Journal of Machine Learning Research 25 (2024) 1-130 Submitted 10/21; Revised 5/24; Published 7/24

Training Integrable Parameterizations of Deep Neural
Networks in the Infinite-Width Limit

Karl Hajjar HAJJARKARLQGMAIL.COM
Laboratoire de Mathématiques d’Orsay
Université Paris-Saclay

91405 Orsay, France

Lénaic Chizat LENAIC.CHIZAT@QEPFL.CH
Institut de Mathématiques

Ecole Polytechnique Fédérale de Lausanne

Lausanne, Switzerland

Christophe Giraud CHRISTOPHE.GIRAUD@UNIVERSITE-PARIS-SACLAY.FR
Laboratoire de Mathématiques d’Orsay

Université Paris-Saclay

91405 Orsay, France

Editor: Benjamin Guedj

Abstract

To theoretically understand the behavior of trained deep neural networks, it is necessary to
study the dynamics induced by gradient methods from a random initialization. However,
the nonlinear and compositional structure of these models make these dynamics difficult
to analyze. To overcome these challenges, large-width asymptotics have recently emerged
as a fruitful viewpoint and led to practical insights on real-world deep networks. For two-
layer neural networks, it has been understood via these asymptotics that the nature of
the trained model radically changes depending on the scale of the initial random weights,
ranging from a kernel regime (for large initial variance) to a feature learning regime (for
small initial variance). For deeper networks more regimes are possible, and in this paper
we study in detail a specific choice of “small” initialization corresponding to “mean-field”
limits of neural networks, which we call integrable parameterizations (IPs).

First, we show that under standard i.i.d. zero-mean initialization, integrable parame-
terizations of neural networks with more than four layers start at a stationary point in the
infinite-width limit and no learning occurs. We then propose various methods to avoid this
trivial behavior and analyze in detail the resulting dynamics. In particular, one of these
methods consists in using large initial learning rates, and we show that it is equivalent to
a modification of the recently proposed maximal update parameterization uP. We confirm
our results with numerical experiments on image classification tasks, which additionally
show a strong difference in behavior between various choices of activation functions that is
not yet captured by theory.

Keywords: Neural networks, infinite-width limit, gradient methods.

(©2024 Karl Hajjar, Lénaic Chizat, and Christophe Giraud.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/21-1260.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/21-1260.html

HaAJJAR, CHIZAT, AND GIRAUD

1. Introduction

While artificial neural networks routinely achieve state-of-the art performance in various
real-world machine learning tasks, it is still a theoretical challenge to understand why and
under which conditions they perform so well. The training algorithm—typically a variant
of stochastic gradient descent (SGD) with random initialization—plays a central role in this
performance but is difficult to analyze for general neural network architectures, because of
their highly non-linear and compositional structure. Large-width asymptotics, which have
previously been considered for other purposes (Neal, 1995; Bengio et al., 2006), have recently
been proposed to overcome some of these difficulties and have brought numerous insights
on the training behavior of neural networks (Nitanda and Suzuki, 2017; Mei et al., 2018;
Jacot et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Chizat and Bach, 2018; Sirignano
and Spiliopoulos, 2020).

One of these insights is that the magnitude of the random weights at initialization has
a dramatic impact on the learning behavior of neural networks (Chizat et al., 2019). For
two-layer networks and with suitable learning rates, initializing the output layer weights
with a standard deviation of 1/m, where m is the width of the network, leads to feature
learning when m is large, while the same network initialized with a standard deviation of
1/y/m leads to the Neural Tangent Kernel (NTK) regime, a.k.a. lazy regime, where the
network simply learns a linear predictor on top of fixed features. This observation suggests
that parameterizations—that is, the choice of the scaling factors, with the width m, of
the initial magnitude and of the learning rates of each layer of a neural network—are of
fundamental importance in the theory of neural networks. While standard deep learning
packages offer various choices of scale at initialization (Glorot and Bengio, 2010; He et al.,
2015), those have been designed with the sole criterion in mind to have a non-vanishing first
forward and backward passes for arbitrary depths. Theory now offers the tools to explore
a larger space of parameterizations and study their dynamics beyond the first forward and
backward passes in the infinite-width limit.

With more than two layers, the categorization of parameterizations is more subtle and
there are disparate lines of work. On the one hand, some parameterizations still lead to
the kernel regime, which is subject to an intense research activity (e.g., Jacot et al., 2018,
2019; Allen-Zhu et al., 2019; Du et al., 2019; Arora et al., 2019; Geiger et al., 2020a,c; Yang,
2020a). Since this regime reduces to learning a linear predictor on top of fixed features in the
large width limit, this parameterization is of limited relevance to understand representation
learning in networks used in practice (although it should be noted that non-asymptotic
analyses reveal interesting effects, e.g., Hanin and Nica, 2019). On the other hand, there is
a growing literature around parameterizations where weights are initialized with a standard
deviation of 1/m (except for the first layer). These are often called “mean-field” models but
we prefer to call them integrable parameterizations (IPs) in this work!, in reference to the
fact that sums of m terms with standard deviation of order of 1/m are absolutely convergent.
There already exists mathematical tools to describe the evolution of the parameters of IPs

1. For deep neural networks, it is somewhat arbitrary to associate the term mean-field with a specific choice
of scaling so we believe that this term lacks precision when it comes to discussing various parameteriza-
tions.

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

in the infinite-width limit but they are not fully satisfactory to understand the properties
of the learned function in the standard setting used in practice (see review in Section 1.2).

Going beyond the dichotomy between the scales 1/m and 1//m, Yang and Hu (2021)
have exhibited, using a technique called the Tensor Program (Yang, 2019, 2020a,b), a
general categorization of parameterizations, in particular between those which allow feature
learning and those which do not. As a result from their analysis, they singled out a mazimal
update parameterization pP where, as for the NTK parameterization, the intermediate
layers’ weights are initialized with a standard deviation of 1/y/m, but the last layer weights
are initialized with a standard deviation of 1/m: they show that with appropriate learning
rates, this leads to maximal feature learning (in a certain sense). This parameterization had
been previously considered in (Geiger et al., 2020b) where the authors study empirically
the effect of the scale (Chizat et al., 2019) on learning.

In (Yang and Hu, 2021), IPs have been excluded from the analysis on the basis that they
are trivial: if one follows the usual training procedure—which we refer to as Naive-IP—the
network starts on a stationary point in the infinite-width limit and the learned function
remains at its initial value.

1.1 Contributions

Our goal is to draw connections between the various lines of research discussed above, and to
improve our understanding of integrable parameterizations: when and why are they trivial?
How can we avoid triviality and actually learn features? What are the salient properties of
the resulting networks in the infinite-width limit? To answer these questions rigorously, we
leverage the Tensor Program technique developed in (Yang, 2019, 2020a,b; Yang and Hu,
2021). Specifically, our contributions are the following:

e We first show in Theorem 7 that with learning rates constant in time, the functions
learned using SGD for integrable parameterizations of neural networks with four layers
or more either remain at their value at initialization or explode in the infinite-width
limit when the weights are initialized using the standard zero-mean i.i.d. schemes used
in practice.

e We show in Theorem 13 that using large learning rates, which grow as a power of
m, for the first gradient step—and that step only—allows SGD to escape the initial
stationary point for integrable parameterizations and to initiate a non-trivial learning
phase. In fact, we prove in Theorem 16 that the resulting dynamic is equivalent to a
modification of the dynamic of uP where, after the first gradient step, one subtracts
the initial weights from the learned weights of the intermediate layers.

e We study two alternative ways to escape the initial stationary point for integrable
parameterizations and analyze the corresponding dynamics. Removing the scale fac-
tor in 1/m on the bias terms allows to escape the initial stationary point when using
moderately large initial learning rates. A drawback of the resulting dynamics is that
its updates only depend weakly on the input data (see Theorem 18). On the other
hand, using a non-centered law also allows to escape the initial stationary point for
i.i.d.initializations without having to use large learning rates, but the dynamics be-
come degenerate as the updates of the entries of the weight matrix in a given layer

HaAJJAR, CHIZAT, AND GIRAUD

are all equal to the same fixed quantity in the infinite-width limit (see Theorem 17).
We investigate numerically the performance of those two models and show that the
aforementioned behaviors are detrimental to learning.

The code to reproduce the results of the numerical experiments can be found at:
https://github.com/karl-hajjar/wide-networks.

1.2 Related Work

While the study of infinitely wide neural networks has a long history (Barron, 1993; Neal,
1995, 1996; Kurkové and Sanguineti, 2001; Mhaskar, 2004; Bengio et al., 2006; Bach, 2017),
it is only recently that their training dynamics have been investigated. Two-layer neural
networks with IP enjoy some global convergence properties (Chizat and Bach, 2018) and
favorable guarantees in terms of generalization (Bach, 2017; Chizat and Bach, 2020). Going
beyond two layers, Nguyen and Pham (2020) and Pham and Nguyen (2020) study the
infinite-width limit of IPs and also prove global convergence results for networks with three
layers or more. However, those results hold for standard zero-mean i.i.d. initialization
schemes only for networks with two or three layers (which is consistent with the results of
Section 3.1): for deeper networks they require non-standard (correlated) initializations.

Several other works describe the infinite-width limit of multi-layer IPs: Araijo et al.
(2019) characterize the infinite-width dynamics via a model of McKean-Vlasov type, for
which they prove existence and uniqueness of solutions, and Sirignano and Spiliopoulos
(2021) prove a global convergence result for three-layer networks. They take the number
of units in each layer to infinity sequentially and describe the dynamics of the limit as a
system of differential equations over the weights/parameters. On the other hand, Fang et al.
(2020) take the infinite-width limit for all layers at once (as in Aratjo et al., 2019; Nguyen
and Pham, 2020; Pham and Nguyen, 2020) and describe the resulting dynamics as an ODE
over functions of the features (pre-activations) of the network. It is interesting to note
that Aratdjo et al. (2019); Sirignano and Spiliopoulos (2021); Pham and Nguyen (2020) all
discuss the difficulties associated with describing the dynamics of the infinite-width of IPs
with more than three layers. As noted in (Aratjo et al., 2019), and appropriately addressed
by Nguyen and Pham (2020); Fang et al. (2020); Sirignano and Spiliopoulos (2021), there
is a separation of time scales as soon as there are two hidden layers or more, where the
gradients of the intermediate layers appear to scale as m~2 whereas the gradients of the
input and output layers appear to scale as m™!, requiring separate learning rate values
which can make the analysis of the infinite-width limit more difficult.

In a separate line of work, Yang and Hu (2021) provide with the Tensor Program a
theoretical tool to describe the infinite-width limit of different parameterizations of neural
networks and categorize them between feature learning and kernel-like behavior. How-
ever, IPs with three layers or more are left out of this categorization. Using the same
tools, we show that IPs with more than four layers are indeed trivial at any time step
if the initial learning rates are not appropriately scaled with m under standard zero-mean
i.i.d. initializations. This closes the gap with (Nguyen and Pham, 2020) which proves global
convergence results for IPs with two or three layers initialized using those standard schemes.
We also demonstrate in Section 4 how scaling the initial learning rates appropriately allows
to properly train an IP—inducing a feature learning regime as defined in (Yang and Hu,

https://github.com/karl-hajjar/wide-networks

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

2021)—and connect the resulting model with a version of the maximal update parameter-
ization puP (Yang and Hu, 2021) where the initial weights of the intermediate layers are
replaced by zero in the first update.

The setting where non-centered i.i.d. initialization laws are used is covered in (Nguyen
and Pham, 2020), where it is shown that a certain collapse phenomenon occurs, namely that
the updates of the entries of the weight matrix in a given layer are all equal to the same
deterministic quantity in the large-width limit. We obtain a similar result in Section 5.1
using different theoretical tools.

Tensor Program wvs. other formalisms. In contrast to prior literature on IPs, we do
not use the description of the infinite-width limit as a composition of integral transforms.
With the standard (centered i.i.d.) initializations considered in this paper, that description
does not offer much insight about the limit beyond the fact that it starts on a stationary
point. In order to escape this initial stationary point, we propose in this paper to amplify
the random fluctuations around the limit using large initial learning rates. The strength
of the Tensor Program formalism (Yang, 2019, 2020a,b; Yang and Hu, 2021) is precisely
that it is able to describe rigorously the magnitudes of these fluctuations and allows us to
analyze the functions learned with various choices of learning rates. This formalism relies
on techniques initiated in the statistical physics literature (Bayati and Montanari, 2011;
Bolthausen, 2014) that use the Gaussian conditioning technique to describe the behavior of
algorithms (such as message passing) involving random matrices and nonlinearities.

1.3 Organisation of the Paper and Notations

We define and analyze integrable parameterizations in Section 3 and show that they are
trivial for common choices of learning rates. In Section 4, we describe how a specific scaling
of the learning rates allows to escape the initial stationary point, and further investigate the
connection between IPs with large initial learning rates and pP. In Section 5, we present
two alternative modifications of IPs to escape the initial stationary point and discuss the
impact of each on the learning dynamics.

We defer all the rigorous proofs of our theoretical results to the Appendix, so as to
make the core message of our work stand out more clearly, and keep the flow of the results
structured and easy to follow. Among other things, this prevents us from diving too deep
into the Tensor Program formalism and calculations (which can be somewhat tedious and
abstruse) in the main part of our work. Most proofs require heavy inductions on the time
step t, and proving the induction step itself often involves inductions on [in the forward
pass (from [= 1 to [= L) and in the backward pass (from [= L to [= 1). Breaking
down all these steps makes for a lengthy Appendix, but the ideas of the proof are relatively
straightforward, only their proper formal writing is tedious.

Throughout the paper, for two integers p, ¢, we denote by [p] the set {1,...,p} and by
[p, q] the set {p,...,q}. We write u ® v for the Hadamard (i.e., element-wise) product of
two vectors u and v. We use Landau notations for comparing two real sequences (u,,) and
(um): we write u,, = O(vy,) when there exists a constant C' > 0 such that |u,|< Cluy,|
for large enough m, and u,, = ©(v,,) when we both have u,, = O(vy,) and uy, = O(vy,).
We similarly use the O (respectively ©) notation for two sequences of real-valued random
variables (u,,) and (v,,) when, almost surely, u,, = O(vy,) (respectively u,, = ©(vp,)).

HaAJJAR, CHIZAT, AND GIRAUD

2. General Setting

In this section, we introduce the general setting we consider for this work, as well as the
corresponding notations. We also define precisely the notion of parameterization of a neural
network and discuss examples of parameterizations commonly found in the literature.

2.1 Network and Data

Training data. We consider a training dataset {(5 (i),y(i))} containing n (input, out-

1€[n]
put) pairs with €0 e R and y e R. We will use £ or y@ when we refer to the i-th
sample in the training dataset, but use & and y; to denote the sample(s) fed to train the
network at time step ¢, that is for the (¢ 4+ 1)-th step of optimization.

Width and depth. Throughout this work, we consider a feed-forward fully connected
neural network, with L hidden layers and a common width m. The total number of layers,
i.e., weight matrices and bias vectors will thus be L+1, and most of our results are concerned
with four or more layers, that is L > 3, and in the limit m — oco. The integer [€ [L + 1]
will always be used to index the layers of a network, and we call the intermediate layers
of a network the layers indexed by [€ [2, L] (i.e., excluding input and output layers).

Activation function. We assume that all the neurons in the network share the same
activation function o : R — R. The activation is always taken entry-wise and for any vector
h € R™, we denote by o(h) the vector (o(hy))peim) € R™.

Weights and forward pass. We denote by W'(t) and B'(t) respectively the weight
matrix and bias vector of layer [at time step t (i.e., after ¢ steps of SGD), and thus have
W(t) € R™*4 Wit) € R™*™ for [€ [2,L] and WETL(t) € R™. At any time step ¢ we
denote by hL(£) and z}(¢) the pre-activations and activations respectively coming out of the
I-th layer when feeding input ¢ to the network (with the convention that z9(¢) = £). That
is

hi(€) =W)z (&) + B'(t), and y(€) :=o(hy(€)), forle[L,L]. (2.1)
Output. We denote the output of the network by

(&) = F(8(8);€) == (WHHH (1)) Ty (€) + BET (1), (2.2)

where 0(t) denotes the set of all network parameters at time t. We often drop the dependency
of the forward pass on the input ¢ for brevity and simply use hl,z} instead of hL(€),z4(¢)
as it should always be clear from the context which input is being fed to the network. Note
that the weights and biases as well as all the (pre-)activations depend on the width m of
the network (through their dimensions) but we omit this dependency for clarity.

Loss. We denote by ¢ the loss function used to train the network, which is a function from
R? to R. The fit of a prediction 7 is thus measured by £(y, 7) where ¥ is the desired output.
In all this work, we make the following assumption on the loss function ¢, which is met by
most common loss functions:

Assumption 1 (Smooth loss w.r.t second argument). The loss ¢ is differentiable with
respect to its second argument and 02l(y,-) is a continuous function for any y € R.

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Assumption 1 is essentially here to guarantee that if the sequence (g?(m))meN* converges
almost surely to some 7(°), then 82¢(y,7"™) also converges almost surely to dal(y, 7(>)).

2.2 Parameterizations of Neural Networks

The fact that the magnitude of the initialization of the weights and of the scale pre-factor
for the weights are key quantities that determine the learning regime achieved by neural
networks—and more generally by differentiable models—was pointed out in (Chizat et al.,
2019). In this paper, we are interested in the behavior of neural networks when their width
m goes to infinity, and we refer to as a parameterization of a neural network the choice of
how (a) the pre-factor of the weights, (b) the standard deviation at initialization and (c) the
learning rates, evolve as a function of m. This concept was called an abc-parameterization
by Yang and Hu (2021), because these dependencies are given by m~=%, m~° and m~°.

As explained by these authors, one of those three choices is actually redundant, and
one can do with only the choice of two among those three scales. We take the point view
considering a parameterization as a choice of scale for the pre-factor of the weights (a) and
a choice of scale for the learning rates (c) while the random weights are always initialized
(b) with standard i.i.d.Gaussians N'(0,1). We make this (arbitrary) choice as typically in
the literature, different models of the infinite-width limit correspond to different choices of
scales for the weights’ pre-factors, e.g., NTK corresponds to a pre-factor in 1/y/m while
“mean-field” models correspond to a choice of pre-factor in 1/m for the weights. We thus
define below ac-parameterizations which are a slight variation of the abc-parameterizations
introduced in (Yang and Hu, 2021).

Definition 1. (ac-parameterization). An ac-parameterization of an L-hidden layer fully-
connected neural network is a choice of scalar exponents (a1, ...,ar+1), and (c1,...,¢041)
such that for any layer | € [L + 1],

(i) the learnable weights (i.e., those over which we optimize) are initialized with inde-
pendent standard Gaussian random variables wé-q(O) ~ N(0,1), i.s.d.over (1,],q), i.e.,

w!(0) = U with (Ul)le[LH] independent random matrices with i.i.d.standard Gaussian
entries,

(ii) the learnable biases are initialized independently of the weights, with bé»(O) ~ N(0,1),
i.i.d.over (1,7), i.e., b(0) = v' with (vl)le[LH] independent standard Gaussian random
vectors, independent of U',

(iii) the effective weights W'(t) used to compute the pre-activations at time t are W'(t) =
m~%w(t), and the effective biases are B'(t) = m~“bl(t), so that the pre-activations
are

hl = Wi (t)zl! + Bl(t) = m™@ (wl(t)ami—l) + bl(t)) , le[1,L),
and the output is

FO@);€) = m™+t (wh () o (R () + b (1))

HaAJJAR, CHIZAT, AND GIRAUD

(iv) the (t + 1)-th update of learnable weights and biases is given by the update rules

At 4+ 1) = w(t 4+ 1) — wh(t) = —gm =V il (ye, f(0(1); &),
AB(t+1) =0 (t 4+ 1) = b (t) = —m =Vl (ye, F(O(1): &),

where 0(t) = {(w'(t),b'(t)), ..., (wlT(t),bM(t))} is the full set of all network pa-
rameters, (§,y:) represent the input(s) and target(s) to the network at step t and
n € R s the scalar part of the learning rate which does not depend on m and which
we call the base learning rate. We denote by n; := nm ™ the full learning rate for
layer 1.

Remark 2.

1.

Compared to the definition of (Yang and Hu, 2021), we allow for different values of ¢; at
different layers and remove the redundant initialization scale (the b in abc-parameterizations).
Any abc-parameterization with constant ¢ for all layers (as presented in Yang and Hu,
2021) can be recovered (same effective weights and biases at any time step) with an ac-
parameterization with individual learning rates at each layer via the re-parameterization

a; < a;+ by, by <0, ¢; :=c— 2b;.

As we study the infinite-width limit m — oo, we need to consider an infinite number
of random weights at initialization. To this end, we consider for any | € [2,L], two

infinite lists of i.i.d. standard Gaussian variables, independent of each other: (Ujl-q)jjqu*

and (vé-)peN*, and often simply call, by an abuse of notations, Ul = (U]l»q)1§j,q§m for the
corresponding matric at width m and v* = (vé)lgjgm the corresponding bias vector at

width m. We proceed similarly at initialization for the input weights U' and the output
vector UFTT,

The (t41)-th update of the effective weights is given by AW (t+1) := WiH(t+1)—W(t) =
—nm~ a7l (g, £(O(2);€)), and the update of the effective biases by ABY(t+1) :=
Bl(t + 1) = B'(t) = —nm~ P9tV iy, f(0(1); &)

Examples of ac-parameterizations:

NTK parameterization. For the NTK parametrization (Jacot et al., 2018) the scaling
is a1 = 0 for the input layer, and a; = 1/2 for all the other layers [€ [2, L + 1]. The scaling
of the learning rates is ¢; = 0 for all layers. Neural networks in the NTK parametrization
have been shown to behave as kernel methods in the infinite-width limit (Jacot et al., 2018;
Yang, 2020a) and there is no feature learning in that limit.

uP. To avoid the lazy training phenomenon arising in the NTK parameterization, Yang
and Hu (2021) propose to adjust the scale of the output layer by setting ar; = 1, while
keeping a; = 0 and a; = 1/2 for the intermediate layers [€ [2,L]. The learning rates
are appropriately adjusted: ¢ = —1 for any layer [. With this parameterization, Yang
and Hu (2021) show that feature learning (see Definition 21 in Appendix B.3 for a precise
statement) occurs at every layer.

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Integrable Parameterizations (IPs). The limits investigated in Aratdjo et al. (2019);
Sirignano and Spiliopoulos (2021); Pham and Nguyen (2020); Weinan and Wojtowytsch
(2020) are associated to a scale multiplier in 1/m for all layers except the first one. This
corresponds to the choice a; = 0 and a; = 1 for | € [2,L + 1]. We choose the adjective
“integrable” in reference to the absolute convergence of sums of the form (1/m)>_ x4 for
i.i.d.random variables with finite expectation. Integrable parameterizations really refer to
a class of ac-parameterizations, because various choices for the learning rate exponents ¢
are admissible.

Naive-IP. In the mean-field literature, integrable parameterizations often come with the
standard learning rates corresponding to ¢; = ¢r+1 = —1 for the input/output layers and
¢ = —2 for the intermediate layers | € [2, L], see e.g., (Aradjo et al., 2019, Remark 3.4),
(Fang et al., 2020, Algorithm 1), (Weinan and Wojtowytsch, 2020, Lemma 5.1), and (Sirig-
nano and Spiliopoulos, 2021, Equation 4.3). Mean-field models with these learning rates are
the natural counterparts of the infinite-width limits where sums are replaced by integrals,
and we call the integrable parameterization with this specific choice of learning rates the
Naive Integrable Parameterization.

When L =1, uP and the Naive-IP coincide. For deeper networks, in the setting of abc-
parameterizations described in (Yang and Hu, 2021), uP and Naive-IP correspond to the
same parameterization (same values for a and c¢) except that the weights of the intermediate
layers are initialized with a standard deviation of 1/m for Naive-IP instead of 1//m for
uP, that is they are downscaled by 1/4/m compared to uP. In Section 4.2, we show that
there is also a close relationship between puP and IP with large initial learning rates.

We give below an intuitive explanation for the choice ¢; = ¢p41 = —1 and ¢ = —2
for | € [2,L] for the scaling of the learning rates in Naive-IP. For [€ [2, L], we have
A = m N (W (#)xl ™t + Bh(t)), so that Vi fi(&) = m™ YV fi(&)) (@™, In addition
Vi1 fo(&) = xF/m and V1 £1(&) = (Vi f1(€))(&)T. So for one step of SGD:

AWt + 1)1 = 0ol (yr, f1(€)) (& Err)m™ T (V1 fi(&)).

(l—l)T -1

%(mvhl ful&)), forl€[2,I]

(xtL)TxtLJrl

m

AWt + D)2l7h = —ndal(ys, fi(&))m™)

(AWLH(t + 1))T93tL+1 = —ndl(yt, ft(ft))m_(HCZ)
(2.3)
In addition, from the equations of backpropagation, we get

(wH(1))'V s fu(€0)

Vi fil6) = w1 00/ () and Viufil€) = o o' (b,

for I € [1,L — 1], so that, by a simple induction, V;: fi(&) = O(1/m) for | € [1,L]. In
addition, the averaged inner products (xifl)vaiﬁ /m in Equation (2.3) converge as m —
oo. This point is somewhat technical and is handled within the framework of the Tensor
Program. The choice of ¢; in Naive-IP thus ensures that the updates are O(1) when m goes
to infinity.

We conclude this section by giving the definition of a training routine which consists
in the combination of the base learning rate, the sequence of training samples and a loss

function:

HaAJJAR, CHIZAT, AND GIRAUD

Definition 3 (Training routine). A training routine is the list consisting of the base learning
rate n > 0, (ai, ¢1)ie[r41) in the ac-parameterization, the loss £ and the sequence of training
samples (£0,90), - - -, (Er—1,yr—1) used to train a network for T' steps.

3. Deep Networks with Naive Integrable Parameterization are Trivial

In this section, we point out that, in the wide limit, neural networks in the Naive-IP
remain at their initial value. We then prove that no choice for the learning rates exponents
(¢1)ie[r+1) Which is constant in time can induce non-degenerate learning.

3.1 No learning in Deep Networks with Naive Integrable Parameterization

To start with, we show that the functions learned by networks with more than four layers
in the naive integrable parameterization, as described in prior work (Aratjo et al., 2019;
Rotskoff and Vanden-Eijnden, 2019; Fang et al., 2020; Nguyen and Pham, 2020; Weinan and
Wojtowytsch, 2020; Sirignano and Spiliopoulos, 2021), remain at their value at initialization
in the infinite-width limit: they are identically equal to zero at any time step. Our proof of
this result is based on the Tensor Program framework (Yang, 2020b; Yang and Hu, 2021),
which requires some regularity assumptions on the activation function.

Definition 4. (Pseudo-Lipschitz functions). A function 1 : R¥ — R is pseudo-Lipschitz of
degree p > 0 if there exists a constant K > 0, such that, for any x,y € R¥,

k k
[h(z) — P (y)|< K|z -y (1 + > |a P+ Zlyr|p> :
r=1 r=1

A function is pseudo-Lipschitz, if it is pseudo-Lipschitz of degree p for some p > 0.

In particular, functions with polynomially bounded weak derivatives are pseudo-Lipschitz.
In the next proposition, we require the activation function o and its derivative to be pseudo-
Lipschitz.

Assumption 2 (Smooth activation). The activation function o is differentiable and both
o and its derivative o' are pseudo-Lipschitz and not identically zero.

Proposition 5 (Naive-IP is trivial). Let L > 3 and consider the naive integrable pa-
rameterization of a network with L-hidden layers, and an activation function satisfying
Assumption 2 and o(0) = 0. Then, for any training routine which has a loss satisfying
Assumption 1, the function learned by SGD remains at its value at initialization in the
infinite-width limit:

Vt>0, V¢eR?, li_r>n fi(&) = li_r)n fo(€) =0 almost surely.

Remark 6.

1. In the above statement, “almost surely” is relative to the randomness of the initialization.

10

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

2. The smoothness Assumption 2 on o is met by common activation functions such as
GeLU (Hendrycks and Gimpel, 2016), ELU (Clevert et al., 2016), tanh and the sigmoid
activations, but it excludes ReLU and all the other variants of Leaky ReLU. This as-
sumption is required to apply (Yang and Hu, 2021, Theorem 7.4) (which we recall in
Appendiz B.2) which is the main theoretical result of the Tensor Program series (Yang,
2019, 2020a,b; Yang and Hu, 2021), but the result is likely to hold with weaker assump-
tions, as observed numerically in Section 6, and we leave this for future work.

3. The assumption o(0) = 0 is met by the activation functions mentioned above (except the
sigmoid) and is necessary to prove that the network does not move at any layer. Without
this assumption, learning is degenerate but not trivial at all layers. It is trivial at step
t =1 at all layers except the last two: the coordinates of hlL and f1(§) converge, with m,
to quantities which are not 0 but which are independent of the input & to the network,
similarly to the effect described in Section 5.2.

The proof of Proposition 5, presented in Appendix D, proceeds by induction over ¢ to
show that the forward and backward passes vanish at any time step. For any time ¢, we
proceed again by induction over [(from [= 1 to | = L + 1 for the forward pass and
froml = L+ 1 tol = 1 for the backward pass) to prove this vanishing occurs given the
magnitudes of the previous forward and backward passes. The informal idea of the proof
is the following: essentially, the multiplications of the activation vectors by m~ Y2yt yield
vectors whose coordinates are distributed as a Gaussian with finite variance as m — oo for
I > 2 (see Appendix B.1.1 for more details). At initialization, since w!(0) = m™1U’ for
I > 2 for IPs, the coordinates of hl converge towards 0 as fast as m~/2 and that of z})
towards o(0) for o continuous at 0. For the same reasons, fy(§p) converges to 0. In the
first backward pass, multiplications by (W*(0))" also yield vectors whose coordinates are in
O(m~'/2). In contrast to the forward pass, these scales propagate from [= L to [= 1 and
thus compound with depth, and since the last layer’s gradient xOL /m is in O(m™1), all the
gradients’ coordinates vanish as m — oo and there is no learning. This reasoning can be
repeated at later time steps as there are no correlations between the initial weight matrices
and the vectors they multiply because of the degeneracy of the (pre)-activations (their
coordinates become equal to the constant o(0) as m — o0). Those informal calculations
are made rigorous by the Tensor Program.

Proposition 5 shows that the parameters of neural networks in the integrable param-
eterization are stuck in a stationary point of the objective function in the infinite-width
limit, and no learning occurs. It might appear obvious that using larger learning rates to
correct the scale with m of the weight updates can avoid this pitfall, but as discussed in
the following Section 3.2—where we study which choices of learning rates can lead to stable
learning with homogeneous activation functions—the issue is more subtle.

3.2 No stable learning with learning rates constant over time

As m grows, to compensate the vanishing gradients in the first SGD step, one can use
larger learning rates than in the Naive-IP. Yet, as explained below, exponents (c;);c(r+1] for
the learning rates which allow to escape the stationary point at initialization will induce
an explosion of the pre-activations, if the same values of the exponents are used in the

11

HaAJJAR, CHIZAT, AND GIRAUD

subsequent gradient steps. Indeed, the next informal statement of Theorem 10 shows that,
with IPs, one cannot have non-trivial and stable learning with learning rate scales ¢; constant
in time.

Theorem 7 (Informal). Consider an L-hidden layer fully-connected neural network with
L > 3 in the integrable parameterization. Assume that the contributions of the first and
second updates AW 1)zt~ and AW (2)2b™! are non-vanishing and non-exploding with m
at every layer l. Then, the learning rates scales ¢; cannot have the same value att = 0 and
t=1.

In a nutshell, one needs large learning rates to escape the initial stationary point, but
keeping those initial values at later time steps would make the pre-activations blow-up as
m — 00. The formal version of the previous Theorem 7 is given in Theorem 10 below. For
this formal statement, we introduce some definitions and assumptions.

Assumption 3 (Smooth non-negative homogeneous activation). The activation function
o s non-negative, not identically zero and it is positively p-homogeneous with p > 2, i.e.,
o(Az) = No(z) for any A > 0 and z € R. Additionally, o has faster growth on the positive
part of the real line: 3z > 0 s.t. o(z) > o(—=2).

Remark 8.

1. While the homogeneity assumption is core to the calculation of scales with integrable
parameterization, the fact that p > 2, and that o is non-negative and has faster growth
on the positive part of the real line are simply here to avoid cumbersome technical
difficulties in the proofs. It is clear that ReLUP satisfies Assumption 3 for any p > 2.

2. With the assumption that p > 2, o also satisfies Assumption 2, so that the rules of
the Tensor Program can be applied.

Definition 9 (Scales of first updates with homogeneity). Let p > 0. We define the following
exponents:

L—1
1
1) =14+1(p) = =5 <1 + Zpk))
k=0
1 L—-1
_ k
and (p) = —-1-3 kZ_Op , forle2,1).

Theorem 10 (Formal version). Consider an L-hidden layer fully-connected neural network
with L > 3 in the integrable parameterization, and with no bias terms, except for the first
layer. Assume that the activation function o satisfies Assumption 3, the loss £ satisfies
Assumption 1 and that limy, o 920(yo, fo(&0)) # 0, and limy, o0 02L(y1, f1(£1)) # 0 almost
surely. Assume further that &y, &1, & € R? are all distinct vectors such that &5é # 0 and
&l # 0. Finally assume that:

{;HAwla)xilH?: o), le[Ll]

(3.1)

(AW (1) Tzf = (1)

12

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

and

(3.2)

AWt @)zt P= (1), e[l L]
(AW (2)Tzf = 0(1)

Then, one necessarily has that:
(i) att =0, ¢; =y (p) for anyl € [1,L + 1] (see Definition 9),
(i) att =1, c1 =cp41 =—1, and g = =2 forl € [2,L].

Let us comment briefly on the hypotheses of Theorem 10. The proof of Theorem 10
relies on an analysis of the SGD steps involving both (Yang and Hu, 2021, Theorem 7.4) and
the homogeneity property of the activation function. The requirement that p > 2 allows to
satisfy the smoothness assumption of (Yang and Hu, 2021, Theorem 7.4) and the removal
of the bias terms allows to fully exploit homogeneity. In Section 6, we numerically check
that the result still holds with ¢ = ReLLU, which is p = 1 homogeneous. The corresponding
scales for the learning rates in the ReLU case are v1(1) = —(L +1)/2, %(1) = —(L + 2)/2
and v11(1) = —(L+1)/2.

We give below an informal explanation for the values of the learning rates appearing in
Theorem 10 in the case of a positively 1-homogeneous activation function. As previously
mentioned in Section 3.1, each multiplication by W!(0) = m™'U" or its transpose yields
a factor in m~Y/2 for [> 2. Because of the homogeneity property, this scale propagates
from layer to layer starting from layer 2, and the coordinates of hé and x6 are thus in
O(m~U=1/2) for I € [1, L]. For the backward pass, the first gradient V,z fo(&) = UL /m
has coordinates in ©(m™!), and, as already discussed in Section 3.1, from | = L to | = 2,
each multiplication by (W*(0))" yields an additional factor in m~'/2 and those compound
with depth so that the coordinates of V1 fo(&) are in ©(m~'m~(E=D/2). Therefore, calling
7= m(l_l)/%é, and d% = m!t=D/27,, £0(&), we have after the first weight update

AW (1)&1 = —ndal(yo, f1(&)) (&T&)m ™ m~E+ D 2dhg,
(i;l—l)Txl—l B
AW (1)ay™" = =nda(yo, fo(&o))m™m™2m~ (B0 SSdhg, 1€ 2,1,

L+1 T.L_ —c,—1, —(L-1)/2 (57(%)%%
(AW (1)) &y = —nd2l(yo, fo(§o))m™ " m™"m —
Since dﬁf) and :%6 have coordinates in ©(1) by design, and since averaged inner products of
the type (icé_l)T:ci_l /m converge to finite expectations (by the rules of the Tensor Program,
see Yang and Hu, 2021, Theorem 7.4), we see that the choice ¢; = —(L + 1)/2, ¢ =
—(L +2)/2 for | € [2,L], and cp4+1 = —(L + 1)/2 is the only way to ensure that the
updates induce contributions which have coordinates in ©(1) at ¢ = 1. Given this choice
for the learning rate scales cy,...,cr+1 at t = 0, we readily get that the coordinates of hll
and 2} are in ©(1) because the contributions W*(0)z}™* have coordinates in O(m~1/?) for
intermediate layers, and in O(1) for the input and output layers. From the Equations (2.3)
with ¢ = 1, we see that for the second gradient step, mV: f1(£1) has coordinates in ©(1)
because the multiplications by (W!(1))" do not yield a factor in m~/? due to the scale
correction introduced in the first update. At ¢t = 1, this leads to the choice ¢; = cp41 = —1,

13

HaAJJAR, CHIZAT, AND GIRAUD

and ¢ = —2 for [€ [2, L], in order to have update contributions with coordinates in (1)
at t = 2. These informal calculations are made rigorous in the proof of Theorem 10 using
the Tensor Program (Yang, 2020b).

4. Large Initial Learning Rates Induce Learning

In this section, we show that with positively homogeneous activation functions, using large
initial learning rates (polynomial in m) allows the network to escape from the initial sta-
tionary point and to initiate a non-trivial training phase in the infinite-width limit. Because
we use the homogeneity property extensively for our results, in all this section, as in Sec-
tion 3.2, we consider a version of integrable parameterizations where the bias terms are
removed except for the first layer.

As observed in Section 3.2, beyond the fact that IPs require large learning rates (for
the first gradient step) to be trained, one crucial characteristic of IPs is that no choice of
learning rate scales (¢;) which are constant in time can induce a favorable learning behavior:
one has to first use large learning rates to escape the stationary point at initialization (¢ = 0)
and then revert to the Naive-IP learning rates for ¢ > 1 to induce stable learning.

Definition 11 (IP with large initial learning rates). Let o be a positively p-homogeneous
activation function with p > 0. We define the integrable parameterization with large
initial learning rates (IP-LLR) as the integrable parameterization of an L-hidden layer fully
connected-network with activation o such that:

(i) Att =0: ¢, = v(p), forl € [1,L +1];

(ii)) Att>1: ¢ =cpy1=—1 and g = =2, forl € [2,L],
where the values of the v;(p) are given in Definition 9.
Remark 12.

1. The definition means that Aw'(1) = —nm "IN i L(yo, fo(&)) for the first weight
update after the forward-backward pass at time t = 0, and for t > 1, the (t + 1)-th
weight update is Aw'(t +1) = —gm ™2V 1Ly, [1(&)) for 1 € [2, L], and Aw'(t +1) =
—m IV 1 (e, (&), AwP Lt + 1) = —ym ™IV 1 by, f1(&)) after the forward-
backward pass at time t.

2. We give the definition with an arbitrary degree of homogeneity p (the values of the ~;(p)
are given in Definition 9) as for some theorems where we use the Tensor Program for
the proof, we need sufficient smoothness of the activation function, which is achieved
only when p > 2, but we always use o = ReLU (which corresponds to p = 1) in
our informal derivations and numerical experiments. Note that since the values of
Cly...,cr+1 at t =0 depend on p, the definition of an IP-LLR parameterization also
implicitly depends on the degree of homogeneity p.

3. Since a1 = 0 for IPs, we leverage the homogeneity property only for layers | € [2, L]
(see Appendiz F.2 for more details), so that we might as well assume L > 2 whenever
we study IP-LLR.

14

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

4.1 Non-trivial and Stable Learning for Integrable Parameterizations

Theorem 13 (Non-trivial and non-exploding learning of IP-LLR). Consider the IP-LLR
parameterization of an L-hidden layer neural network with no bias terms, except for the
first layer, and with an activation function o satisfying Assumption 8 and a loss function ¢
satisfying Assumption 1. Let & € R? be an input to the network, and assume 02¢(yo,0) # 0.
Then, one has:

(i) (&) 720,

m—ro0

(i1) fi(§) == J%(f), 0<]J?l(f)]< 00 a.s.

m—ro0

(ii1) F2(6) 2 o(€), |fa(€)]< o0 as.

m— 00

Remark 14.

1. We show in our numerical experiments (see Section 6) that with o = ReLU (i.e., p=1),
the choice of learning rates for IP-LLR is indeed able to induce learning for networks
deeper than four layers without creating instabilities.

2. A similar result could be obtained with more general assumptions on the activation func-
tion o, namely that o is twice differentiable almost everywhere and that o(0) = 0 and
a’(0) # 0 (which is the case for many activation functions such as GeLU, ELU, tanh),
but at the cost of a more technical proof. The idea in this case is that because of the
scaling in 1/m which makes the forward pass vanish at initialization, one can recover the
homogeneity property by linearizing o around 0: o(h) ~ o'(0)h. This linearization also
provides the right value |o’(0)|~! for the standard deviation of the initial Gaussians in
order to avoid vanishing or explosion at initialization with the depth L. See more details
in Remark 35.

3. For positively p-homogeneous activations with p > 2, we have o'(0) = 0 and the behavior
of the network is inherently different from that of a network where the first forward pass
can effectively be linearized (the setting described in the previous point). This difference
appears clearly in the numerical experiments presented in Section 6 where we also discuss
the reasons for such a qualitatively different behavior.

4. In IP-LLR, the initial gradient direction will be determined by the first sample (&o,y0)
fed to the network. To avoid giving too much importance to a single sample, one can in
practice average the gradients over a batch of many training samples instead, which is
what we do in our numerical experiments in Section 6.

The idea of the proof essentially lies in the informal calculations of Section 3.2 which are
made rigorous using the framework of the Tensor Program. Point (i) stems from the fact
that at ¢ = 1, the output is the difference between two expectations in the limit m — oo,
which can both be shown to be different from 0 and of opposite signs.

15

HaAJJAR, CHIZAT, AND GIRAUD

4.2 TP-LLR is a Modified uP

In this section, we analyze the behavior of IP-LLR more in detail and show that this model
is actually equivalent to a modification of P where the initial weights are removed from
the first weight update for all of the intermediate layers. We first show an equivalence
at finite-width in Section 4.2.1 with mild assumptions, and then extend those results to
the infinite-width limit in Section 4.2.2 with slightly more restrictive assumptions on the
activation function o. Since we study the IP-LLR parameterization, we consider positively
p-homogeneous activation functions, and only the degree of homogeneity allowed will vary
between Sections 4.2.1 and 4.2.2. In short, the main idea behind this equivalence is that
since IP-LLR and puP are both designed to have maximal update contributions at ¢ = 0,
they will induce the same update at initialization, and the only difference at later time steps
is that the initial weights of IP-LLR contribute vanishingly to the pre-activations whereas
those of uP contribute in ©(1).

4.2.1 FINITE-WIDTH EQUIVALENCE

As explained in Section 2.2 in the examples of ac-parameterizations, from the point of
view of abc-parameterizations (see Yang and Hu, 2021), both P and Naive-IP follow the
same training procedure for the effective weights !, the only difference being the standard
deviation at initialization which is downscaled by 1/y/m for Naive-IP compared to uP. In
this regard, since IP-LLR is a modification of Naive-IP where large learning rates are used
at initialization, it comes as no surprise that the learning dynamics of IP-LLR and uP are
closely related. We detail this relationship in this section.

Recall that for uP one has W;}P(O) = U!, W/liP(O) = m~ 20U for | € [2,L], and
WHLJ 1(0) = m~ U whereas for any integrable parameterization, one has Wik (0) = U?,
Wi (0) = m=tU! for | € [2,L + 1]. Consider the following hybrid parameterization (HP)
which consists in training with the maximal update parameterization P all along, but sim-
ply replacing, for all intermediate layers | € [2, L], the first update W!(1) = W (0)+AW(1)
by W(1) = m~tU' + AW!(1). In other words, this simply consists in using the weight pre-
factors of uP for the intermediate layers in the initial forward and backward passes, and
then using the pre-factors from IP for the initial weights of the intermediate layers in any
subsequent update.

Proposition 15 (Finite width equivalence between IP-LLR and HP). Consider the IP-
LLR and HP parameterizations with a p-homogeneous activation function o with p > 1
and without any bias term except at the first layer. Let us sub/super-script the variables
of each model with IP and HP respectively. Assume the full sequence of training samples
(€0,s90)s- -+, (&s,Ys), ... and the loss £ are the same for both parameterizations. Assume
further that dol(yo, fET (&)) # 0, and denote by n the base learning rate of the IP-LLR
parameterization. Finally consider the following schedule for the base learning rate of HP:

_ %lyo, " (%)) 0
A l(yo, [T (€0)) "

nup(s) =n, s> 1.

np(0)

16

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Then one has:
ve>1, VEeR P = £P(9).

The proof, presented in Appendix J.1, simply shows inductively that the effective weight
matrices for both models are equal for all t > 1. Since the Tensor Program is not needed here
as we consider only finite-width networks, we can work with any positively homogeneous
activation function (not necessarily smooth, so that p = 1 is not precluded).

4.2.2 INFINITE-WIDTH EQUIVALENCE

Similarly to HP, we now consider another hybrid parameterization where the initial weights
W(0) are simply replaced by 0 in the first update of the intermediate layers. We thus
consider the following hybrid parameterization with zero re-initialization (HPZ): we train
with uP all along, but simply replace, for all intermediate layers | € [2, L], the first update
Wh1) = WH0)+AW(1) by W(1) = AW!(1). In other words, this simply consists in using
the weight pre-factors of uP for the intermediate layers in the initial forward and backward
passes, and then forgetting the contribution of the initial weights of the intermediate layers
in any subsequent update. As already discussed in Section 3.1, the contribution of the
initial weights of the intermediate layers m~'U" vanishes as m — oo for IP, so that HPZ is
simply the infinite-width equivalent of HP.

Theorem 16 (HPZ and IP-LLR are equivalent). Consider the IP-LLR and HPZ parame-
terizations with a p-homogeneous activation function o with p > 2, and with no bias terms
except at the first layer. Let us sub/super-script the variables of each models with IP and
HPZ respectively. Assume that the training routine is the same for both parameterizations,
and assume further that the loss ¢ satisfies Assumption 1. Then, one has:

vt >0, YeeRY, lim fPZ(¢) = lim fIP(€) almost surely.
m—0oQ m—oQ
The proof, presented in Appendix J.2, proceeds by induction to show that the quantities
appearing in the forward and backward passes at every layer are the same for both models
at every time step in the infinite-width limit. We use the Tensor Program framework for
this proof so we need smoothness of o (p > 2) for this result.

In essence, Theorem 16 shows that the IP-LLR parameterization is equivalent to uP where
we simply forget the initialization after the first forward and backward passes. Said dif-
ferently, IP-LLR is the same as uP, except that IP-LLR re-initializes the weights of the
intermediate layers [€ [2,L] at ¢t = 1 with W!(1) = AW(1), i.e., with the first update
computed after the first forward-backward pass. It is not entirely clear whether forgetting
the initial weights in one step is beneficial or detrimental to learning. On the one hand,
it would seem like forgetting the random initialization could make the network learn faster
and be more robust to perturbations (but this is only speculative at this point, and we leave
this open for future work), on the other hand the large rank of the initial weight matrices
with i.i.d.Gaussian entries might increase the stability of the training dynamics. In other
words, while the randomness from initialization propagates to every layer at every times
step for uP, it is forgotten in one step of SGD for IP-LLR in the infinite-width limit. We

17

HaAJJAR, CHIZAT, AND GIRAUD

explore the comparative performance of uP and IP-LLR in Section 6 but there appears to
be no clear-cut indication towards one model or the other.

Another interesting difference between IP-LLR and pP is that for any intermediate layer
l € [2, L], while (W;q(t) — W;q(O))/W}q(O) = O(m~/2) for uP, so that the effective weights
only move infinitesimally (in the infinite-width limit) relatively to their initial values, we
have (W;q(t) - W;q(O))/W}q(O) = O(1) for IP-LLR so that the effective weights actually
move in the infinite-width limit (see more details in Remark 43).

5. Alternative Methods for Escaping the Initial Stationary Point

As discussed in Section 4, using large initial learning rates in combination with a positively
homogeneous activation function allows escaping the initial stationary point and induces
stable learning. In this section, we introduce two alternatives to escape this initial stationary
point and discuss the properties of the resulting models. In contrast to the setting of
Section 4, in all this section, we consider IPs with bias terms at every layer.

A first alternative to escape the initial stationary point, which we discuss in Section 5.1,
is to simply initialize the weight matrices with i.i.d.Gaussian distributions which are not-
centered around 0, as suggested by Nguyen and Pham (2020). This method is able to escape
the stationary point without large initial learning rates and without any homogeneity as-
sumption on the activation function. It turns out that the computations in that setting
are well described within the Tensor Program framework and we show that, as highlighted
in (Nguyen and Pham, 2020, Corollary 37), a collapse phenomenon occurs, where all the
individual entries in the weight matrix of an intermediate layer evolve by the same deter-
ministic quantity in the infinite-width limit.

Another alternative is to remove the pre-factor m™! in front of the bias terms of lay-
ers [> 2. Indeed, as observed in Section 3.1, the vanishing of the forward pass and the
weight updates in integrable parameterizations is mostly due to the multiplications by the
weight matrices m~'U! which results in pre-activations whose coordinates are ©(m~1/?) for
[€ [2,L]. Since the bias terms are decoupled from the input to the layer, re-scaling them
appropriately avoids vanishing of the forward pass for IPs. Escaping the initial stationary
point can then be achieved without any homogeneity assumption on the activation function
o. However, one issue which arises then is that the bias terms have the dominant contribu-
tion to the pre-activations, and since the input signal propagates through the network via
the weight multiplications, the output of the trained network is only “weakly” dependent
on its input and the training data. Let us now study in more details these two alternatives.

5.1 Using Non-Centered i.i.d. Initialization

In this section, we consider the following modified version of IPs which we call IP-non-
centered : the forward pass is computed exactly as in IPs but the weight matrices of layers
I > 2 are initialized with w}, (0) = U}, + w ~ N(u;, 1) iid.over (j,q) with u; # 0. This
simply consists in setting w!(0) = U’ 4+ w;J for | € [2,L] and w™*1(0) = UL +up g1
where J is the square matrix full of ones (whose variable size is the same as U? and thus
equal to m) and 1 is the vector (of variable size equal to m) full of ones. As we will see

shortly, the effect of this type of initialization is similar to removing the pre-factor in m=!

18

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

on the bias terms in that the vanishing of the matrix multiplications m U lmi_l is offset
by the appearance of an additional term in the expression of h} whose coordinates are all
equal and depend on the input data.

5.1.1 FIRST FORWARD PASS

As for any IP, h} is a Gaussian vector with i.i.d.coordinates following A(0, ||¢||2+1) at any
width, and for the second layer we have

he = m YUz} + v®) + ugm ™ Iz},

The coordinates of m~1Jz} are all equal to (1/m) > gt O‘(h(l)ﬂ), which converges almost
surely, by the law of large numbers, towards E[o(Z;)] where Z; ~ N(0,||¢]|>4+1). When o =
ReLU this expectation is tractable as shown in Appendix M and equal to \/(]|¢][?+1)/(27).
On the other hand, the coordinates of m~!(U2x} + v?) simply converge to 0. The term
ugm ™t Jx} thus offsets the vanishing of the term m~'(U%z} + v?). In the infinite-width
limit, we thus have that asg,j ~ o(ugE[o(Z7)]) for any j € [1,m]. We thus already see
that the coordinates of h% all converge almost surely to the same deterministic constant
Cy = ugE[o(Z1)] and the coordinates of 3 towards o (Cy).

Degeneracy in intermediate layers. An easy induction gives that for any | € [2, L],
for any coordinate j, and for large m

héﬁj ~ wo (uj—10 (..o (wE[o (Z1)]))) =: Ci, (5.1)
2,; = 0 (wo (w10 (... (wElo (Z1))))) = o(C1),

so that the coordinates of the (pre-)activations of any intermediate layer are all equal to
the same deterministic constant for large m. Finally, the output of the first forward pass
is fo(€) = m™ (UMY wf + oY) + up i (1/m) > gt xf, and converges almost surely
towards the constant uryi0 (upo (...o (u2E [0 (Z1)]))) (this is made rigorous within the
framework of the Tensor Program).

If ¢ = ReLU we see that to avoid vanishing of the first forward pass, one must set
u; > 0 for | € [2,L], and we then get that the coordinates of hé are roughly all equal to
wug—1 - .- ug+/ (|[€]|?4+1)/(27). This suggests that to avoid vanishing or explosion with the
depth L, one should set u; = 1 for [€ [2, L].

5.1.2 FIRST BACKWARD PASS

We show here that the same degeneracy as in the first forward pass is also at play in
the first backward pass. We have V. fo(&) = WEH(0) = m Y (UFH 4+ upy11), so that
the coordinates of mV z fo(&y) are not deterministic in the infinite-width limit and simply
follow N(up41,1) iid. We have mV,.fo(&) = mV e fo(&) @ o'(hf) and as shown in
Section 5.1.1 the coordinates of hé are roughly all equal to the same constant for large m,
so that the coordinates of mV. fo(§o) are in ©(1).

Degeneracy for layers [€ [1,L — 1]. Using the equations of backpropagation, we have

mV -1 fo(€o) = m™H(U) (mVe fo(&)) + upm ™ T (mV e fo(&)).

19

HaAJJAR, CHIZAT, AND GIRAUD

The multiplication by m (U L)T yield a vector whose coordinates converge to 0, and
the coordinates of m~1J(mV,L fo(&)) are all equal to (1/m) > gt diLOL’q where dhf =
mV e fo(&0) = mVLfo(€o) © o' (hf). We thus have that (1/m) PRy dﬁéq converges al-
most surely to the constant w410’ (Cr), where Cf, is defined in Equation (5.1). Because
mV -1 fo(€0) = mV,e-1fo(&) © o' (h5™1), we get that the coordinates of mV,c-1 fo(&o)
are roughly all equal to the constant uy, 1 uro’(Cr)o’(Cr—1) for large m. An easy induction
then yields that for any [€ [1, L — 1], and for any coordinate j

di’éd UL - .Ul+10’l(CL) ce J/(CI+1)7

d%d ~upy1...u10(Cp)...0'(C)),

as m — oo, where dz} := mV i fo(&), dhly == mVfo(&), and Cp is defined in Equa-
tion (5.1). Note that all the C; depend on & through Z; ~ N(0,]|&||?>41), and the coordi-
nates of mV;: fo(&o) are in ©(1) for all [€ [1,L]. Again, the products of u; which appear
in the backward pass strongly suggest setting u; = 1 for any [€ [2, L] to avoid issues with
increasing depth L.

5.1.3 FIRST PARAMETER UPDATES

Now that we have described the first forward and backward passes, we can give the formulas
for the first weight updates of IP-non-centered. We have:

AW (1) = —nm~ D0 yo, fo(£0)) (MY p1 fo(€0))ES
ABY(1) = —pm~ 0D dul(yo, fo(€0)) (M V1 fo(&o))

I—1\T
AWl(l) — —nm_(2+”)02€(y0,f0(§0)) (mvhlf0<§;))>(x0) ’ = [Q,L]
AB' (1) = —ym =B850 (yo, fo(£0)) (V1 fo(&o)) le(2, L]
AW (1) = —gm~ s 0,4 (yo, fo(ﬁo))jf,

ABE(1) = —pm~CFee+D)050(yo, fo(&0))-

Choice of learning rates and update contributions. To ensure non-vanishing and
non-exploding updates for both the weights and the bias terms, one must choose different
learning rate exponents ¢; for the weights and for the bias terms for layers [> 2. To make
things simpler, we simply choose ¢; = —2 for [€ [2, L] and ¢; = ¢p+1 = —1 (which are the
learning rates of Naive-IP) for both the weights and the bias terms, which implies that the
updates of the bias terms contribute vanishingly to the second forward pass as m — oo for
layers | € [2, L + 1], but this is offset by the non-centered initialization.

Degeneracy of the weight updates. With the choice of learning rate exponents of the
Naive-IP, all the entries of Aw!(1) are equal to the same deterministic constant for large m
for [€ [3, L —1]. In other words, for those layers [€ [3, L — 1], there is a collapse to a single
parameter per layer (since the contribution of the centered initialization vanishes for large
m) which evolves by a deterministic quantity. We recover a result proved by Nguyen and

20

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Pham (2020) (see Nguyen and Pham, 2020, Corollary 37). In Section 3.1 and Proposition 5,
we have additionally shown that this translation is 0 when the i.i.d.initialization is centered
around 0. In fact, a slightly more precise statement can be made: although the coordinates
of Aw?(1) do not become equal to deterministic constants for large m, the coordinates of
AW?(1)x} all become equal to the same deterministic constant in the large-width limit
because the term (x(l))Ta:% /m converges to a finite expectation.

5.1.4 COLLAPSE TO DETERMINISTIC DYNAMICS

Repeating the same calculations as in Sections 5.1.1 and 5.1.2 shows that the choice of
learning rate exponents as in Naive-IP (see Section 2.2), i.e., ¢; = ¢41 = —1, and ¢ = —2
for [€ [2,L] leads to non-vanishing and non-exploding updates for the weights at any
time step for IP-non-centered, and deterministic dynamics as summarized in the following
informal theorem:

Theorem 17 (Informal). Consider IP-non-centered with the Naive-IP learning rates at
every time step, and let t > 0 and & € R? be an input to the network. Then, one has that:

(i) for any | € [2, L — 1], the coordinates of h. (resp. x%) all converge to the same deter-
ministic constant,

(ii) for anyl € [2,L — 1], the coordinates of mvxift(ft) (resp. mvhift(ft)) all converge
to the same deterministic constant,

(i4i) for any 1 € [3, L — 1], the entries of (W'(t) — W'(0)) all converge to the same deter-
ministic constant.

The rigorous version of this theorem, and its proof, formalized within the framework of
the Tensor Program, are presented in Appendix K.2.

5.2 Not Scaling the Bias Terms

In this section, we consider a version of IPs where we remove the pre-factor 1/m for the bias
terms of layers [> 2. We thus consider the following computations in the forward pass:

hi = w! ()€ +b'(2),
p= (mTtol@a™) 0, e 2,1 (5.2)
1) = (m™ @ @) "af) + 057 0),
which in other terms simply means that B'(t) = bl(t) for I € [1,L 4 1]. We use the same
initialization for the bias terms as in IPs: b/(0) = o' for I € [1, L + 1], where the entries

of v! are ii.d.following N'(0,1). We call IP-bias the modified version of the integrable
parameterization described by Equations (5.2).

Gaussian first forward pass. For the first forward pass we have that the pre-activation
of the first layer h(l) is the same as in IPs at initialization and thus has i.i.d.Gaussian
coordinates. On the other hand, h} ~ b'(0) = v! ~ N(0,1) as m — oo, so that the
coordinates of the pre-activations of all the intermediate layers now behave as standard

21

HaAJJAR, CHIZAT, AND GIRAUD

Gaussians in the large-width limit. Note that in contrast to IP-non-centered, the coordinates
of hlo do not depend on the input data for [> 2 in the large-width limit. Similarly, we
have fo(¢) ~ v+ ~ N(0,1) (which does not depend on the input &) as m — oo.

First parameter updates. The first backward pass still vanishes as in integrable pa-
rameterizations because of the multiplications by (W!(0))" = m~1/2(m=/2U"). Indeed, we
have V1 fo(¢) = WETL(0) = m™1ULTL, and V. fo(&) = m~1ULT © o/ (hE), so that the
coordinates of V. fo(¢) and V. fo(€) are in ©(m~1). For | € [1,L — 1], we have that
mV 1 fo(€) = m~1/? (m_l/g(Ul“)T) (mV i1 fo(€)), and an easy induction shows that the
coordinates of Vi fo(€) and Vi fo(€) are in ©(m = m~(E=0/2) for any I € [1, L]. Note that
as in the forward pass, the backward pass at t = 0 also does not depend on the first training
input input & except for V1 fo(&o). We get the following formulas for the first weight and
bias updates at ¢ = O:

AW (1) = —nm ™ 92L(yo, fo(£0)) (Vi1 fo(£0))E]
AB'(1) = —nm~854(yo, fo(£0)) Va1 fo(&o),

V., -1
AW(1 :—nm*@*cz)azé(yo,fo(fo))(m hf(;,(f(]))% , Lel2, 1], (5.3)

AB'(1) = —m™9x4(yo, fo(£0)) Vi fo(€0)). L€ [2,L],

Initial learning rates. Because the backward pass vanishes in the infinite-width limit,
the learning rate exponents ¢; still need to be chosen carefully in order to escape the initial
stationary point. However, the two following points stand out: (1) because the first forward
pass does not vanish as in the Naive-IP, the choice of ¢; does not require any homogeneity
property, and needs not be as large (in absolute value) as for IP-LLR (see the values in
the case p = 1 in the comment after Theorem 10); (2) Because we removed the pre-factor
m~! from the bias terms, AW!(1) and AB!(1) do not have compatible magnitudes, which
suggests setting a separate learning rate exponent ¢; for the bias terms, different from ¢; for
layers | € [2, L + 1], in order to have non-trivial updates for both the weights and the bias
terms. In light of the previous comment and of the update formulas of Equations (5.3), we
set, at t = 0, the learning rate exponents for the weights to

¢1=—1—(L—1)/2=—(L+1)/2,
a=-2—(L-1)/2=—(L—1+4)/2, (5.4)

cry1 = —1,

and for the bias terms to
ee=c=—(L+1)/2,

e=—(L—-1+2)/2, (5.5)
er+1 = 0.

One may compare the learning rates exponents for the weights with those of IP-LLR with
a degree of homogeneity p = 1, which are ¢; = cp41 = —(L +1)/2, and ¢; = —(L + 2)/2,

22

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

where the absolute value of the exponent does not decrease with the layer [for interme-
diate layers. Even when the learning rates are appropriately scaled as in Equations (5.4)
and (5.5), AW!(1) does not depend on the first training input for [€ [2, L+1]. We thus get
the following informal theorem, whose formal version within the framework of the Tensor
Program is given in Appendix K.1.

Theorem 18 (Informal). Consider the IP-bias as in Equations (5.2), with the initial learn-
ing rates as in Equations (5.4) and (5.5). Then, for any input & € R? to the network,
RL(€),25(€) for I > 2, and fo(€) do not depend on & in the limit m — oco. In addi-
tion, AW'(1) also does not depend on the first training input & in the infinite-width limit
m — oo forl € [3, L+ 1].

Learning rates at step t > 1. Repeating the calculations of the forward pass with the
updates of Equation (5.3) and with the learning rates for the weights and bias terms as
described in Equations (5.4) and (5.5), we readily get that the coordinates of the second
forward pass are in ©(1). Then, it is direct to see that the choice of the Naive-IP learning
rate exponents ¢; = cpy1 = —1, and ¢; = —2 for [€ [2, L] for the weights and ¢, = —1 for
l €[1,L] and €111 = 0 for the bias terms yields non-vanishing and non-exploding updates
for the weights and the bias terms at ¢t = 1.

Degeneracy at time ¢ > 1. It follows that the same choice of learning rate exponents
as at ¢ = 1 also induce non-vanishing and non-exploding updates in the limit m — oo at
later time steps t > 1. With this choice of learning rates we thus get, for any ¢ > 1, and for
lel2L],

t—1
AL~ ol + Z AW (s)z!~t.

s=1

With the choice of learning rates prescribed above for t > 1, the products AWZ(S)mffl
are finite and their numerical value strongly depends on the values of n and 020(ys, fs(&s)).
Typically, their product is rather small (e.g., < 1072), and this means that the initial bias
term o' has the dominant contribution to k. Therefore, in addition to Theorem 18, it can
be also be argued that the forward pass in the intermediate layers only weakly depends on
the training data and on the input to the network at time steps ¢.

6. Numerical Experiments

In this section we investigate numerically the behavior of the models previously introduced
in this work, namely Naive-IP, IP-LLR, IP-bias, IP-non-centered and pP. In contrast to
the theoretical analysis carried out in Sections 3, 4, and 5, we examine the performance of
the models on a multi-class classification task (instead of a single output prediction) and
we train them using mini-batch SGD (instead of single-sample SGD). In addition to these
two points, we adopt the following slight modifications compared to our theoretical setting.

Standard deviation of initial weights. In our numerical experiments, we allow the
initial Gaussian weight matrices U and vectors v! to have entries drawn from N(0, 67)
where §; can be different from 1 for | € [1,L], but is independent of m. As hinted in

23

HaAJJAR, CHIZAT, AND GIRAUD

Remark 14 and explained more in detail in Remarks 33 and 35, this is to avoid issues
(vanishing or explosion of the forward/backward pass) with the depth L. The choices of the
standard deviation of the Gaussian depend on the activation function and are summarized
in Table 1.

activation | ReLU | GeLU | ELU | tanh
init. std V2 2 1 1

Table 1: Standard deviation d; of the initial Gaussian entries of layers [€ [1, L] for different
choices of activation functions.

Re-scaling the standard deviation of the first layer. All the models we consider
have a; = 0 so that, as mentioned in Section 5.2, the coordinates of h} follow A/(0, ||£]|?+1)
and the variance is equal to Zizl f,% + 1. To avoid having too large a variance when the
(fixed) dimension d is large, we re-scale the standard deviation of the first layer’s weights
and bias term at initialization by dividing it by v/d + 1, that is we use the Gaussian law
N(0,02/(d + 1)) to initialize the entries of w!(0) and b*(0).

Calibrating the initial base learning rates for IP-LLR. As discussed in Section 4.2,
IP-LLR basically amounts to training with uP but forgetting the initialization in the in-
termediate layers for the first update. We thus roughly have W'(1) ~ AW(1) for any
I € [2,L], and the base learning rate 7 directly influences the magnitude of AW'(1) and
thus that of ht. Typical values for the learning rates, the initial loss derivative da£(yo, 0),
and the averaged inner products involved in the second forward pass are rather small (e.g.,
< 1071), and this will cause the pre-activations of the second forward pass to be of small
magnitude, and this effect compounds quickly with depth as the pre-activations of layer
(I — 1) are then multiplied by AW!(1). This will in turn lead to very small values for the
second weight updates AW'(2) and can considerably slow down learning in practice. To
overcome this issue, we simply calibrate the initial values of the base learning rates 7; (but
cap them at a value of 500 to avoid too large initial updates) of layers [€ [2, L] at t = 0, so
that the magnitude of the pre-activation of the intermediate layers in the second forward
pass is equal to 1 on average over the second training batch.

Note that this calibration results in base learning rates 1; which do not depend on m
(they do depend on L however) in the large-width limit as the coordinates of hll have non-
zero and finite values for large m. In contrast, this is not possible with the Naive-IP as the
coordinates of hll converge to zero as fast as some power of m, which would result in the base
learning rate 7; depending on m which is prohibited (by definition of the base learning rate).

All the points above can be handled within the framework of the Tensor Program, but

they would unnecessarily over-complicate the analysis and the formulas, which is why we
used a simpler setting in our theoretical analysis.

24

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

6.1 Experimental Setup

We evaluate the performance of the different models on two datasets: MNIST?, containing
60,000 training samples and 10,000 test samples, and CIFAR-103, containing 50,000 training
samples and 10,000 test samples. Both datasets consist in a 10-class image classification
task. Since we consider only fully-connected networks, we use gray-scale images which we
also flatten for both datasets, which means the input dimension is d = 28 x 28 = 784 for
MNIST and d = 32 x 32 = 1024 for CIFAR-10.

We train for 600 SGD steps on MNIST and 1200 steps on CIFAR-10 using a base learning
rate n = 0.01, a batch-size B = 512, and the cross-entropy loss, which satisfies Assumption 1.
For each experiment, we run Niyas = 5 trials with different random initializations. The
hyperparameters are summarized in Table 2.

L | m | duNisT | dcirar 14 n B | Nirials
6 | 1024 784 1024 cross-ent. | 0.01 | 512 5

Table 2: Hyperparameters for training models.

6.2 Naive-IP is Trivial but Large Initial Learning Rates Induce Learning

In this section we compare the numerical performance of Naive-IP and IP-LLR on MNIST
for different activation functions. Essentially, the results we present corroborate Proposi-
tion 5 and Theorem 13, except that numerical evidence tends to show that those results
hold with less restrictive assumptions on the activation function than what we consider in
the theoretical part, as already hinted in Point 2 of Remark 14.

As observed in Figure 1, while the loss (averaged over a batch) stays at its initial value for
Naive-IP, we observe a decrease for IP-LLR whose strength depends on the choice of activa-
tion function. Similarly, Figure 2 depicts the evolution of the mean absolute output during

training, that is, we plot for any step ¢ the quantity (1/B) Zil(l/lo) 114:0:1 ‘fk’t (5@)

)

where f,gl) is the i-th sample in the batch at time ¢ and for any class label k € [1,10], f+(£)
is the k-th entry of the output of the model (logits for class k) on input £. We also observe
here that there is no change in the output for the Naive-IP which stays equal to 0 during
the course of training, whereas for IP-LLR, the mean absolute output value increases from
its initial value, equal to 0, to some positive quantity whose value depends on the activation
function. The solid line in both plots denotes the mean of the metric of interest over mul-
tiple (5) random trials while the shaded area represents a 95% confidence interval around
the mean. There is no shaded area for Naive-IP since the output of the network is equal to
the deterministic constant 0 at any time step for large m, as stated in Proposition 5.
Finally, we show in Table 3 the test accuracy (averaged over 5 random runs) at the
end of training for the Naive-IP and IP-LLR for different activation functions. The Naive-
IP has the same test accuracy of 0.098 independently of the activation function, which is
roughly equal to that of random guessing which would yield an accuracy of 0.10 as there
are 10 classes. In contrast, IP-LLR has higher-than-chance test accuracy for every choice

2. http://yann.lecun.com/exdb/mnist/
3. https://www.cs.toronto.edu/~kriz/cifar.html

25

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

HAJJAR, CHIZAT, AND GIRAUD

ation
—— RelU

GelU
— ELU
— tann

0 100 200 300 400 500 00 0 100 200 200 400
step step

(a) Naive-IP (b) IP-LLR

500 600

Figure 1: Loss vs. number of optimization (SGD) steps on MNIST for different activation

functions.
.
= e
04 — RelU — ReLu
GelU GelU
— ELU 3 —— ELU
— tanh — fanh
02 B
g F
H i,
g 2
g 0.0 ?m:
é El
: i
-0.2
o
04
-1
o 100 200 300 400 500 600 o 100 200 300 400
= step
(a) Naive-IP (b) IP-LLR

500 €00

Figure 2: Mean absolute output vs. number of optimization (SGD) steps on MNIST for

different activation functions.

of activation function, and while ReLU appears to perform poorly, all other activations

perform relatively well with ELU and GeLU achieving an error lower than 5%.

activation | p 117 | GeLU | ELU | tanh

model
NaiveID 0.008 | 0.098 | 0.008 | 0.098
IP.LLR 0.113 | 0.956 | 0.964 | 0.932

Table 3: Test accuracies on MNIST for various activation functions.

6.3 IP-LLR vs. uP

We compare the numerical performance of IP-LLR and pP on both MNIST and CIFAR-10,
and investigate the reasons behind the differences observed between different models and

different non-linearities.

26

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

actvation | p 117 | GeLU | ELU | tanh

model
TP.LLR 0.113 | 0.956 | 0.964 | 0.032
P 0.954 | 0.975 | 0.028 | 0.905

Table 4: Test accuracies on MNIST for various activation functions.

activation | p o117 | GeLU | ELU | tanh

model
P.LLR 0.100 | 0.329 | 0.383 | 0.284
P 0.407 | 0.419 | 0.356 | 0.304

Table 5: Test accuracies on CIFAR-10 for various activation functions.

As observed in Tables 4 and 5, the performance, as measured by the accuracy on the test
set, is consistent across activation functions for yP whereas the gaps are larger for IP-LLR.
However, the best test accuracy for uP and IP-LLR are comparable: the former achieves
0.975 test accuracy on MNIST and 0.419 test accuracy on CIFAR-10 with 0 = GeLLU while
the latter achieves 0.964 test accuracy on MNIST and 0.383 test accuracy on CIFAR-10
with ¢ = ELU.

Performance and rank collapse. The consistency of yuP across activation functions
and the lack of consistency for IP-LLR can be explained by (or at least correlated with)
the diversity, measured in terms of rank, of the (pre-)activations at different layers on large
batches of samples. Indeed, as shown in (Daneshmand et al., 2020), the rank of the family
of pre-activations (considered over large batches) has a dramatic impact on the observed
performance of models. In fact, the authors argue that this might be the reason behind
the empirical success of batch normalization: it allows the rank of these families of pre-
activations to remain large even when the number of hidden layers L is large, whereas they
show there is a collapse in the rank without the batch-normalization operation, which coin-
cides with poor accuracy. This problem is exacerbated in IP-LLR because the contribution
of the initial weight matrices (which are full-rank) vanishes after the first gradient step,
thereby lowering considerably the rank of the family of pre-activations. Two effects are
then at play: (1) the choice of the activation function o can induce large differences in
the rank of the family of vectors (Wl(l)a(h))hes, where S is a large set of vectors; (2)
the impact of the activation function on (1) is compounding with depth and can lead to
dramatically small rank (equal to 1 in the worst case) towards the last layers of the network.

In Figures 3 we plot the rank (the y-axis is in log-scale) of the families (hll(é)) ces

and (xll(f))ges for I € [1,L], where S is the set comprised of the first 5,000 training
inputs of MNIST. The numerical “rank” is computed as in (Daneshmand et al., 2020) with
torch.matrix_rank() which regards singular values below opax X m X 10~7 as zero. We
observe that for IP-LLR, the rank of those families with ¢ = ReLU is one order of magnitude
smaller than for other activation functions after layer [= 4 and even collapses to 1 in the last
layers, which might explain its poor performance, whereas for uP all activation functions
induce comparable ranks which remain at least on the order of 10? at any layer. We believe
the latter fact is due to the non-vanishing contributions of the initial Gaussian matrices

27

HaAJJAR, CHIZAT, AND GIRAUD

ayer yer

(a) IP-LLR (b) uP

Figure 3: Ranks (log-scale) of the families of pre-activations (k! (£)) and activations (4 (£))
at time t = 1 on MNIST wvs. layer [for different activation functions.

which are full-rank (with probability 1). In contrast, it would seem like IP-LLR is much
more sensitive to the choice of activation function and we identify the vanishing of the
contribution of the initial weights for intermediate layers as a probable cause for this effect.

Whether the difference between ReLLU and other activation functions for IP-LLR is
actually due to the difference between the homogeneity property with ¢ = ReLU and the
effective linearization property for other activation functions (as highlighted in Remark 14)
or to other inherent characteristics of the activation functions is still an open question and
we leave it for future work.

6.4 Learning is Degenerate for IP-bias and IP-non-centered

In this section we show numerically that IP-non-centered and IP-bias (see Sections 5.1
and 5.2 respectively) are able to escape the initial stationary point but that the resulting
dynamics do not seem effective as observed through the evolution of the training loss.

Figure 4 shows that both models are indeed able to escape the initial stationary point as
the magnitude of the output evolves non-trivially during training but in contrast Figure 5,
depicting the training losses on MNIST and CIFAR-10 for both models, shows that learning
is very slow for those models and that the dynamics are not effective in reducing the training
loss.

Additionally, as summarized in Table 6, the slow decrease of the training loss translates
into poor test accuracy at the end of training comparatively with IP-LLR and uP, even
with the best choice of activation function.

7. Conclusion

Recent research has shown that the parameterization of a neural network has a dramatic
impact on its training dynamics, and therefore, on the type of functions that it is able to
learn. Until now, the parameterizations used by practitioners have been restricted to stan-
dard schemes which rely on the analysis of the the first forward and backward passes. In the
present work, pushing the analysis beyond the first gradient step (which is made possible

28

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

4 4
= =
= ==
— GelU — GelU
3 — ELU 3 — ELU
— tanh — fanh
é' 2 é 2
£ £ \
. .
B 0 100 200 300 400 500 600 B 0 200 400 600 800 1000 1200
step step
(a) IP-bias / MNIST (b) IP-bias / CIFAR-10
; .
e
— GeLU
3 3 — ELU
—
g 1 E 1
H H
0 0
B o 100 200 300 400 500 600 B o 200 400 600 800 1000 1200
(c) IP-non-centered / MNIST (d) IP-non-centered / CIFAR-10
Figure 4: Mean absolute value of the output during training.
30 30
20 20
415 #1s
ey ey
05 | — @elu 05 | — @elu
== ==
— fanh — fanh
o0 0 100 200 300 400 500 800 oo 0 200 400 €00 800 1000 1200
step step
(a) TP-bias / MNIST (b) IP-bias / CIFAR-10
30 30
B
815 E 15
10 10
el e
05 | — Gelu 05 | — Gelu
- ELU - ELU
— fanh — tanh
e 0 100 200 300 400 500 600 0o 0 200 400 600 800 1000 1200
step step

(c) IP-non-centered / MNIST (d) IP-non-centered / CIFAR-10

Figure 5: Loss vs. number of SGD steps.

29

HaAJJAR, CHIZAT, AND GIRAUD

model | yp 1 1R | 4P | IP-bias | TP-non-centered
dataset
MNIST 0.964 | 0.975 | 0.113 0.209
CIFAR-10 0.383 | 0.419 | 0.100 0.154

Table 6: Test accuracies (averaged over 5 random runs) at the end of training on MNIST
and CIFAR-10. For each model, we show the maximum (averaged) accuracy over
all activation functions. For each model, the activation function which performs
best is the same for both datasets and the pairing model — activation is the
following: IP-LLR — ELU, uP— GeLU, IP-bias — GeLU, IP-non-centered —
ELU.

by the Tensor Program framework), we have studied how to train neural networks with pa-
rameterizations that enjoy radically different behaviors, such as forgetting the contribution
of the initial weights after the first weight update.

The parameterizations we have analyzed, which we refer to as integrable parameteri-
zations, have been previously described with tools from the mean-field literature, and we
have deepened our understanding of these models with a different perspective. Indeed,
we have shown that these parameterizations are trivial for deep networks with centered
i.i.d.initialization and a constant learning rate: they are stuck at initialization. This ob-
servation led us to explore various ways to escape this initial stationary point and initiate
learning. Among those methods, we found that the only one that does not lead to a de-
generate behaviour is to use large learning rates for the first gradient step. We proved
that in the infinite-width limit the resulting dynamic is equivalent to a modification of P
where the initial weights are removed after the first gradient step. Importantly, the random
fluctuations around the limit—which are ignored in the mean-field description—turn out
to actually be essential for our analysis, since it is by amplifying them that we are able to
escape the stationary point.

Extending our theoretical results to a more general class of activation functions requires
more thorough technical work and is left as an open problem. Also, analyzing rigorously
the impact of the presence or absence of the initial weight matrices on the learning behavior
appears to be an interesting avenue for future research. Finally, understanding the gener-
alization properties of IP-LLR and uP remains an important open question but is beyond
the scope of this paper.

Acknowledgements

Karl Hajjar and Christophe Giraud receive respectively full and partial support from the
Agence Nationale de la Recherche (ANR), reference ANR-19-CHIA-0021-01 “BiSCottE”.

30

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Appendix
Appendix A. Notations

We introduce here some additional notations that will come in handy in the text and
equations presented in the Appendix.

Hat matrices. We define the following matrices and output weight vector (see Defini-
tion 1 for the definitions of the matrices U'):

Wl =U!
—, . (A.1)
Wl=m=12U!, 1e[2,L+1].
The pre-factor in m~1/2 is the natural re-scaling of the i.i.d.Gaussian matrices when their
input dimension grows to infinity due to the central limit theorem (CLT).

Omegas. For any ac-parameterization, we define wy := m~%, and for any [€ [2, L + 1],
w; := m/27%_ To avoid blow-up or vanishing in the first layer, all the parameterizations
we study have wi; = 1. This is the case for integrable parameterizations, the NTK pa-
rameterization and for yP. For integrable parameterizations we also have w; = m~1/2 for
I € [2,L + 1], but for uP, w; = 1if I € [2,L] and wr 1 = m~'/? (see Section B.3 for a
detailed description of uP).

Those w; naturally appear in the calculations as the magnitudes of the first forward pass
of an ac-parameterization of a neural network. The term m~% comes from the scaling pre-
factor of the effective weights, and the added ml/2 appears when expressing the computation
in function of the naturally scaled W': W!(0) = w;W'.

Scalar limits. For any scalar w which depends on m, we denote by w the almost sure
limit (when it exists) of this scalar as m — oo.

Gradients. We define for any ¢ and I,

(dh! = thft(ft)
dal = Vméft(gt)
dw'(t) := sz(t)ft(ft)
dbl(t) = Vbl(t)ft(&)
Xt = 0l(y, fe(&r))-

The equations of backpropagation give:

del = Witl(t)

dw®(t) = m~ar+1gk

dhl = dzl © o' (hh)

dry~" = (W'(1)"dh;
dw'(t) = m~%dhl (2717,
db'(t) = m~%dht.

31

HaAJJAR, CHIZAT, AND GIRAUD

As noted in Definition 1 Remark 2, one has for [€ [1, L],

Aw'(t) = —nm”xpdw! () = —nm” Dy dhi (2T, (A.2)
AWL() = m™ Aw'(t) = —pm~Caredy dpl (2717, (A.3)
ABL(t) = m™ @ Ab (1) = —gm~Cate)y dhl, (A.4)

and for =L +1

AwL+1(t) = —nm‘clxtde“(t) = —Um_(aLHJrCL“)thUtLa (A.5)
AWL'H(t) = m_aL“AwLH(t) = —nm_(2“L+1+CL+1)thtL, (A.6)
ABFFY(t) = m™ o+t AbEFY (£) = —pm~ Corterany, (A7)

Z variables. As described in Section B.2, the variables Z with a superscript will be used
to denote the random variable whose law describes the evolution of all coordinates of a
given vector of the forward or backward pass at a given layer in the limit m — oc.

Tilde variables. For z € {h}, 2!, dhl, dzl}, we will use Z to denote a variable “without
scale”, i.e., such that Z* has positive and finite variance (see Definition 30). When we do
so, we always have z = AZ for some scalar A (which might depend on m). The tilde variables
of the backward pass for ¢ > 1 might have different expressions in different contexts or in
different proofs, but we still use the same notation every time as the exact definition should
always be clear from the context.

Appendix B. An overview of the Tensor Program technique

The Tensor Program technique, first introduced by in Yang (2019), was initially developed
to better understand the behavior at initialization of networks whose weights are initialized
i.i.d.with standard Gaussians as the number of units in each layer grows to infinity. Since
the output of a hidden unit in layer [> 2 is given by 221:1 Wéq(())a:éj;, the magnitude
of the weights need to be downscaled by some negative power of m to avoid blow-up as
m — co. Scalings which have naturally appeared in the literature are m~/2 and m~!, and
lead to different types of limits.

Using a first version of the Tensor Program (referred to as NETSOR), it is shown
in (Yang, 2019) that the output at initialization of a neural network of any architecture
(fully-connected, recurrent, convolutional, with normalization, attention, ...) whose weights
are initialized with W*(0) = m~'/2U! for | > 2 (i.e., ay = 0 and b; = 1/2 for | > 2 in the
ac-parameterization) is a Gaussian process in the infinite-width limit.

Going further, and in the light of the recent literature on the neural tangent kernel, Yang
(2020a) studies the first backward pass of networks initialized as above in the limit where
m — oo and has shown that the neural tangent kernel at initialization, defined as K (¢, €) :=
(Vo f0(6(0);€), Vafo(6(0);€)) converges to a deterministic limit for any architecture.

Finally, and most importantly for our work, the Tensor Program is extended in (Yang,
2020b) to cover the forward and backward passes of networks of any architecture at any
time step and not just at initialization. The crucial step taken in (Yang, 2020b) is to be
able to describe the evolution of quantities where both a weight matrix W' and its transpose

32

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

(WHT are involved. (Yang and Hu, 2021) then applies the results and theorems of (Yang,
2020b) in the particular context of ac-parameterizations (or rather abc-parameterizations
as defined by Yang and Hu, 2021) to describe the infinite-width limits of neural networks
with different parameterizations.

B.1 Intuition behind the technique

To explain the intuition behind the Tensor Program technique and how it comes into play
for neural networks, let us first look at the forward pass of a fully-connected network with
L hidden layers after ¢ steps of SGD. Assume single samples (o, yo), - - . (§—1,y1—1) are used
at each step for simplicity. Consider a neural network in any ac-parameterization and an
input € to the network. Using Equation (A.3) for the updates, the forward pass of the
network at time ¢ is given by:

t—1
hi = WH(0)¢ — nm~Corte) N "y (¢1€) dh}
s=0

t—1

h = W)™t — g CGarte) y "y ((wl{l)%i_l) dh} l€(21]
s=0
t—1
fu(&) = WEH(0)) T2} — g~ Corntera) N " (@l Taf.
s=0

To understand what happens in the forward pass, one thus needs to understand the be-
havior of the multiplication by i.i.d.Gaussian matrices, that of vectors dhl of the backward
pass as well as that of the inner products (z}1)Tz!"!. As m — oo, the sums defining the
matrix multiplications and inner products involve an infinity of terms and one must there-
fore understand how those quantities scale in the limit.

Before we dive into the matrix multiplications, let us look more precisely at what the
vectors dh, look like. We have:

dhl, = dzl @ o’ (hL)

dal, = (W (0) Tttt — = Corred 37, ((@nb)Tant) o, e 2,1,
u=0

We observe that inner products appear again, and that in contrast with the forward pass,
it is now the multiplication by the transpose of i.i.d.Gaussian matrices which appears.

We already see that two main quantities appear in the calculations: The initial i.i.d.Gaussian
matrices, and vectors which are generated either (i) through the multiplication of another
vector with a Gaussian matrix or its transpose, or (i7) through some form of non-linearity
involving other vectors as well as the activation function o and/or its derivative o’. Before
trying to understand how the inner products behave, let us first dive into the multiplication
by i.i.d.Gaussian matrices.

33

HaAJJAR, CHIZAT, AND GIRAUD

B.1.1 MULTIPLICATION BY I.I.D.(GAUSSIAN MATRICES

The multiplication of a random vector by an i.i.d.Gaussian matrix can happen in two dif-
ferent scenarios: (i) the input vector is independent of the Gaussian weights, and (i7) the
input vector is correlated with the Gaussian weights, which, in the case of neural networks,
will translate into saying that the transpose of the weight matrix is used somewhere to
compute the input vector.

Independent input vector. Consider a list (24)4en+ of i.d.d.random variables with fi-
nite first and second moments, independent of U, and consider multiplying this vector by
the i.i.d.Gaussian matrix U!. At any finite-width m the p-th entry of Ulz is given by

Z ~ m'2N(0, E[27))

m—)oo

The terms (Uéqxq)qzl are i.i.d.with mean 0 and finite variance E[2?] because , is indepen-

dent of sz,q. Therefore, by a central limit argument, the sum will behave like m!'/2A(0, E[z?])

for large m. It is thus natural to scale the sum by m~/2, or equivalently to consider

Wl =m-1/2y! (as defined in Equation A.1) for matrix multiplications.

With the above result in mind, we take a look at the first forward pass at initialization
of a network where all the weight matrices are initialized as W!(0) = W' (i.e., a; = 0,
a; = 1/2,1 € [2,L +1]). We consider an input & € R% to the network and compute the
pre-activations of each layer recursively. For the first layer, we get that for any p € [m],

o~

hop, = (W', = (U,

I
M=~

&Upy ~ N0, 11€]1?)

Il
—

q

Since the (U]}q)q are i.i.d.standard Gaussians, the linear combination above is also a Gaussian
with mean 0 and variance), 2 = [|¢]]*. Note that since the lists (U,), are independent
for different p, the vector A} has i.i.d.coordinates all distributed as A'(0, ||¢||?). We also note

that adding a bias term initialized as A/(0, 1) would simply change the variance to ||¢]|?+1.

Then for the second layer we get that for any p € [m]:
Z (R) ——>N(0 Elo(hg,1)%))

The terms (qua(haq))q are i.i.d.with mean zero, and by a central limit argument, we have
that the coordinates of h§ converge in law towards N(0,E[o(h{ ;)?]) where E[o(hf;)?]) is
simply E[o(Z)?]) with Z ~ N(0,]|¢]|?). Those coordinates are also independent (and Gaus-
sian at any finite width m) conditionally on h§ because the lists (U2,), are independent
(Gaussians) for different p. The different coordinates of hZ are identically distributed at
any finite width m and remain so in the limit. They are not strictly speaking independent

34

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

at finite width but the intuition is that they become so in the limit m — oo as they also
become Gaussian, and that is how they should be thought of in the context of the Tensor
Program.

Repeating the calculations above at every layer, we can intuitively describe the forward
pass in the infinite-width limit by describing the law of a single random variable Z; for each
layer (whose law is the common law of all the coordinates of the pre-activations hf)), and
by the hand-wavy calculations above, we get the following recursion for the variables Z:

Zy ~ N0, [€]1P)
Ziy1 ~ N(0,E[0(Z)?), 1el,1]

Having discussed the case where the input vectors are not correlated with the weight ma-
trix, we now move on to the case where there is some correlation between the two.

Correlated input vector. As the simplest form of correlation, we consider a vector
x = (/WZ)TZ where (z4)4en+ is a list of i.i.d.random variables independent of W' with finite
first and second moments, and we consider the result of the multiplication h = Wz, For
any p € [m], we have

=S U) = | =Y ULU
pq P T pqg—rq
m \/m#p Vim

By the law of large numbers, the first term will converge almost surely to z, as m — oo.
For the second term, the intuition is that for any r # p the terms (1/y/m) >, UéqUqu be-
come distributed as independent Gaussians as m becomes large by a central limit argument.
Then, by another central limit argument, intuitively, the sum over r # p should also be-
comes distributed as N (0, E[2?]). In the limit m — oo, we thus expect the coordinates of
h = WI(WI)Tz to be the sum of two terms: a first term distributed as z; where the corre-
lation between the entries of W! and (WZ)T comes into play, and a second term distributed
as N(0,E[2?]) which is purely Gaussian and where the correlation between the entries of

W' and (/V[7l)T has no effect.

The aim of the Tensor Program series (Yang, 2019, 2020a,b) is to formalize those intu-
itions into theorems and rigorous calculations. Of course, the calculations become more
complex when we introduce non-linearities and consider later steps in training than the
initialization, but what the Tensor Program shows is that the intuitions above still hold.

To summarize, the intuition is that in the large-width limit, the coordinates of pre-activation

vectors become i.i.d.and we thus only need to track the law of a single real-valued random
variable. Therefore, any average of some function of the coordinates should converge to an

35

HaAJJAR, CHIZAT, AND GIRAUD

expectation in the limit m — oo by a law of large number argument. Finally, any multipli-
cation by W' yields two terms where one is purely Gaussian and the other depends on the
expression of the vector that is multiplied by W' in function of (!)T.

B.2 Mathematical formalism

The mathematical formalism of the Tensor Program goes beyond neural network compu-
tations and describes the evolution of any computational systems (with some restrictions)
in the limit m — oco. The computational system is comprised of different vectors whose
dimensions are equal to m which can be generated from a set of initial vectors in various
ways. The Tensor Program is defined by the sequence of mathematical operations which
produce the vectors from previously generated vectors. The operations are the same at any
given width m, only the size of the vectors and matrices involved change with m, and the
aim of the Tensor Program is to provide the tools (formalism and theorems) to be able to
described the behavior of the system in the limit m — oco. As described in the intuitions
of the previous section B.1, the coordinates of vectors in the program are roughly i.i.d.as
m — oo and variables Z are introduced to described the common law of the coordinates in
the limit m — oo.

Initial vectors. Consider a set V := {vl, o ,UN} € (R™N of initial vectors such that:

(i) the coordinates (vp)pe[m) are i.i.d.for any v € V and any m. We call Z¥ a real-valued
random variable whose law is the same as that of all the coordinates.

(ii) The joint law of ZY := (Z”l, . Z”N) is a Gaussian N (finit, Yinit) for any m (the
variables Z¥ do not actually depend on m, but this is simply to say that at any width

m and for any p € [m], the law of (U;, .. ,vév) is the same N-dimensional Gaussian).
Initial scalars. Similarly, we define a list of initial scalars 61, ...,6; which can depend

on m and for which the only requirement is that each 6, converges almost surely to some

o
finite limit 8, as m — oo.

Initial Gaussian matrices. Consider a set W := {Wl,...,WP} c (R™™)P " such

that Wp"q ~ N(0,1/m) ii.d.over p,q for any r, and the (/W”)TG[P} are independent of each
other and independent of the vectors in V. Since we consider a more general setting than
neural networks, we do not index those matrices by [and can have P # L but for neural
networks, those initial matrices will always be the initialization of the weight matrices of
the intermediate layers [€ [2, L], appropriately scaled.

Generation of new vectors/scalars. Given previously generated vectors LI
previously generated scalars 01, ...,6,, and a non-linearity ¥(-; -) : RF x R" — R, we can,
in the following ways, generate:
MatMul a vector z = Wo for any v € {v',... v} and Wew.
NonLin a vector z = (vl ...,v%; 01,...,0,) where ¢ is taken element-wise, i.e., Zp =

w(v}), - ,v]’,f; 01,...,60,) for any p € [m] and for any m.

1 1 k.

Moment a scalar w = - > 0 (v, ..., vy 5 01,...,0r) €R.

36

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

The non-linearity used does not have to actually depend on all the previous vectors and/or
scalars, but we present the operations this way for simplicity.

Given those operations, the Tensor Program framework allows to seamlessly describe the
infinite-width limit of the computational system defining a given Tensor Program by track-
ing recursively the laws of the variables Z whose law represents the common law of the
coordinates of a given vector. Indeed, every vector z in the program (initial or gener-
ated using previous vectors in the program) will roughly have i.i.d.coordinates in the limit
m — 00, and the Tensor Program associates a real-valued random variable Z# to the vector
z. Then, associated with the operations on vectors and scalars above are the following
operations on the corresponding variables Z which come as their natural counterparts in
the infinite-width limit to track the evolution of the laws of the variables Z:

ZInit For initial vectors v € V, define ZY = 0 and Z° = Z°. The purpose of those
notations will become clear in the ZMatMul section.

ZMoment Given a scalar w = (1/m) > 7", (2} 01,...,60,), define

Dy p’

o

S=FE |z, ..., 77 61,...,00) (B.1)

ZNonLin Given z = (z',...,2¥; 01,...,6,), define:
1

7= (27, 77 0, 0,) (B.2)

ZMatMul Given z = W for a previous vector v and We W, Z% = 7% + Z# is the sum of
two terms:

ZHat Z7 ~ N (O, E [(Z”)Q]) is a purely Gaussian term. Additionally, if we let Wi;; be

the set of all vectors in the program of the form W for some u in the program,
the vector ZWw = (ZM) heWy is defined to be jointly Gaussian with covariance
matrix given by:

cov(ZWVe ZWY) = E[Z% 2Y)

Moreover, the vector Z"W is defined to be mutually independent of the list of
Z% for uin {Z" :v €V UWeWuWT WA Ww} where WT .= {WT: W € W},
and Wy is the set of vectors in the program of the form Wu for some vector u
in the program.

ZDot Z* comes from the potential interactions (correlations) between W and W7 in
the computation of z. One can always unwind the expression of Z¥ and express
it in function of the Z"™¥ for some y in the program that is we can always write
A as 2 ZV = cZ)(ZWTy i ZWTy Zm 91,...,95) with z!,...,2" such
that WT is never used in the computatlon of those vectors. Then, define:

Z E [0z] ZYi (B.3)

ZWTy;

37

HaAJJAR, CHIZAT, AND GIRAUD

where 027/ YATRT simply defined as the j-th partial derivative of ¢ above

when expressing Z¥ as required for Z. As noted in (Yang and Hu, 2021), if ¢
is not everywhere differentiable, one can leverage Stein’s lemma to replace the
formula in Equation (B.3) by a linear algebra formula.

Now that we have introduced the necessary concepts and described the content of a Tensor
Program, we can move on to present the main theorem derived in (Yang and Hu, 2021) which
connects the mathematical operations used at finite-width with the infinite-width limit of
the computational system defining a Tensor Program. The “master theorem” formulated
in (Yang and Hu, 2021) is surprisingly simple (although the proof is much more intricate)
yet very powerful, and goes as follows (see Yang and Hu, 2021, Theorem 7.4):

Theorem 19 (Master Theorem). Given a Tensor Program, for any vectors z',... x"

and scalars 01, ...,0, in the program, and for any pseudo-Lipschitz non-linearity 1 (see
Definition 4, page 10), one has that:

1 o o
=Nl ak 0, 0) S E | (27,27 0,6,
m P P m—00
p:
Remark 20.

1. The theorem essentially states that even though the coordinates of vectors in the program
are not rigorously i.i.d., they appear so from the perspective of the average by a suitable
non-linearity so that a law of large number type of result holds. Note that for neural
networks, even though the coordinates of the (pre-)activations follow the same law when
using i.1.d.initialization for the weights, it is not a priori clear that we can consider them
as independent copies, and thus that we can summarize the computations using a single
real-valued variable, but the master theorem shows that from the perspective of averaging,
this is in fact the case in the infinite-width limit.

2. In (Yang and Hu, 2021), different versions of the Tensor Program are presented in the
sense that different classes of non-linearities are allowed. These differences induce minor
subtleties in the master theorem and in the proofs. However, most of the results in the
main text of the paper require that the non-linearities be pseudo-Lipschitz (which is the
stronger assumption), both in NonLin and in the master theorem. The Assumption 2
on the activation function o and its derivative o’ ensures that any quantity appearing in
the forward or backward computation of a neural network can be expressed as pseudo-
Lipschitz non-linearity.

3. What the Tensor Program and its master theorem show is that to understand the behav-
ior of the computational system in the infinite-width limit, one simply needs to track the
operations on the variables Z which mimic the recursive operations in the computational
system. Then, quantities which involve sum over coordinates such as inner products be-
tween the vectors in the program (which occur in the forward and backward passes of a
neural network, as well as in the computation of the neural tangent kernel), or norm
computations are easily described, when properly re-normalized, through expectations in-
volving the corresponding variables Z. The main difficulty is that it is actually hard

38

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

(computationally and in the mathematical formulation) to track the correlations between
different Z because, as explained in (Yang and Hu, 2021), of the necessary unwinding

in the definition on , so that the computational graph associated with the operations on
the variables Z is hard to implement in practice.

B.3 The maximal update parameterization uP

We close this section by presenting briefly the maximal update parameterization considered
in (Yang and Hu, 2021). To quantify the learning abilities of a given parameterization, Yang
and Hu (2021) introduce the notions of feature learning and feature kernel evolution at a
given layer [€ [1, L], which we recall below. Both these definitions concern the large-width
limit of the networks:

Definition 21 (Feature Learning). An ac-parameterization is said to admit feature learn-
ing at the I-th layer if the quantity Azl(€) := zL(€)—zk(€) is such that there exists a training
routine for which, almost surely, there exists a constant C > 0 such that ||Az}(€)|]?/m > C
for large enough m.

Definition 22 (Kernel Evolution). An ac-parameterization is said to evolve the feature
kernel at the I-th layer if the quantity AF}(€,€) == [acé(é’)Tx,lf(g) - xf)(f)TxO(g)] /m is such
that there exists a training routine for which, almost surely, there exists a constant C > 0
such that for large enough m, AF}(€,€) > C.

(Yang and Hu, 2021) goes about categorizing whether different ac-parameterizations admit
feature learning or not. One of the striking result presented is that there is essentially a
dichotomy (depending on the values of (a;, ¢;)g|r+1)) among ac-parameterizations: an ac-
parameterization either admits feature learning (and evolves the feature kernel) or is in the
kernel regime, meaning that the quantities in definitions 21 and 22 converge to 0 almost
surely so that in the infinite width limit, the evolution of the prediction function f; is de-
terministic and depends only on the previous prediction function f;_; and the loss at time
(t — 1) through a (deterministic) kernel K (&,€) = limy, o0 (25(£)) 2L (€)/m (or a rescaled
version thereof).

The categorization result proved in (Yang and Hu, 2021) holds for a certain class of ac-
parameterizations which are deemed stable and non-trivial. Stable refers to the fact that
the pre-activations and output (b} and fo(&) respectively) at initialization do not blow-up
as m — oo at any layer. As already hinted in Section B.1, this corresponds to having a; = 0
and a; > 1/2 for | € [2, L + 1]. Non-trivial refers to the fact that the pre-activations of all
layers do not converge to 0 almost surely as m — oo at initialization. This corresponds to
having a; < 0 and a; < 1/2 for | € [2,L]. It is mentioned in (Yang and Hu, 2021) that
those parameterizations for which the pre-activations of the intermediate layers converge to
0 almost surely should stay at their initialization throughout the course of training, and we
actually prove in Section 3, using the Tensor Program technique, that this is the case when
L > 3 in the setting where a; = 0 and a; = 1 for [€ [2, L+ 1] (i.e., integrable parameteriza-
tions) unless one uses large (polynomial in m) initial learning rates, a scenario which is not
covered in (Yang and Hu, 2021). We show that in this case, integrable parameterizations
are only trivial at initialization (the pre-activations of all layers except the first one converge

39

HaAJJAR, CHIZAT, AND GIRAUD

to 0 in the infinite-width limit) and are actually in a feature learning regime at all layers
after the first gradient step (¢ > 1).

The maximal update parameterization pP introduced in (Yang and Hu, 2021) is the re-
sult of the analysis of the values of a;, and ¢; for which the parameterization admits feature
learning at every layer, and maximally so in the sense that if we were to reduce the value
of a; then the Aa:é introduced in Definition 21 or the pre-activations hff would blow-up
as m — o0o. In essence, uP corresponds to the values of a;, and ¢; for which Axi is as
large as possible (with regards to its dependency on m) at every layer without creating
any instabilities (pre-activations or updates blowing-up) in the limit m — oco. A quick
analysis of the updates at ¢ = 0 shows that the choice a; = 0, a; = 1/2 for | € [2, L],
and ar+1 = 1 associated with ¢; = —1 for all [€ [L + 1] achieves this, and it is rigorously
shown in (Yang and Hu, 2021) that this choice of ac-parameterization induces an update
such that, [|AW!(t)z}™||2/m = ©(1). We thus adopt the following definition for uP which
is the same as in (Yang and Hu, 2021, Definition 5.1) but re-parameterized to remove the
redundant b in the abc-parameterization:

Definition 23 (uP). The maximal update parameterization uP is defined by the following
choice of parameterization:

ap = 07 1= —17
al:1/2, ¢ = —1, lE[Q,L},
ar+1 =1, cr+1 = —1L

Appendix C. Useful preliminary results

We show in this section a couple of useful results which will prove helpful in the proofs.

C.1 Positive finite moments of pseudo-Lipschitz functions of Gaussians

Lemma 24 (Positive finite moments with polynomially bounded non-linearities). Let ¢ be a
polynomially bounded non-linearity which is not almost everywhere 0, and let Z ~ N(0,v?)
with v2 < co. Then, for any p € R,

(1) 0 <E[[¢(2)[F] < o0,
(i) if in addition v* > 0, 0 < E[|¢(Z)|P] < oo.
Proof If v? =0, and then ¢(Z) = ¢(0) almost surely, so that E[|¢(Z)[P] = |¢(0)|P< oo.

Now, assume v? > 0. Since ¢ is bounded by a polynomial of some degree r > 0, |¢(2)|<
C(1+ |2]") for some C > 0. Then, |¢(2)[P= exp(pIn(|¢(2)])) < CP(1 + |z|")P. Since v > 0,
we have

1

V22
1

V22

E[|¢(2)I7] = /R B(2) P2 ds

/ CP(1+]z\r)pe_ZQ/%de < 00.
R

<

40

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Finally, since ¢ is not almost everywhere 0, neither is |¢|P which shows the integral in the
first equality above is not 0, and gives E[|¢(Z)[P] > 0. [|

C.2 The Z dots are 0 in the first forward-backward pass

Lemma 25 (Z = 0 in the first forward-backward pass). Consider an ac-parameterization of
an L-hidden layer fully-connected neural network with a; > 0 and a; > 1/2 forl € [2, L+1],
and with a non-linearity satisfying Assumption 2. Then for anyl > 2, ZWhe !t = 0, and
for any l € [1,L], Z WhTdnl, — .

Remark 26. This lemma applies to the NTK, uP, and integrable parameterizations (in
particular IP-LLR) as well as HP and HPZ.

Proof Consider any ac-parameterization of a fully-connected neural network which has
a; > 0 and a; > 1/2 for | € [2,L + 1], and with a non-linearity satisfying Assumption 2.
Define w; = m™% and w; = m~(@=1/2) for | > 2, and the initial scalar Qriq = mALEL,
The conditions on the a; guarantee that the w; converge almost surely to either 0 or 1
and and ap1 converges almost surely to 0, which allows applying the rules of the Tensor
Program.

For any [€ [2, L], since the computation of xé_l, and thus of Z% ' do not involve (WZ)T,
ZWhag — 0 as per the ZDot rule of the Tensor Program. In addition, Zh = wl(Z\ng—i—E”l)
and by definition, ZV'¢ ~ N(O, [|€][?) and Z¥" ~ AN(0,1) are independent Gaussians,
which shows that Z"i ~ N(O,c?)?(||§\|2+1)) whose variance is finite because c?)i e {0,1}.
By Lemma 24, this also shows that E[(Z%0)2] < oo. Let [€ [2,L] and assume that
E[(thfl)z] < oo and E[(Zzéﬂ)z] < oo. We have hl, = w,Wle;l + m~%yl. Since m~2w
converges to 0 almost surely, we can consider it as an initial scalar in the program, which
gives by ZNonLin Zho = &léwlfé‘l 10X 2%, ZY% ~ N(0,1) by definition since v' is an
initial vector in the program, so that Z"o = 5)12/1/171:56‘1 ~ N(0,@, E[Zxé_l)Q]) whose variance
is finite by the induction hypothesis and because W € {0,1}. Then by Lemma 24, we also
get that E[(Z%0)2] < oo, which concludes the induction.

Let us now deal with the first backward pass for any ac-parameterization. The result

will essentially boil down to having the expectation of the derivatives defining the Z being
0 because the weight matrices are initialized with 0 mean and because of an independence
argument. We have dzk = WLtL(0) = m UL+l and dhi = dzk © o/(Z"). By
ZNonLin we thus have

L o L+1
Zdzo — CYL+1ZU

Y

[¢]

L L+1 L
7 = ap 29 ol (2M),

Now let I € [1,L]. da; ' = (W) dhl, gives

Z(Wl)Tdhg _ Z(Wl)Tdhlo 4 Z(/WZ)Tdhlo7

41

HaAJJAR, CHIZAT, AND GIRAUD

* T\ T
and to understand what Z (W) dho is, we need to expand the expression of Z/dfé in function
of variables which were generated with W'. So far, the only variable where W' was used is
hl = lelxé_l (with the convention that 2 = £y). We thus need to expand the expression

of Z4b in function of ZW'%5 . We have, for [= L
2 = & 1 2V o (G Z2W)

UL+t STl L—
—aL+1Z /(wLZWIO),

where the last equality stems from the fact that Z Whag™ — ZWEag™! iy the first forward
pass, and the fact that U L+1 is an initial vector in the program which gives by definition
ZUM = ZU" We can formally write this as

dhL WL L 1 UL+1 o
Z :\I/(Z A aL+1,wL)

where W(z1, 29; 01, 63) := 01220"(6221) is a pseudo-Lipschitz function because ¢’ is, and we
have
ov
87(21,22; 01,02) = 0102200" (0221).
21
We get that by definition

ZWhldnk _ g

8Zdh(€ LL-1
7@2&?%%* Z%o
[S\P (ZWL 0 I,EULH 006L+1,WL) z%
21

L—1

:aL+1wLE[Z L+1 //(ZWLJCO)]Zxo
L—1

" SWlhgl—1 T
JElo" (@, 2")] 2%,

0 <00 <00 a.s.

o [} /\UL+
=arpwr E[Z

where the last equality stems from the fact that by ZHat, ZWhas ™ s independent of Zutt!
because UXT! is an initial vector in the program. The fact that the second expectation
finite is because wy, € {0,1}, o is polynomially bounded, and ZW* 257" is a Gaussian with

mean 0 and finite variance since E[(Zx571)2] < oo. This gives Z (WHTdh§ — g,

Now suppose [€ [1,L — 1] and assume Z (W Tangtt 0 which gives ZWHTdngt!
ZWHTangt We have

Zdhly _ dz o Zhg)

1+1 I+1 o Tl =1
_ Wl+1 (W) dhyg (WlZW x;)

TRl g0 STl
— Ldl+1Z(W) dhg O'/((UIZW)

where we have used that previous 7 are 0 to replace the Z with Z. We can once more
formally write this as

1 Tl -1 = I+1 +1 o o
Zdho — \IJ(ZW x; ,Z(W) dhy wl+17wl)

42

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

with exactly the same W as for [= L. We get that by definition

Z(Wl)Tdhé _r azdhé) o
oZW'ey!
ov Wikt S Tapltt | o -1
|:8Z]_(W Z(W)dh wl+17wl) Zxo
_ wl+1le|:Z(Wl+1) dhl+1 ”(w Z)]Z$é_1
_ o?)l+1(f)lE[2(Wl+l) dhé—!—l]E[”(wlZ 2= 1)] Za;f)—l
0 <o <o0a.s.
=0

Where the first expectation is 0 because by definition ZWEN g™ 5o 5 Gaussian with 0
mean and an easy induction (from [= L to [= 1) shows that, as for the forward pass,
E[(Z%0)2] < oo and E[(Z%)2] < oo, which implies that ZWHNTAhG™ pag finite variance.
The second expectation is finite because w; € {0,1}, Z W'ei" is a Gaussian with 0 mean by
definition and finite variance, and because ¢” is polynomially bounded since ¢’ is pseudo-
Lipschitz. |

C.3 Gaussian output in the infinite-width limit

Lemma 27 (Gaussian output). For every m € N*, let 2™ and w™ be independent random
vectors in R™ such that

1 2

i S

w NN(O,I/m) id.d.over j =1,...,m
Then

(w™)Tz™ 22y N(0,0%)
m—0o0
Proof Consider two sequences of independent vectors of growing dimension (w™),, and
(z™)m as in Lemma 27. Conditionally on 2™, the random variable (™Te™ follows a
Gaussian N(0, [|z™]|?/m) distribution. Since meH /m converges to o2, almost surely, the
conditional dlstrlbutlon of (w™)Tx™ given 2™ converges to a Gaussian N (0,02,) distribu-
tion. The lemma follows. u

C.4 Convergence of the coordinates to the limiting distribution Z

Lemma 28 (Convergence to the limit distribution). For any vector h in the Tensor Program
we have for any o € N¥,

!
hQLZh

m—r0o0

43

HaAJJAR, CHIZAT, AND GIRAUD

Remark 29.

1. Let h',...,h*¥ be k vectors in the program, let 61, . .., 0, be p scalars in the program, and
let ¢ : R¥TP — R be a pseudo-Lipschitz function. Then applying the previous Lemma 28
to h:=¢(hl,... h¥;01,...,0,) (which is in the program by NonLin), shows that for any

a, ¢(hl, ... hE;01,...,0,) converges in law to Z" = qS(Zhl, ... ,th; 1,...,0p).
2. A stronger form of convergence can occur depending on the parameterization we look at
and the context. Indeed, if for example Z" turns out to be a constant, then we already

get convergence in probability instead of in law. If in addition the convergence is “fast
enough”, it can occur almost surely.

Proof Let h be a vector in the program, and consider the corresponding random variable
Zh. All we need is to prove that for any o € N* and any bounded 1-Lipschitz function
¢, we have E[¢(hy)] — E[p(Z")], as m goes to infinity. We first observe that the Master
Theorem 19 ensures the convergence

LS blhg) s Elg(2").
=1

m

Secondly, for any m, the distribution of hi, ..., h,, is exchangeable by symmetry, so that
we get,

m—00

Elo(ha)] = E | - 3" o(hs) | —— El6(2")],
=1

where the convergence is obtained by dominated convergence, which concludes the proof.
[|

Appendix D. Proof of the triviality of IPs: Proposition 5

Proof Fix a time t > 0 and an input ¢ € R for the whole proof. We first show that
the coordinates of the (pre-)activations of any layer [> 2 converge to 0 almost surely at
initialization. To that end, we prove that the corresponding Z’s are equal to 0. Then we
show a similar result for the backward pass, and finally conclude the proof by an induction.

D.1 Proofatt=0

D.1.1 FIRST FORWARD PASS

Tensor program setup: We consider a Tensor Program as defined in
Wil — UL+t
Uléo, ..., U, U,

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

and the initial scalars

X0y« -5 Xts
w = m’1/2,1/ = m’l,T = 'm*2,
m—le-i—l;

and with initial weight matrices
w2, Wk

Recall that the TW! are defined in Equation (A.1) of Appendix A. Note that for any m € N*
and j € [m], we have

1 0 0
(UJ.LH,(Ulgo)j,...,(Ulgt)j,(Ulg)j,v;,...,vf)NN o,{o m o],
00 I

where M := Gram(&o, . .., &, &) = (§7¢s)o<rs<t+1 and I7, is the identity matrix of size L x L.
where we have set &1 := €.

Convergence of the initial scalars: w,v,7 as well as m~'vZT! all converge almost
surely towards 0. For the ys we will show below in the proof that they all converge to
constants almost surely, thereby meeting the requirements of the Tensor Program. It is
important to note that there is no circular logic to prove the y,; converge almost surely.
Indeed, each time we apply the master theorem to prove the convergence of fs(&s) to a
constant almost surely and thus that of s, we apply it to a restricted Tensor Program
where only the scalars (x,)o<r<s appear (and there is no such scalar needed to prove the
convergence of x¢ as shown below) which will already have been proved to converge almost
surely.

1st forward pass: We drop the dependency of the forward and backward passes on &
for brevity. h(l) = U + v! is the sum of two initial vectors in the program and has iid
Gaussian coordinates N'(0, ||€]|>+1). By definition, Z" = ZU'¢ 4 Zv' ~ N(0, ||¢|[2+1)
since the two Gaussians appearing in the sum are independent. By NonLin, we have that
since x§ = o (hd), Z% = ¢(Z"). Note that E[o(Z")%] < oo since Z" is Gaussian with
finite variance and o is pseudo-Lipschitz and thus polynomially bounded.

Since L > 2, we can write h3 = m‘lﬂﬁ/\?xé + m~10? (otherwise there is no h% and we
simply have fo(&) = m~*(U?)"x}), which implies by NonLin that Zh = ozWn 4 p 7V
with w = v = 0 and

Wiy — gW?ag o 7 W2ag

ZWeh = by Lemma 25, and AN N(0,E[(Z7)2]) and 0 < E[(Z%)%] < co. We
thus have Zh6 = ©ZW?©O)xy = 0. Similarly, we also get that nuZ®" = 0. We then have by

45

HaAJJAR, CHIZAT, AND GIRAUD

ZNonLin Z% = o(Z") = ¢(0) = 0.

Let [€ [2,L — 1] and assume Z" = 0. Then, Z% = ¢(Z") = 0, and since Aot =
WWH gl + v+l by ZNonLin, Zh0'' = GZW''eh 4 529" where by ZMatMul,

Tl+1..0 ST+, * Wil+1,.1
ZW+$0:ZW+$O+ZW+:£O’

and ZW'eb = by Lemma 25. By ZHat, ZWal N(O,E[(ZIE)Q]), and since w = 0,
©ZW e = 0. Similarly, 72" = 0. Then, by ZNonLin Z% = o¢(Z"'") = o(0) = 0,
which concludes the induction.

We thus have only to deal with the last layer L 41 to finish the first forward pass. We have
fo(&) = m= (UL (0) Tzl +oP*Y) = (1/m) 3o, UZL'Hx(Iil-—i—m*IULH. Since U+ and z
are vectors in the program, (1/m)> ", Uf“xé ; is a scalar in the program by the Moment
rule, and it therefore converges almost surely to E[Z Uttt gag | by the Master Theorem. Now
because UL is an initial vector in the program, by definition, ZU""" = ZU™"" ~ A/(0,1)
is independent of Z% . We thus get E[ZU""" Z76] = E[zV"""|E[Z*6] = 0. On the other
hand, m~'v” is an initial scalar in the program which converges to 0 almost surely, so that
fo(&) converges almost surely to 0.

D.1.2 FIRST BACKWARD PASS

1st backward pass: We can apply the previous reasoning of the forward pass with &
instead of £ and we get that fy(&) — 0 almost surely. Therefore, since xo = 92€(yo, fo(&0))
and 920(yo, -) is continuous by assumption, yo — 826(yo,0) =: X, almost surely. We have
darg = m~'ULF! which makes it a vector in the program by NonLin, and Zd5 = pzU"
Since ZU""" ~ N(0, 1) has finite variance and = 0, we have Z%% = 0. dhk = dat oo’ (hk)
implies by ZNonLin Z% = 795 6/(Zh0) = 0 x o/(0) = 0.

One has:

gmday ™ _ OOJ@(WL)T(mdhg) i Z(/WL)T(mdhg))7

where mdhl = UM © o/(hf). By Lemma 25, Z WH) (mdnf) — (essentially, W never
appears in the computation of dh}), and by ZHat, ZWH (mdn§) N(0,E[(Z™5)2)), and
by independence of Z U and Zhe ,

E[(2m"5)%)) = E[(27"")))Elo’ (2")?) = o/ (0)?
which is finite. Since @ = 0 we get Zmdzg ™ — 0, alhOLf1 = d:cgfl ® 0’(h€*1) implies by
ZNonLin Z™dhy ™" — zmdzs™' 5/(Zh ™) = 0 x o' (20 ") = 0.
Let [€ [2,L] (which is non-empty since L > 2) and assume Z™d*0 — zmdhy —
mdal ™t = w(Wl)T(mdhé) implies by ZMatMul

gmdai (f)(/Z\(WZ)T(mthO) T Z(WZ)T(mdhé))‘

46

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

By Lemma 25, Z W) (mdhl) — 0 and by zHat, ZW) (mdhb) Af(0,E[(Z™4)2]). By
the assumption above, E[(Z™@0)2]) = 0, and since w = 0 we get A) dhht =
dal ' © o’ (B571) implies by ZNonLin Zmdhy ' = zmdzo ' o/(Zho) = 0 x o'(Zh0). Zho '
is not 0 if [= 2, but since it is Gaussian with finite variance, and ¢’ is pseudo-Lipschitz
by assumption, o’ (Zhé_l) is finite almost surely, and Zmdhg ™t — 0 almost surely, which
concludes the induction.

D.2 Induction step

Induction: Since we proved the result of the theorem for ¢ = 0 in the first forward pass,
we might as well assume ¢ > 1. Let s € [0,t — 1] be an integer. In all that follows, for
any r € [0,s], for z € {hl, !, dhl,dzl}, we use z to denote z(&.). We make the following
induction hypothesis: for any r € [0, s]

(2 = 27+~ N, |6 P+1)
Zhr =0 almost surely, | € 2, L]
(&), fr(€) — 0 almost surely

Xr = Xy = 02l(y,,0) almost surely

zmdzy — zmdh. — () almost surely, | € [1,L — 1],
Zmde — ULJrl'

\

The aim is then to prove the same claims for r = s+1. Let us first start with the expressions
of AW!(s+ 1) and AB'(s +1). We will use Equation (A.3) and the fact that ¢; +2 > 0 if
le(2,L],and ¢, +1>0for =1, and | = L + 1. We have by Equations (A.3) and (A.6)

AW (54 1) = —pm™ Y xpdh) €],

AW!(s +1) = —gm~ 0y dhy (7Y, 1€ [2,L],
r=0

AWE (s +1) = —pm~(+er+1) Z xrzk/m,
r=0

and by Equations (A.4) and (A.7)

AB' (s +1) = —pm™“ Z xrdh?,
AB'(s+1) = —ym~ %+ Zerh’ €2, 1],

ABM (s 4 1) = —pm~(+er+1) Z Xr/m.
r=0

In the following, we use for z € {hl ;, 2’ | dhl ;,da! |}, we use z to denote z(€) (and not
2(€s41) for now). Using that in the Naive-IP, ¢; = ¢p41 = —1, and ¢ = =2 for | € [2, L],

47

HaAJJAR, CHIZAT, AND GIRAUD

we have

S

AW (s + 1)+ AB (s +1) = —n Y _ (1€ + 1)xr(mdhy),
r=0

! I)T$l+11)+1 I
AW'(s+)27} + AB'(s + 1) ——UZXr = (mdh,.), 1€[2,L],

+1
(AW (s + 1) akyy + ABM (s + 1) ——anT o) @

To prove the claims above for r = s + 1, we will first induct from [= 1 to [= L for the
forward pass and then induct from [= L to [= 1 for the backward pass.

D.2.1 FORWARD PASS AT STEP s + 1

Forward pass at step (s + 1): hl,, = U'¢ + 0" + AW!(s + 1)¢ + Ab'(s + 1) and by
ZNonLin

o ZUle T mdhl
Zh = 7 nz e+1)x, Z

r=0 0 a.s.

=7V = 7m0 almost surely.

Note that the scalars (x,)o<r<s are now valid scalars in the program by the induction
hypothesis which allows applying the Tensor Program rules with those scalars as well as the
master theorem. This gives Z"s+1 ~ N(0,]|¢||>+1), and we then have ZF41 = o(ZM®) =
7208 for which we have already proven E[(Z%0())?] < c.

72,1 2 ()T st1 T 1 2
hs+1 =wWiz, g + 707 — UZXrT(mdhy).
r=0
Because z},; is a vector in the program, by ZMatMul
ZW2$;+1 = Z/M\/inﬂ + ZW%iH’
and because Z%+1 = U(Z\Ul&“l) is only a function of the initial vectors U'¢ and o',

and not of any vector computed used (/V[72)T, ZWirin = g by ZDot, and ZW %1 ~

N(O,E[(inJrl)Q]) is a Gaussian with finite variance by ZHat. (z!)"zl,;/m is a valid scalar

in the program by the moment rule, and by the Master theorem,

(@) ek + 1)fm s B[2% 2%n] = Elo (27T)a(274H),

T

and because U'¢,, v! and U are initial vectors in the program, (ZU'é&+v! ZU'Etoly g
jointly Gaussian by definition with finite covariance matrix

<H§7~|2+1 &E+ 1>
&6 +1 |€])P+1

48

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

which ensures the expectation above is finite because ¢ is polynomially bounded since it is
pseudo-Lipschitz. We thus habe

S
2 SW2,1 2 1 1 2
Zhi = 0x ZV T 10 x 27 =Y X, E[Z7rZ%sn] gm i
— ~ —
<0 =0 % <00 0

7 = 0.
We then get Z%+1 = ¢(0) = 0 and thus E[(Z%+1)2] = 0.
Let [€ [2,L — 1] and assume ZMn = 0.

_ (a7) 2lsy +1
hf;fl = wWH 4yttt 4 $ls+1 - Z XT%(mdhiﬂ)'
r=0

Now, since 2! is a vector in the program, ((z!)'z!,; 4+ 1)/m is a scalar in the program
by the Moment operation, which converges almost surely, by the Master Theorem, to

E[Z7 275+1] = Elo(2"7)o(2"+1)] = 0(0)* = 0.

By ZNonLin,
I+1 5 I+1
Wi+l l
Zhs-H — ZW 14+ TZ’U - E : ;%r Zm Z:BQ_H] Zmdh
=0 v 0
<00 <oo

On the other hand,

T+ .0 I+1 I+1
ZW+1‘S+1 ZW+:E+1+ZW+LI:+1

and since Z%+1 = o(Z hls+1) = 0(0) = 0 is a constant almost surely, the derivatives deﬁning
7 are equal to 0 (its expressmn as a function of the prev1ous 7 is a constant because any 7
gets multiplied by 0) so that ZWHal, — 0, and ZWHalin N(0, [(szﬂ)]) = 0. With
@1 = 0 and 7 = 0, this yields Zh5 = 0, and therefore]E[(Zwlsill)Q] = E[J(Zhlsill)ﬂ =
a(0)* = 0.

We now deal with the last layer [= L + 1 in the forward pass.
+ 1
Fo1(§) =m™HUH Y gy anr o) ot

Since UL, :ESL 1 xL are vectors in the program, by the Master Theorem, we have:

UMt zria) = 0 (0)E[Z2Y") = 0,
0

41 a.s.
LUtk mE[Z

49

HaAJJAR, CHIZAT, AND GIRAUD

and

INT L

(xr) Tst1 +1 as E[Zmﬁzxfﬂ] = 0(0)2 =0.
m m—0o0

We thus get

s 2T L +1 S0 o

ZXT(r) T a.s. Z X, x0=0.

= m mM—00 7’:0\/

<oo

This shows that

a.s.

fst1(§) ——0.

m—ro0

Doing the exact same reasoning as above with &, instead of & for r = s + 1 gives us the
first 3 claims of the induction hypothesis for r = s + 1.

D.2.2 BACKWARD PASS AT STEP s+ 1

Backward pass at step (s + 1): the fourth claim xs41 — fcsﬂ = l(ys+1,0) is a
consequence of the fact that fsi1(£s41) — 0 almost surely, combined with the facts that
Xs+1 = 020(Yst1, fs+1(Es+1)) and that 026(ys41,-) is continuous by assumption. In all the
rest of this proof, for z € {h! 2! |, dh’,, dz! ,} we now use z to denote 2(£s41) and not
z(&) anymore.

mdzl | = wrt (s +1) = UM — 37 xrzl yields by ZNonLin

S
mdzl, , _ UL ° L
Zmtrin =7y X 2
r=0 0
L L+1
Zd:rs+1 — ZU)

We thus have Z%5+1 = 7205 = 0, and 2951 = 2%/ (Zh541) = 0x 0/ (0) = 0 almost
surely.

One has:
s INT L
_ T (mdh;) mdh _
mdst-i-ll = w(Wh) (mdhsL+1) - WZXT : " ok,
r=0
so that
S
Zmdmf;f _ L?)Z(/I/I?L)T(mdhsL+1) —n Z irE[Zmdhlr Zmdhls_'_l]me—l‘

r=0

Now, we have]E[ZmdhermdhlsH] = E[(zV""")%0"(0)2 = ¢/(0)? which is finite. On the other
P A
hand, because Zmdhii = ZUM does not depend on ZV" | we get that Z W) (mdhgpy) — g

50

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

and ZWH) (mdhiyy) N(0,1) so that SzWH mdhin) — 0 Tt follows that Zmdwer = 0,
and since 2™ = Zmdxstlla’(Zhgil) we also get zmdhi — g,

Let [€ [2, L] and assume Zmdrs i — zmdhiy — 0. Then

= (mdhl) mdhs
mdxs-{—l - W(W) (mdhs—I—l UZXT = f” 1'

Since (mdhl)" and mdh!_, are vectors in the program, (mdhl) "mdh., | /m is a scalar in the
program which converges almost surely, by the Master Theorem, to E[Zmdh Zmdth] = 0.
On the other hand Z W) (ki) — 0 because Z™d*4+1 is a constant (its expression in
function of the previous Z is constant equal to 0), and ZWhT(mdh) N(0, E[(Zmdhé)z]) is
almost surely 0 because E[(Z™40)2]) = 0. By ZNonLin we have

s
-1 ST pl l l -1
des+1 — (,«Oj Z(W) dhy —n Z)%r E[Zdherherl] ZTr

0

-1
7% =,

: dnl =} de' Y oo Ry dh!7} pl-t .
Finally, Z%s+1 = Z%s+10/(Z"s+1) yields Z%"s+1 = 0 because Z"s+1 = 0. This proves the
last claim of the induction hypothesis for » = s 4+ 1 and thus concludes the induction and
therefore the proof. |

Appendix E. Preliminaries on positively homogeneous functions

In this section we give a description of activation functions o satisfying Assumption 3. The
fact that o is positively p-homogeneous translates as

azP ifz2>0
o(z) = .
BlzlP if z < 0.

Additionally, one has

, {apzp_l ifz>0
o'(2) = .
—Bplz|P~t if 2 <0,
so that ¢ is positively (p — 1)-homogeneous with ¢/(0) = 0. Since p > 2, both ¢ and o’
are continuous and o’ is differentiable everywhere except at 0 if p = 2. It is immediate to
check that both o and ¢’ are pseudo-Lipschitz and that o, ¢’ and ¢’ are also polynomially
bounded functions. The non-negativity assumption on o gives a > 0,8 > 0, the fact that
o is not identically 0 leads to a > 0 or § > 0, and finally the fact that o has faster growth
on the positive part of the real line yields « > § > 0. One notices that the faster growth

51

HaAJJAR, CHIZAT, AND GIRAUD

assumption is stronger than the assumption that o is not identically zero, and the latter
could thus be gotten rid of. The conditions on « and 8 can thus simply be summarized as

a>p3>0 (E.1)
With these conditions, we have that o(z) > 0 for z > 0, and ¢’(z)z > 0 for z # 0, that is
sign(o’(z)) = sign(z).
Appendix F. Preliminaries for Theorem 10 and Theorem 13
In all this section since we assume positive homogeneity of the activation function, we also
consider parameterizations with no bias terms except at the first layer.
F.1 Tilde variables

Definition 30 (Scaleless variables at initialization). Let & € R? be an input vector. Inde-
pendently of any parameterization, we consider the following variables “without scale” at
wnitialization :

and define fo(€) := (WLH)T@%, as well as

{dfé(&) = Ut
dhf:(€) := dif (§) © o’ (R (£))

ver—1),{ 0= (W dRg (€)
"\ dhb(©) = dith (&) © o' (hh(€))

where the W' are defined in Equation (A.1).

Remark 31. The tilde variables are independent of the choice of parameterization because,
independently of the parameterization, W]f,q = m_l/zUIqu ~ N(0,1/m) forl € [2,L + 1]
and /Wplq = U}}q ~ N(0,1). Those variables essentially reproduce the computations that
take place in the forward (without any bias terms except at the first layer) and backward
passes of any ac-parameterization but the magnitudes (the multiplying scalars w;) have been
set to 1, essentially removing the additional scales which lead to explosion or vanishing as
m — oo. The tilde variables of the forward pass at initialization correspond to the NTK
parameterization. However this is not the case for the backward pass as the backward pass of
NTK vanishes at initialization whereas the corresponding tilde variables have positive (> 0)
variance as shown in Lemma 32 below.

Lemma 32 (Scaleless variables have positive and finite second moment). Let ¢ € R? be
an input vector, and consider a non-linearity o satisfying Assumption 2. Then, dropping
the dependency of the tilde variables on &, one has that for any I € [1,L], and for any
z € {hh, &b, dhl, dih}, the second moment is positive and finite: 0 < E[(Z%)?] < co. More

52

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

precisely, one has:

ZM ~ N0, |[€]]2+1), 0 < E[(Z%0)?] < oo
7P~ N(0,V2)), 0 < V2 =E[(Z%)] < oo, le21),
0 < E[(Z%)?] < oo, L€ 2,1,

L

Jo€) == N(O, V), 0< V7 =E[(Z7)] < oo,

7% ~ N(0,1)

79 ~ N(0,V2,)), 0< V2, =E[(z™)% < o, lel,L—1]
0 < E[(296)?] < o0, lel,L].

Remark 33. As shown in Appendiz M, those expectations, as well as the means (first
and second moment) are tractable with 0 = ReLU and have simple expressions (for the
first forward and backward passes). As shown in Appendices M.3 and M.5, the recursive
formulas for the variances of the forward and backward passes can be unrolled, and to avoid
explosion or vanishing with the depth L, one must initialize the i.i.d. Gaussian entries with
a standard deviation of \/2 to preserve the norm of the input signal.

Proof Let ¢ € R? be an input vector. We omit the dependency of the forward and
backward passes on £ for simplicity. We first induct from [= 1 to [= L for the for-
ward pass and then from [= L to [= 1 for the backward pass. fl(l) = Ul¢ + v is the
sum of two initial vectors in the program, which follows two independent Gaussian laws
by definition: ZU'¢ ~ N(0,|[¢][?), and Z" ~ N(0,1) independently of ZU'¢. We thus
have Z" ~ N(0,]|¢||2+1), which shows its variance is finite and > 0, and by Lemma 24,
0 < E[(Z%)%] < oo since Z% = g(ZM).

Now let [€ [1, L — 1] and assume Zh ~ N(0, VhZ,l) with 0 < Vh2,l < 00, and 0 < E[(Z%)2] <
o0. By ZMatMul, 7206 = ZWeh which is equal to ZW' by Lemma 25. now by def-
inition, AL N(0,E[(Z%0)?]), and the variance is > 0 and finite by the induction
hypothesis, so that 0 < E[(Z%H)Q] < 00. Now by Lemma 24 again, since Z%" = O'(ZE6+1),
we also get that 0 < IE[(Z%H)Q] < oo which concludes the induction for the first L layers
of the forward pass.

fo(€) = (/W?l“)Ta%g and WJ-LH ~ N(0,1/m) for every m, and by the Master Theorem,
since ||Z§||?/m is a scalar in the program defined by the moment operation, it converges
almost surely to E[(Z%0)2]. Finally, since #§ is computed using only the Wiforl <L, Tl is
independent of W1, By Lemma 27, fo(€) converges in law towards N(O,E[(Zié)Q]), and
0 < E[(Z%)2] < oo by the previous induction.

795 = zU""" and since U is an initial vector in the program whose coordinates are
iid following A(0,1), we have by definition ZU™"" ~ N(0,1). Zdht = 7z /(zht) =
2Ul+1o’(2WL5"571). Now by definition in ZHat, ZWra s independent of ZU™" since

53

HaAJJAR, CHIZAT, AND GIRAUD

UL*1! is an initial vector in the program. This yields
E[(z%6)Y =& |2V 2] B |0'(2")?]
—1xE [a’(zﬁoL)?] .
By assumption, o’ is pseudo-Lipschitz and thus polynomlally bounded, and is not almost

everywhere 0. By the induction above, Zh ~ N(0, E[(Zzo 1)]) with 0 < IE[(Z% 1)] < 0.
By Lemma 24 we thus have 0 < E[o (Zh)2] < oo, which shows 0 < E[(Zdh)?] < <.

Now let I € [2,L] and assume Z%0 ~ A(0, Vde,l) with 0 < VdeJ < oo, and assume
0 < E[(Z0)?] < oo. zdi ' = zWY'dHy ang zWH'dhy — ZWHTdhy by Lemma 25.
By definition, ZW) b ~ AF(0,E[(Z%)2)), so that E[(Z9% ')?] = E[(29b)?] and thus
0< E[(Zd%il)Q] < 00 by the induction hypothesis. We have

Zdﬁé_l _ Zdjé_lo_/(ZBé—l) (W) dh (ZWl 1z ~l— 2)
if [> 3, and
Zdﬁ1 _ Zdi(l)al(Zfz(l)) _ /Z\(WQ)TdiL(%O—/(Z\WI£O+UI)

if | = 2. In any case, the random variable inside ¢’ is independent of the other variable in
the product. We thus get

E[(Zdhg*)Q] K {(Zdif;l)z} E [U/(Zﬁf;l)z}

~
>0, <oco >0, <oco

where the bounds on the second expectation are obtained using Lemma 24. This concludes
the induction for the backward pass and thus the proof. |

F.2 Expression of the forward and backward passes of ac-parameterizations in
function of the tilde variables with homogeneity

Lemma 34 (Forward pass with homogeneity at t = 0). Consider any ac-parameterization
of an L-hidden layer neural network with a p-homogeneous activation function, and p > 1.
Let € € R be an input to the network. Then, omitting the dependency of the forward pass
and the tilde variables on &, one has:

hg = ypahb, lel,L], (F.1)
x() - (’ny) xO? l e [17L]7 (F2)
fo(&) = v.41f0(6), (F.3)

where, for any l € [1, L + 1]

l
-k
’Yf,l = (H wz) .
k=1

54

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Remark 35.

1.

2.

Proof h} = m~® implies that h} = w1 (U + v!) = wlﬁ(l), which entails x = W7}

1 l—k+1
) = (Tt).
When p =1, v4; and (yg,)P simply reduce to w; ... w;.

For integrable parameterizations, for any l € [1,L+1], vp; =m~ Sh=o?"/2. The latter
term is 1 when | = 1, and otherwise m~(=Y/2 ifp =1 and m~ (T =D/2(-1) ifp>1.
For puP, v¢; =1 for any l € [1, L] because w; =1 for uP if | € [1,L].

. Instead of homogeneity, assume o is differentiable, has non-zero derivative in 0 and

o(0) = 0. Also assume that wy = 1 (i.e., a1 = 0) and w; — 0 (i.e., a; > 1/2) for
l € [2, L], which is the case in integrable parameterizations. Then, we have hé = fz(l),
and hi = woh, so that a3 = o(wh?) and as m — oo, x3 =~ wao'(0)h3. Then
similarly, we have for h3 ~ wgwga’(O)ﬁ/\?’iNz% and x ~ LU3LU20'/(O)2W3}~I%. An easy
induction then gives hl = J/(O)l_z(wl...wg)ﬁ\/l...W%%. This thus resembles the
case of a p = 1 positively homogeneous function, except that the first forward pass is
effectively linearized after layer 1, but the magnitude of the forward pass at different
layers is also well understood in this case so that the learning rates for the first update
can be chosen appropriately (e.g., for integrable parameterizations). In particular,
the initial learning rates of IP-LLR for p = 1 will also produce non-trivial weight
updates at t = 0 in this setting, which will in turn induce learning. Finally, setting
the initial standard deviations of the weight matrices equal to |o’(0)|~! instead of 1
for the intermediate layers avoids problems with the depth L.

P~1

because o is positively p-homogeneous and w; > 0. Now let [€ [1,L — 1] and assume

I—k+1

hl = (]_[2,:1 wzl_k)ﬁf), and x), = (Hézl wh)@, Then

ot = wp W (0)ag

l
I—kt1 | —~
— p I+1 ~1
= Wi+1 (H Wy,) w + (0)1‘0
k=1

s I+1-k
— D 741
= (I« o

k=1

Since o is positively homogeneous, we have

o = a(h)

41 I+1—k
_ pHi=kyp Ti41
= | | W,) U(ho
k=1

55

HaAJJAR, CHIZAT, AND GIRAUD

This concludes the induction and gives the result for any [€ [1, L]. To conclude, we com-
L—k+1

pute the expression of fo(¢) = w1 (WEHH0) af =wpn([Tisywf)(WEHL(0) 2f =
L+1 pL+1—k ~
(k=1 Wi)f0(5)~ [|

Lemma 36 (Backward pass with homogeneity at t = 0). Consider any ac-parameterization
of an L-hidden layer neural network with a positively p-homogeneous activation function,
and p > 1. Let & € R? be the first training input. Then, omitting the dependency of the
forward and backward passes, as well as that of the tilde variables on &, one has for any
le(l,L]:

p—1
dy = m™ "y (H ’7fk> di, (F.4)
k=141
L p—1
dhy = m~ "y, <H ’Yf,k) dhf, (F.5)
k=l

where, for any l € [1, L],

L
Vo, = H W -

k=1+1
Remark 37.

1. By swapping the products, one has that

L L
[T o = [[bmeesr™
’ - k
k=1

k=l+1

-1
2. Whenp=1, (Hi:l 'yﬁk)p =1 foranyle[l,L+1].

3. For integrable parameterizations, vy = m~E=D/2 for any 1 € [1,L]. For pP, v, =1
for any l € [1,L].

4. Forl=1L, w1 =1, Hézl_l’_l YrE =1, Hé:l Yk =5 L-
Proof dxf = WL(0)=m Ul = m-ar+idzl,
dh§ = daf © o’ (hE)
— mfaL“dxoL ® a’(’yf’LizOL)
— mfaL“(’yf’L)p*lda?g ® 0'(?15)

where the second equality stems from Lemma 34 and the last equality stems from wy, ...w; >
0 and the positive (p — 1)-homogeneity of o’. Let [€ [2, L] and assume that dz}, satisfies

56

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Equation (F.4) and dhl, satisfies Equation (F.5). Then

da = w (W dh)
L

p—1
- ST 7
=m~ (H ’7f,k:> (W) dhy,
k=l

—1
I p

- -1
=m gy H Yk dzy -,
k=(-1)+1

and
dhlyt = daby © o' (hl)

L

p—1
=m= iy (H Vf,k> dih ' © o' (vpahl)
k=l
L
1k
k

=m= Ty (H’Y
=
L p—1

=m” (11 'Yf,k) dhi ",

k=l-1

p—1
) (vp1-1)P ik © o ()

where we have used Lemma 34 in the second equality, the positive (p — 1)—~h0mogeneity of
o’ combined with w;...w; > 0 in the third equality and the definition of dhffl in the last.
This thus concludes the proof by induction. |

Lemma 38 (Weight updates with homogeneity at t = 0). Consider any ac-parameterization
of an L-hidden layer neural network with a positively p-homogeneous activation function,
and p > 1. Let & € R? be the first training input. Then, omitting the dependency of the
forward and backward passes, as well as that of the tilde variables on &y, one has:

L
AW(1) = —pygm ™ (ersrt2m)t (H “’iLkH) dhg&l,
k=2
L
AB(1) = —pxgm ™ (ers1t2arten) pf =1 (H “’szH) dhg,

TUal—1NT
AW (1) = —nxom~(@rit2ata=l) (H w*ZL_kH) wl_lidh()(%) , le2,L],

L
AWEH (1) = —gygm ™ otrtera=y (H wiH“) it /m.

HaAJJAR, CHIZAT, AND GIRAUD

Remark 39. For p =1, we have

L
L_q L—k+1
w]f (ng >:w1...wL

k=2

L
pL—k+1 _1
Hwk W, =Wl.. . W-1W41 .- - WL
k=1

L

pL—k+1
II(Uk = wi...Wwy,
k=1

Proof Before we begin with the proof, we start with a first basic result which will be used
repeatedly in the proof. Let N € N*. By Equation (A.3), we have

N+1 N

N
p-DY P => 0= p=p""-1
r=0 r=1

r=0

Now that this is established, let us look at the update for the first layer. We have

AW(1) = —nm~ P+ xodhge]

L p—1
— _nm_(2al+cl+aL+l)/yb’1 (H ryf’k> Xodh(1]€6|'7
k=1

where we have used Lemmas 34 and 36 in the second equality. Now, we have

L
Vb,1 = H Wk,
k=2

and by the first point in Remark 37, we have (with [= 1)

L p—1
i) -
k=1

(p—1) S pr*
Wi

=

b
Il

1

(-1 E o
W

I
=

b
Il
—

L—k"’lfl
w .

I
-

p
k

b
Il
—

It follows that

L p-1 L
N pr_l pr7k+1
T,1 Yk =W k
k=1 k=2

The formula for AB*(1) follows from the expression of dh{ in function of dh} and from
Equation (A.4).

58

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Let [€ [2,L]
AW(1) = —nm~ Gt yodhf (zh)T

p— ~
dhl (a}l—l)T
— _ —(2a;+c¢+ar41—-1) o\+%0
nm X0 Vb, ’Yfl 1) (l |’Yfk> —_—

Now, we have

L
Vol = H W

k=l+1

In addition, by the first point of Remark 35, we have

-1
(Vfi-1)P = (H wp)
k=1

and by the first point in Remark 37

(n) (H; s) . (H o W>
e) e
=<H ”z“>x<kl<p1)zwp>

Let us now look, for each k € [1, L], at the power of wy which appears in the product

L p—l .
Yo, (Vf,1—1)P (Hk:l fyf7k> . If k € [1,1 — 1], the exponent for wy, is equal to

Ll L1
P+ (p—1)p Ry p =t ((p —0D> P+ 1)
r=0 r=0

- <pol+1 1 1)

_ o L—k+1
=p .

If £ =1, the exponent for w; is equal to

L-1

Zpr L I+1 1.

=0

<

If k € [+ 1, L], the exponent for wy, is equal to

L—k
1 + (p_ 1) Zp’l‘ — 1 +pL—k3+1 _ 1 :pL—k‘-i-l‘
r=0

59

HaAJJAR, CHIZAT, AND GIRAUD

Thus, for every k # I, the exponent for wy, is equal to plF+1

for w; is equal to p“~t*tt — 1. Tt follows that

L p-1 L
L—k+1 B
Vo, (vri-1)" (H ’7f,k> = (H wh) w; .
k=l k=1

, and for k = [, the exponent

Finally,

AWEH(1) = —m~Govsrters) o
— _nm*(2aL+1+CL+1*1)X0<,yf7L)p§g/m’

where we have used Lemma 34 in the second equality. From the first point of Remark 35,
we get that

L

L k+1

(vep)P =[]l ~",
k=1

which concludes the proof.

Corollary 40 (Weight updates of IP with homogeneity at ¢ = 0). Consider an integrable
parameterization of an L-hidden layer neural network with no bias terms except at the first
layer, and a positively p-homogeneous activation function, and p > 1. Let & € R% be the
first training input. Then, omitting the dependency of the forward and backward passes, as
well as that of the tilde variables on &y, one has:

AWl(l) — —nxom_(cl_%(p))dﬁéfg,

ABI(I) — —UXOm_(cl_%(p))dil(l)’

diLl ~I—1\T
AWY(1) = —nxom*(cl”l(p))w, le (2, L],

m
AWL+1(1) _ _nXOm—(CLH—7L+1(P))jé/m’

where the v;(p) are given in Definition 9.

Proof For integrable parameterizations, w; = 1, w; = m~ /2 for | € [2,L], and ar+1 = 1.
For the first layer, we have ary1 4+ 2a; + ¢; = 1. On the other hand,

L L L—k+1 L

—1 - _L—k+1

A (T) =TI
k=2

k=2
L —
=m_ D k=2 p~ kH/Q

L—1
=m Ek:l pk/2

= m71/2(2£‘;& pk71)7

60

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

so that

L

L L—k

m~(@r2aiten) b -1 (I | wh +1> — /2005 P 1) 1
k=2

— L2000 PR L)

— m M (P)’

by Definition 9, which gives the result for the first layer’s update (AW1!(1) and AB!(1)).
Let l € [2,L]. ar41 +2a;—1=1+2—1=2. On the other hand,

L
L—k+1 _ _ L—1 k
k=1
L 1
so that
L L L
m—err1+2a+c) H k1 ~1 _ /25 5 PR, 2

=m clm 1/22k 0 Pkfl
_ m—czm’n(P)’
by Definition 9, which proves the result for the updates of the intermediate layers. Finally,

we have 2ar41 —1 = 2 —1 = 1, and on the other hand, because w; = 1, as in the first
update, we find

L
H PP 1A),

so that

~

L—k+1
m—(2&L+1+CL+1—1) sz + _m—cL+1m 1/2(zk Opk—l)m 1

L—-1
— micL"rl m71/2(2k:0 pk+l)

— LAy YL+ (p)7

by Definition 9, which gives the result for the last layer’s update and therefore concludes
the proof.]

Corollary 41 (Weight updates of IP-LLR at ¢t = 0). Consider an IP-LLR parameterization
of an L-hidden layer neural network with a p-homogeneous activation function, and p > 1.

61

HaAJJAR, CHIZAT, AND GIRAUD

Let & € R? be the first training input. Then, omitting the dependency of the forward and
backward passes of IP-LLR, as well as that of the tilde variables on &y, one has:

AW (1) = —nxodhié],
ABY(1) = —nxodhy,

diLl ii‘l_l T
At () = o P00 e o, 1)

AW (1) = —nxozd /m.

Proof This is a simple consequence of Corollary 40 and the fact that for IP-LLR ¢; = 7;(p)
at t = 0 by definition (see Definition 11) for any [€ [1, L + 1]. [|

Lemma 42 (Weight updates of uP at t = 0). Consider the uP parameterization given in
Definition 23 with a differentiable activation function o. Let & € R? be the first training
input. Then, omitting the dependency of the forward and backward passes of uP, as well as
that of the tilde variables on &y, one has:

AW (1) = —nxodhp&l
ABY(1) = —nxodhg

dill ~1—1\T
AWH(1) = _77X00(:;0)a le[2,L]

AWEFL(1) = —nxoZf /m
Remark 43.

1. Although the formulas are identical with those for IP-LLR when the activation func-
tion is positively p-homogeneous, this does not mean that the weight updates are
exactly equal. Indeed, although the tilde variables do not depend on the choice of pa-
rameterization and will thus be the same in uP as in IP-LLR, the variable xo which
appears in the formulas is parameterization-dependent as it depends on fo(§) which
itself depends on the choice of parameterization.

2. There is no strong assumption on the activation function here (e.g., homogeneity) as
uP is designed to have such updates which induce feature learning at all layers.

3. Note that the coordinates of AW'(1) are in ©(m™') whereas that of W'(0) are in
O(m~Y?) forl € (2, L], so that paradozically, even though pP is designed to produce
“mazimal updates” (in a certain sense), we have that AW;q(l)/W}q(O) =0(m1?) =
0 as m — oo: the relative displacement of the weights is zero in the infinite-width
limit. More generally, we have that for uP (W}q(t) - W}q(O))/WJI.q(O) — 0 asm — o0
if t > 1, which means that weights of the intermediate layers do not move away from
their initialization in the infinite-width limit for wP, even if the (pre-)activations of
every layer are mazimally updated. This is in stark contrast with IP-LLR for which
both WH(0) and AW!(1) are in ©(m™') for the intermediate layers | € [2,L]: the
weights do move relatively to their initialization in the infinite-width limit.

62

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Proof uP is designed so that its forward pass has hf) = % for any [€ [1, L]. Indeed, the
choice of pre-factors for the weights with pP lead to the same recursive equations for the
forward pass as the tilde variables, except for fo(€) which is equal to m =12 fy(€). For the
backward pass, one has that for uP, drf = WIt(0) = m~ UL = m~1dif. We then
have
dh§ = daf © o' (hE)
=m~tdzk © o' (hE)
= m_ldﬁg.
Let [€ [1,L — 1], and assume that dmé“ = m_lda}grl and dhéle = m_ldﬁéﬂ. Then, we
have
dl’é — (Wl+1(0))Tdhf)+l
= m~ (W) dRgt!
=m ldil.
Similarly, we have
dhly = dzh © o' (hh)
=m~Ydil © o’ (h))
= m_ld%,
which proves by induction that for any [€ [1, L], dzl, = m~1dil and dh} = m_ld% for

uP. Recall that for P, ay =0, ay =1/2 for l € [2,L] and ar+1 = 1, and ¢; = —1 for any
l € [1,L+1]. Now by Equations (A.3) and (A.4), the first weight updates give:

AW(1) = —npxom ™ m = dhig]
= —nxodhgs],
and
ABY(1) = —pxom = *m~tdh}
= —nxodhg,
For [€ [2, L], we have
AW'(1) = —nxom™ T Vm~ dhg ()T

dill i,lfl T
"
Finally,
AWEHL (1) = —pyom~GFer) gl
= —UXOffg/m,
which concludes the proof. |

63

HaAJJAR, CHIZAT, AND GIRAUD

Appendix G. Dynamics of the infinite-width limit of IP-LLR

Lemma 44 (IP-LLR is zero at initialization). Consider the IP-LLR parameterization with
a positively p-homogeneous activation function, and p > 2. Then, for any input vector
£ € R?, one has that ﬁé(ﬁ),io(g),dié,d% are vectors in the Tensor Program program for
any l € [2, L], and additionally:

fo(§) =20

m—0o0
X0 —2 Xo = 82£(yo, 0)
m—ro0

Remark 45. The result on the almost sure convergence of xo ensures that the latter is
a valid initial scalar in the Tensor Program defining the computations associated with the
IP-LLR parameterization.

Proof Because o and ¢’ are pseudo-Lipschitz (SNiHCG p > 2, see Appendix E), the tilde vari-
ables of the first forward and backward passes (hé, ié, di?é, dfull) are vectors in the program
given Definition 30 by the ZNonLin and ZMatMul rules. Additionally, by Lemma 34,

fol€o) =m™ Silo pk/Qm‘l/Q(UL“)T:Eé

S L1k — ~
_ ml/Zm Do P /Qm I(UL+1)TJJ6
=~ TR P 2L (B T gL

Now, m~ Y (UL*)T5l — E[zV""" Z%] almost surely by the master theorem, and Z% =
a(ZWLi’gil). By the Lemma 25, ZWrheTh Z\WLEOLA, and by the ZHat rule, the latter
variable is independent of Z UR gince ZU"™ is an initial vector in the program. This
gives E[ZV"" 2% = E[ZV"E[Z%] = 0 x E[Z%]. By Lemma 32, and Lemma 24,
IE[Z%L] < 0o because o is polynomially bounded. We thus get]E[ZULHZ"’Z’(IT] = 0, and since
m— i1 P2 ¢ (0,1], fo(&) — 0 almost surely. Recall that by definition (see Appendix A)
Xo = 02L(yo, fo(&o)). Since fo(&n) — 0 almost surely, and since d2€(yo, -) is continuous by
assumption, we have that xo — 92¢(yp,0) =:)OCO, which concludes the proof. |

Definition 46 (Tilde variables in the backward pass after initialization). For any ac-
parameterization with ar+1 = 1, define for any t > 1,

dzl = mdal, dhl = diF © o' (hF),

dzl = (W) anltt, 1e1,L 1],

dht =ditod'(hh), 1e1,L—1].
Remark 47.

1. One could in general define dZ' to be equal to m®>+1dx} but since all the ac-parameterizations
we study in this paper, i.e., integrable parameterizations, uP, or hybrid versions thereof
have ar+1 = 1, we limit the formulas to this case. The tilde variables are the right
quantity to look at because of the term m~*L+1 which appears in the gradient w.r.t to
ZL‘tL and then propagate to all the other variables of the backward pass by the equations
of backpropagation.

64

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

2. Recall that in the definition above, it is implicitly assumed that the computations of
the forward and backward passes at any time step s are done with the input £ = &s.

Lemma 48 (Relationship between tilde and non-tilde variables). For any ac-parameterization
with ap+1 =1, for any t > 1, and for any &, dropping the dependency of the forward and
backward passes on & at time t, one has:

Vie[1,L+1], dit =m™tdil, dhl =m=tdhl.

Proof dzf = m~tdif. dhl = daf © o'(h}) = m~ldit @ o'(hF) = m~ldhf. Now
let I € [2,L] and assume dr} = m~'dit, dht = m~'dhl. Then daz!™' = (V[/l(lt))Tthlf =
m~ Y W) dht = m~tdzl !, and dhi = dal o (BT = mTldE T o (R = motdRl !
which concludes the proof by induction. |

Lemma 49 (Weight updates for IP-LLR at any time step). Consider the IP-LLR param-
eterization with a positively p-homogeneous activation function, and p > 1, and let t > 1.
Then, dropping the dependency of the forward and backward passes on & at time t, one has:

AWt 4+ 1) = —nxeaf /m,
diLl I—1\T
AW 1) = e L e,

AW (t+1) = —nxdhi€],
ABY(t + 1) = —nxsdh}.
Proof Using Equation (A.3), we have AWt (t) = —pyym~Cornteri)gl — —py ol /m
because 2ar4+1 + cr+1 =2 —1=1in IP-LLR since ¢t > 1. For [€ [2,]
AW (t) = —npyem~Carted gpl (1)

dhl(z—1 T
e

)

by Lemma 48 and because 2a; + ¢ = 2 —2 = 0 for t > 1 in IP-LLR. AW(t) =
—nxem~Catednle, = —ny,dhlel by Lemma 48 and because 2a;+c¢; = 0—1 = —1fort > 1
in IP-LLR. Finally, by Equation (A.4), we have AB(t) = —nx;m~(atednl = —py,dh}
by Lemma 48 and because 2a; + ¢; = —1. [|

Theorem 50 (Weights in IP-LLR at time t). Consider the IP-LLR parameterization with
a positively p-homogeneous activation function, and p > 1. Then, for any t > 1, one has:

(i) WH(t) = U = nxodhbe] — n (42 xodhiel),
(i1) BY(t) = o' — nxodh} —n (S0} xedhl).
—~ ARSI - Bl (1T
(iii) WH(t) = ! —nxo™Go—0 — (L) P80), re 2,

m m

65

HaAJJAR, CHIZAT, AND GIRAUD

(iv) WEH(E) = UL m — ol /m = (02 ek /m)

Proof We have already seen the formulas are correct for ¢t = 1 by Corollary 41. Then, by
Lemma 49, an easy induction immediately yields the result. |

Lemma 51 (Backward pass of IP-LLR at time ¢). Consider the IP-LLR parameterization
with a positively p-homogeneous activation function, and p > 1. Then, for any t > 1,
dropping the dependency of the forward pass at time t on &, and of the previous forward
and backward passes on the corresponding £s, one has:

(i) dif = whTh(t) = UL — nxo@f —n 2y xewt,
(ii) AT = wy (W dh} — gyo @I dhe glot sty (R -1 e o).

Proof By definition, we have

dit = mdxk

— mWL+1(t)
t—1
= UM —nxoif —n Y xewk
s=1
where the last equality stems from Theorem 50.
Let [€ [2, L], we have:
diy ™t = (W'(t)) dh
T dhb)" dh = (dil)T
w (W) dhj - 77><oL B — ans h !
where the second equality stems from Theorem 50. |

Lemma 52 (Z for the forward pass of IP-LLR at time ¢ = 1). Consider the IP-LLR
parameterization with a positively p-homogeneous activation functz’on andp > 2. Let& € RY
be an input to the network. Then, for any 1 € [1, L], ht (&), 2} (€), d&t dhl are vectors in the
program, f1(€) is a scalar in the program, and x1 is a valid initial scalar i the program.
Additionally, dropping the dependency of the forward pass at time t = 1 on &, and of the
first forward and backward passes on &, one has:

(i) ZM = ZW'OEBI1) = ZU'E gt 0 (eTe 4 1) 7Ry,
(ii) ZM = ZW' W™ = G ZWheT _ % B[z zm zd, e 2,1,

(iii) f1(€) = (WEH ()2l —— B[ZU"" Z71] -y, E[276 Z71).

m—ro0

66

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Proof By Theorem 50, with ¢ = 1, one has that h{ = U + o' — nxo(J¢ + 1)dh}.
By Lemma 44, diz(l) is a vector in the Tensor Program and x¢ is a valid initial scalar in
the program which has an almost sure limit)%0 = 02l(y0,0) as m — oo. In addition,
U'¢ and v! are initial vectors in the program, which thus shows that hl is a vector in
the program by the NonLin operation. This also gives that #1 = o(h}) is a vector in the
program since o is pseudo-Lipschitz (see Appendix E). Moreover, by ZNonLin, we have
Zh = ZU 4 zv" T])O(O(S(T)f +1)Z%0. Let | € [2, L] and assume that At 21 are vectors
in the program. Then, by Theorem 50 with ¢t = 1, we get

~I-1\T_1—1
o~ _ x x ~
hll :lela:ll ! —77)(07(0)™ dhé.
m
(aféfl)Txlfl /m is a scalar in the program by the Moment operation, and thus by the MatMul
and NonLin operations, h} is a vector in the program and thus so is #} = o(h!), which
proves by induction that this is the case for any [€ [2, L]. By ZNonLin we thus have

ZM = &z R B[z zm)z,

We then have by Theorem 50 with t = 1,

f(§) = m_l(ULH)TJT{J - UXOT

U+l — ﬂXoi‘(l)’ is a vector in the program by the NonLin operation, and the quantity
m~ YU — nxgifoL)Ta:f is thus a scalar in the program by the Moment operation, and
by the master theorem, we get f1(§) — E[ZULHZ‘EIL] - n)%OE[Zj(% Z””f] almost surely, since
both expectations are finite by Lemma 88. Since we did the previous reasoning with an
arbitrary &, we also get that h} (&), 2} (&) are vectors in the program for any I € [1, L]
and that the formulas in (), (i7), and (éi7) hold when the input is &;. In particular, fi(&1)

converges to a finite almost sure limit f1(£1), and thus the continuity of 924(y1,-) ensures

the almost sure convergence of x; towards X, := 92(y1, f1(£1)), which means x; is a valid
initial scalar in the Tensor Program. Then, dropping the dependency of the second forward
pass (at t = 1) on &1, we get by Lemma 51 with ¢ = 1:

dzf = U — nxodg

which is a vector in the program by NonLin. Then dhl = dif ® o/(hF) is also a vector
in the program since o’ is pseudo-Lipschitz. Let [€ [2,L — 1] and assume that da?l1+1 and
alhll+1 are vectors in the program. Then by Lemma 51 with ¢t = 1, we have

~ P N d]fLH-l Td}NLH-l ~
084 = (T — o POV

(d%ﬂ)TdﬁllH /m is a scalar in the program by the Moment operation and by MatMul and
NonLin we thus get that dZ! is a vector in the program. Then dh} = dz} ® o’(h}) is also a
vector in the program since ¢’ is pseudo-Lipschitz, which concludes the induction and with
it the proof. |

67

HaAJJAR, CHIZAT, AND GIRAUD

Theorem 53 (Z for the forward pass of IP-LLR at time t). Consider the IP-LLR param-
eterization with a positively p-homogeneous activation function, and p > 2. Let £ € R? be
an input to the network. Then, for any | € [1, L], hé(&),xé({),d:ﬁi,dﬁé are vectors in the
program, fs(§) is a scalar in the program, and xs is a valid initial scalar in the program.
Additionally, dropping the dependency of the forward pass at time t on &, and of the previous
forward and backward passes on the corresponding &5, one has:

(i) 2 = ZWN OB = 2V 4 7 3o (ele + 1) 2% —n (DI (g +)2),
(i) for anyl € [2,L],
Zhl — ZWl(t)l‘i71 — (j}lZﬁ/\lxi71 . U)O(OE[Zif;let Zdhl <Z >O<5E leslzxil]zdilé> 7

(ii) fi€) = (W (1) Tk 2y B2V 2o noBl2% 22 |-y (T2} Bl 27 274)).

m— 00

Proof We prove that the vectors and scalars in the claim of the theorem are part of the
program by induction. Then the formulas of (7), (i7), and (iii) are a simple consequence
of the ZNonLin operation. The case t = 1 has been treated in Lemma 52. Let ¢ > 1 and
assume that the vectors and scalars in the claim of the theorem are part of the program for
any s € [1,t]. By Theorem 50, one has that

hiy =Wt +1)¢+ BYt + 1)

t
= U+ 0" —nxo(&5€ + 1)dhg — 1 (Z Xs(E1€ + 1)dl~z;>

s=1
By the induction hypothesis and NonLin, we thus get that h} 41 1s a vector in the program
and thus so is zy,; = o(hy,,) since o is polynomially bounded. Let [€ [2, L] and assume
that ht 11T Ji are vectors in the program. Then, by Theorem 50, we get

e (xl)T I— % l 1 T l %
hf&+1 = WlWll’f::-% - UXO%CMO (Z Xs— Lo T dhl)

For any s € [1,t], (5)72 /m and (2571211 /m are scalars in the program by the
induction hypothesis and the Moment operatlon. Thus by the MatMul and NonLin operations,
hl 41 1s a vector in the program and thus so is al 1= o(hl +1), which proves by induction
that this is the case for any [€ [2, L]. We then have by Theorem 50,

t T
R G B e e
s=1
Ultt — nxga}é —-n Zizl xsz% is a vector in the program by the induction hypothesis and
the NonLin operation. Then, by the Moment operation, fi11(£) is a scalar in the program

since xfﬂ is also a vector in the program, and by the master theorem, we have

t
fre1(6) %) E[ZULHZ%LH] — n)%OE[ZiéZZ’tLH] - Z)OCSE[Z%LZZ}LH].
s=1

68

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

The limit is finite by Lemma 88 since by an easy induction any Z which appears is a
polynomially bounded function of a Gaussian vector with finite covariance matrix. Since
we did the previous reasoning with an arbitrary &, we also get that hl, ;(&41), 2}, (&41)
are vectors in the program for any | € [1,L]. In particular, fiy1(§4+1) converges to an

almost sure limit f;,(§+1), and thus the continuity of 92f(ys+1,-) ensures the almost sure

convergence of x:+1 towards)O(Hl = 02l(Yt+1, f111(&§+1)), which means y;41 is a valid
initial scalar in the Tensor Program. Then, dropping the dependency of the forward pass
at t +1 on &1, we get by Lemma 51:

UM —nxody —n) xswl
s=1

dxt—l—l

which is a vector in the program by NonLin. Then dht,, = d#F,, ®o’(hl, ;) is also a vector
in the program since ¢’ is pseudo-Lipschitz. Let | € [2, L — 1] and assume that diciﬁ and

dhi 11 are vectors in the program. Then by Lemma 51, we have
) o (dﬁl-ﬁ-l) dhl—i—l t (dill—i—l) dhl—H
dxft+1 = Wl+1(Wl+1) dhﬁi WXO%#) - 772 XSST)SJrl ls

s=1

(dhl1)T hffl /m is a scalar in the program for any s € [0,¢] by the Moment operation
and by MatMul and NonLin we thus get that dxt 41 1s a vector in the program. Then
dhl 41 =dit,; ®0' (k) is also a vector in the program since o’ is pseudo-Lipschitz, which
concludes the induction. Then we get the claims of (i), (i4) and (#ii) simply by applying
the ZNonLin rule to the formulas derived above for the pre-activations hf, ;. u

Corollary 54 (Z for the forward pass of IP-LLR at time t). Consider the IP-LLR param-
eterization with a positively p-homogeneous activation function, and p > 2. Then, for any
t > 1, and for any input & € R%, dropping the dependency of the forward pass at time t on
&, and of the previous forward and backward passes on the corresponding &, one has:

(i) 24 = ZW OB — ZU¢ 4 70" i (ele + 1) 29— (LU Ro(Ee + 1) 290
(ii) for anyl € [2,L],
Zh = ZW' 0T = S E[Z% 2o 7% g (Z EZE 757 dﬁé) :

(iii) fi(€) = WEHL(@)Tak —=2 B2V 2oF |-y Bl 2% 22F |-y (LU0} XE[27F 2741

m— 00

Proof The formulas are readily obtained by Theorem 53 coupled with the fact that we
have c?)lZWlel =0 for any [€ [2, L], and ¢t > 1, which stems from Theorem 99. |

69

HaAJJAR, CHIZAT, AND GIRAUD

Remark 55. Note that there is no circular logic here since only Theorem 53 is used to
prove the results of Appendiz L.1 (and in particular Theorem 99), so that using Theorem 99
for Corollary 54 does not lead to any issue.

Theorem 56 (Zs of backward pass of IP-LLR at time t). Consider the IP-LLR parame-
terization with a positively p-homogeneous activation function, and p > 2. Then, for any
t > 1, dropping the dependency of the forward pass at time t on &, and of the previous
forward and backward passes on the corresponding &5, one has:

(i) gdif _ ywlti(t) _ yUET nfmzfé _ 7722;11 j’cszxf,

(i) 295" = & zWO'dh _ % B[7dk Zdk) 736 g S S Rzahs zahl za) €
2, L].

Proof We have already proved in Theorem 53 that for any s € [1,¢] the vectors of the
forward (h!,z! for I € [1,L]) and the backward pass (di%,dh, for [€ [1,L]) at time s are
part of the program and similarly at t = 0 by Lemma 44. Then, claims (7) and (i7) readily
follow from applying the ZNonLin rule to the formulas of Lemma 51. |

Corollary 57 (Zs of backward pass of IP-LLR at time t). Consider the IP-LLR parame-
terization with a positively p-homogeneous activation function, and p > 2. Then, for any
t > 1, dropping the dependency of the forward pass at time t on &, and of the previous
forward and backward passes on the corresponding &5, one has:

(i) gdif _ gwl i) _ yUR nfmzié _ 7722;11 >0<3me

~l—1 t—1 ©

(ii) 79" = —pyoB[Z%0 zdm) z8 T — S R zdk zdk)z e 2, 1.

Proof The formulas are readily obtained by Theorem 56 and the fact that Z (W Tdhi — 0
for any [€ [2, L] and ¢t > 1, which stems from Theorem 99. [|

Remark 58. Note that a similar statement can be made as in Remark 55 regarding circular
logic since only Theorem 56 is used to prove the results of Appendiz L.1.

G.1 Second forward pass of IP-LLR (t =1)

In this section, we prove that for IP-LLR, we have 0 < IE[Z% Z“/’ll] < oo for any [€ [1, L] un-
der the assumption that ;0 := limy,,— o0 X0 7# 0. To obtain those results, we use the formulas
from Corollary 54 for ¢ = 1, which are obtained using the main result from Appendix L,
namely Theorem 99. We choose to put Appendix L towards the end of the Appendix section
as its main result is quite intuitive: any multiplication by matrices with pre-factors in m=!
result in a vector whose coordinates (the corresponding Z) converge to 0 almost surely at
any time step. The proof however requires a long and cumbersome induction and we thus

leave it for the later stages of the Appendix so as not to break the narrative of the Appendix.

70

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

The finiteness of the expectations E[Z%lel] is a simple consequence of Lemma 88, but
the fact that they are > 0 requires more work as we will see below. Since we work with
IP-LLR, recall that we consider a bias term at the first layer only.

Lemma 59 (1st layer of forward pass of IP-LLR at t = 1). Consider the IP-LLR parame-
terization with an activation function o satisfying Assumption 3. Let & be an input to the
network, and assume f(o # 0. Then, dropping the dependency of the first forward-backward
pass on &, and that of the second forward pass on &, one has:

(i) ZM = ZM© — pyo(ele + 1) 2% = ZM©&) — pyo(ele 4+ 1) 295" (ZM),

o) l&lP+1 &5€ +1 0
(ii) (Z", Zh©, z%%0) ~ N {0, | €760+ 1 I€]1*+1 0 ;
0 0 E[(Z76)

(iii) 0 < B[Z%0Z%1] < co.
Proof We have by Corollary 54 at time t = 1
77 — & (Zh}(é))
= o (2" — (e +1)2M) .
Moreover, since dﬁ(l) = cgi"é o (il(l]), since all the vectors are part of the Tensor Program,
by ZNonLin we have Z9 = Z%%g'(Zh0), so that
27t = o (2P —n3o(§ + 12700 (2M)).

Finally, we have

7% = (7).
From the rules of ZInit and ZHat, we have that
T -1 S 0
(zho, zh &) 79%6) o N (0, <O E[(Zdﬁg)2]>>)
with
g <||€0||2+1 66 + 1) _
EE+1 lglP+1

By Lemma 32,]E[(Zdhg)Q] < 00, so that the covariance matrix is finite and thus Z% Z71 is
a polynomially bounded function of a Gaussian vector which shows that the expectation
is finite by Lemma 88. It is also non-negative since o is non-negative. To prove that it is
positive, one needs only prove that the integrand is not almost everywhere 0. By Lemma 32,
E[(Z%%)2] > 0 so that the covariance matrix is invertible if and only if S is invertible. We
have

det(S) = (II&l*l1€]1*~(£5€)%) + 10 — €17,

71

HaAJJAR, CHIZAT, AND GIRAUD

which is the sum of two non-negative terms by Cauchy-Schwarz’s inequality, and is thus 0 if
and only if both terms are zero. The first term is zero only when & and &y are proportional,
and if in addition the second term is zero than & = &;. The distribution of the Gaussian
vector appearing in Z% 71 thus depends on whether or not £ and £ are equal.

Case when ¢ = &;. Then, calling A := —775)(0(555 + 1), we have
E[Z%0 Z"1] = /a(z)a (z — Mo’ (2)) pz(2)pu(u)dzdu,

where p, and p, are the densities of the two Gaussians (0, [|&]|241) and N (0, E[(Z%4)2])
respectively, which are not degenerate, so that p.(z) > 0 for any z and similarly for p,(u).
Since Z%0 and —Z9% have the same distribution and since it is independent of Z;’é, we
can assume A > 0 W.L.O.G (if A < 0 we can always do the change of variable u <+ —u
in the integral above since p,(—u) = py(u)). Consider the point (z*,u*) := (1,—1), at
which the integrand in the integral above is > 0, because o and ¢’ are > 0 on the positive
part of the real line (see Appendix E) and A > 0. The integral is then positive, because
the integrand is a continuous function, since o and ¢’ are continuous (see again Appendix E).

Case when £ # £. Then, we have
E[Z%Zﬂ] = /a(u)a (v = Az0’ (1)) pu,v(u, v)p.(z)dudvdz,

where p,, and and p, are the densities of non-degenerate Gaussians and are thus well-
defined and positive everywhere. Again, we can assume A > 0 W.L.O.G. We consider the
point (u*,v*,2z*) = (1,1, —1) at which the integrand is > 0 since o and ¢’ are positive on
the positive part of the real line. Hence, the integral is > 0 because the integrand is a
continuous function, since o and ¢’ are continuous, which concludes the proof. |

Lemma 60 (Intermediate layer of forward pass of IP-LLR at t = 1). Consider the IP-LLR
parameterization with an activation function o satisfying Assumption 3. Let & be an input
to the network, let | € [2,L], and assume)O<0 # 0. Then, dropping the dependency of the
first forward-backward pass on &y, and that of the second forward pass on £, one has:

(z') Zhll = —n%OE[Z%ilZwlfl]Zdﬁl - _nioE[Ziéfllefl]Z\diéo_/(/Z\ﬁé)’
(i1) ZM and 2936 are independent,
(iii) 0 < E[Z% Z%] < oo.

Proof We prove the result by induction on [, the case of [= 1 has already been dealt with in
Lemma 59. Let [€ [1, L—1], and assume 0 < E[Z%0 Z71] < co. Calling A := —nyE[Z%0Z71],
we have A # 0 by assumption and by the induction hypothesis. Then, by Corollary 54 with
t =1, we have

+1 7i+1
hl hO

7z = _\zho"

72

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Moreover, dhf)'H

we have by ZNonLin zdhs™ — Zdelcr’(ZﬁlOH). On the other hand, by Lemma 25, we have

= dikT @0’ (h5TY), and since all the vectors are part of the Tensor Program,

zdhe™ = Zdhe" and th+1 Zh' , and finally by the ZHat rule, since %H W”lfcll and
dibtt = UM if | = L — 1 and (W”2)Tdﬁl+2 otherwise, we get that 2" and Z%™ are

independent. In addition, we have

+1

B[Z%" 727 = Blo(296 o (-2 290" o (2767))).

The expectation is non-negative because o is and it is finite by Lemma 88 because the
integrand is a polynomially bounded function of the Gaussian vector (Z"o lH) (and
thus of Zj, see Definition 86). Using the positive p-homogeneity of o and the fact that
sign(o’(z)) = sign(2) (see Appendix E), and calling € = sign(\) € {—1,1}, we have

2]

= APE [o(275) o/ (2767 PR [~esign(276) 29557

hl +1 de

+1

E[z% 797 = & [IE [Zx Z2

)

Now since e sign(Z%H) e {-1,1}, 7% and e sign(Z%+1)Zdié+1 have the same distribution
ditionally on Z ke so that
con ,

E [O’(—E sign(Z%+1)ZdilOJr1)

21" = [o(z7)

Z%H}
) [(Zd”“)}

We thus get

+1

E[2%" 77 = |APE[o (2%)|o' (27) Elo(29%7)],

and both expectations are positive because they are non-negative and their integrands are
> 0 on the positive part of the real line and the Gaussians involved have non zero density
on this subset of R as they are not degenerate by Lemma 32. This proves E[Zxo leﬂ] >0
and concludes the proof by induction. |

Lemma 61 (Last layer of forward pass of IP-LLR at ¢t = 1). Consider the IP-LLR param-
eterization with an activation function o satisfying Assumption 3. Let £ be an input to the
network, and assume)%0 % 0. Then, dropping the dependency of the first forward-backward
pass on &y, and that of the second forward pass on &, one has:

(@) f1(€) = W) af i) == E[2V" z78) -y E[2% 2o,
(i) 2V and 26 are independent,

(i) 0< fi(€) < 0.

73

HaAJJAR, CHIZAT, AND GIRAUD

Proof Claim (i) comes from Lemma 52, in which we have already proved that the limit

f1(€) is finite as a result of Lemma 88 and the fact that the integrands are polynomially
bounded functions of the Gaussian vector (Z;‘g, ZU"™") which has finite (and diagonal as
we will see shortly) covariance matrix. In addition, by Lemma 25, we have Z ht = Zht and
by definition in ZInit ZUM = Zut Finally, by the ZHat rule, the latter two random
variables are independent since hf = WLizéJ_l. Let ¢ := sign(y,) and X\ := E[Z%lel]
for . € {L —1,L}. We have Ap_1,A\;, > 0 by Lemma 60, and using again the fact that
sign(o’(z)) = sign(z) and the positive p-homogeneity of o, we have

]

I)

UL+1 UL+1

E[Z me]:E[E[z zet

= M1 X0l E [0’ (Z7)PE [20" o (~esign(27F) 20"

Z’%H.

Since ZU™"! and —Z U have the same distribution, and it is independent of Zht , and
. . hL
since esign(Z"0) € {—1,1}, we have

E [—e sign(ZBé)ZULHa(—e sign(Zﬁg)ZULH)

Zﬁé] —E [ZUL“U(ZUL“) Z’ﬂ

=E |27 o (27",

so that

+1

E [|a'(zﬁ€)|p1[«: [ZUL o(—esign(Zh)zV")

4] -
—¢E [sign(zﬁé)|o' (26)|p} E [ZULHJ(ZULH)} .
We thus get
E[ZV"" 2] = e nhpr %ol B [sign(27) o' (276)] B[20 0 (277)]
We now prove that both expectations are positive. This is where the assumption that
a > [(see Appendix E) appears to be crucial. We start with the first one. Since Z ht has

a zero-mean Gaussian distribution with positive variance (by Lemma 32), its density p, is
positive everywhere and symmetric, and we have

7 7 400 0
E Sign(Zh5)|a’(Zh(If)|p} = / (ap)Pzp(pfl)pz(z)dz + / _(5p)p(_2)p(p71)pz(z)dz
z=0 =00
+oo 400
= (ap)? /_0 Zp(pil)pz(fo“)dz — (Bp)? /_0 P14,

+oo
=@ =g [,

The second equality stems from the change of variable z <~ —z in the second integral and
from the symmetry of p, with respect to z = 0. The last integral is > 0 because its integrand

74

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

is > 0 on the corresponding domain, and af — 5P > 0 since o > 8 by assumption and p > 0.
For the second expectation, we get with a similar reasoning that
0

E [ZULHJ(ZULH)} :/ uauppu(u)du+/ ufB(—u)Ppy(u)du

u=0 U=—00

+o0

= (a—pf) /+ZO up+1pu(u)du,

which shows the expectation is > 0.

o

We now look at the second term in f1(£): —nxoE[Z%0 Z*T] = —en|Xo|Ar. Summing this up
with the first term, we get

o

f1(6) = =€ | InAL-1%ol" E [sign(2")lo' (27| B | 27" 0(27"")] + nlRolA

>0

which concludes the proof. |

Theorem 62 (Non-trivial learning of IP-LLR at t = 1). Consider an IP-LLR param-
eterization of an L-hidden layer neural network with an activation function o satisfying

Assumption 3. Let € € R? be an input to the network, and assume &, &,)Ogo # 0. Then, one
has:

(i) fol§) ——=0

m—00

(i1) F1(6) 22 f1(€) #0

m— 00

Proof Claim (i) has already been proved in Lemma 44, and claim (i) has been proved in
Lemma 61 above. |

Remark 63. Note that since only quantities of the first (t = 0) forward and backward passes
and second (t = 1) forward pass appear in Lemmas 59, 60, 61, and Theorem 62 we only
need to assume we have an integrable parameterization with ¢; = ~v;(p) for any l € [1, L+ 1]
att = 0.

Appendix H. Proof that no constant learning rate is possible:
Theorem 10

In this section we prove the result of Theorem 10 by splitting the proof in two steps.
First we show in Lemma 64 that to have stable and non-vanishing updates for integrable
parameterizations at ¢ = 1, one must use the learning rate exponents ¢; = v;(p) for any
l€[l,L+1] at t = 0. Then we show some preliminary results on the second backward pass
(at t = 1) for integrable parameterizations when ¢; = ;(p) for any I € [1, L+1] at t = 0, and

75

HaAJJAR, CHIZAT, AND GIRAUD

some other preliminary results on the third forward pass (at ¢ = 2) when additionally one
uses ¢; = —1, ¢g = =2 for [€ [2,L] and ¢;41 = —1 at t = 1. Then we show in Lemma 68,
using those preliminary results, that assuming we have ¢; = 7;(p) for any [€ [1,L + 1] at
t = 0, to have stable and non-vanishing updates at ¢t = 2 for integrable parameterizations,
one must use the learning rate exponents ¢; = —1, ¢, = =2 for [€ [2,L] and cp41 = —1 at
t=1.

H.1 Proof of the first implication for the learning rates at ¢t =0

Lemma 64 (Learning rates for stable learning with IP at ¢ = 0). Consider an L-hidden
layer fully-connected neural network with L > 3 in the integrable parameterization, and with
no bias terms, except for the first layer. Assume that the activation function o satisfies
Assumption 3, and that lim,, o 920(yo, fo(&0)) # 0. Assume further that {{& # 0. Finally
assume that Equation (3.1) holds:

AW P=e(1), 1e[1,1]
(AWET (1) Tzf = (1)
Then, one necessarily has that at t =0, ¢; = v(p) for any l € [1, L + 1] (see Definition 9).
Proof With the notations introduced in Appendix A, the assumptions on the limit of the
loss terms at ¢ = 0 imply)0(0 # 0. Let us consider the updates at t = 0. By Corollary 40,
we have
AW (1)€r = —m~ TPy (7€) dh,

so that

m

1 e 2 1
AW)= m= D o (66) m;(‘iho)
q:

From the master theorem, we get that Zglzl(dizll)’qf /m converges almost surely towards

E[(Z%%)2] which is > 0 and finite by Lemma 32. On the other hand, [77)(0(5851)]2 converges
o 2

almost surely to [nxo(fgfl)] , which is > 0 by assumption, and finite.

If ¢; > 71(p), then ¢; — y1(p) > 0, and |[|[AWL(1)&]]?/m — 0 almost surely, which is
impossible since by assumption, almost surely, there exits A > 0 such that for large enough
m, A < [|AW (1)1 2/m.

If ¢; < y1(p), then ¢; — v1(p) < 0, and |[|[AWL(1)&]|?/m — oo almost surely, which is
impossible since by assumption, almost surely, there exits B > 0 such that for large enough

m, ||AWH(1)&][?/m < B.

We thus have that ¢; = y1(p). Let [€ [1,L — 1] and assume that ¢ = yx(p) for k € [1,1].
Then by Lemmas 59 and 60, we have 0 < E[Z% Z%1] < oo for any k € [1,1]. We have

iHAW”l(l)xl H2: m—2Cr1=v41(p)) X0 (%)Tl‘ll i 1 in: (dil“rl)z
m ! m 0.

m
g=1

76

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

From the master theorem, we get that Z;’Ll(dﬁffql)Q /m converges almost surely towards
E[(Z9""")2?] which is > 0 and finite by Lemma 32. On the other hand, [nXO(.fclo)Txll/m]z

o B 2
converges almost surely to [nxOE[Z“"é lel] , which is > 0 and finite.

If c;p1 > Yie1(p), then ¢y — vip1(p) > 0, and |[AWH(1)z)|]2/m — 0 almost surely,
which is impossible since by assumption, almost surely, there exits A > 0 such that for
large enough m, A < [|[AW! (1)t |2 /m.

If ¢;p1 < yp1(p), then 1 — 71(p) < 0, and [|JAW! (12! [|2/m — oo almost surely,
which is impossible since by assumption, almost surely, there exits B > 0 such that for
large enough m, |[AW L (1)z}|2/m < B.

Therefore, we have ¢;11 = 11(p). By induction, we thus get that ¢, = v;(p) for any
[€ [1, L], which means in particular that 0 < E[Zjé fo] < oo by Lemma 60. Finally, we
have

~L L
(AWL+1 (1))TxL _ _m—(cL+1—’YL+1(P))77X0 (‘rO)Txl
! m

The term nxo(Z5)To¥ /m converges almost surely towards n)%OE[Zié sz]’ whose absolute
value is > 0 and finite. Therefore, if cp11 > vp4+1(p) then ¢ry1 — yp+1(p) > 0 so that
(AWLH(l))T:U{J — 0 almost surely, which is impossible since by assumption, almost surely,
there exits A > 0 such that for large enough m, A < |[(AWLTY 1) 2| If i1 < yre1(p)
then cri1 — vr11(p) < 0 so that (AWELH1(1))T2f — oo almost surely, which is impossi-
ble since by assumption, almost surely, there exits B > 0 such that for large enough m,
|((AWLHL(1))T2f|< B. Thus, we must have ¢ 1 = y741(p), which concludes the proof for
the first part. |

H.2 Preliminaries on the second backward pass (t = 1)

Before we move on to the proof of the second part of the claim of Theorem 10, we stop and
prove some preliminary results on the second backward pass (at ¢ = 1) which will come in
handy later on. Similarly to what we did for IE[Z% Zzll], we wish to prove that the quantity
0 < E[Z% z4h] < oo for any [€ [2, L).

Lemma 65 (Backward pass of IP-LLR at ¢t = 1). Consider the IP-LLR parameterization
of an L hidden-layer network, and assume that the activation function o satisfies Assump-
tion 3, and that limy, o0 020(yo, fo(&o)) # 0. Then, one has that for any l € [2, L],

0 < E[z% zM] < o

Remark 66. Note that since only quantities of the first (t = 0) and second (t = 1) forward
and backward passes appear, we only need to assume we have an integrable parameterization
with ¢; = v (p) for anyl € [1,L+ 1] att = 0.

77

HaAJJAR, CHIZAT, AND GIRAUD

Proof We start with [= L, and then induct over [from [= L to | = 2, and we recall
that lim,, o0 92€(yo, fo(€0)) =: Xo by definition (see Appendix A), which is thus # 0 by
assumption.

The case | = L. By Corollary 57, we have Zdh§ = ZULHU’(ZEOL) and Z4h = (zV" —
MXo0 (Z"0))o’ (Z"). We thus have

B[z 4] = B[(Z2V" 26! (278)o! (Z2M)] +n|X0|E[—e 2V o' (276)a (2700 (Z271)],

=A =B

with € := sign(fco) and we deal with both terms separately. First, by Corollary 54 we
re-write Z" as

7" = —n|RelexzV ol (27),

where \ :=]E[ZigilelLil] > 0 by Lemma 60. Using the fact that sign(o’(2)) = sign(z) and
the positive (p — 1)-homogeneity of o/, we have

U/(ZhlL) = (nlxol)P~]U’(Zﬁg)]pfla’(—esign(Zﬁé)ZULH).
The first term in E[Z it 7 dﬁlL] is thus equal to

A= (Wboéo‘)\)p_lE [E [(ZULH)QU,(ZB‘%)!U,(Zﬁé)]p_la'(—esign(Zﬁé)ZULH)

]

]

)

= (%N o' (276) o' (2" B (270! (~esign(276) 207

= (Xl APE [/ (25| (ZH) B [(27" 20 (27T

The third equality stems from the fact that —esign(ZEé)ZUL+1 and ZU""" have the same
distribution conditionally on Z h , and from the fact that (Z ULH)2 = (—esign(Z h§)Z utt)2.
We now show that both expectations are > 0. Calling p, the density of the Gaussian Z hy
which is symmetric and positive everywhere since Zh6 is not degenerate, the first term is
equal to

0
20 (2)dz — (Bp)? / (=20, (2)dz

Z=—00

- - +oo
o (72N o' (76 P = (o
B[o/(Z%)0/ (2] = ey [

+oo
— (@ - |)z,

where we have used the change of variable z < —z in the second equality, and the last
quantity is > 0 since o > 5. With similar calculations, we get

B[22 (2] = - [puudu o

u=0

78

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

where p,, is the density of the standard Gaussian Z U This thus shows that A > 0.
We now turn to the second term B. We have:
B= (kN % E|o'(Z")0(2)|o! (2" sign(27) x

E [(—esign(zﬁé)ZU o (—esign(276) ZV

]

= (XN E |o(27)0(27) ' (276) P sign(276) | B | 27 ol (2077

= (% E [o(ZM)o (27| B (27 (27

We now prove again that both expectations are > 0. The first integrand is non-negative
everywhere and positive on the positive part of the real line where the Gaussian Zhs has
non-zero density, which shows the first expectation is > 0. The same argument holds for
the second expectation since ZV"" and o (ZULH) are of the same sign, which also leads
to a positive expectation, which finally gives B > 0, thereby concluding the proof.

The case [€ [2,L —1].
Let | € [2,L — 1] and assume 0 < v := E[ZdhéHZdhllH] < c0. Calling € := sign(Y,), on the
one hand, we have by Corollary 57

7% = —p|xolvea(Z™),

and on the other hand, with \ := E[Z% ' Z%1 '], which is > 0 by Lemmas 60 and 59 (if
1=2)

o' (ZM) = (nXo| NP’ (Z70) [P~ 1o! (—esign(Z") Z%%0).
Recalling that Z4h = 24/ (Zk0) and Z4h = Z®14/(ZM), this leads to
E[Z% 2] = p[Xo v (n|Xo|)P Bl (—esign(27) 2%) o' (—esign(Z) 279%)
sign(Z"0)a’ (2)|o’ (Z70) [P~ 1o (270)),

which, by conditioning on Zhb and since —esign(Z%)Zd% and Z9% have the same distri-

bution conditionally on Z %, and since sign(o’(z)) = sign(z), gives
E[Z% 2] = nlXolv(nlXe NPT E | 290" (29%) | E [|o/ (270) Pa(27)]

The term in front of the expectations is positive by assumption, and both expectations are
positive because their integrands are both non-negative and positive on the positive part of
the real line where the Gaussians Z% and Zh have non-zero density. The expectations
are also finite by Lemma 88 because their integrands are polynomially bounded functions
of some Gaussian vector with finite covariance variance matrix. By induction, we thus get
that 0 < E[Z%0 24 < oo for any [€ [2, L], which concludes the proof. [|

79

HaAJJAR, CHIZAT, AND GIRAUD

H.3 Preliminaries on the third forward pass (¢ = 2)

In this section we wish to prove that similarly to the second forward pass, the quantities the
quantities E[Z%1 Z72] and E[Z% Z72] (which appear in the third forward pass at ¢ = 2) are
> 0 for any [€ [1, L] when using the IP-LLR learning rates at ¢t = 0 and ¢ = 1. We assume
here that the training samples &g, &1, &2 are all distinct, which is probably not necessary for
the result to hold but simplifies somewhat some parts of the proof and is in any case a very
natural assumption.

Lemma 67 (Forward pass of IP-LLR at ¢t = 2). Consider the IP-LLR parameterization
of an L hidden-layer network, and assume that the activation function o satisfies Assump-

tion 3, and that limy, oo 02€(yo, fo(&0)) # 0 and limy, oo l(y1, f1(§1)) # 0. Assume
further that the first three training samples &y, &1, &2 are all distinct. Then, one has that for

any l € [1, L],
0 <E[Z"1Z%2] < o0
0 <E[Z%02"2] < 0o

Proof We start with the case [= 1 and then induct over [from [= 1 to [= L for both
expectations simultaneously as the derivations are very similar.

The case [= 1.
Let us first unwind the expressions of Z M and Z"2. We have

ZM = ZME) _ Y (€ley + 1) 2%’ (2),
and

7" = ZME) _ 3 (€16 + 1) 296! (770) — nxy (€160 + 1) 2%16" (2M).

The case of E[Z71Z%2].

Recalling that Z4%1 = —n§0V0<ZiLé) where v := E[ZdiLgZdi"%]. With the assumption that
£o, &1, & are all distinct, the vector (Ziltl), Zﬁé(&), Zﬁé(&), Zdi’é) has a non-degenerate Gaus-
sian distribution, and we thus get

E[Zx%Zxé] = /a (u1 — pozo'(uo)) o (ug — pr20" (wo) + poo(up)o’ (ur — pozo’ (ug))) x
q(’LLQ, uy, ’LLQ)pZ(Z)d(UO, uy, UQ)dZ,
where o := nxo(E5€1 + 1), pu = nxp(Eé2 + 1) and p2 1= n*XoX1v(¢]&2 + 1), and ¢ and p,
are the densities of non-degenerate Gaussians and are thus positive everywhere. Now the

integrand is non-negative everywhere and we wish to show that it is positive at some given
point of R*, and it is also a polynomially bounded function of (thl), thl)(fl), Zho(&2) Zdj(l))

80

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

which shows that the expectation is finite. Since Z9% and —Z%5 have the same distribu-
tion and it is independent of (thl), thl)(fl), Zh(l>(52))7 we can assume that po > 0 W.L.O.G.
Consider the point (ug, uj,us, z*) defined as u§ = uj =1, z* = —1 and

uj = |palo’ (1) + |p2lo (1)’ (1+ poo’ (1)) + 1.

We show below that the integrand is > 0 at (ug, uj,u3, 2*). Since it is also a continuous
function of (ug,u1,ue, 2), we get that the expectation is positive.

Let us now show that the integrand is > 0 at (uf, u}, u3, 2*). We have
ui — poz"o’' (ug) = 1+ poo’(1) > 1> 0,
and
—p12"0" (ug) = o’ (1) > —[mlo’(1),
and finally
p20 (ug)o’ (uf — poz"o’ (ug)) = pao (1)’ (1+ poo’ (1)) > —|pualo(1)o” (1 + poo’(1)) -

With the choice for w3, one has that u — p 20’ (uf) + poo(ul)o’ (ui — poz*o’ (ug)) > 1 >0,
which concludes the proof because o is positive on the positive part of the real line.

The case of E[Z% Z2].
We have

E[Zitl)in] = /0’ (uo) o (u2 — p120”’ (uo) + pao(uo)o’ (w1 — pozo’ (ug))) x
q(uo, u1, u2)p=(2)d(uo, ur, uz)dz,

As for the case of]E[ZI%Z%I’], we show that the integrand is > 0 at the same point
(uy, ui, us, 2*) as above, and since it is also a continuous function of (ug,u1,us,2), we
get that the expectation is positive. It is also finite by Lemma 88 because its integrand is
a polynomially bounded function of (Zhé, Zho(&1), thll(&), Zdi’é).

The case [€ [2,L — 1].

Let | € [2,L — 1] and assume 7 := E[Z%1 ' 2% '| > 0 and p := E[Z% 'Z%2 '] > 0. Calling
A :=E[Z% ' Z¥ '] which is > 0 by Lemma 60, and v := E[Z%0" Z4hi™"] which is also > 0
by Lemma 65, we have

AR —77>O<0)\Zd%‘7/(z%>a
and
2% = —RopZ 0’ (270) —nxy7 20! (2").

Finally recall that 74 = —n)%oya(Z%), and let us call pg := 7;>0<0)\, = n)ogop and
g 1= n2>o<0>0<17'1/. o is # 0 because of the assumption on >O<0. Since Z9% and —Z%% have

81

HaAJJAR, CHIZAT, AND GIRAUD

the same distribution and it is independent of Z hé, we can assume pg > 0 W.L.O.G. Note
then that since p; is of the same sign as ug (Ap > 0), this also implies p1 > 0, and p9 has
the sign of >O<1. By assumption,)O(l # 0, and by the induction hypothesis and Lemma 65 we
have pg # 0.

The case of E[Zmll ng]_
We have

(2™ Z%] = / o (—poz’ (w)) o (—p120" (u) + 20 (u)o” (—poz0" (1)) pu(u)ps (2)dudz,

where p, and p, are the densities of non-degenerate Gaussians (Z ho and Z9%0 respectively)
and are thus positive everywhere. Now the integrand is non-negative everywhere and we
wish to show that it is positive at some given point of R%. The integrand is also a polynomi-
ally bounded function of (Z hé, Z di’é) which shows that the expectation is finite by Lemma 88.
Let z* = —1 and w > 0. Then, —upz*c’(u) = ppo’(u) > 0 so that o(—ppz*e’(u)) > 0. On
the other hand, —pu;2*0’(u) = prapuP~!, and

MQU(U)UI(—Moz*U/(u)> - ,LLQOCUpOép(ILLOap)pilu(pfl)2

_ _ _1)2
—(ap)|pal el poap)? P,

v

This leads to
* _ _ _1)2
2o’ (u) + pao(u)o’ (—poz*o’ (u)) > apuP™ [ul — |p2lo(poap)? u®@= D
The quantity in the bracket is > 0 as soon as

1

Ly

IS
|p2]apoap)?

Calling u* := €/2, we thus get that the integrand is > 0 at (u*, 2*), and since it is a contin-
uous function of (u, z), the integral is positive.

The case of E[Z%0 2],
We have

E[2% 27 = / o (u) o (—pr20" (u) + prao ()’ (— 020" (w))) pu(w)ps(2)dudz,

The integrand is non-negative everywhere and with z* = —1 and u* = £/2 as above, one
shows that the integrand is > 0 at (u*, z*) which in turn implies that the expectation is
positive. It is also finite for the same reasons as E[Z 7y Z“”lﬂ. This now concludes the induc-
tion over [€ [1, L — 1] which thus shows that E[lel ZIQ] and E[Z% Zmé] are > 0 and finite
for any [€ [1, L —1]. Those expectations are also finite as their integrands are polynomially
bounded functions of Gaussian vectors which have finite covariance matrices.

The case [= L.

82

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Let 7 := E[Z"”‘ILAZ’”QLA] > 0and p:= E[Zigileéil] > 0 by the previous induction. Calling
A= E[Zigleleil] which is > 0 by Lemma 60, we have

2M = —nx A2V ! (27,
and
2" = —yxop2V" 0! (278) — a2 o/ (2.
Finally recall that 241 = zU™"" _ n)%oa(Zilé), and let us call g = XA, f1 = MXoP
Lo = 7753(17, and finally 3 := n2)o<0§<17. Since Z%b and —Z9%0 have the same distribution
and it is independent of Z hé, we can assume pg > 0 W.L.O.G. Note then that since p; is of

the same sign as pg, this also implies u1 > 0, and po has the sign of)0(1. In addition, with
the assumptions and previous results, we have o # 0 and pug # 0.

The case of E[Z°T Z77].
We have

E[Z%LZ%L] = /O’ (—pozo'(w)) o (—p1zo’ (u) + (—p2z + pso(w))o’ (—pozo’ (u))) x

pu(u)p.(2)dudz,

where p,, and p, are the densities of non-degenerate Gaussians (Z h§ and ZU respectively)
and are thus positive everywhere. Now the integrand is non-negative everywhere and we
wish to show that it is positive at some point of R%. The integrand is also a polynomially
bounded function of (Z hy ,Z ULH) and the expectation is thus finite by Lemma 88. We first
take a closer look at the second term inside o. Let z < 0,u > 0. We have

iz’ (u) = mlzlapur
as well as
—p2z + pzo(u) = —p2z + pzau?,
and
o’ (=020’ (w)) = ap(poap)” ™" |2~ ulP ",

We thus get that

— 2o’ (u) + (—p2z + pzo(u))o’ (—#Ozgl(u)) =

aplz|u?™" | + (—poz + psalul?) (poap)? ™ z[P~2|u| D@2

F(u,z)

Because p — 2 > 0, the function F is continuous over R?, and we have F(0,0) = u; > 0.
Therefore, there exists ©* > 0 and z* < 0 such that F'(u*, 2*) > 0. With such a pair (u*, z*)

83

HaAJJAR, CHIZAT, AND GIRAUD

we get that the integrand is > 0 at (u*, 2*), and since it is a continuous function of (u, z),
it follows that the expectation is positive.

The case of E[Z% Z77].
A similar argument to the case of E[ZT’lL 7%] applies and we get that the expectation is
positive, which concludes the proof. |

H.4 Proof of the second implication

Lemma 68 (Learning rates for stable learning with IP at ¢ = 1). Consider an L-hidden
layer fully-connected neural network with L > 3 in the integrable parameterization, and with
no bias terms, except at the first layer. Assume that the activation function o satisfies As-
sumption 3, and that lim,, .o 92L(yo, fo(&o)) # 0 and lim,, o 02€(y1, fo(&1)) # 0. Assume
further that £]&a # 0, that the first three training samples &, &1, o are all distinct, and that
att = 0 (i.e., to compute AW' (1)) ¢; = v(p) (see Definition 9) for any I € [1,L + 1].
Finally assume that Equation (3.2) holds:

AW (2)z5 ! |P=6(1), €1, L]
(AWH(2) g = 6(1)
Then, one necessarily has that att =1, ¢1 = ¢;41 = —1 and ¢g = =2 for any l € [2, L].

Proof We first treat the case [= 1 and then induct over [from [= 2 to [= L and conclude
by the case [= L + 1. Note that because of the assumptions, Lemma 65 holds and the
claim of Lemma 67 will hold at layer [as soon as we show ¢; = —1 and ¢, = —2 for k € [2, L].

The case [= 1.
We have

AW (2)gs = —pm~ Ty (67&)di} © o' (hy),
so that
1 —o(14e [
AW @= m 20 (g (7€) {|dz} @ o' ()2
Recall that d7} = —nxO((dﬁg)Tdﬁ%)/m o(h}), so that by the Master Theorem,
1 a.s. o 7
—[|dz} © o’ (h})|[P "= (nXov)*Elo(2")%0(Z")7],

where v := E[Zdﬁg Zdi’%] > 0 by Lemma 65. The term in front of the expectation is > 0 with
the assumptions. On the other hand, the term (171 (£17¢2))? converges almost surely towards

(nx1(£17€2))? which is also > 0 with the assumptions. We show below that the expectation
. . . L1 1 2_

is > 0, which proves that ¢; must be equal to 1 since by assumption —-[|AW*(2)&:|[*= ©(1).
Recall that

ZM = ZME) % (€16y + 1) 270" (27),

84

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

The integrand in the expectation is non-negative, and it simply remains to show that is
not almost surely zero. Because Z%% and —Z%% have the same distribution, and since it
is independent of (ZB(I),ZE(I)(EI)), we can assume W.L.O.G. that p := 17)0(0(5851 +1) > 0.
As usual, the vector (Zi‘%), Z Etl)(gl)) has a Gaussian distribution which is degenerate only if
&1 = &y, which is precluded by the assumptions. Note that in any case, the expectation is
finite by Lemma 88 since its integrand is a polynomially bounded function of a Gaussian
vector with finite covariance matrix. Since £ # &y by assumption, we have

E[J(Zﬁtl))ga’(Zh%)Q] — /a(u)Qa’ (v— ,uza'(u))2pu,v(u, v)p.(z)dudvdz,

where p,, and and p. are the densities of non-degenerate Gaussians ((Zﬁé, Z}N‘é(&)) and
A respectively) and are thus well-defined and positive everywhere. Again, one sees that
at point (u*,v*,2*) = (1,1, —1) the integrand is > 0, and since it is a continuous function,
this proves that the expectation is positive. It is also finite by Lemma 88 since the inte-
grand is a polynomially bounded function of a Gaussian vector with finite covariance matrix.

The case [€ [1,L — 1]
Let [€ [2,L — 1]. We have already shown that ¢; = —1. Assume now that ¢, = —2 for
k € [2,1 — 1] (note that if [= 2 this means no additional assumption). Then we have

AW bl — = (2Fa) (ﬂflfl)Tﬂfl{ldﬁ Y
Wi (2)xzy " = —nm X1 - T © o' (hy),

so that
lfl)T -1

Lo

2
1 _ _ (z 1, ..
o A 12 -1 2: 2(2+Cl) 1 - d [/hl 2.
AW @)k = m ma LB} Lt o o)

In addition, we have di} = —nxg((dﬁéﬂ)Tdﬁllﬂ)/ma(%), so that by the Master Theorem,

Jldzt © o’ (RDIP s (rkn) Bl (270" (27477,
where v := E[Zd%HZdﬁllH] is such that 0 < v < co by Lemma 65. Recall that

21 = —nxo\Z%0! (2M),
with A := E[ZiéﬁlZ“llil] such that 0 < A < oo by Lemmas 59 and 60, which leads to

E[o(2"0)20" (2M)?] = / o (u)20’ (—pzo’ (1)) ?pu(w)p. (2)dudz,

where p := 77)%0)\ which is # 0 with the assumptions, and p,, and p, are the densities of two
non-degenerate Gaussians (Z% and Z%%0 respectively) and are thus positive everywhere.
Since Z% and —Z%%b have the same distribution and it is independent of Zho we can
assume p > 0 W.L.O.G. Then, we see that at point (u*,z*) = (1,—1) the integrand is

85

HaAJJAR, CHIZAT, AND GIRAUD

> 0, and since it is a continuous function, this proves that the expectation is positive. It
is also finite by Lemma 88 since the integrand is a polynomially bounded function of a
Gaussian vector with finite covariance matrix. The term (17)0401/)2 in front of the expectation
is > 0 and finite with the assumptions. Finally the term (nx1((ml1_1)Txl2_1)/m)2 converges
almost surely towards (77)()(17)2 by the Master Theorem, where 7 := E[Z“llilZ‘”éil] is >0
and finite by Lemma 67, which shows that (?7)0(17')2 is > 0 and finite with the assumptions.
Since ||dZt ® o'(h})||?/m = ©(1) by assumption, then ¢; must be equal to —2 otherwise
l[dZ1 ® o' (h1)||?/m would either converge towards 0 or diverge towards oo almost surely.

The case [= L. We have already proved that at ¢t = 1, ¢ = —1 and ¢ = —2 for
l € [2,L]. We have
(af) "=k

(AW(2)) g = gm0 er) |y |

By the Master Theorem,
(.Tf)T.%'é a.s. E[zxfzx%’]

m— 00

m

which is > 0 and finite by Lemma 67. On the other hand, n|y;| converges almost surely
towards 7|x,| which is also > 0 and finite. This shows that since |(AWZLH1(2))TzL|= O(1)
then we must have c¢y+1 = —1 to avoid vanishing towards 0 or explosion towards 400 as
m — 00, which concludes the proof. |

Appendix I. Proof of the non-triviality of IP-LLR: Theorem 13

Proof Claims (7) and (i7) of Theorem 13 have already been shown in Theorem 62. Claim
(#i7) simply stems from Corollary 54 with ¢ = 2 and the fact that all the variables Z which
appear are polynomially bounded functions of the vector Zy (see Definition 86) by a simple
induction. |

Appendix J. Proof of the equivalence between IP-LLR and nP:
Proposition 15 and Theorem 16

In this section, we present the proofs of the equivalence between IP-LLR and hybrid ver-
sions of P both at finite-width and in the large-width limit. Because we need to use the
homogeneity property, we consider a positively p-homogeneous activation function o and
no bias terms except at the first layer for all the parameterizations we consider. We assume
p > 1 for the finite-width case, which includes ReLLU, and p > 2 in the infinite-width case
as we use the Tensor Program framework for the proof and thus require some smoothness.

86

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

J.1 Finite-width equivalence: Proposition 15

We start with a preliminary Lemma showing the equivalence at t = 1 and then do the proof
of Proposition 15 by induction.

J.1.1 EQUIVALENCE AT t =1

Lemma 69 (First weight updates of HP). Consider the IP-LLR and HP parameterizations
with a positively p-homogeneous activation function, and p > 1, and no bias terms except
at the first layer, and let us sub/super-script the variables of each models with IP and HP
respectively. Assume the first training sample (&o,yo) and the loss £ are the same for both
parameterizations. Assume further that X()P £ 0, and simply denote by n the base learning
rate of the IP-LLR parameterization. Finally consider for HP the initial learning rate:
nup(0) = (xF /Xt)n, and let & € RY be an input to both networks. Then, dropping the
dependency of the weights att =1 on 1 and ngp, one has:

Vie[l,L+1], Whp(l)=Wis(1)
Byp(1) = Bip(1)
P©) = A7)

Proof By definition (see Section 4.2.1), we have

(1) = Wp(0) + AWﬁP(l)

(1) = Bip(0) + AB/p(1)

Wip(1) = Wip(0) + AWlp(1), 1€ [2,]
Wi (1) WI%“(O) +AWE(1)

Wip
Bpp

Using Corollaries 41, and Lemma 42, and the fact that nyp(0) X’O‘P = nxép we have:

AWp(1) = —nup(0) x4 dhie]
= —77X0 dhofo
= AVVIP()7

ABp(1) = —nup(0)xg" dh}
= —77X0 dho
= ABIP()7

and, for [€ [2, L]

dhl
AW,p(1) = —nHPXSLP¥

dhb (1T
— i oty

= AWIIP(1)7

87

HaAJJAR, CHIZAT, AND GIRAUD

and finally
AW (1) = —nupxb 26 /m
= —nxp &g /m
= AWIIII/’+1(1)7

where the AW/, (1) and AB'(1) are computed with the base learning rate 1. We then get
Whp(1) = Wi (1) for all I, and it follows that for any input &, fiIF(¢) = fIP(¢). [|

J.1.2 PROOF OF PROPOSITION 15

Proof We first show by induction that the effective weight matrices and the effective biases
of the first layer are the same for both parameterizations at any time step > 1, which will
then immediately yield the result. We have already shown in Lemma 69 that with the choice
of initial learning rate for HP, W}p(1) = Ws(1) for all 1 € [1, L+ 1], and Blp(1) = Blp(1)
as well as (&) = fi¥(¢).

Now let s > 1, and assume that for all [€ [1,L + 1], Whp(s) = Wip(s), and Bp(s) =
Bip(s). We want to show that this also holds true for the next time step s + 1. An easy
induction shows that since the effective weights of all layers are equal, and since by assump-
tion the s-th training sample (&5, ys) is the same for both parameterization, we get that for
any [€ [1,L + 1], xl&HP = JEéJP, hlS?HP = hé,IP’ as well as fIIP(&,) = fIP(&), and therefore
XEP = XISP since by assumption both parameterization use the same loss. This in turn will
give by another easy induction that for any [€ [1, L 4 1], d:ci’HP = da:ls’IP, dhls,HP = dhlst.
Now, by Equation (A.3) we have, on the one hand (recall that s + 1 > 2 so that the base
learning for both models for the (s + 1)-th SGD step is 7)

P, uP
AWfp(s+1) = —777”_(2&’; el)dhi,HPﬂ

and for [€ [2, L]

uP uP
AWip(s) = —npm~ G4 4D dn, ypal
and finally
uP uP
AWI%;A(S) _ —Um_(ZaL+1+CL+1)m§,HP

On the other hand, we have
(o P IP
AWp(s) = —nm~ G0+ dhy 1pe]

and for [€ [2, L]

P, IP
l _ —(2a;" +c l -1
AWip(s) = —nm (20" +<)dhs,IPws,Hp

88

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

and finally
AWEL(s) = —ym~Cabtelin gL,

To see that the quantities are equal, we only need to observe that since s +1>1

p P P, IP
20" + " =—-1=2a7 +c;
p p
2a)" 4+ " =0= QG}P + C%P
uP wP 4 P 1P
207 4 +cp =1 =2ap +cpyg

(recall that for s > 1, ¢ff = ¢ffy = —1, and ¥ = =2 for | € [2,L]). We thus
find AW}p(s) = AW/p(s) for all I, and since Wip(s) = Wip(s) by assumption, we get
Whp(s+1) = W} (s + 1) for all [which concludes the induction.

The effective weights being equal in both parameterizations for all time steps > 1, we
get that at time step ¢ > 1, for any input £ € R?, the outputs fF(¢) and f/F(¢) are the
same, which concludes the proof. |

J.2 Infinite-width equivalence: Theorem 16

In this section we prove Theorem 16 which states the equivalence between IP-LLR (see
Definition 11) and HPZ (see Section 4.2.2). We start by a couple of preliminary results on
the dynamics of HPZ, then proceed to prove the main induction step over ¢, and finally
conclude by putting the results together to prove the theorem.

J.2.1 PRELIMINARY RESULTS

Lemma 70 (uP is zero at initialization). Consider the uP parameterization with an acti-
vation function satisfying Assumption 2 and a loss function € satisfying Assumption 1, and
no bias terms except at the first layer. Let & € R be an input to the network. One has:

Jo(§) ﬁ 0
X0 % >O(0 := 024(y0,0)

Remark 71. The result on the almost sure convergence of xo ensures that the latter is a
valid initial scalar in the Tensor Program defining the computations associated with P (and
thus and HPZ). Also note that the limit of xo is the same as for IP-LLR (see Lemma 44).

Proof uP is designed so that h) = hl and z, = & for any I € [2,L], and as al-
ready proved in Lemma 44, the tilde variables are vectors in the Tensor Program. Since
fo&) = m~ YU LH)TQ%OL we get by the master theorem that fp(§) converges almost surely
towards E[ZULHZ’E(%]. By Lemma 90, Zht = Zh6 and ZU*H = ZUH by definition, and by
the ZHat rule, Z"6 and ZU""" are independent, and since E[ZzV"""] = 0 and E[(Z%0)?] < oo
we get that fo(£) converges almost surely towards 0. The result on the limit of yq is then
simply a consequence of the fact that d2£(yp,) is continuous by assumption. |

89

HaAJJAR, CHIZAT, AND GIRAUD

Lemma 72 (Weight updates for uP at any time step). Consider the uP parameterization
with a differentiable activation function o and no bias terms except at the first layer, and
let t > 1. Then, dropping the dependency of the forward and backward passes on & at time
t, one has:

AWER(t 4+ 1) = —nxpf /m,
dill I—1\T
AWHE+1) = —77Xtt(::;i)a Le[2,L],
AW (t+1) = —nxedhi €],
ABY(t +1) = —nxdh}.
Remark 73. Because HPZ and pP have the same parameterization for t > 1 (see Sec-
tion 4.2.2), the formulas above for the updates are the same for HPZ, the only differ-

ence is that, at finite width, the ' and dhl differ from HPZ to uP because Who,(t) =
Wlip(t) - Wlip(()). Note that the formulas are also exactly the same as for IP-LLR (see

Lemma 49) but again the quantities x} and dil,é differ for uP and IP-LLR because of the
initial weight contribution in W'(t) which is different for the intermediate layers of both
parameterizations.

Proof By Equation (A.6), we have
AW (4 1) = —gm~ Carsitena)y of
= —ﬁthtL/m,
because 2ar4+1 + cr+1 =2 — 1 =1 for uP. For [€ [2, L], we have by Equation (A.3)

AWl(t +1)= —nXtm_(%”C’)dhi(mi_l)T

diLl xl—l T
= —NXt t(!))
m

because dh! = m*1d5£ and 2a; + ¢, =1—1=0 for uP. Finally, for [= 1 we have again by
Equation (A.3)

AWt + 1) = —nyym~Catedgplel

because 2a; + ¢; = —1 for uP and dh} = dh}. A similar argument holds for AB'(t + 1),
which concludes the proof. |

Theorem 74 (Weights in HPZ at time t). Consider the HPZ parameterization with a
differentiable activation function o and no bias terms except at the first layer. Then, for
any t > 1, one has:

(i) WH(t) = U = nxodhbe] — n (424 xodhiel),

90

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

(ii) B(t) = v = nxodhy — n (12} xedhl),
71l jl—1 T _ 71 wl71 T
(idi) WH(E) = =P80 — o (DI 2 0), e 21,

(iv) WHHL(t) = UM fm = nxoil fm — n (S0 xowk /m)

Proof The formulas are correct at ¢t = 1 by definition of HPZ and by Lemma 42 which gives
the first weight updates for uP. Then, an easy induction using Lemma 72 yields the result. B

Lemma 75 (Backward pass of HPZ at time t). Consider the HPZ parameterization with
a differentiable activation function o and no bias terms except at the first layer. Then, for
any t > 1, dropping the dependency of the forward pass at time t on &, and of the previous
forward and backward passes on the corresponding &5, one has:

(i) dif = whi(t) = UL — nxoil — Y02 xeal,
RN dhl)"dh} Yidnt
(ii) diy' = —TIXO% —n Y 1xs+'lhtwé L l€[2,L]
Proof By definition, we have

dit = mdxk

= mWEt()
t—1

= UM —xodl =0 xewk
s=1

where the last equality stems from Theorem 74.

Let [€ [2, L], we have:
dil™t = (Wl(w)TdiLl

dh o~ (ahl)T
() tll ans hy 1

l
Lg

= —nXo

where the second equality stems from Theorem 74. |

Lemma 76 (Z for the forward pass of HPZ at time ¢t = 1). Consider the HPZ parame-
terization with an activation function o satisfying Assumption 2 and no bias terms except
at the first layer. Let ¢ € R? be an input to the network. Then, for any | € [1,L],
Rt (&), 24 (€),dit, aliLl1 are vectors in the program, f1(§) is a scalar in the program, and x1 s
a valid initial scalar in the program. Additionally, dropping the dependency of the forward
pass at time t =1 on &, and of the first forward and backward passes on &y, one has:

(i) Z = ZWWEFBN) ZUE | go LS (eTe | 1) zdbh,

91

HaAJJAR, CHIZAT, AND GIRAUD

(ii) ZM = ZW' W = _py E[Z% ze (zdh, 1e (2,1,

(iii) f1(&) = (WE (1) Taf =2 B2V 2] — nyoE[276 277).

Proof By Theorem 74, with ¢ = 1, one has that h{ = U + o' — nxo(¢J¢ + 1)dh}.
By Lemma 44, dﬁé is a vector in the Tensor Program (recall that the tilde variables at
initialization do not depend on the choice of parameterization) and by Lemma 70 xq is a
valid initial scalar in the program which has an almost sure limit Y, := 820(yo, 0) as m — oo
(see Remark 71). In addition, U'¢ and v! are initial vectors in the program, which thus
shows that hi is a vector in the program by the NonLin operation. This also gives that

w% = a(h}) is a vector in the program since o is pseudo-Lipschitz by assumption. Moreover,

by ZNonLin, we have ZM = ZU'¢ 4 zv' 77)()(0(5845 + I)Zdﬁé. Let [€ [2, L] and assume that
hll_l, mll_l are vectors in the program. Then, by Theorem 74 with t = 1, we get

SI-1NT, I-1
z x ~
B = x0T dhs.
m
(ié_l)Ta:ll_l /m is a scalar in the program by the Moment operation, and thus by the MatMul
and NonLin operations, h} is a vector in the program and thus so is 2} = o(h}), which
proves by induction that this is the case for any [€ [2, L]. By ZNonLin we thus have

ZM = —pxoE[Z% z7 |z,

We then have by Theorem 74 with ¢ = 1,
3 Zi'L T$L
1i€) = m U Tty PO

UL+t — nxO:Z'OL is a vector in the program by the NonLin operation, and the quantity

m~H U — nxozl) =t is thus a scalar in the program by the Moment operation, and

by the master theorem, we get f1(&) — E[ZV""" Z71] — nx E[Z%0 Z*1] almost surely, since

both expectations are finite by Lemma 88. Since we did the previous reasoning with an

arbitrary &, we also get that h} (&), 2} (&) are vectors in the program for any [€ [1, L]

and that the formulas in (), (i7), and (4i7) hold when the input is &;. In particular, fi(&1)
o

converges to a finite almost sure limit f;(£;), and thus the continuity of 02¢(y1,-) ensures
[}

the almost sure convergence of y; towards)O<1 := 020(y1, f1(&1)), which means y; is a valid
initial scalar in the Tensor Program. Then, dropping the dependency of the second forward
pass (at t = 1) on &1, we get by Theorem 75 with ¢ = 1:

dit = UM — nxo

which is a vector in the program by NonLin. Then dhf = dit ® o’(h}) is also a vector
in the program by NonLin since o’ is pseudo-Lipschitz. Let [€ [2, L — 1] and assume that
d:i‘lfrl and dhlf'1 are vectors in the program. Then by Theorem 75 with ¢ = 1, we have

B dill-i-l Tdill+l)
4, =~ {20) A 0?31 o

92

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

(dh5t)Tdhitt /m is a scalar in the program by the Moment operation and by MatMul and
NonLin we thus get that dZ! is a vector in the program. Then dh} = di} ® o’(h}) is also a
vector in the program since ¢’ is pseudo-Lipschitz, which concludes the induction and with
it the proof. |

Lemma 77 (Zs of HPZ and IP-LLR are equal at ¢t = 1). Consider the HPZ and IP-LLR
parameterization with an activation function o satisfying Assumption 3, and no bias terms
except at the first layer, and let us sub/super-script the variables of each models with HPZ
and IP respectively. Let & € R® be an input to the networks, and assume that HPZ and
IP-LLR share the same training samples (£o,y0) and (&1,y1) at t =0 and t = 1, the same
loss function ¢ satisfying Assumption 1, and the same base learning rate . Then dropping
the dependency of the first forward and backward passes on & and that of the second forward
passes on &, we have:

(i) Zhll,HPZ — ZhlLIP’ lel,HPZ — lel,lp; lel, 1],

(ii) limyy, 00 lePZ(g) = limy 00 flIP(O;

o HPZ oIP

(i) X1 =x1
(iv) 7% Pz — Zdjll,[P) 79 1pg Zdﬁll,[P’ le[l,L].

olIP opnP o HPZ . .
Proof By Lemmas 44 and 44 we have xo =X, = Xo = 02¢(yo,0), which we simply

call §<0 in the remainder of this proof for simplicity. By Corollary 52 and Lemma 76 we
have

1 o =~
ZMIe = ZU' 4 70t (&0TE + 1) 2,
and
1 o ~
ZMmpz — ZU' L 7 % (&0TE + 1) 2%,

and since the tilde variables are computed independently of any parameterization, we have
hl hl . . .

7 vHPZ = Z"1IP - Because IP and HPZ share the same activation function we also get
1 1 -1 -1 -1

Z*1HPZ — 7P Now let | € [2, L] and assume Z"MBPz = 7MIP o well as Z“1HPZ =

lelv_llp. By Corollary 52 and Lemma 76 we have
Zhap — ok Zab! Zﬂcl{fp] Zd%,
and
7" npz — —17>%OE[Zifle$ll,_ﬁPZ]Zd%7

. ht Rt
which shows Z 1IP = Z"1.HPZ gince the tilde variables are independent of any choice of
parameterization. Since the activation function o is the same for both models we also get

93

HaAJJAR, CHIZAT, AND GIRAUD

l l
Z°1IP = Z“1HPZ which concludes the induction. For the output of the networks, we have
by Corollary 52 and Lemma 76

1IP () BN E[ZUL+1Z$1L,IP] B USJ(OE[Z%L ZZiIP],

m—o0

and

o ~ L
lePZ(f) _as E[ZUL+1Zx1Lqu] _ nXO]E[ngz 1,HPZ]7

m—r0o0

L L
and since Z'1IP = Z"LHPZ by the previous induction and the tilde variables are indepen-

dent of the parameterization, we get lim, oo fIL2(€) = limy oo fiL(€) =: f1(£). Since

NP = Ba(y1. SIP(€)) and X% = By(yn, SIPZ(€)), by continuity of af(y1,) we get that

o

HPZ 0 oIP
X1 =0y, f1(§)) =x1 -

For the backward pass, we have by Lemma 75 that dif upz = U L+1 *UXO,HPZ%L which gives

. dzl L+1 o L Lo dzt .
by NonLin Z WHPZ = ZU — nxpZ*0 which is also equal to Z " 1IP by Lemma 51 since

the tilde variables are independent of the choice of parameterization. Then, we also get
dhl dzl 1 hE dhl dzl s/ hE . dhl
Z"WHPZ = 7\ HPZy! (7 "W HPZ) and Z""1IP = Z“"1HPZy/(Z"1IP) which shows Z“ 1HPZ —

h dz! dh!tl

dh® 't i dh' s
Z WP Letl € [1,L —1] and assume Z LHPZ = Z70IP a5 well as Z 1HPZ = Z771IP By

Lemma 75, we have

TUIHINT 570+1
1 - (dhg™) dhl,HPZ -1
dafl,HPZ = —1Xo m Lo

which gives by the master theorem and the ZNonLin

-1 -1 P41 _
7% upz — _nioE[Zdho-HZdhLHPZ]Zxé

sl 7l
which is the same expression as 7% P by Lemma 51. It then follows that 7™ mpz —
7l
Z dhLIP, which concludes the induction and with it the proof. |

Theorem 78 (Z for the forward pass of HPZ at time t). Consider the HPZ parameterization
with an activation function o satisfying Assumption 2 and no bias terms except at the first
layer. Let € € R be an input to the network. Then, for any | € [1, L], hL(€), 2L (€), dEL, dhl,
are vectors in the program, fs(&) is a scalar in the program, and xs is a valid initial scalar
in the program. Additionally, dropping the dependency of the forward pass at time t on &,
and of the previous forward and backward passes on the corresponding &, one has:

(i) 24 = ZW OB — ZU6 4 70— (el + 1) 29 - (LI R (e+ 1) 29,

(i) 2% = ZW' O = 3 B[z 7o 20 — g (T REZ 2 20, e
2,L],

94

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

(i) fi(€) = (W (o) e —22 B2V"" 27F] El2% 27t) - (S R, El27* 27F1).
m— 00

Proof The proof is exactly the same as for Theorem 53 except that whenever a multiplica-

tion by W'(0) appears with I € [2, L], it is now replaced by 0, but the reasoning and all the

arguments are the same, which in summary uses an induction over t as well as the master

theorem and the ZNonLin rule from the Tensor Program. |

Theorem 79 (Zs of backward pass of HPZ at time t). Consider the HPZ parameterization
with an activation function o satisfying Assumption 2 and no bias terms except at the first
layer. Then, for any t > 1, dropping the dependency of the forward pass at time t on &,
and of the previous forward and backward passes on the corresponding &s, one has:

(i) 2458 = 70" = 2V o 2% — 3T X2

(i) 290" = —noE[Z M) 2% —n 1) X B2 Zdﬁi]zxi‘i €21
Proof As for Theorem 78, the proof follows exactly the same pattern as for Theorem 79
except that whenever a multiplication by W*(0) appears with I € [2, L], it is now replaced
by 0. |

J.2.2 INDUCTION ON t

Lemma 80 (Induction step on the Zs of the forward pass). Consider the IP-LLR and HPZ
parameterizations with an activation function o satisfying Assumption 8 and no bias terms
except at the first layer, and let us sub/super-script the variables of each models with IP and
HP respectively. Let s > 1, & € R? be an input to the networks, and assume that the training
routine (see Definition 3) is the same for both models with a loss satisfying Assumption 1.
Assume further that, dropping the dependency of the forward and backward passes at time
t=r on&, forallr € [l,s], we have:

(i) Zhl['[PZ,r = ZhlIP,T7 ZlePZ,T = Z:EZIP,T’ lel,L],
(it) Ny yo0 £72(€) = limpn oo f7(6),
oHPZ oIP
(%7’) Xr =Xr
(iv) 7Mpg, Zd’;lzp,r’ 7% 5Pz, ZdilIP,r’ le1,1].

Then, dropping the dependency of the forward pass at timet = s+ 1 on &, one has:
ht h! at xt
(U) 7 "HPZs+1 = 7 IP,s+1’ 7 HPZs+1 = 7 IP,3+1’ l e [LL]’

(U'l) limy, 00 S{IﬁZ(S) = limy, 00 fslfl (6)!

oHPZ olIP
(’UZZ) Xs+1 = Xs+1»

95

HaAJJAR, CHIZAT, AND GIRAUD

7l 7l 71 71
(viii) 2" HPZr = 7%Pori | ZMHPZ 1 = 7% IP st le[1,L].

Proof Since by assumption, for any r € [1, s], the Zs of the forward and backward passes
are equal for both parameterizations, we drop the dependency of those quantities on the

model, and for z € {hl, 2k dhl,dil}, we simply call Z*HPZ = Z4P = Z%. Similarly we
oHPZ oIP

simply call x, =x, =)O<r. We have 53
S
hl 1 o 71 o 71
ZM0PZatt = ZU 8t — v (60651 + 1) 20 =Y X (§l€sa + 1) ZM
=1
hi '
— Z IP,5+1

where the first equality stems from Theorem 78 and the second one from Theorem 53.
Since both parameterizations use the same linearity o, we get thPZ!SH =o0(Z thZvSH) =
O—(Zh%P,sﬂ) = ZIiP,erl.

hl—l hl—l :L‘l_l l‘l_l
Let [€ [2,L] and assume Z HPZs+1 = Z7IPst1 7"HPZs+1 = Z7IPs+1. By Theorem 78,
we have

- - . 5, _ - -
7Pz — —nxoE[Z% IZfo)z,sH]Zdhé _q Z Y E[Ze IZfo)z,sH]Zdhi

r=1

— ~ S p— ~
_ _n;%OE[ZiéflzleP;+l]Zdhé —n §)O(TE[leTilzm%P%erl]Zdhlr
r=1

hl
— 7 HPZ,s+1

where the last equality stems from Theorem 53. Since both parameterizations used the
I+1 I+1
same non-linearity o, we get Z HPZs+1 = Z"TP.st1,

l l l
By induction, we thus get that for any [€ [1, L], 7"z — ZhIPvSH, and Z HPZs+1 =

l
Z"P.s+1 which proves (v). We can thus drop the dependency of hls+1 and xls+1 on the
model HPZ or IP. Now, we thus have by Theorem 78

m— 00

S
lim_fF(6) = {2V 275) = nyoBl27 2780] — (Z %TE[Z*Z*”O
r=1

= lim f,(6)

where the last equality stems from Theorem 53, which proves (vi). Then (vi) combined with
. . . oIP oHPZ
the continuity of 920(ys41,-) proves (vii), and we can thus imply denote x,,1 = X,41 =

o ~L ~L

Xsi1- By Theorems 79 and 56 we get 2% Pz = desH»IP, from which it follows that
L L

z2Msnmrz = g% by (v) and since both models share the same activation function.

Finally, given the previous result, with (), (¢i7), (iv), (v) and (vii), an easy induction gives

(viit) with the formulas of Theorems 79 and 56, which concludes the proof. [

96

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

J.2.3 PROOF OF THEOREM 16

Proof The claim has already been proved at ¢ = 0 by Lemmas 44 and 70, and at ¢t = 1
by Lemma 77. Then, by Lemma 80, we get the result at any time step ¢ > 1 by induction. B

Appendix K. Formal versions of the results for the alternative methods
to escape the initial stationary point

K.1 Formal version of Theorem 18

Theorem 81 (Formal). Consider the IP-bias parameterization as in Equations (5.2), with
the initial learning rates as in Equations (5.4) and (5.5). Assume the activation function
o satisfies Assumption 2 and the loss ¢ satisfies Assumption 1. Then, for any input & € R?
to the network, th)(g), Z%0() forl > 2, and limy,_,~ fo(§) do not depend on &. In addition,
for any vector x in the program such that Z* does not depend on on the first training input
o, ZAW' T for | e 3, L], and limy, oo (AWETL (1)) 2 do not depend on &.

Proof We have h} = U¢ 4 v! so that Z2h0 = ZU'6 4 Zv' ~ N(0,]|¢][2+1), and Z% =
o(Z"). At the second layer | = 2, we have hE = m_I/QWQx(I) + v2 so that by ZNonLin
ZM = 0 x 2V 4 7V, and AL RN N(0,E[(Z70)?]). Because o is pseudo-Lipschitz, it
is also polynomially bounded, and the variance of the Gaussian is finite by Lemma 24, so
that Z" = Z** ~ N(0,1) which does not depend on ¢. Therefore, Z% = o(Z") also does
not depend on £. Let [€ [3,L] and assume that zh ' = 79" and z% ' = o(Z').
Then, we have Z" = 0 x ZWhag " 4 7", and AL TN N(O,E[(Z‘”éﬁl)z]), and the vari-
ance is again finite by the same arguments as for [= 2. We thus get Zho = 7' and
Z%0 = o(Z hé) = J(Z“l) which concludes the induction and shows that Z"0 and Z% do not
depend on £ for all intermediate layers [.

For the output of the network, we have by the master theorem that m (U L“)TxOL converges
almost surely to E[ZULHU(Z”L)] = 0 since ZU""" has mean 0 and is independent of Z°".
Since fo(€) = m~ Y UL zf + vEH! where v+ ~ N(0,1), we have that fo(£) converges
almost surely to the Gaussian variable v“+1 which does not depend on ¢. For the backward
pass, recall that we call d7}, := m_lm_(L_l)/ZVng fo(&o) and dhly = m_lm_(L_l)/zvhz fo(&o)-
Then, we have diy = UL, dhf = UL © o/(hf), and a simple induction shows that for
any [€ [1,L — 1], dil, = (W) bl dhl = dil © o/ (BL). We thus have Z%%6 = zU""
and Z46 = zU" "o/ (Z¥") which does not depend on the first training input &. With the
recursive formulas above, and since Z" = Z' for I € [2, L], it is clear that 7% and Zh
do not depend on & for [€ [2, L].

Finally, let x be a vector in the program for which Z% does not depend on &, and let
[€ [3, L]. Then, by design, with the initial learning rates of Equation (5.4) for the weights
with IP-bias, we have

l_
(zg !

;
:II‘ ~
AW () = —nmm)dhé,

97

HaAJJAR, CHIZAT, AND GIRAUD

so that by ZNonLin
ZAWZ(I)x — —niOE[Zzll_IZI]ZdiLB,

where yo = 920(yo, v, Since vLt Z“éﬁl, 7% and Z%6 do not depend on & (-1
and [are both in [2, L]), ZAW! Mz 4150 does not depend on the first training input &.
To conclude, we have by the master theorem that (AWX+1(1))"z converges almost surely

towards —n)%OE[ng Z*] which is does not depend on & since this is the case for v+, A
and Z” which concludes the proof.
|

K.2 Formal version of Theorem 17

Theorem 82 (Formal). Consider IP-non-centered with the Naive-IP learning rates at every
time step. Assume the activation function o satisfies Assumption 2 and the loss £ satisfies
Assumption 1, and let t > 0 and & € R? be an input to the network. Then, calling dié =
mV 1 fs(€s) and dhl := mV i f5(&s), one has that:

(i) for any l € [2,L — 1], Z" and Z® are deterministic constants,
(ii) for anyl € [2,L —1], 7% and 74 deterministic constants,
(iii) for anyl € [3, L — 1], and for any vector x in the program, we have that
ZW! (E+D)-W! 0z (_,7 S v, 24 Zwéfl) E[Z7].

Remark 83. Point (iii) highlights the fact that in the infinite-width limit the (random)
matriz operator (w!(t) —w!(0)) acts on a vector x as if all the entries of the matriz operator

were equal to a single deterministic constant (—77 Zz;t)(J(SZd;‘iZ”:ls_l), because then the
averages over the coordinates of x involved in (W'(t) — W'(0))x would simply yield E[Z*]
by the master theorem of the Tensor Program.

The proof Theorem 82 can be found in Appendix K.2.2. The proof is done by inducting
over t, and we present the case t = 0 and the induction step first in Appendix K.2.1.
K.2.1 PRELIMINARIES

Lemma 84 (First forward-backward pass and weight updates). Claims (i), (it) and (iii)
of Theorem 82 hold at t = 0.

Proof h} and zj = o(h}) are vectors in the program by the MatMul and NonLin rules since
o is pseudo-Lipschitz by assumption, and Z% = ZU'¢ 4 Zv" ~ N(0,||¢|[>+1), and finally
Z% = g(Z"). Now, we have (recall that as defined in Section 5.1 J is the matrix full of
ones)

hE = m_l/QWQ:L"(l) +m ™ ? fugm T},

98

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

'm*l/QWQx(l) + m~'? is a valid vector in the program by MatMul and NonLin because
the initial scalars m~Y2 and m~! converge to 0 almost surely, and Zm” PWrg e
0 x ZW* 4+ 0 x Z**. By the ZHat rule we get that 2’70 ~ N(0,E[(Z*0)2]), with finite
variance by Lemma 24 since o is pseudo-Lipschitz and thus polynomially bounded, and
7% ~ N(0,1). We thus get 2™ /*(W?25+v*) — 0. On the other hand, 6 := (1/m) Dot T
is a valid scalar in the program by the Moment rule and it converges almost surely to
Z? = E[thl)] by the master theorem. The coordinates of ugm™1Jx} are thus all equal to
u2f, and the vector ugm~tJz} is thus equal to 1 (zd;0) coordinate-wise where the function
¥(;+) : R x R — R is pseudo-Lipschitz and depends only on the second variable with

Y(r;0) = uga. By the NonLin rule ugm™'Jxz} is thus a vector in the program and by

ZNonLin we thus get Z%2™ /=0 = 1)(Z%0; 0) = uoE[Z%0]. We thus finally get
7" = uyR[Z%0],

which is a (finite) deterministic constant. Then the same statement holds for Z% =
o(ugE[Z7]). Let | € [3,L] and assume that ho~! and 7! are vectors in the program

-1 -1 e e .
and that Z" and Z% are deterministic constants. Then, we have
hé = m_l/zwlxé_l +m ol um T gl

As for the case | = 2, we get that m_l/QWlxéfl + m~ 1! is a vector in the program with
Zm AW m e 0, and ulm_lJméfl = @Z)(xéfl;ﬁ) is a vector in the program with
¥(z; @) = wa (recall that ¢ is taken coordinate-wise) depending only on the second variable

and 0 := (1/m) 221:1 xé;ll is a valid scalar in the program by the Moment rule, which, by

[e] _ —
the master theorem, converges almost surely towards 6 = E[Z‘”é 1] = 7% ' since the latter
is a deterministic constant by the induction hypothesis. By NonLin hé is a vector in the

]

program and by ZNonLin Zho = w(Zmé_l;H) = ulZ‘”é_l which is a deterministic constant.
The same claim holds for Z% = a(ulef)_l), which concludes the induction for the forward
pass. For the backward pass we get diy = wX*1(0) = UL + uz 111 so that by ZNonLin
7435 = ZU 4 up+1 ~ N(ups1,1) since uryq is a valid initial scalar in the program as it
converges almost surely to ur41. We then have Zdh§ = 74§ a’(Zhg). Note that both Z4%

7L «
and Z%9 are not deterministic constants because UL is Gaussian with variance 1. We
then have:

dit=' = m ' PWEY dhl + upm 1 ITdh

As usual the first term m~1/2 (/WL)TdiLOL is a vector in the program by MatMul and NonLin
and gm™PWhTdhg 0. For the second term, since JT = J, m_lJTdﬁOL is also a vector
in the program and Zm ' ITdhy uLE[Zdﬁg]. We thus get that digil is a vector in the
program with 743" = urE[Z dhiy | which is a deterministic constant. Then, d%_l is also a
vector in the program and by ZNonLin zdhe ™! = gdig o/ (Zhg) is a deterministic constant.
Repeating the reasoning above at any layer [€ [2, L — 1], an easy induction (as in the

forward pass) shows that d% and d% are vectors in the program and that Z dif and Z4ho

99

HaAJJAR, CHIZAT, AND GIRAUD

are deterministic constants. Note that Z%% = ugE[Zdﬁg] = ugZdﬁg is also a deterministic
constant but that Z%0 = Z4%5'(Z") is not because Z" ~ N(0,||¢]|241). Let I € [3, L—1],
and let x be a vector in the program. With the Naive-IP learning rates, we have

71 =1NT
A1) =~ TR0

- .
Since [€ [3, L — 1], 74 is a deterministic constant, and since [— 1 € [2,L — 2], Z%0 " s
also a deterministic constant. By ZNonLin and ZMomentwe get

ZAWl(l)J: — —n)%OE[ZI%rle]ZdEé
= —nxoZ ™ 2% E[27]

which concludes the proof. Note that xg is a valid initial scalar in the program because
fo(&) = m Y (UF Y2l 4+ up ym™1172] converges almost surely, by the master theo-

rem, to E[ZULHZ“%] + uLHIE[ng] = up 1 Z% since Z¥ is a deterministic constant and

ZU O N (0,1) has mean zero. Since 02£(yo, -) is continuous by assumption, xo converges

almost surely towards >O<0 = 020(yp, uLHZ”Cg). [

Lemma 85 (Induction step at time ¢t > 1). Let t > 1 and assume claims (i), (ii) and (ii7)
of Theorem 82 hold at all time steps s € [0,t — 1]. Then claims (i), (ii) and (i) also hold
at time step t.

Proof With the Naive-IP learning rate exponents, we get that for any ¢ > 1,

WHt) =U' = 0> xadhi€]

BY(t) =v' —n) xsdhi,
t—1 dhl)
W) =m ' (U + uJ) - ans , le2,L],

Bl(t) =m ! —pm™t Z xsdhl, lel2,L],

1 L
WEHL(4) = m- (ULt . Z Ty
() m (+'I,LL+1) n 4 Xs m7

t—1

BL+1() -1 L+1 —nm 12)(5
s=0

100

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

By a simple induction, all the A, z! and dzl dhl are part of and the scalars y, are valid
scalars in the program which have a constant almost sure limit, and by ZNonLin we get:

t
ZM =77 4 77— X, (€le+ 1) 27
s=0

and Z% = o(Z") is not a deterministic constant because ZU'€ + Zv" ~ N(0, ||€][>+1). Let
l €[2,L—1]. We have

t—1
ZM =0 2V 0% 27 F w27 - 0> REZ5 2 20
s=0
t—1 i
= wE[Z" | =0y XE[Z7 202,
s=0

which is a deterministic constant with the assumption on the 7R, since | € [2,L — 1].
Note that if [€ [3, L — 1], we even have that the expectations simplify and we get Zht =
(up—m>. 7% A 2l 1Zdhls)Z”lt_l. In any case, Z% = O'(Zhi) is also a deterministic constant.

For the output of the network, we have

i—1 - INT, L
(U Taf 1Tz} —1(, L+1 (z5)
ft(f):T+uL+1 . tm (v —UZXs)—UZXsT

so that even if the 2% are not deterministic, f;(€) still converges almost surely, by the master
theorem, to IE[(ZULJrl +up41)Z” t] - B)O(S [szthL], and since 020(yy,-) is continu-
ous by assumption Xx¢ converges almost surely towards the constant ng(yt,IE[(ZUL+1 +
Up 1) 2% — >y L X.E[Z%% Z*T]). For the backward pass, we get:

t—1
79 = ot = gUMT UL+1 — TIZ >%sZmSL
s=0
and Zt = Z9% o' (ZM). Let | € [2, L — 1], we have
d:i'zlf — (Wl-i-l(t))TdiLiJrl
t—1 FIINT 57041
- _ B dhl—i—l dh +
m_l/z(T/VlH)TdhffJrl +m~tuyy JdRIT — Z XSM.%'Q,
5=0 m
so that by ZNonLin we get
2l Pl G PRSI ST
2% = w B2 = Yy X B2 2T 7,
s=0

and since [€ [2,L — 1], Z %% is a deterministic constant and thus so is Z%%t. Then, Z dhi —
Z9%o/(Zht) and since | € [2, L—1], Z" is a deterministic constant. Finally, let [€ [3,L—1],

101

HaAJJAR, CHIZAT, AND GIRAUD

and let « be a vector in the program. We have

(WH(t+1) = W) = —n > xe——
s=0

and by ZNonLin

t
Z(WHt+1)=WH0)z _ - Z ;QSE[ng—IZm]Zdﬁg
s=0

t
- <‘77 > §dehéZ$l;l> E[Z°],
s=0

where the last equality stems from the fact that since | € [3,L — 1], 1 -1 € [?,L — 2]
and Z7 ' is a deterministic constant for any s € [0,]. Since [€ [2,L — 1], 25 is also

A
a deterministic constant, so that —n Zi:o ;SZ‘WS Z7 " is a deterministic constant, which
concludes the proof. []

K.2.2 PROOF OF THEOREM 82

Proof The result simply comes by induction over ¢ using Lemmas 84 and 85. |

Appendix L. The variables associated with the initial weights vanish in
IP-LLR

In this section we wish to study more precisely the evolution and the expression of the
variables Z in the dynamics of IP-LLR at any time step t. To this end, we will show
that the Zs of all the forward and backward variables in IP-LLR are functions only of the
A and Z(Wl)Td%, as well as the initial vectors Ul&y, ..., UL&, vb, UL, We will thus
write

7= u (7757

A(Wk)TdiLk) 1 1 L+1)

l (z b) (U'e), U

to generically denote that the variable Z7 is a function only of the variables which appear
in the arguments: /Z\Wliéfl, Z(Wk)Tdi‘g, Ulgs, vt and UYL (where multiple values of [, k
and s might actually appear in the argument). This function ¢ (we will sometimes also
use ¢) will of course depend on the z under consideration, and we might denote it by 1*
(or ¢*,) but most of the time we will omit this dependency and simply use the symbol
for different variables to express that the variable Z7 is a function of the arguments of ¥ only.

We will see that the function 1) appearing will always be polynomially bounded by some

form of composition or product of polynomially bounded functions, which will allow us to
prove that the corresponding Z# is finite almost surely since its arguments, considered as a

102

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

vector, follow a Gaussian distribution with finite variance (and thus finite moments of any
order). Note that in the proofs, we will use extensively (without explicitly saying so) that
if ¢ and 9 are polynomially bounded then ¢ x 9 is also polynomially bounded, and if ¢ is a
polynomially bounded function of a single variable then o1 is also polynomially bounded.
We introduce the following definition and lemma which we will use extensively in the proof
by induction:

Definition 86 (Vector of initial vectors and first forward-backward). Let ¢t > 1. Then,
dropping the dependency on t, we define the random vector:

To = Zoy = (2U1€0, L Ut gt Zuttt

O e
w2zl Wilgk—t
A 0,..., 72 0

)

2(6172)%&3’ ‘ E(WL)Tdﬁg>

c ey

Remark 87.

1. Note that any function of Zy s will also be a function of Zo; for t > s, which is also
why we suppress the dependency on t as we can always take the largest possible t when
we make a specific claim which involves Zy.

2. Also note that by the ZDot rule of the Tensor Program, for any vector z in the Tensor
Program such that Z% is a function only of Zy, then for anyl € [2, L]:

Z/le —F [0Z* :| ZdiLf)

BE(WZ)Td%

~Tlal—1
ZW z

Z (WZ)TZ —F |: 0Z* :| Z:iéfl
9]

Lemma 88 (Distribution of Zy and moments). One has

S 0 0
(i) Zo~N|0,{0 Df 0 with
0 0 Dy
> 0 0
S:=10 1 0] e REF)x+3) s = ENEs,
0 0 1
E[(Z%)?
Dy = € RIL-Dx(L-1)
E[(Z%)]
E[(Z%)?)
Dy = c RE-DX(L-1),
E[(Z%%)?]

(i1) |E[Y(Zp)]|< oo, and |¢(Zp)|< oo almost surely for any polynomially bounded function
YR R,

103

HaAJJAR, CHIZAT, AND GIRAUD

Remark 89. Note that the lemma stays valid even if 1 does not depend on the whole list
of variables inside Zy but only on a couple of them, which will be the case in the Tensor
Program. Point (ii) will be used repeatedly in different proofs to show that the expectations
appearing in the forward and backward passes are finite.

Proof Claim (i) simply comes from the definition of the initial vectors U'&y, ..., U'&,
UE+!l and from the ZHat rule in a Tensor Program. Claim (i) then follows because all en-
tries in the covariance matrix are finite by Lemma 32, and since 1 is polynomially bounded
and the moments of a Gaussian with finite variance are finite, |E[¢)(Zp)]|< E[|¥(Z0)|] < o0
and thus |¢(Zp)|< oo almost surely. [|

Note that by Lemmas 34 and 36, the first forward and backward passes of IP-LLR easily
express in function of the entries of Zy. Let us now take care of the forward and backward
passes at t = 1. As the dynamics evolve with time, the expression of the forward and
backward passes of IP-LLR in function of Zj (or rather of some of the entries of Zj) get
more intricate. They are still easy to develop explicitly for ¢ = 1 but we choose to simply
express what variables appear in the expression of the forward and backward passes instead
of giving the expression explicitly.

Lemma 90 (Multiplications by initial weight matrices vanish with polynomially bounded
variables). Consider the IP-LLR parameterization and let z be a vector in the program such
that Z% = 1p(Zp) with ¢ polynomially bounded. Then, one has that for anyl € [2, L]:

(i) if A(Wl)Tdhl = ¢(Zy) with ¢ polynomially bounded, then ZW' 0= = g,

(i) if —2& &(Zy) with ¢ polynomially bounded, then ZWHO)Tz — .

Awlll_

Proof Let [€ [2,L]. We simply write
ZWH0)z _ &lgﬁﬂz 1 5312 Wiz

where ZW'(0)z ~ N(0,E[(Z%)?]) and the variance is finite by Lemma 88 because (Z7)?
a polynomially bounded function of Z; since Z7 is. This shows that]ZWZ(O)Z|< oo almost
surely and thus that :)lZWlZ = 0 since a%l = 0 in IPs. On the other hand,

[97* :|dezf)

PR
07 (WhTdh)

and the expectation is finite by Lemma 88 since 02%/0Z ZU0K = ¢(Zy) with ¢ polynomially
bounded, and

b, _ ZWHN dhi+10 51 ZWSG1) if e (2,1 — 1]
2V e (ZWia T it =1

In any case, 74 is a polynomially bounded function of Zy and is thus finite almost surely,
which entails w;Z"'? = 0, and therefore Z"W'(©7 = 0 which gives (7).

104

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

The same reasoning with W (0)" gives (i) if 8ZZ/82W%6—1 = ¢(Zp) with ¢ polynomi-
ally bounded.
|

L..0.1 THE CASE t =1

Lemma 91 (Z in the forward pass of IP-LLR at ¢t = 1). Consider the IP-LLR parameter-
1zation with a positively p-homogeneous activation function, and p > 2. Then, dropping the
dependency of the forward pass on &1, one has:

(i) ZM =y (ZUlfO, U, Z(W"’)Tdﬁ%)

(i) ZM =y <2VAV%‘1, 2<W’+1>Tdﬁé“>, le2,L—1]
(iii) 2" = (EUL“, ZWhag ‘1>
and

(iv) 2 (20, € 2.1

E(VT/UM%

() 22—y (Zg), L € [2, 1)

EVAVliffl -
and all the different 1 that appear are polynomially bounded.

Remark 92.

1. Recall that we simply use Y or ¢ to mean that the variable is a function of the
arguments of ¥ (or ¢) only, and that the different ¢ and ¢ which appear in the
different claims (i) to (v) are mot actually the same.

2. For the partial derivatives we chose not to make a precise statement on which variables
exactly appear in the expression as this will not matter and would only over-complicate
things for close to none added-value.

3. Note that with the claims above, one can prove that c?)lZmA/lzlfl = 0 because both of

the terms Z and Z defining 2V e polynomially bounded functions of Gaussians
which has finite covariance matrices, and w; =0 in IPs.

Proof Using Theorem 53 with £ = & and ¢ = 1 we have claim (i) because, first
7485 = E(WQ)Tdi’g, and second ¢’ is polynomially bounded (see Appendix E). Claim (%)
also stems from Theorem 53 since 2% = Z (WZH)Td%H, 7k = EWZ%”, and ¢’ is poly-
nomially bounded. Finally, claim (ii7) also stems from Theorem 53 since Zdig = ZU
Zht = Zwlfg_l, and ¢’ is polynomially bounded.

105

HaAJJAR, CHIZAT, AND GIRAUD

From Theorem 53, we get:

YA

o =771
m = —77X0<§5§1)‘7/(ZU 50)

For [€ [3, L], from Theorem 53, we get

pi-1 _
O RGEIZE 2 e (ZVE

which immediately gives claim (iv) since ¢’ is polynomially bounded and with claim (%)

and Lemma 88, we also have \E[Z%%Zjlfz]K oo. Similarly, for I € [2, L], from Theorem 53,
we get,

ht o
O peELZ 2 2 (7
0Z"W " %o

and Z%6 ' = ZWHDTdhG™ G [2,L — 1], and 745" = ZU" if | = L. Since the expec-
tation is finite by claim (i7) and Lemma 88, and since ¢’ is polynomially bounded, we get
claim (v). [|

Lemma 93 (7 in the backward pass of IP-LLR at ¢t = 1). Consider the IP-LLR parame-
terization with a positively p-homogeneous activation function, and p > 2. Then, dropping
the dependency of the forward and backward passes on &1, one has:

(i) 205 = (29, 2V,
Zi =y (20, 2V
(“) Zdzl w<ZWl 17— 2)
Zdhl 1 ¢(ZWZ 141—2 Z(Wz) dhl) l e [3,L]
(iii) 24 = (2V'%),
dhi _ (ZUlgo A% &, Z(WQ)TdB(%)
and

(iv) Ajj”’;l = (Z), L€ [1,L]

()%zwzo),mu—u

Wl+1)Tdhl+l

and all the different i that appear are polynomially bounded.

106

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Proof For the backward pass, we have by definition of the tilde variables for ¢ > 1,
dil = wlt(1) = UM — nxoi¥ by Lemma 41, and thus

AUL+1

Zd.if -7 (Z\Wli‘é’_l)

- 77>O<0(T
Then,

Zdil{‘ — Zdjf O',(th)
which gives claim (7) since o and ¢’ are polynomially bounded, and Z T = 1/)(2 vttt 7 Whig 71)
and 1) is polynomially bounded by Lemma 91.

For Il = L — 1, we have
diy~t = (WH(1))"dhy
= wr (W) dht — 77><o(d]~7’gr)nT hi 5!
which gives
1

Zdif*l — COULZ(WZ)Td/th _ ,,7§<0E[de~7,é’ Zdilf]zi‘é’7

Now, by the previous expression of 74t and by Lemma 91, we get

AL o g
T Moo (ZW'F ! (ZM) 4 779 ﬁU'I(Z’ﬁL)
ow'z; Wizt

and by claim (7) and Lemma 91 we get

azdﬁf
owlgh=1

with ¢ polynomially bounded since ¢’ and ¢’ are polynomially bounded. Therefore, by
o T g7,

Lemma 90, we get wLZ(Wl) dhi — 0.

We thus simply get

1

Zdif*l — _n;)(OE[ZdEé Zdilf]za?é’7

746 and Z9 are polynomially bounded functions of Zy and thus so is zdh§ ZdﬁlL, and by
Lemma 88, |E[Zdﬁ5ZdillL]|< 0. Since Z41 " = w(Z‘%gil) with 1) polynomially bounded,
we thus get A - w(éwl_ljg_Q) and v is polynomially bounded (indeed: (z) =
~oElZ78 2o (2).

We have

thl

Zdilf*l — ZdilLilo_l(Z 1)

107

HaAJJAR, CHIZAT, AND GIRAUD

and since by Lemma 91, - zp(ZWl tag ot Zwhd) with v polynomially bounded,
by the previous result for 791" and since o is polynomlally bounded we get

7L—1 ASTl—17L—2 =Squvih\T g5 L
Zdh1 — 1/)(ZW Zy 7Z(W) dho)

with ¢ polynomially bounded.

We have
aZdhf_l _ aZdilL_l / pL—1 dzt—1 8ZhlL_l T
ATl 1xL—2 AAl_1~L72O— (Z !)+ Z ! AA1_1~L720— (!)
3ZW Zg azw T, azw Zg
= — XoE[Z 7)o (ZV T g (2 +
3ZhL 1 B
deL 1aZWl lmL 2O_//(ZhlL 1)

By Lemma 91 and since ¢’ and ¢” are polynomially bounded, and we have already proven
that Z%1 " = = 1(Zp) with ¢ polynomially bounded, as well as |E[Zdh § zdht J|< o0, we get

dhf=t
S = ()
with ¢ polynomially bounded.
Similarly, we have
0z " 0ZW L ey | gt 02 iy
97WE)Tdhy 57 (WE) dhk 97 WE)Tdhk
_pdiy oz " hlL‘l)

az(WL) Tdhk g

Now, we have shown above that A - ¥(Zy) with 1 polynomially bounded, and by

Lemma 91 we have that both 8Zh1Lil/8Z(WL)Td% and ZM " are polynomially bounded
functions of Zy, which gives

azdf11L*1

oz V)

with ¢ polynomially bounded.

Let [€ [2, L — 1] and assume claims (i), (iv) and (v) are true for layer {. We have
gdE Tt &ZZ(MA/Z)TdiLll _ nio]E[ZdiLé Zdhll]ng—l

Since by the induction hypothesis BYAL / oZW'ag ! = ¥(Zy) with 1 polynomially bounded,
J o g

and Z% is a polynomially bounded function of Zy, by Lemma 90 we get w;Z (W dhy — @,

Then, we simply get

Zd;zlfl _ _7DOCOE[dh Zdﬁll] Z:zg*

108

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Again here, since both 7% and 79 are polynomially bounded functions of Zy, then so
is Z 7 | which shows by Lemma 88 that |E[Z%6Zdh]|< co. If I > 3, since Z%0 = =
0(2 Wliljéig) and o is polynomially bounded, we get that

Zdi‘l171 — ¢(2wl71iéi2)
If [= 2, since Z% = 0(ZU150) and o is polynomially bounded we get:
Zd& ¢(ZU160)
with ¢ polynomially bounded.

We then have
Zdh T pddt Tt (Zhi !)
and thus

oz 029" 1¢hit dzt=* 07" "ezhtt
STl 1-2 ool ~172U(Z !)+Z ! A STUl—141-2 (Z !)
VAL 9ZW'-1(0)&, VAL
= — X[z 2o (2750 o' (2) +

-1

-1 0ZM -1

7% (7")
S A

By Lemma 91 as well as the previous result on 797" and since |E[Zd% Zdﬁll] |< 00, and o
and ¢’ are polynomially bounded, we get that

8zd}~zlfl
DY

= ¢(Z)

with ¢ polynomially bounded.

Similarly
Pl ~1—1 -1
VA . 0729 O'/(Zhl;l) + deﬁlfl 07" //(Zhllil)
07 WhTdRy, — 57 (W) Tdh 97 WL dh|
-1
_ odit? 0ZM 1Rt
0 g)

and the three quantities in the product are polynomially bounded functions of Zy (shown
above for the first term and by Lemma 91 for the two other terms). We thus get

VAR
9ZWh) i

= ¥(Z)

109

HaAJJAR, CHIZAT, AND GIRAUD

with ¢ polynomially bounded. This concludes the induction and thus proves claims (i),
(#i7), (iv) and (v) by induction.
]

Corollary 94 (Multiplications by the initial weight matrices vanish in IP-LLR at ¢t = 1).
Consider the IP-LLR parameterization with a positively p-homogeneous activation function,
and p > 2. Then for any l € [2, L], one has:

{ZWZ(O)Qfll_l — (f)lZ/Wlxll_l =0

ZWHO)TdRy — & 7 (WhHTdRi _ ()

Proof Those results are actually hidden in the proof of Lemma 93 and come from
Lemma 90. |

1..0.2 THE CASE t =2

Lemma 95 (Z in the forward pass of IP-LLR at ¢t = 2). Consider the IP-LLR parameter-
ization with a positively p-homogeneous activation function, and p > 2. Then, dropping the
dependency of the forward pass on &2, one has:

() 2% =y (200, 206, Z0%6, Z07aR)

(ii) 2% = (ZW'30, ZOTRT) e 2,0 - 1)
(iii) Zh% = <§UL+17 2W%g*>
and

-1

(iv) DL2_ — 4 (Zy), 1€ [2, L]

Z(WhHTdhg
(1) 2 = (Z). 1€ 2.D)
and
(vi) ZV' 02" =0 1 €2, L]
and all the different ¢ that appear are polynomially bounded.

Proof We have

hy = U — nxo(E5&)dhs — nxi (€] &2)dhy

which gives
1 1 o 71 o Bl
ZM = 2V —x o (€1€2) 20 — ny, (€]6) 2

110

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

By Lemma 93 Z4h = PY(ZV'% ZU' Z(WQ)WE(Q)) and we also have Z4h = Y(zZV' 6, E(WQ)Tdi”g)
where the different 1) are polynomially bounded, which gives claim (7).

We have
RYAL o VAL o VAL
m = —TIXO(fon)W - 77X1(51§2)m
with
VAL .
g =020
0

which is a polynomially bounded function of Zy and so is 92 dh} / §Z(W*)"dh3 by Lemma 93.
We thus get claim (iv) for [= 2.

We have
2% = 527 — Bl 274 2% — Bz 27 2

Now Z72 = O'(Zh%) is a polynomially bounded function of Z; because Z" is and o is
polynomially bounded. Secondly, we have

7% YA

97W2)dh2 57 (W2) dh3 o

'(Z"2)

which is a polynomially bounded function of Zy by the previous results. By Lemma 90 we
get that wsZ" 2 = 0 which gives claim (vi) for [= 2. In addition, this yields

2" = —nxoE[2% 23] 2" — B[zt 274 27

which gives claim (i¢) for [= 2 by the results for the backward passes at time ¢ = 0
and ¢ = 1 and because the expectations are finite since the integrands are polynomially
bounded functions of Zj, as they are products of such variables by the induction hypothesis.
Additionally, we have

02" o 0z o 0z
57 (W3(0)Tdh3 57 (W3(0)"dhg 57 (W3(0))Tdh3
and we have
8Zdﬁf2) 1 W25k
82(W3(0))Tdﬁ8 =0'(Z7 ")

and 974" /82 (W30 dh§ i 5 polynomially bounded function of Zy by Lemma 93. Once
again, since the expectations are finite, we thus get that

02"
oz VA

111

HaAJJAR, CHIZAT, AND GIRAUD

with ¢ polynomially bounded. A similar reasoning would prove that

oz
ogmon V)
with ¢ polynomially bounded because
dh} — . —
9270 7OV) b 1 W23t

97W3(0)73
and 8Zdﬁ%/82W3(0)5”3 = 1(Zp) with ¢ polynomially bounded by Lemma 93.

Let [€ [2, L — 1] and assume claims (i7), (iv), (v), and (vi) for layer {. Then, we have:

I+1 l [¢]

th = ‘f)l+1ZI//V\l+lx2 _ nXOE[ZUEf)Z:EZQ]ZdBéJFl _ T])%lE[Zmll ZxIQ]ZdBllJrl

Now Z% = o(Z hl2) is a polynomially bounded function of Zy because Z hs g by the induction
hypothesis and o is polynomially bounded. Secondly, we have

zl l
0z = 07" UI(Zhé)

82({471+1)Td%+1 82(W1+1)Td%+1

which is a polynomially bounded function of Zy by the induction hypothesis. By Lemma 90

Witlgl

we get that wﬁrlZ = 0 which gives claim (vi) for layer [+ 1. In addition, this yields

7" = B[z Z%) 20 — py Bz 27 2

which gives claim (ii) for layer [+ 1 by the results for the backward passes at time ¢ = 0
and ¢ = 1 and because the expectations are finite since the integrands are polynomi-
ally bounded functions of Zy, as they are products of such variables. The only thing
that one has to be careful with is that if [+1 = L, then Zh™ = I/J(ZULH,ZWlfg_l)
and ZM" = p(ZU"", ZW'%) with both ¢ polynomially bounded, which gives claim
(ii7). Otherwise, if [+1 < L — 1, Zh" = o(ZW'™'a, ZWT2O) 2 yng Zhi™ =

1/}</Z\Wl+l% Z(Wl+2(0))TdiLl+2)
layer [+ 1.

with both 1) polynomially bounded, which gives claim (ii) for

Now, if [+1<L—1,

141 7l+1 7l+1
h2 ho hl

024
97 (W+2(0)) dhg

024
97 (W+2(0)) dhg™

0Z

. o S —
07 WH+2(0) a2 MBIz

= —nYoE[Z70 2%

and we have

azdﬁf;rl
97 (W2(0)) dhg

_ Ul(Z\Wl-H%)

112

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

and 974" /82(Wl+2(0)fdﬁl+2 is a polynomially bounded function of Zy by Lemma 93.

Once again, since the expectations are finite, we thus get that

hl+1

YA
§7(Wi+2(0)Tdhb+?

= (Z)

with ¢ polynomially bounded, which proves claim (iv) for layer [+ 1. A similar reasoning
would prove that

oz
W = ¥(Zo)
0
with ¢ polynomially bounded because

ozds [ZVO) G g (zW”l 0)if I+1<L—1
82WH—2(0)% - ZUL+1U//(2W xO) if l+1=1L

and 8Zdi‘l1+1/82Wl+l% = ¢ (Zy) with ¥ polynomially bounded by Lemma 93. This proves
claim (v) and thus concludes the induction and with it the proof. [|

Lemma 96 (Z; in the backward pass of IP-LLR at t = 2). Consider the IP-LLR parame-
terization with a positively p-homogeneous activation function, and p > 2. Then, dropping
the dependency of the forward and backward passes on £, one has:

(i) 2% = (207, 277,
S A
(i) 295" = (ZV7, Z0V0),
57 (B4 2) 1
(iii) 7dz5 (ZU'% . ZU' Z(WQ)W%),
dh} _ (ZU1§0 U ZU'G Z(AQ)Tdhg)
and

(iv) 92" & =(Zy), l € 2, L]

AWll 1

—1
() A(WL)Tdhl = /IIZ)(ZO)7 l € [2’ L]
and
(vi) ZW'ONTdRy — € (2, L]

and all the different i that appear are polynomially bounded.

113

HaAJJAR, CHIZAT, AND GIRAUD

Proof We have:
7% = 7V - 77>O<0Zj€ - 775<1ZIf

L~L

where Z%0 = U(Z\WZ%L_I) and Z°1 = ¢(2UH1,Z\W 50_1) with v polynomially bounded by

Lemma 91. Combining all this gives
Zdil _ w(ZUL+1, 2@%5*1)
with v polynomially bounded since o is also polynomially bounded. Then
ZdiLQL _ Zd:iQL U/(ZhQL)
and since 2" = w(EULH, EW%OL_I) with 1 polynomially bounded by Lemma 95, we get
gk _ w(EULH, ZVV\Z:EOL*1>

with 1) polynomially bounded since ¢’ is also polynomially bounded. This thus proves claim
(7). Now, we have

AL 07%% VA
a”Z\WVL*l :62\‘7‘%%:71 al(thL) + deé aZ\Wpol J//(Zh2L)
o o o

where Zhé, YA / oZW'is 71, and Z%% are polynomially bounded functions of Zy by the
previous result and by Lemma 95. We have

o OZM

aZdiZL o ’ Aﬁ/\ljl‘*l
=—nxe0 (£ "o)—an

/¢ 7hE
YA 7

which is a polynomially bounded function of Zj since ¢’ is polynomially bounded and by
Lemma 91. We thus get

o Zdﬁ’;
oZW'a !

= (Zo)

with ¢ polynomially bounded since ¢’ and ¢” are polynomially bounded. This proves (iv)
forl = L.

We have:

Zdi£’71 _ &LZ\(WZ)Tdﬁé’ _ n;(OE[Zdﬁé Zdil%’]zi‘é'71 _ n;(lE[Zdﬁf Zdﬁé]leLil
From the previous step we have that both 73 and 8ZdB2L/ 8ZW'i " are polynomially
bounded functions of Zy. By Lemma 90, this first shows that @LE(WZ)Tdhé = 0, and thus
gives (vi) for [= L, leading to:

1 1

Zd:ié‘*l _ _,r])o(OE[deLOL Zdﬁ%]Z5657 o ,,,D%IE[Zdﬁf Zdﬁ%]211L*

114

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Now Z# ' = a(?wklig%) and by Lemma 91, we also have that 707 = ¢(2’m71715:572’ E(WL)Tdi‘g)
with ¢ polynomially bounded. As always the expectations are finite by Lemma 88 because

the integrands are polynomially bounded functions of Zy as products of such variables.

Since o is also polynomially bounded, this gives

ey _ w(g/m?lflgzg*l Z(WL)Tdﬁg)
Then, we have
Zdilé'_l — deé‘_lgl(zhg_l)

: L—1 STrl-1-L—1 5oL\ 7L
and since Z"2 = ¢(ZW Zg ,Z(W) dho)

we get

with ¢ polynomially bounded by Lemma 95,

Zdl}QL*1 _ w(gl//v\lflazg*, Z\(I//V\L)Tdﬁg)

with 1) polynomially bounded since ¢’ is also polynomially bounded. This thus proves claim
~L—1

(#i) for I = L — 1. Now, let Z € {EWF%O ,E(WL)T‘”%}. We have

diLL_l di'L_l hL—l
aZaZZ :8ZaZ2 U,(Zhgﬁl) N Zd:%Lfl aZag U,,(thLf:l)

where Zhé_l, 8Zh2L_1/ 07, and 74" are polynomially bounded functions of Zy by the
previous result and by Lemma 95. We have
0z
0z

YAGE.
oz

_ B B thl
U/(Zhg—l) _ nilE[ZdhlLZthL]azilgl(th_l

= — MXoE[Z5 2] 57)

which is a polynomially bounded function of Zj since ¢’ is polynomially bounded and by
Lemma 91.

For both possible values of Z, the expression of YA /0Z is easy to obtain and is a
polynomially bounded function of Zj (this has actually already been shown for the proofs
at time ¢ = 1), and ZhlL_l/(‘)Z = 1(Zp) with ¢ polynomially bounded by Lemma 91. Since
the expectations are finite and ¢’ is polynomially bounded, we get

aZdi§7 !

“oz ~ VA
with ¢ polynomially bounded and thus

o deLQL_l

o7 ¥(Zo)

with ¢ polynomially bounded. This proves (iv) and (v) for [= L — 1.

115

HaAJJAR, CHIZAT, AND GIRAUD

Let | € [2,L — 1], and assume claims (i7), (iv), (v), are true at layer | and claim (v3)
is true at layer [+ 1. We have:

Zdjé_l — &ZZ\(/WZ)TdHZQ o 'r];(o]E[ZdﬁlOZdﬁé]Zjé_l . 'r])OCIE[ZdEll Zdﬁé]lel—l
From the induction hypothesis we have that both Zhh and §79hh /aZWIi“ffl are polyno-

mially bounded functions of Zy. By Lemma 90, this first shows that coulZ (W)"dh}, — 0, and
thus gives (vi) for layer [, leading to:

785" = 3 B[z zdR 780 g Bz4M Zdhe) zan !

Now, if | — 1 > 2, 7% = 0(2‘7‘7[71%72) and by Lemma 91, we also have that 7o =
¢(2W1717~”5)72, E(VV\L)Td%) with 1 polynomially bounded. On the other hand, if | — 1 = 1,
we have Z70 = = o(ZV'%) and we also have that 75 = ¢(2U150,2U1§1,2(W2)Td;‘3) by
Lemma 91. As always the expectations are finite by Lemma 88 because the integrands
are polynomially bounded functions of Zy as products of such variables. Since o is also
polynomially bounded, this gives

Zda”cl2_1 _ w(’Z\WLlﬁrZ’ /Z\(WL/)\TC”%Z ifl—1>2
H(ZU 0, ZUM ZWT RSy i) 1 =1

Since Z%: ' = Zdil{la’(Zhl{l), by Lemma 91 we get

it _ (#7120
(ZV 0, ZU e ZUe ZOV) ARy 4p | 1 =1

This gives claim (éi) for layer [— 1 and claim (ii) for the case when [—1 = 1. Now, let
Z e {2Wl_1j672,2(WL)TdB6}. We have

71-1 ~l—1 -1

0L 0L gty 4 gk 92

0z 0Z 0Z

—1

O'”(Zhl2)

where 2P and 7% ' are polynomially bounded functions of Zy by the previous result
and by Lemma 95. Also by Lemma 95, we have

ozh " [0 if I1—1=1and Z=Z""%
0z ¥(Zy) otherwise

with ¢ polynomially bounded. In any case, 97 hy ! /0Z is a polynomially bounded function
of Zy. On the other hand, we have

o797 !
oz

oz !
0z

YA
oz

= — IXEIZM 2T ! (20) — B2 M 2 o (2

For both possible values of Z, OZEZOA/ 0Z has an easy expression and is a polynomially
bounded function of Zj (essentially because o and its derivatives are polynomially bounded).

116

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

On the other hand, 02 Ry /0Z is a polynomially bounded function of Zy by Lemma 93. ¢’ is
polynomially bounded, and the expectations are finite by Lemma 88 since the integrands are
polynomially bounded functions of Zy as they are products of such functions by Lemma 93
and by the induction hypothesis. We thus get that

o797 !
oz

with ¢ polynomially bounded. We thus have that:

= (Zo)

VAL
07

=¥ (Zo)

with ¢ polynomially bounded, which proves claims (iv) and (v) at layer [— 1. This thus
concludes the induction, and with it the proof. |

L.0.3 THE CASE t > 2

We have now treated the base case t = 2 and are thus equipped to do the induction for
t > 2. To make things easier we first introduce some equations. Let t > 2, we define
the following assertions, where the different) appearing are assumed to be polynomially
bounded:

Forward pass at time ¢:

(i) z zw(ZUlﬁo, L, Zute ZWW%) (L.1)

For l € 2,1},
(i) zM :zp(ﬁlfcﬁrl, 2<Wl+1>wﬁé“> (L.2)
(1/7/2) th — 1!} (Z\UL+1’ Z\/V[?L:E(L)’—1> (L3)

For l € 2, L],

_azm!
(“)) Z(Wl)Tdizé - Q;Z) (ZO) (L4)
VAL

(v) S ¥ (Zo) (L.5)
(vi) ZW' Oz — (L.6)

117

HaAJJAR, CHIZAT, AND GIRAUD

Backward pass at time ¢:

(1) 2% =4 (ZUL“, ZVAV%@”) (L.7)
(i2) 2% = (ZUL“, ZWLfé‘l) (L.8)
For [€ [3, L],
(i11) Z4% " =y (ZWH@“, ZWZ)Td%) (L.9)
(i2) 2" = (ZV1E ZO) (L.10)
(i5i1) 293 =4 (ZUlfo, L, 7Vt 2@2)”’33) (L.11)
(ii2) Zz%M =y (2U1§0, L7V, E(WQ)T‘”L%) (L.12)
For [€ [2, L],
AL
(iv) DG ¥(Zo) (L.13)
YA
) g = V%) (L.14)
(vi) ZzW'O)Tdhi _ ¢ (L.15)

Note that we have proved in Appendix L.0.2 that all the assertions above hold for ¢ = 2.
Our goal is now to show by induction that they hold for any ¢ > 2. For this we prove
the following two lemmas. The proofs will essentially follow exactly the same pattern as
for ¢ = 2, the only difference is that the formulas will involve more terms, but since any
finite sum of polynomially bounded functions is polynomially bounded, we will get the same
results. Before proving the lemmas, we introduce the following quantities for 0 < s < ¢:
For | € [2, L]

~l—1 -1
E[z% Z® | if s=0
- - ze L.16
Vstl {]E[les ' 7 1} otherwise | !
Forl e [1,L —1]
Vord = B[z Zdh™ (L17)

'yf . (resp. fyg,“) will appear when expressing the variables of the [-th layer at time t in
the forward (resp. backward) pass. We will show in the proofs that as for t =1 and ¢t = 2,
those expectations are finite by Lemma 88 because the integrands are polynomially bounded
functions of Z; as they are products of such variables.

118

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Lemma 97 (Induction step in IP-LLR, forward pass). Consider the IP-LLR parameteriza-
tion with a positively p-homogeneous activation function, and p > 2. Lett > 2, and assume
that all of the assertions of Equation (L.1) up until Equation (L.15) hold for every time
step s € [2,t]. Then, the assertions of the forward pass, i.e., from Equation (L.1) up until
Equation (L.6), hold at time t + 1.

Proof We follow the proof of Lemma 95. By Theorem 53, we have

t
= 20—y () 2
s=0
By Lemma 93 zdht = w(fUlgo, ZU'é, E(WQ)WE%) and and by assumption we also have
Zdh: = 1/)(ZU1§0, . .,ZU1§S,Z(W2)Tdhg) where the different v are polynomially bounded,
which gives claim (7) at time ¢ 4 1.

We have
aZh%Jrl i o 8Zd’~1§

- - T -

8/Z\(ﬁ/\2)1d’~13 n ; Xs (gs £t+1) aZ(WQ)Td;Lg
with

71
8Zdh0 _ U/(ZUIEO)
97W2)"dh3

which is a polynomially bounded function of Zy and so is 07 dhy / §Z(W?)"dhg by Lemma 93.
In addition, by assumption, for s € [2,¢], 8Zdh§/82(WQ)Tdhg = ¢(Zp) with ¢ polynomially
bounded. We thus get claim (iv) for [= 2 at time ¢ + 1.

We have by Theorem 53
2 W2l ! 72
Zhiv1 = (5o zW T n Z §57£t+1722dhs
s=0

1
Now Z%+1 = U(th“) is a polynomially bounded function of Z; because Zh+1 is and o is
polynomially bounded. Secondly, we have
0 ZI%+1 07z ht1+1

= '(e
97W2)Tdh2 57 (W2)Tdh? oz

which is a polynomially bounded function of Zy by the previous results and because o’ is

polynomially bounded. By Lemma 90 we get that ongW%%H = 0 which gives claim (vi)
for [= 2 at time ¢ + 1. In addition, this yields

t
h2 ° dh2 ° dh?
Z"+1 = —77Xo’Yg,t+1,2Z ° - 77§ :X87§,t+1,2z)
s=0

119

HaAJJAR, CHIZAT, AND GIRAUD

The expectations defining the 4/ are finite by Lemma 88 since the integrands are polynomi-
ally bounded functions of Zj, as they are products of such variables by the previous result
on Z%+ and by the assumption. This gives claim (ii) for [= 2 by the results for the back-
ward passes at time ¢t = 0 and ¢ = 1 and by the assumptions. Let Z € {/Z\W%é, /Z\(W?’)Tdﬁg}.
We have

azht+1 8Zdh2
=N Z Xs’)/s t+1,27 9

VAL /0Z has a simple expression and is a polynomially bounded function of Z,. Addi-
tionally, by the results of the backward pass for ¢ = 1, and by assumption, for s € [1,¢],

YA /0Z = +(Zy) with ¢ polynomially bounded. Since the 4/ are finite, we thus get
0 thﬂ

0z
with ¢ polynomially bounded. This gives claims (iv) and (v) at time ¢ + 1.

= (Z)

Let | € [2,L — 1] and assume claims (i), (iv), (v), and (vi) for layer I at time t + 1.
Then, by Theorem 53 we have:

t
Rl o /V[?lJrl:Cl o f
Zhn =0 Z = E :Xﬂs,t+1,l+1
s=0

bt

Now Z%+1 = O‘(Zhi+1) is a polynomially bounded function of Z; because ZM+1 s by the
induction hypothesis and o is polynomially bounded. Secondly, we have
0 Zzéﬂ o0Z hfz+1

1(r7hl
— - = —— —— o (4"t
82(Wl+1)Tdhé+l 8Z(Wl+1)Tdhé+l ()

which is a polynomlally bounded function of Zy by the induction hypothesis. By Lemma 90

we get that wyy1Z W2al.1 — 0 which gives claim (vi) for layer [+ 1 at time ¢+ 1. In addition,
this yields

t
Rl o 5 ARl
2N = =0y XV ?

5=0

The expectations defining the 47/ are finite by Lemma 88 since the integrands are polyno-
mially bounded functions of Zy, as they are products of such variables by the assumption
and by the induction hypothesis. If [+1 = L, we have, for any s € [0,s], Zdht
1/1(2 utt , A _1) with ¢ polynomially bounded, which shows

ZHE g T
with ¢ polynomially bounded, which gives claim (éi7). If | +1 < L — 1, for any s € [0, s],
Zdhstt — =Y(Z AR A 7(WH2() dhé”) with ¢ polynomially bounded, which shows

Zhi — ¢(ZWZ+1 i Z(Wl“) hl“)

120

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

¢ polynomially bounded, which shows claim (ii) at layer { + 1 for time ¢ + 1. Let Z €

{EWH%B, Z(WH?)TCI%H}. Note that the second value is only valid if {+1 < L—1. Whenever
Z is well-defined, we have
oz gz

_ o _f
oz 1 SZ:; XsTs 41,0417 g7

For both possible values of Z, §7hs"" /0Z has a simple expression and is a polynomially
bounded function of Zy. Z dhy*! /0Z is a polynomially bounded function of Zy by the results

of the backward pass at time ¢t = 1 (Lemma 93), and finally for s € [2,¢], Zdi”ll+1/8Z = (Zy)
with ¢ polynomially bounded by assumption. Since the v/ are finite, this gives

+1

8th+1
0z

= ¥(Z)

with ¢ polynomially bounded. This proves claim (iv) and (v) for layer [4+ 1 at time ¢ 4 1,
and thus concludes the induction on [and with it the proof. |

Lemma 98 (Induction step in IP-LLR, backward pass). Consider the IP-LLR parameter-
ization with a positively p-homogeneous activation function, and p > 2. Let t > 2, and
assume that all of the assertions of Equation (L.1) up until Equation (L.15) for every time
step s € [2,t]. Additionally assume that the assertions of the forward pass, i.e., from Equa-
tion (L.1) up until Equation (L.6), hold at time t+1. Then, the assertions of the backward
pass, i.e., from Equation (L.7) up until Equation (1..15), hold at time t + 1.

Proof We follow the proof of Lemma 96. We have:

t
2 = 2V i -0y K2
s=1
where Z% = o(ZW'% Y, zot = (ZU"", ZW'% ") with ¢ polynomially bounded by
Lemma 91 and for s € [2,t], Z% = ¢(Z Zur AWlxé 1) with 1 polynomially bounded by
assumption. Combining all this gives
Zdifi&»l :w(Z\UL+1 Z L 1)

with % polynomially bounded since ¢ is also polynomially bounded. Then
gdhiy, _ ZditL+lal(thL+1)
and since ZM+1 = w(Z ULH, Z/Wliéil) with ¢ polynomially bounded by assumption, we get

7L 7L+l SplaL—1
ZdhtJd — 77b(zU 72W Z,)

121

HaAJJAR, CHIZAT, AND GIRAUD

with v polynomially bounded since ¢’ is also polynomially bounded. This thus proves claim
(7). Now, we have

dhf iy, ~ i
02 — 0z / thL+1 detL+1 78Z " thL+1
—— 11 = 1C + =110
VA YA AL

1

where thL+1, 8thL+1/82Wlf(€_ , and 7951 are polynomially bounded functions of Zy by

assumption and by the previous result on Z dify Additionally, we have
0 detL-H t
82ﬁ/\li€*1

azhs

1 oWhEk -1
(Z 0) Xs ST~ L—1
s=1 GZW o

= —1Xo0 -1 o (2")
o’ is polynomially bounded and by the results of the forward pass at t = 1 (Lemma 91)
YAk / oZW'E T = ¥(Zy) with ¢ polynomially bounded. In addition, by assumption, for

any s € [2,t], 0Z hy / YA - ¥(Zy) with ¢ polynomially bounded. This thus gives

Y
DT ¥(Zo)
with ¢ polynomially bounded, and thus
YA
DEWEET ¥(Zo)

with 1 polynomially bounded since ¢’ and ¢” are polynomially bounded. This proves (iv)
for [= L at time ¢t + 1.

We have:

t
dil=l o Swh Tl o p FL-1) b1
7%t = (,ULZ() t+l — 77X0’70,t+1,L—1Z 0 - nZXs’}/s,t—f—l,L—lZ

s=1

From the previous step we have that both 79 and 9z / 9ZW'a " are polynomially

bounded functions of Zy. By Lemma 90, this first shows that w LZ (WhTdhfy, — 0, and thus
gives (vi) for | = L, leading to:

t
dzl-t ° b FL—1 ° b zb1
Z5H = =nxoYou41,L4 0 =1 E XsVst41,024 "

s=1

Now Z% ' = o(?wl_ljé_Q) and we also have that 221 = zp(éwl*fé”, Z(WL)T‘%&) with
1 polynomially bounded by Lemma 91. In addition, we have or any s € [2,t], we get
z75 7 = w(ZWlflig_g, Z(WL)T“'%) with v polynomially bounded by assumption since it is
the case for 2" and o is polynomially bounded. As always the expectations defining the
4" are finite by Lemma 88 because the integrands are polynomially bounded functions of

Zy as products of such variables by the results for the backward pass at times ¢ = 0 and

122

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

t = 1, by the assumptions and by the previous result on Z dhi1 | Since o is also polynomially
bounded, this gives

L 1 D1 o~ TSIAT 7
Zda:t+11 _ w(ZWl 11‘5’ 17z(WL) dhé‘)

Then, we have

T L—1 ~L—1 L—-1
ZdhtJrl — Zd$t+1 O'/(th"'l)

P

and since 21 = @/}(zwliljéil,Z(WL)Tdﬁg) with ¢ polynomially bounded by assumption
2 (G g

with 1) polynomially bounded since ¢’ is also polynomially bounded. This thus proves claim
~L—1

(7i) for { = L — 1. Now, let Z € {ZWZA% ,Z(WL)Tdﬁg}. We have

aZh{fll L-1
1 r7h

dhlt dzlt
+1 t+1 L-1
0z YA 1R o (2N

= o' (Z™+D) + 743
07 07z

where thLJ:ll, 8thLJ:11/ 07, and 7950 are polynomially bounded functions of Zy by as-
sumption and by the previous result. We have

t L—1
o 8Zhs L-1
)—n Z Xs'yg,t—i-l,L—l GTUI(Z}LS)

s=1

adetL;f °o 3 aZE(%71 o RE-1
oz MXoWout1L-1T 5 O (Z"0

For both possible values of Z, ozh " /O0Z has a simple expression and is a polynomially
bounded function of Zj, as is BOLA. In addition, 7M™ and azhf*l/az are polynomially
bounded functions of Zy by the results of the forward pass at t = 1, and finally, for s € [2,],
ZM" and 9z /0Z are polynomially bounded functions of Zy by assumption. Since the
~* are finite and ¢’ is polynomially bounded, we get

gz

oz ¥(Zo)
with ¢ polynomially bounded and thus

YA

oz ¥(Zo)

with ¢ polynomially bounded since ¢’ and ¢” are polynomially bounded. This proves (iv)
and (v) for il =L — 1.

Let | € [2,L — 1], and assume claims (i7), (iv), (v), are true at layer | and claim (v3)
is true at layer [4+ 1. We have:

t
° b gt ° b ot
= NX0Y0,441,1-12 0 —1 Z Xs7Vs,t41,1-1Z

s=1

~l— ~TINT 41
Zd#] OZZ(Wl) dhl

123

HaAJJAR, CHIZAT, AND GIRAUD

From the induction hypothesis we have that both Z dhit1 and 97 / 9ZW'% " are poly-

nomially bounded functions of Zy. By Lemma 90, this first shows that 5)12 (WhTdhy, 0,
and thus gives (vi) for layer [, leading to:

t
dslst o p -1 ° b a1t
Z7H = =XV, 41,0-12 0 UZXSVSHUAZ)

s=1

Now, if | — 1 > 2, Z% ' = a(fwkl%ﬂ) and by Lemma 91, we also have that 79 =
1/}(2/”71—1%—272 (WL)T‘”%) with % polynomially bounded because it is the case for Zh
and o is polynomially bounded. In addition, by assumption, we have for any s € [2,1],
z7s = ¢(2Wl71%72, Z(WL)Td%) with vy polynomially bounded since it is the case for zhs!
and o is polynomially bounded. As always the expectations defining the 4* are finite by
Lemma 88 because the integrands are polynomially bounded functions of Zj as products of
such variables by the results of the backward passes at times ¢t = 0 and t = 1 and by the
induction hypothesis. We thus get

~1—1 AT —1 ~l— ~ T INT 37
ZdT) ¢(Zwl 1z Q’Z(WL) dhf))

with ¢ polynomially bounded. On the other hand, if /-1 = 1, we have Z% = 0(2U150) and
by Lemma 91, we have Z% = ¢(2U150, ZU'é, 2(@2)%;}3) with 1 polynomially bounded. In
addition, by assumption we have for s € [2,¢], 7% = ¢(2U150, R 2U1537 E(WQ)TdiLg) with
1) polynomially bounded. Since ¢ is also polynomially bounded, this gives

ZUh = p(ZV'0 . 7V Z(W?) dh)

1) polynomially bounded. Since Zdh = Zd8ii 50 (Zhiﬁ), and by assumption Zha =
H(ZW' T8 ZOVI ARG i 11 > 2, and otherwise ZM+1 = p(ZU' 60, .. ZU 1, Z(W2) dRgy
we get

gy _ [T ZO 22
/l/)(Z\Ulgo) Z\U1§1’ ceey Z\U1§t+17 2(W2)Tdhg) lf l - 1 = 1

This gives claim (i7) for layer | — 1 and claim (i77) for the case when | —1 = 1. Now, let
Z e {2Wl71ié_2, E(WL)Td%}. We have

hl—l
1-1 0Z"t+1 ”

gz pzdEa i -1
_ U/(thﬂ) +det+1870 (th)

0z 0Z

-1 -
where Z"51 and Z9%51 are polynomially bounded functions of Zy by assumption and by

-1
the previous result on Z%1. Also by assumption, we have

ozMn [0 if I—1=1and Z =275
07 ¥(Zy) otherwise

124

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

with 1 polynomially bounded. In any case, 02 hiia /0Z is a polynomially bounded function
of Zy. On the other hand, we have

¢ -1

o 8Zh$ -1

)‘UZX{YS,HLZA(?TU/(Z}LS)
s=1

oz " o YA
BV :_77X078,t+1,l71870/(2h0

For both possible values of Z, OZ%A/ 0Z has an easy expression and is a polynomially
bounded function of Zj (essentially because o and its derivatives are polynomially bounded).
On the other hand, YA /0Z is a polynomially bounded function of Zj by assumption.
o’ is polynomially bounded, and the 4* are finite. We thus get that

07951
97 = ¥(Zo)
with ¢ polynomially bounded, and thus:
o74hii
97 = ¥(Zo)

with 1 polynomially bounded, which proves claims (iv) and (v) at layer [— 1 for time ¢+ 1.
This thus concludes the induction on [, and with it the proof. |

L.1 Main result

Theorem 99 (Multiplications by the initial weight matrices vanish in IP-LLR for ¢ > 1).
Consider the IP-LLR parameterization with a positively p-homogeneous activation function,
and p > 2. Then, for any t > 1, and for any | € [2, L], one has:

W0z _ (fjlzwll‘i_l -0
ZWHO)TdR, — & 7(W!dhi _)

Proof The result for ¢ = 1 has essentially been proved already early on in Corollary 94
(which stems from Lemmas 91 and 93). For ¢t = 2, the result has been proved in Lemmas 95
and 96. Then we can prove the result for any ¢ > 2 by induction using Lemmas 97 and 98. B

Appendix M. Expectations with ReLU
In all this section, we consider Z ~ N(0,02), so that Z = oU where U ~ N(0,1).

M.1 First moment
For ¢(2) = max(0, 2) and Z ~ N(0,0?), we have

B{o(2)] = Blo(oU)] = = [ue*2du = .

125

HaAJJAR, CHIZAT, AND GIRAUD

M.2 Second moment
For ¢(z) = max(0,z) and Z ~ N(0,0?), we have

o2

Blo(2)") = 4E17] = T

M.3 First forward pass moments

We have, for any [€ [1, L], with og := \/|[&][?+1,

E[Z"] =0, E[(Z™)] = 3%

E[Z7] =
2l

M.4 First derivative moments

For ¢(z) = max(0, 2), we have ¢'(z) = 1,>¢ almost everywhere, so for Z ~ N(0,0?), we
have

E[¢/(Z)] = P(Z > 0) = 1/2.

Note that since ¢/(z)P = ¢'(z) for any p > 0, all the moments of ¢/(Z) are equal to the first
moment.

M.5 First backward pass moments

We have, for any [€ [1, L], with,

-~ 5:[-~ QNSl 1
E[Z%0] =0, E[(Z%0)?*] = Gy
71l 71l 1
E[z%0] =0, E[(Z%)%] = SLTH1

References

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in over-
parameterized neural networks, going beyond two layers. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems, pages 6158-6169,
2019.

Dyego Aratujo, Roberto 1. Oliveira, and Daniel Yukimura. A mean-field limit for certain
deep neural networks, 2019.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. In
International Conference on Machine Learning, pages 322-332. PMLR, 2019.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The
Journal of Machine Learning Research, 18(1):629-681, 2017.

126

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Andrew Barron. Barron, a.e.: Universal approximation bounds for superpositions of a
sigmoidal function. ieee trans. on information theory 39, 930-945. Information Theory,
IEEE Transactions on, 39:930 — 945, 06 1993. doi: 10.1109/18.256500.

Mohsen Bayati and Andrea Montanari. The dynamics of message passing on dense graphs,
with applications to compressed sensing. IEEE Transactions on Information Theory, 57
(2):764-785, 2011.

Yoshua Bengio, Nicolas Roux, Pascal Vincent, Olivier Delalleau, and Patrice Marcotte.
Convex neural networks. In Y. Weiss, B. Scholkopf, and J. Platt, editors, Advances
in Neural Information Processing Systems, volume 18. MIT Press, 2006. URL https:
//proceedings.neurips.cc/paper/2005/file/0fc170ecbb8fflafb2c6de48eab343e
7-Paper.pdf.

Erwin Bolthausen. An iterative construction of solutions of the TAP equations for the
Sherrington—Kirkpatrick model. Communications in Mathematical Physics, 325(1):333—
366, 2014.

Lénaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pages 3040-3050, 2018.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Conference on Learning Theory, pages 1305—
1338. PMLR, 2020.

Lénaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable
programming. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/ae614c557843b1df326cb29c57225459-Paper . pdf.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). In Yoshua Bengio and Yann Le-
Cun, editors, 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1511.07289.

Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi.
Batch normalization provably avoids ranks collapse for randomly initialised deep net-
works. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pages 18387-18398. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/d
5ade38a2c9f6£073d69elbc6bbeb4cl-Paper.pdf.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds
global minima of deep neural networks. In International Conference on Machine Learning,
pages 1675-1685. PMLR, 2019.

127

https://proceedings.neurips.cc/paper/2005/file/0fc170ecbb8ff1afb2c6de48ea5343e7-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/0fc170ecbb8ff1afb2c6de48ea5343e7-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/0fc170ecbb8ff1afb2c6de48ea5343e7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
http://arxiv.org/abs/1511.07289
https://proceedings.neurips.cc/paper/2020/file/d5ade38a2c9f6f073d69e1bc6b6e64c1-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d5ade38a2c9f6f073d69e1bc6b6e64c1-Paper.pdf

HaAJJAR, CHIZAT, AND GIRAUD

Cong Fang, Jason D. Lee, Pengkun Yang, and Tong Zhang. Modeling from features: a
mean-field framework for over-parameterized deep neural networks, 2020.

Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun, Stephane
d’Ascoli, Giulio Biroli, Clement Hongler, and Matthieu Wyart. Scaling description of gen-
eralization with number of parameters in deep learning. Journal Of Statistical Mechanics-
Theory And Experiment, 2020(ARTICLE):023401, 2020a.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature
and lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and
Experiment, 2020(11):113301, 2020b.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling feature
and lazy training in deep neural networks. Journal of Statistical Mechanics: Theory and
Ezperiment, 2020(11):113301, 2020c.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, pages 249-256, Chia Laguna Resort, Sardinia,
Italy, 13-15 May 2010. PMLR. URL http://proceedings.mlr.press/v9/glorot10a
.html.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent
kernel. In International Conference on Learning Representations, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026-1034, 2015.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with
gaussian error linear units. CoRR, abs/1606.08415, 2016. URL http://arxiv.org/ab
s/1606.08415.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. CoRR, abs/1806.07572, 2018. URL http://arxi
v.org/abs/1806.07572.

Arthur Jacot, Franck Gabriel, Francois Ged, and Clément Hongler. Order and chaos:
Ntk views on dnn normalization, checkerboard and boundary artifacts. arXiv preprint
arXiv:1907.05715, 2019.

Vera Kurkovd and Marcello Sanguineti. Bounds on rates of variable-basis and neural-
network approximation. Information Theory, IEEE Transactions on, 47:2659 — 2665, 10
2001. doi: 10.1109/18.945285.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape
of two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):
E7665-E7671, 2018.

128

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1806.07572
http://arxiv.org/abs/1806.07572

INTEGRABLE PARAMETERIZATIONS OF DEEP NEURAL NETWORKS IN THE INFINITE-WIDTH LIMIT

Hrushikesh Mhaskar. On the tractability of multivariate integration and approximation by
neural networks. J. Complezity, 20:561-590, 08 2004. doi: 10.1016/j.jc0.2003.11.004.

Radford M Neal. BAYESIAN LEARNING FOR NEURAL NETWORKS. PhD thesis,
University of Toronto, 1995.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks,
pages 29-53. Springer, 1996.

Phan-Minh Nguyen and Huy Tuan Pham. A rigorous framework for the mean field limit of
multilayer neural networks. CoRR, abs/2001.11443, 2020. URL https://arxiv.org/ab
s/2001.11443.

Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite ensembles.
arXw preprint arXiw:1712.05438, 2017.

Huy Tuan Pham and Phan-Minh Nguyen. A note on the global convergence of multilayer
neural networks in the mean field regime. CoRR, abs/2006.09355, 2020. URL https:
//arxiv.org/abs/2006.09355.

Grant Rotskoff and Eric Vanden-Eijnden. Parameters as interacting particles: long time
convergence and asymptotic error scaling of neural networks. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31, 2018.

Grant M. Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of neural networks:
An interacting particle system approach, 2019.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks: A
law of large numbers. SIAM Journal on Applied Mathematics, 80(2):725-752, 2020.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of deep neural networks.
Mathematics of Operations Research, 2021.

E. Weinan and Stephan Wojtowytsch. On the banach spaces associated with multi-layer relu
networks: Function representation, approximation theory and gradient descent dynamics.
ArXiv, abs/2007.15623, 2020.

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian
processes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/5e69fda38cda2060819766569fd93aab-Paper. pdf.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. ArXiv,
abs/2006.14548, 2020a.

Greg Yang. Tensor programs III: neural matrix laws. CoRR, abs/2009.10685, 2020b. URL
https://arxiv.org/abs/2009.10685.

129

https://arxiv.org/abs/2001.11443
https://arxiv.org/abs/2001.11443
https://arxiv.org/abs/2006.09355
https://arxiv.org/abs/2006.09355
https://proceedings.neurips.cc/paper/2019/file/5e69fda38cda2060819766569fd93aa5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5e69fda38cda2060819766569fd93aa5-Paper.pdf
https://arxiv.org/abs/2009.10685

HaAJJAR, CHIZAT, AND GIRAUD

Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width
neural networks. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 11727-11737. PMLR, 18-24 Jul 2021. URL https://procee
dings.mlr.press/v139/yang2lc.html.

130

https://proceedings.mlr.press/v139/yang21c.html
https://proceedings.mlr.press/v139/yang21c.html

	Introduction
	Contributions
	Related Work
	Organisation of the Paper and Notations

	General Setting
	Network and Data
	Parameterizations of Neural Networks

	Deep Networks with Naive Integrable Parameterization are Trivial
	No learning in Deep Networks with Naive Integrable Parameterization
	No stable learning with learning rates constant over time

	Large Initial Learning Rates Induce Learning
	Non-trivial and Stable Learning for Integrable Parameterizations
	IP-LLR is a Modified P
	Finite-Width Equivalence
	Infinite-Width Equivalence

	Alternative Methods for Escaping the Initial Stationary Point
	Using Non-Centered i.i.d. Initialization
	First forward Pass
	First Backward Pass
	First parameter updates
	Collapse to Deterministic Dynamics

	Not Scaling the Bias Terms

	Numerical Experiments
	Experimental Setup
	Naive-IP is Trivial but Large Initial Learning Rates Induce Learning
	IP-LLR vs. P
	Learning is Degenerate for IP-bias and IP-non-centered

	Conclusion
	Notations
	An overview of the Tensor Program technique
	Intuition behind the technique
	Multiplication by i.i.d.Gaussian matrices

	Mathematical formalism
	The maximal update parameterization P

	Useful preliminary results
	Positive finite moments of pseudo-Lipschitz functions of Gaussians
	The Z dots are 0 in the first forward-backward pass
	Gaussian output in the infinite-width limit
	Convergence of the coordinates to the limiting distribution Z

	Proof of the triviality of IPs: Proposition 5
	Proof at t=0
	First forward pass
	First backward pass

	Induction step
	Forward pass at step s+1
	Backward pass at step s+1

	Preliminaries on positively homogeneous functions
	Preliminaries for Theorem 10 and Theorem 13
	Tilde variables
	Expression of the forward and backward passes of ac-parameterizations in function of the tilde variables with homogeneity

	Dynamics of the infinite-width limit of IP-LLR
	Second forward pass of IP-LLR (t=1)

	Proof that no constant learning rate is possible: Theorem 10
	Proof of the first implication for the learning rates at t=0
	Preliminaries on the second backward pass (t=1)
	Preliminaries on the third forward pass (t=2)
	Proof of the second implication

	Proof of the non-triviality of IP-LLR: Theorem 13
	Proof of the equivalence between IP-LLR and P: Proposition 15 and Theorem 16
	Finite-width equivalence: Proposition 15
	Equivalence at t=1
	Proof of Proposition 15

	Infinite-width equivalence: Theorem 16
	Preliminary results
	Induction on t
	Proof of Theorem 16

	Formal versions of the results for the alternative methods to escape the initial stationary point
	Formal version of Theorem 18
	Formal version of Theorem 17
	Preliminaries
	Proof of Theorem 82

	The variables associated with the initial weights vanish in IP-LLR
	The case t=1
	The case t=2
	The case t 2

	Main result

	Expectations with ReLU
	First moment
	Second moment
	First forward pass moments
	First derivative moments
	First backward pass moments

