importantly, the relative magnitudes of entries in Σ−1

π are similar to those
in Σ−1

ρ (see Morrison et al. (2022) for a more theoretical explanation for why these entries
are still small). Thus, when using a numerical approximation, the small (1, 3) entry can
easily be thresholded and set to zero. And after this thresholding, the correct graph is in
fact returned.

Figures 8a and 8b investigate this phenomenon, by showing the errors made by sing
for sample sizes n ∈ [102, 106] using β = 1 and β = 2, respectively. The correct graph is
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returned for a broad range of sample sizes. This is a case where the finite-sample estimators
of S and Ω and an under-parameterized map (i.e., a biased approximation to π) interact in a
surprisingly beneficial way to correctly learn the graph. We believe the same phenomenon
explains the success of the linear β = 1 transport maps in the previous subsection. When the
sample size becomes large enough to resolve the smallest entries in the precision matrix (41)
with sufficiently high confidence, however, we observe in Figure 8 that the sing algorithm
with β = 1 also includes (1, 3) in the estimated edge set of the graph. A similar trend is
observed for β = 2. Note that the class of β = 2 transport maps is still insufficient to exactly
capture π in this example (the exact transport map would be the composition of a linear
map with a diagonal map that applies component-wise cubic root transformations). For
sufficiently large n, the bias for β = 2 yields the type 1 errors seen at the right of Figure 8b.
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Figure 8: Type 1 and 2 errors for recovering the graph of the non-paranormal distribution
with the cubic transformation versus sample size n using (a) β = 1, and (b) β = 2.

6.4 Diagonal transformations of a non-Gaussian base distribution

In this example, we consider the class of probability distributions with measure νπ defined as
pullbacks of a non-Gaussian base measure νρ through a nonlinear diagonal transport map.
When the base measure νρ is represented as the pullback of a standard Gaussian measure
through a triangular transport map that uses polynomials of maximum degree β, we refer to
νρ as a distribution in base class β. The nonparanormal distributions in Sections 6.2–6.3
are a subset of this class, where ρ is a multivariate Gaussian density (i.e., ρ is in base class
β = 1). For β > 1, the class considered here is a generalization of the nonparanormal family
of distributions.

As an example, we consider a distribution νρ in base class β = 2. Its density ρ is given
by the pullback of a standard Gaussian density η through a sparse transport map S of the
form

S1(x1) = ax1, Sk(x1, xk) = (x2
1 + b) + axk for k = 2, . . . , d, (42)

where we set the parameters a = 1 and b = 1 to adjust the moments of the distribution
S]νη. The transformed random variable X = S−1(Y ) for Y ∼ η has the density S]η and
its Markov structure is displayed in Figure 9 for a d = 5 dimensional problem. The star
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graph associated with the conditional independence structure of ρ is a commonly used graph
benchmark for structure learning algorithms (Jalali et al., 2011).

X1

X2

X3 X4

X5

Figure 9: Markov structure and sparsity pattern IS of the transport map S for the d = 5
dimensional pullback density S]η .

After defining the base density ρ, we apply the nonlinear inverse CDF transformation
in (37) to each component of X in order to define the random variable Z = D−1(X). Our
target density is that of Z: the pullback of a standard Gaussian density η through the
composition of S and the diagonal map D, which we denote as π = (S ◦D)]η. To sample from
π, we generate i.i.d. samples yl from the standard Gaussian reference density η and apply
the composition of the inverse maps D−1 ◦ S−1 : Rd → Rd to each sample, thus generating
i.i.d. samples zl = D−1 ◦ S−1(yl).

To learn the graph structure of π, we run the sing algorithm with β = 2 using n = 104

samples. The true graph and the recovered graph are displayed in Figures 10a and 10b,
respectively. The graph structure is learned correctly. On the other hand, Figure 10c shows
that using β = 1 does not recover the true graph of π.
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Figure 10: (a) The true graph structure. (b) The recovered graph with β = 2 is correct. (c)
Recovered graph with β = 1 is incorrect.

To demonstrate the sample sizes needed to learn the true graph in this example, we
run the sing algorithm for sample sizes n ∈ [102, 105]. Figures 11a and 11b display the
average type 1 and type 2 errors in the estimated graphs for β = 1 and β = 2, respectively,
at each sample size n. For n ≥ 104 samples roughly, the number of type 1 and type 2 errors
using β = 2 remains close to zero and represents successful graph recovery. In contrast,
Figure 11a shows that using β = 1, there is no sample size within the tested range where one
can recover the exact graph. The conclusion here is analogous to the nonparanormal case
of subsection 6.2: the sing algorithm can return the correct Markov structure when the β

28



Learning Non-Gaussian Graphical Models

parameter matches the polynomial degree necessary to represent the base distribution and
not the target.
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Figure 11: Type 1 and 2 errors for recovering the graph of a nonlinear marginal transformation
of a non-Gaussian base distribution, versus sample size n, using (a) β = 1, and (b) β = 2.

6.5 Lorenz-96 dynamical system

We now apply sing to a physics-based dataset generated by a chaotic dynamical system. In
particular, we consider the Lorenz-96 model, which is commonly used to represent features of
the atmosphere (e.g., temperature or vorticity) on a mid-latitude circle of the Earth (Lorenz,
1996). The state at d discrete locations represents the discretization of a spatially periodic
domain, described by the state vector Z(t) = (Z1(t), . . . , Zd(t)) ∈ Rd at time t. The evolution
of this state in time is defined by the set of coupled nonlinear ODEs

dZj
dt

= (Zj+1 + Zj−2)Zj−1 − Zj + F, j = 1, . . . , d, (43)

where Z−1 ≡ Zd−1, Z0 ≡ Zd, Z1 ≡ Zd+1. In our experiments we use d = 15 and F = 8,
which leads to chaotic dynamics (Reich and Cotter, 2015).

Our goal is to characterize the conditional independence properties of the invariant
distribution of the state; thus we collect data from long-time trajectories of the system.
Figure 12a shows a sample trajectory of three consecutive variables, and Figure 12b displays a
heat map of all 15 variables. While there appears to be some dependence among neighboring
nodes, the dependence structure is certainly not revealed by data visualization alone. Indeed,
this example does not have a known graph representing its “true” conditional dependence,
which is also the case with other data sets representative of real atmospheric dynamics.
Nonetheless, approximating the Markov properties of the state of such systems is important
to localization schemes for data assimilation (see Spantini et al. (2022)) and to learning the
dynamics directly (see Ott et al. (2002)).

To generate a trajectory, we sample a random initial condition Z(0) ∼ N (0, Id) and
use a 4th order Runge-Kutta method with a time step of ∆t = 0.01 for t ∈ [0, 1600] to
approximate the state vector Z(k∆t) of the ODE in (43) as Zk, for k ∈ N0. To reduce
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Figure 12: 15-dimensional Lorenz-96 dataset: (a) A sample trajectory of three neighboring
state variables (Z1, Z2, Z3). (b) Magnitude of all 15 state variables over time.

correlation between the samples, we sub-sample the trajectory by collecting samples only for
k = 40m, m ∈ N0. Furthermore, to reduce the effect of the initial condition, we discard the
first 1000 samples of the trajectory.

Given this dataset, we then learn the Markov structure of the invariant distribution of the
Lorenz-96 system. We run the sing algorithm with β = 2 using n = 3000 samples from this
dataset. In this problem, the dynamics at each time step introduce local interactions between
each state variable Zj and its neighboring variables on the discretized periodic domain, as
seen in the structure of the ODE in (43). As a result, the repeated application of the dynamics
results in full dependence amongst the variables. However, the invariant distribution of the
system can be well approximated by a Markov random field where each variable conditioned
on its closest few neighbors in the physical grid is independent of the others. To account for
the weak conditional independence between distant states in the grid, we use a threshold
for each entry of the conditional independence score given by τij = τ0 + f(n)υ̃ij/

√
n, where

τ0 ≥ 0 is a constant offset for all (i, j). This can be seen as a generalization of the threshold
proposed in subsection 4.2 and applied in the previous numerical examples, where we simply
used τ0 = 0. Here we set τ0 = 0.1.

The thresholded conditional independence score Ω and the corresponding adjacency
matrix of the graph found with sing are shown in Figures 13a-13d, for both β = 2 and
β = 1. To emphasize the decay of the entries in Ω away from the diagonal, we plot the
entrywise logarithm of Ω. Figure 13a demonstrates the banded dependence of each variable
on neighboring variables separated by at most 3 nodes in either direction, as well as the
periodic structure of the graph. On the other hand, the sing algorithm with β = 1 (i.e., a
Gaussian approximation to the target density π) entirely misses the conditional dependence
of each variable on its immediate neighbors, as seen in Figure 13d.
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Figure 13: 15-dimensional Lorenz-96 dataset: Top row: β = 2; Bottom row: β = 1. Left
column: Logarithm of nonzero entries in Ω, at the final iteration of sing; Right column:
Adjacency matrix of the graph learned using sing. (d) In particular, the adjacency matrix
obtained with β = 1 incorrectly suggests that each variable Zj is conditionally independent
of its immediate neighbors, Zj−1 and Zj+1.

6.6 Cell signaling data

Now we apply sing to learn conditional dependence relationships among the components of a
cellular signaling network, based on single-cell data obtained via flow cytometry (Sachs et al.,
2005). The data comprise simultaneous measurements of d = 11 phosphorylated proteins
and phospholipids in n = 7446 individual primary human immune system cells. This dataset
was used in Sachs et al. (2005) to learn a Bayesian network (i.e., a directed acyclic graph)
and in Friedman et al. (2008) to fit a Gaussian graphical model using the glasso algorithm.
Here we investigate the effect of accounting for non-Gaussianity, via a nonlinear transport
map, on the learned dependencies.

As the measurements are all non-negative, we first apply a marginal log transformation
to each variable. This pre-processing step transforms the support of the samples from Rd+
to Rd. Hence, it makes the transport map pulling back the standard Gaussian reference to
the target distribution better behaved and easier to approximate. Note that this diagonal
transformation does not change the graph structure; see Section 3.2.

Figures 14a and 14b display the log of the estimated conditional independence score
Ω and the adjacency matrix, respectively, from running sing with β = 2 and a variance
threshold based on f(n) = δ log(n)/

√
n. Figures 14c and 14d display the corresponding

conditional independence score and adjacency matrix with β = 1, i.e., a linear transport
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map. For both map parameterizations, we select δ ∈ {1.0, 1.25, 1.5, 1.75, 2.0} by performing
a 10-fold cross-validation procedure to identify the value which yields, after thresholding, an
approximate density S]α̂η that maximizes the average log-likelihood on the test sets.

In Figure 14a, and in both Figures 14b and 14d, we observe strong conditional dependence
(i.e., larger values for the estimated score Ω), and hence the presence of edges, between
variable pairs (Z1, Z2), (Z3, Z4), (Z6, Z7) and (Z9, Z10). These pairs are also connected by
edges in the directed graph of Figure 15, whose relationships were verified experimentally
by Sachs et al. (2005) and thus can be considered as a true reference. For variable pairs with
weaker dependence, however, the sing algorithm finds different edge sets when accounting
for non-Gaussian structure (with β = 2) than in the Gaussian case (β = 1). For example, the
non-Gaussian approach identifies edges between Z8 and the set (Z6, Z7), which are also found
in the directed graph by Sachs et al. (2005). In contrast, the Gaussian graphical model fails
to identify edges between Z8 and (Z6, Z7, Z9). These edges are present when accounting for
non-Gaussianity with β = 2, and they follow from the true directed graph after moralization.
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Figure 14: 11-dimensional cell signaling dataset. Top row: β = 2; Bottom row: β = 1. Left
column: Logarithm of nonzero entries in Ω, at the final iteration of sing; Right column:
Adjacency matrix of the graph learned using sing.

7 Discussion

This paper develops a framework for learning the Markov structure of continuous non-
Gaussian probability distributions from data. The framework is built on two key elements.
First, we introduce a computationally tractable score for conditional independence, based on
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Figure 15: Directed acyclic graph identified in Sachs et al. (2005) from cell-signaling data.
To simplify the presentation, we assign a numeric label to each protein as follows: 1=Raf,
2=Mek, 3=Plcγ, 4=PIP2, 5=PIP3, 6=Erk, 7=Akt, 8=PKA, 9=PKC, 10=P38, and 11=Jnk.

averaged Hessian information from the target log-density. Though this score is immediately
useful in its own right, we also show that it bounds the conditional mutual information
under appropriate assumptions. Second, we use a transport-based density estimation method,
based on parametric approximations of the triangular Knothe–Rosenblatt rearrangement,
that explicitly and iteratively exploits sparsity. In particular, the algorithm uses sparsity
bounds for triangular maps, which follow directly from the Markov structure; variance-based
thresholding for the score estimator; and variable ordering schemes designed to preserve
sparsity. Putting these elements together yields the sing algorithm for structure learning.
Our analysis shows consistent graph recovery for a single iteration of the algorithm in an
asymptotic regime, while numerical results demonstrate the benefits of an iterative algorithm
with finite samples.

We demonstrate in multiple examples that this framework can recover the correct
conditional independence structure in cases where a Gaussian approximation would yield
entirely incorrect results. At the same time, our results show that the map parameterization
need not be chosen rich enough to exactly capture the target density. The latter property
points to an “information gap,” which reflects the idea that learning the graph structure
should require capturing less information than the target distribution itself. Indeed, any
undirected graph encodes the Markov properties of an infinite number of distributions.

Put more specifically: there are infinitely many different distributions that will have the
same conditional independence score matrix, and even more that will have score matrices
with the same sparsity pattern. Moreover, as shown in the analytical example of Section 6.3,
entries of the score matrix resulting from a biased approximation to the map—i.e., entries
that would be zero in expectation if the density approximation were unbiased—can be
an order of magnitude smaller than the non-spurious entries. It would be very useful to
understand why this is the case, and under what conditions one can expect a favorable
interaction between finite sample sizes, threshold estimators, and small spurious entries in
the score matrix. These insights could guide the choice of transport map parameterization
for any given data set.

Indeed, the parameterization of the triangular transport is a useful degree of freedom of
our overall framework. Polynomials (or the closely related Hermite functions) are convenient
as they include the Gaussian setting as a special case, but future work can certainly explore
other options, e.g., the nonlinear separable representations in Spantini et al. (2022), or single

33



Baptista, Morrison, Zahm, and Marzouk

layers of autoregressive flows. Further analysis of the information gap described above might
make it possible to develop transport map estimators with the minimal representation that
is needed to learn the Markov structure of the target distribution. Relatedly, it would be
valuable to develop information theoretic (representation-independent) lower bounds on
the number of samples needed to identify the graph in the non-Gaussian setting. To our
knowledge, these bounds only exist for Gaussian and discrete Markov random fields (Wang
et al., 2010; Santhanam and Wainwright, 2012).

We outline a few additional avenues for future work as follows:

Different data sources. In practical settings, it is of interest to learn the graph from
heterogeneous data that may not be independent and identically distributed. Examples
include data collected from several related populations that have common structure, and
data collected over time. There has been some work to address these problems in the
Gaussian setting: Guo et al. (2011); Danaher et al. (2014) propose to combine optimization
problems for separate precision matrices with shared `1-penalties to identify common sparsity,
while Zhou et al. (2010) exploits smooth changes in the precision matrix to estimate the
evolution of the graph over time.

Latent structure. We also envision extending the sing algorithm to learn the structure of
graphical models with latent variables and partial observations. For Gaussian distributions,
Chandrasekaran et al. (2012) proposes a penalized maximum likelihood approach to identify
a precision matrix with sparse and low-rank structure. A similar approach may explore other
properties of the conditional independence score matrix Ω, besides sparsity, to reveal hidden
variables and multiscale structure in the target density.

High-dimensional models. To learn the graph of a d-dimensional distribution, the sing
algorithm computes transport maps with d components and stores O(d2) entries for the
estimated conditional independence score in memory. For high-dimensional datasets, it may
not be feasible to jointly estimate the associated graph. Instead, neighborhood selection
methods identify local dependencies by independently estimating the neighborhood of each
node in G, i.e., Nb(k,G) for k = 1, . . . , d such that π(zk|z−k) = π(zk|zNb(k,G)). Methods for
finding the neighborhood include greedy selection strategies (Bresler, 2015) and penalized
maximum likelihood estimators (Meinshausen and Bühlmann, 2006). Future work will
consider a neighborhood selection version of the sing algorithm that avoids estimating the
global transport map for the joint density; this would reduce the run time and memory
required to learn the graph.
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Appendix A. Proof of Theorem 2

Proof The proof contains two steps: we first show the result when d = 2, then extend it to
d > 2.

Assume d = 2. The conditional mutual information I(Zi;Zj |Z−ij) becomes the mutual
information I(Zi;Zj), given by

I(Zi;Zj) =

∫
π(zi, zj) log

(
π(zi, zj)

π(zi)π(zj)

)
dzidzj

=

∫
h(z) log

(
h(z)∫

h(z′)π(z′i)π(z′j)dz
′
idz
′
j

)
π(zi)π(zj)dzidzj ,

where h(z) = h(zi, zj) = π(zi, zj)/(π(zi)π(zj)). Next we apply the logarithmic Sobolev
inequality to bound I(Zi;Zj). To do that, we need to show that the product density
(zi, zj) 7→ π(zi)π(zj) satisfies the logarithmic Sobolev inequality. By Theorem 4.4. in
Guionnet and Zegarlinksi (2003), (zi, zj) 7→ π(zi)π(zj) has a logarithmic Sobolev constant
C(π(zi)π(zj)) bounded by max{C(π(zi));C(π(zj))}. By Assumption (8) the joint density
π(zi, zj) has a logarithmic Sobolev inequality bounded by C0 and therefore the marginals
π(zi) and π(zj) satisfy C(π(zi)) ≤ C0 and C(π(zj)) ≤ C0 (this can be easily shown by
restricting (8) to univariate functions h : (zi, zj) 7→ h(zi) or h : (zi, zj) 7→ h(zj)). We deduce
that the product of marginals satisfies the logarithmic Sobolev inequality with constant
C(π(zi)π(zj)) ≤ C0. We can write

I(Zi;Zj) ≤
C0

2

∫ ∥∥∥∥∂i log h(zi, zj)
∂j log h(zi, zj)

∥∥∥∥2

2

h(zi, zj)π(zi)π(zj)dzidzj

=
C0

2

∫ (∫ (
∂i log π(zi, zj)− ∂i log π(zi)

)2
π(zj |zi)dzj

)
π(zi)dzi

+
C0

2

∫ (∫ (
∂j log π(zi, zj)− ∂j log π(zj)

)2
π(zi|zj)dzi

)
π(zj)dzj . (44)

Next we apply the Poincaré inequality to bound the two integrands in the above expression.
By assumption (8), the density zi 7→ π(zi|zj) has a logarithmic Sobolev constant bounded
by C0 so that it satisfies the Poincaré inequality∫ (

f(zi)−
∫
f(z′i)π(z′i|zj)dz′i

)2

π(zi|zj)dzi ≤ C0

∫
f ′(zi)

2π(zi|zj)dzi, (45)

for any continuously differentiable function f : R → R. The Poincaré inequality (45) is
classically obtained from a logarithmic Sobolev inequality (7) by letting h = 1 + εf and by
taking a Taylor expansion as ε→ 0. Notice that∫ (

∂j log π(z′i, zj)
)
π(z′i|zj)dz′i =

∫
∂jπ(z′i, zj)

π(z′i, zj)

π(z′i, zj)

π(zj)
dz′i =

∂j
∫
π(z′i, zj)dz

′
i

π(zj)
= ∂j log π(zj),
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so that the Poincaré inequality (45) with f(zi) = ∂j log π(zi, zj) yields∫ (
∂j log π(zi, zj)− ∂j log π(zj)

)2
π(zi|zj)dzi ≤ C0

∫ (
∂i∂j log π(zi, zj)

)2
π(zi|zj)dzi.

In the same way, by permuting i and j, we obtain∫ (
∂i log π(zi, zj)− ∂i log π(zi)

)2
π(zj |zi)dzj ≤ C0

∫ (
∂i∂j log π(zi, zj)

)2
π(zj |zi)dzj .

Using the above two inequalities in (44) yields

I(Zi;Zj) ≤
C0

2

∫ (
C0

∫ (
∂i∂j log π(zi, zj)

)2
π(zj |zi)dzj

)
π(zi)dzi

+
C0

2

∫ (
C0

∫ (
∂i∂j log π(zi, zj)

)2
π(zi|zj)dzi

)
π(zj)dzj

= C2
0

∫ (
∂i∂j log π(zi, zj)

)2
π(zi, zj)dzidzj .

This shows that I(Zi;Zj) ≤ C2
0Ωi,j when d = 2.

Assume now that d > 2. For any z−ij ∈ Rd−2, replacing π(zi, zj) by π(zi, zj |z−ij) in the
previous analysis allows us to write∫

π(zi, zj |z−ij) log

(
π(zi, zj |z−ij)

π(zi|z−ij)π(zj |z−ij)

)
dzidzj

≤ C2
0

∫ (
∂i∂j log π(zi, zj |z−ij)

)2
π(zi, zj |z−ij)dzidzj

= C2
0

∫ (
∂i∂j log π(z)

)2
π(zi, zj |z−ij)dzidzj ,

where the last equality is obtained by log π(zi, zj |z−ij) = log π(z)− log π(z−ij). Multiplying
by the marginal π(z−ij) and integrating over z−ij ∈ Rd−2 we obtain (9), which concludes
the proof.

Appendix B. Proofs of transport map results

Proof of Proposition 5 Let νρ be a measure on Rd that is Markov with respect to a graph
G and has a strictly positive density ρ. By the Hammersley-Clifford theorem, the density ρ
factorizes as

ρ(x) =
1

Z
∏
c∈C

ϕc(xc), (46)

where ϕc are nonnegative potential functions, Z is a normalizing constant and C is the set of
maximal cliques of G (Lauritzen, 1996). A clique is a fully connected subset of nodes and a
maximal clique is a clique that is not a strict subset of another clique.
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The pullback density of ρ through a differentiable diagonal transport map D is given by

D]ρ(z) = ρ ◦D(z)|det∇D(z)|

= ρ ◦D(z)
d∏
i=1

∂iD
i(zi)

=
1

Z
∏
c∈C

ϕc(D
c(zc))

d∏
i=1

∂iD
i(zi),

where Dc represents the subset of components of D corresponding to the nodes in clique c.
Collecting the derivatives of the map components for the nodes in each clique, we have

D]ρ(z) =
1

Z

(
ϕc1(Dc1(zc1))

∏
i∈c1

∂iD
i(zi)

)ϕc2(Dc2(zc2))
∏

i∈c2;i/∈c1

∂iD
i(zi)

 . . .

ϕcM (DcM (zcM ))
∏

i∈cM ;i/∈c1,...,cM−1

∂iD
i(zi)


≡ 1

Zψc1(zc1)ψc2(zc2) · · · · · ψcM (zcM ), (47)

where ψcj (zcj ) defines new potential functions of the variables Zcj in the maximal clique cj ,
and M = |C| represents the cardinality of C. From (47), the density of D]ρ also factorizes
according to G. Thus, by Proposition 3.8 in Lauritzen (1996), D]νρ is Markov with respect
to G.
We note that the contrapositive of Proposition 5 immediately follows: If the minimal I-map
of S]νρ is not equivalent to that of νρ, then the map S is not diagonal.

Proof of Proposition 6 Let ρ be a strictly positive density on Rd and letD be a differentiable
diagonal transport map. The log of the pullback density π = D]ρ is given by

log π(z) = logD]ρ(z) = log ρ ◦D(z) + log | det∇D(z)|

= log ρ ◦D(z) +
d∑

k=1

log ∂kD
k(zk). (48)

The partial derivatives of the log-density with respect to zi, zj are given by

∂i∂j log π(z) = ∂i∂j log ρ ◦D(z) ∂iD
i(zi)∂jD

j(zj),

by using that each term in the log-determinant of the map’s Jacobian only depends on a
single variable. Thus, entry (i, j) of the conditional independence score for π is given by

Ωij =

∫ ∣∣∂i∂j log ρ ◦D(z) ∂iD
i(zi)∂jD

j(zj)
∣∣2 π(z)dz. (49)
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Using the measure transformation νπ = D]νρ, we rewrite the conditional independence score
of π in (49) as the following expectation over ρ

Ωij =

∫ ∣∣∂i∂j log ρ(x) ∂iD
i((Di)−1(xi))∂jD

j((Dj)−1(xj))
∣∣2 ρ(x)dx. (50)

Finally, by applying the inverse function theorem to each continuously differentiable map
component to get ∂iDi((Di)−1(xi)) = ∂i(D

i)−1(xi), we arrive at the score in (13).

Proof of Proposition 8 For the polynomial degree β = 1, the transport map S is an affine
function S(z) = L(z − c) with an invertible lower triangular matrix L ∈ Rd×d and vector
c ∈ Rd. For this class of transport maps, the minimization problem in (17) becomes

argmax
S

1

n

n∑
l=1

logS]η(zl) = argmax
S

1

n

n∑
l=1

log η ◦ S(zl) + log | det∇S(zl)|

= argmax
L,c

1

n

n∑
l=1

(
−1

2
(zl − c)TLTL(zl − c) + log detL

)
. (51)

For any invertible matrix LTL, the optimal c is the empirical mean m̂ := 1
n

∑n
l=1 z

l.
Substituting this value for c in (51), the objective for L is given by

argmin
L

{
Tr
(
LTLΣ̂

)
− log det

(
LTL

)}
, (52)

where Σ̂ := 1
n

∑n
i=1(zl − c)(zl − c)T denotes the empirical covariance matrix and Tr is the

matrix trace operator. Setting the gradient of (52) with respect to LTL to zero yields the
optimal L to be the inverse of the Cholesky factor of Σ̂ (which exists for n ≥ d). Thus,
the pullback density S]η for a standard Gaussian density η yields a multivariate Gaussian
approximation to π with mean m̂ and covariance matrix Σ̂.

Appendix C. Proof of Proposition 9

Proof The proof considers two types of errors: a false positive occurs when the true score
Ωij is zero but the threshold estimate Ωij = Ω̂ij1(Ω̂ij > τij) is nonzero; and a false negative
occurs when the true score Ωij is nonzero but the threshold estimate Ωij is zero.

For each pair of variables (i, j), let g : α 7→ Eπ|∂i∂j logS]αη(z)|2 be a continuous
function of the coefficients α. Then, we have Ω̂ij = g(α̂) (as defined in (20)) and
υ̂ij = (∇αg(α̂)TΓ(α̂)−1∇αg(α̂))1/2 (defined below (25)). Assuming that g is twice dif-
ferentiable, a Taylor expansion of the score estimator around α∗ yields

g(α̂) = g(α∗) +∇αg(α∗)T (α̂−α∗) +
1

2
(α̂−α∗)T∇2

αg(α∗)(α̂−α∗) + op(‖α̂−α∗‖2), (53)

where the remainder is a term that tends to zero in probability.
For conditionally dependent variables, we have g(α∗) = Ωij 6= 0 and, by assump-

tion, ∇αg(α
∗) 6= 0. Therefore, we can truncate the expansion in (53) to first-order
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terms and from the delta method we have
√
n(Ω̂ij − Ωij) =

√
n(g(α̂) − g(α∗))

d−→
N (0,∇αg(α

∗)TΓ(α∗)−1∇αg(α
∗)) as n→∞. From the continuous mapping theorem, υ̂ij

tends in probability to the constant υij = (∇αg(α∗)TΓ(α∗)−1∇αg(α∗))1/2 6= 0 (nonzero for
positive-definite Fisher information matrix Γ(α∗) by the assumption ∇αg(α∗) 6= 0) as α̂→
α∗. Then from Slutsky’s theorem (Corollary 2.3.2 in Lehmann (2004)), the ratio

√
n(Ω̂ij/υ̂ij−

Ωij/υij)
d−→ R as n → ∞ where R ∼ N

(
0,∇αg(α∗)T Γ(α∗)−1∇αg(α∗)/υ2

ij

)
= N (0, 1).

Thus, the probability of false negatives given by

P
(
Ωij = 0; Ωij 6= 0

)
= P

(
Ω̂ij <

f(n)υ̂ij√
n

; Ωij 6= 0

)
= P

(
√
n

(
Ω̂ij

υ̂ij
− Ωij

υij

)
< f(n)−

√
nΩij

υij
; Ωij 6= 0

)
,

asymptotically converges to

P
(
R < f(n)−

√
nΩij

υij

)
≤ e
− 1

2

(
f(n)−

√
nΩij
υij

)2

, (54)

where the last inequality provides an explicit bound and follows from the Gaussian tail bound
P(R < r) ≤ e−r2/2 for r ≤ −1. For f(n)/

√
n→ 0, the term f(n)−

√
nΩij
υij

tends to negative
infinity as n→∞, and therefore, the probability of a false negative in (54) converges to zero
for any f that grows more slowly than

√
n. Conversely, if f(n) = c

√
n for some c ≥ Ωij/υij ,

the left-hand side in (54) does not go to zero.
For conditionally independent variables, we have ∂i∂j logS]α∗η(z) = 0 for all z ∈ Rd; thus

g(α∗) = E|∂i∂j logS]α∗η(Z)|2 = 0 and∇αg(α∗) = 2E[∂i∂j logS]α∗η(Z)∇α∂i∂j logS]α∗η(Z)] =
0. Under the assumption that ∇2

αg(α
∗) 6= 0, we can truncate the expansion in (53) to

second-order terms and approximate Ω̂ij asymptotically using a quadratic form (i.e., a
degree two polynomial). By Proposition 2.1 in Drton et al. (2016), the Wald statistic
nΩ̂2

ij/υ̂
2
ij = ng(α̂)2

∇αg(α̂)TΓ(α̂)−1∇αg(α̂)

d−→W , where the random variable W satisfies, by Proposi-
tion 3.4 in Drton et al. (2016), P(W ≥ x) ≤ P(1

4X ≥ x) for X ∼ χ2
p and all x > 0. Here, χ2

p

denotes a chi-squared variable with p ≥ 1 degrees of freedom where p corresponds to the
dimension of α. Then, the probability of false positives, which can be written as

P(Ωij 6= 0; Ωij = 0) = P
(

Ω̂ij >
f(n)υ̂ij√

n
; Ωij = 0

)
= P

(
nΩ̂2

ij

υ̂2
ij

> f(n)2; Ωij = 0

)

since Ω̂ij and υ̂ij are non-negative, is asymptotically given by

P
(
W > f(n)2

)
≤ P

(
X − p > 4p

(
f(n)2

p
− 1

4

))
≤ e−f(n)2/p+1/4, (55)

where the last inequality uses the χ2
p squared tail bound P(X − p ≥ 4px) ≤ P(X − p ≥

2
√
px+ 2x) ≤ e−x for x ≥ 1 (Lemma 1 in Laurent and Massart (2000)). For f(n)→∞, the

right-hand side in (55) and hence the left-hand side converge to zero as n→∞.
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To complete the proof we use a union bound over all pairs (i, j) to bound the probability
of failing to recover the true edge set

P(Ên 6= E) ≤
∑

(i,j)∈E

P(Ωij = 0; Ωij 6= 0) +
∑

(i,j)6∈E

P(Ωij 6= 0; Ωij = 0). (56)

Using the asymptotic results in (54) and (55) to bound each term in (56) we have P(Ên 6=
E)→ 0 as n→∞.

Appendix D. Data on memory usage

Following the discussion in Section 6.1.2, we report the memory usage of the first two
iterations of sing for different data set dimensions d and polynomial degrees β, applied to
the butterfly dataset of Section 6.1.

Polynomial degree β Dimension d Map estimation Estimating Ω̃ Estimating Var(Ω̃)

1 4 51.8× 103 19.3× 106 10.2× 107

2 4 96.2× 105 55.3× 106 29.4× 107

1 6 18.3× 106 44.9× 106 33.3× 107

2 6 21.9× 106 18.0× 107 12.2× 108

1 8 57.6× 106 13.2× 107 84.5× 107

2 8 73.1× 106 49.6× 107 35.9× 108

1 10 36.0× 106 13.4× 107 15.9× 108

2 10 21.6× 106 99.6× 107 94.4× 108

1 12 49.4× 106 13.3× 107 27.8× 108

2 12 35.7× 106 19.0× 108 22.0× 109

Table 1: Breakdown of memory usage (in bytes) for the first iteration of sing applied to the
butterfly data set with n = 1000 samples.
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