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Abstract

We discuss two solvable grokking (generalisation beyond overfitting) models in a rule-
learning scenario. We show that grokking is a phase transition and find exact analytic
expressions for the critical exponents, grokking probability, and grokking time distribution.
Further, we introduce a tensor network map that connects the proposed grokking setup with
the standard (perceptron) statistical learning theory and provide evidence that grokking
is a consequence of the locality of the teacher model. We analyze the rule-30 cellular
automaton learning task, numerically determine the critical exponent and the grokking
time distribution, and compare them with the prediction of the proposed grokking model.
Finally, we numerically study the connection between structure formation and grokking.
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1. Introduction

Despite recent progress in understanding the double descent phenomena Belkin et al.
(2019); Nakkiran et al. (2021); Krogh and Hertz (1991); Pezeshki et al. (2021) we still
do not have a complete theory of generalisation in over-parameterised models. Two recent
empirical observations, neural collapse Papyan et al. (2020) and grokking (generalisation
beyond over-fitting) Power et al. (2022), can help us understand the training and general-
isation properties of over-parameterised models.

Neural collapse occurs in the terminal phase of training, i.e. the phase with zero train error.
It refers to the collapse of the N−dimensional, last-layer features (input to the last/classi-
fication layer) Papyan et al. (2020) to a (C−1)-dimensional equiangular tight frame (ETF)
structure, where C is the number of classes. The feature vectors converge towards the ver-
tices of the ETF structure such that features for each class are close to one vertex. Also, the
distance between the vertices is much larger than all intraclass feature variances. We can
partially understand neural collapse within the unconstrained features and local elasticity
models Kothapalli et al. (2022). However, its role in generalisation, relation to grokking,
and appearance of different latent space structures are still not completely understood.

Grokking also occurs during the final phase of training. When training on algorithmic
datasets past the zero train error, a sudden decrease of the test error from approximately
one to zero is observed Power et al. (2022). The grokking phenomenon has been discussed
within an effective theory approach Liu et al. (2022), where an empirical connection be-
tween representation/structure formation and generalisation has been made. An empirical
study Thilak et al. (2022) established a relation between grokking and spikes in training
loss and an increase in weight norm. However, no exactly solvable model exhibiting the
grokking phenomenon has been discussed so far. Furthermore, it is unclear how to reconcile
grokking with standard generalisation theory based on statistical learning methods Engel
and Van den Broeck (2001). The statistical learning theory predicts (in a teacher-student
setting) an algebraic (as t−ν , where ν = 1 for most learning rules) decrease of the general-
isation error with training time t (or the number of training samples) Engel and Van den
Broeck (2001).

Grokking and neural collapse (or latent-space structure formation in general) have been
observed in over-parametrised models. However, we do not know the minimal framework
within which we can understand these phenomena or if they are genuinely deep-network
phenomena. We aim to formulate a simple solvable model of grokking and relate it to
latent-space structure formation and other common deep-network training features, e.g.
spikes in the training loss.

Main contributions– We have four main contributions:

3
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• We propose a simple learning scenario that exhibits grokking (Section 3). We study two
solvable models where grokking is a phase transition to zero test error and calculate exact
critical exponents and grokking-time distributions.

• We discuss the teacher-student model by using the tensor network approach. We map the
sequence prediction model in the thermodynamic limit to the proposed grokking setup (Sec-
tion 4) and provide evidence that grokking is a consequence of the locality of the teacher
model.

• We numerically study grokking and structure formation on the example of learning a 1D rule-
30 cellular automaton (Section 4). We show that sudden spikes in the training loss correspond
to structural changes in the latent space representation of the data.

• Our analytical results and numerical experiments show a significant difference between L1 and
L2 regularisations. The L1 regularised models have a higher probability of grokking, shorter
generalisation time, and smaller effective dimensions compared to L2 regularised models.

Broader impact– The proposed exactly solvable grokking models are a step towards theo-
retical understanding of the late learning phase and generalisation benefits of the terminal
phase of training. The introduced tensor-network map connects the standard teacher-
student setup in the thermodynamic limit with the proposed grokking setup. It offers a
new tool for studying generalisation properties of local rules (local teacher-student models),
which could lead to more complex learning dynamics (compared to the standard infinite-
range rules).

Although based on simple models, our results can also be relevant for deep learning training
practice. We conjecture that good generalisation is more likely in models with latent space
data distributions with small effective dimensions. Our results hint that L1 regularisation
can improve the generalisation properties of deep models compared to L2 regularisation.
Further, we show that spikes in the loss (which often occur during the training of deep
neural networks) correspond to latent space structural changes that can be beneficial or
detrimental for generalisation. Assuming this is also the case in deep networks, we can
use the information about the effective dimension of latent space to revert the model to a
state before the spike or continue training with the current model. Finally, our empirical
results show that regularisation is beneficial in the early stages of training. In the late
stages of training, regularization often leads to detrimental latent space structural changes
that increase the test error.

2. Related work

A sudden transition from zero to 100% accuracy in algorithmic datasets in over-fitted
transformer models has been first described in Power et al. (2022) and named grokking. In
the grokking phase, a formation of simple structures reflecting the properties of the prob-
lem has been observed. This finding contradicts the common practice of early stopping
and supports recent observations on the benefits of the terminal phase of training Soudry
et al. (2018); Belkin et al. (2019); Merrill and Tsilivis (2022) and the double descent phe-
nomenon Belkin et al. (2019); d’Ascoli et al. (2020); Nakkiran et al. (2021); Pezeshki et al.
(2022). In Liu et al. (2022), an effective theory of grokking has been proposed. Within the
effective theory, one can access the critical training size to observe grokking. The authors
relate grokking with a good representation (or structure formation) and introduce it as
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a phase between generalisation and memorisation. We go beyond these findings since we
obtain exact solutions for the proposed setup and even calculate the grokking-time proba-
bility density function (PDF). A systematic experimental study of the grokking phenomena
has been presented in Thilak et al. (2022). A slingshot mechanism (related to the edge of
stability Cohen et al. (2021)) has been proposed as a necessary condition for grokking. The
slingshot mechanism refers to the occurrence of cyclic spikes in training loss and steps in
the weight norms during training. The slingshot behaviour is not restricted to algorithmic
datasets but is also present in various common classification tasks Thilak et al. (2022). We
find a similar behaviour, i.e. that the grokking coincides with train loss spikes. Moreover,
we connect training loss spikes with a discontinuous step-like evolution of the effective di-
mension of the latent space representation of the data, which indicates structural changes
in the latent space representation.

A particular structure formation common in deep classification neural networks is neural
collapse (NC). It refers to four empirical/numerical observations in training deep neural
network classifiers Papyan et al. (2020):

• (NC1) Variability collapse – variations of within class features become negligible

• (NC2) Convergence to equiangular tight frame (ETF)– class mean vectors form equal-
sized angles between any given pair

• (NC3) Convergence to self-duality– the class means and linear classifiers converge to
each other, up to rescaling

• (NC4) Simplification to nearest class centre– the network classifier converges to a
classifier that selects the class with the nearest train class mean.

The role of the loss function, the regularisation, the batch normalisation, and the optimizer
have been discussed within the unconstrained features model Mixon et al. (2020); Fang et al.
(2021); Kothapalli et al. (2022) and the local elasticity assumption Kothapalli et al. (2022).
The relation of NC to generalisation properties has been discussed in Zhu et al. (2021);
Hui et al. (2022); Kothapalli et al. (2022). However, no relation to grokking has been
discussed so far. Although we do not observe NC as defined above, our findings regarding
the spikes in the training loss and latent-space data structure might also be relevant for
the NC dynamics.

Our main technical tools are tensor networks, which are models obtained by contracting
many low-dimensional tensors. Tensor networks have been very successful in modelling
many-body quantum systems. Recently, they have also been applied to machine learning
tasks. In particular to classification problems Stoudenmire and Schwab (2016); Stouden-
mire (2018); Efthymiou et al. (2019); Liu et al. (2019); Martyn et al. (2020); Meng et al.
(2020); Chen et al. (2021); Kong et al. (2021), generative modelling Cheng et al. (2019);
Stokes and Terilla (2019); Sun et al. (2020); Liu et al. (2021), sequence and language mod-
elling Pestun and Vlassopoulos (2017); Guo et al. (2018); Bradley et al. (2020); Bradley and
Vlassopoulos (2020); Žunkovič (2022), anomaly detection Wang et al. (2020); Streit et al.
(2020). Besides, tensor networks have been used as tools to advance machine learning
theory by a derivation of interesting generalisation bounds Bradley et al. (2020), infor-
mation theoretical insights Cohen et al. (2016); Deng et al. (2017); Levine et al. (2017);
Glasser et al. (2019), and new connections between machine learning and physics Chen
et al. (2018); Dymarsky and Pavlenko (2021); Adhikary et al. (2021). Particularly relevant
for latent space structure formation is the connection between recurrent neural networks
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(RNN) and matrix product states Wu et al. (2022). In Merrill and Tsilivis (2022) benefits
of the terminal phase of training for the extraction of state automata from RNNs (and
hence matrix product state tensor networks) have been discussed. The authors find in-
ternal state space compression and increased extraction in the terminal phase of training.
This is similar to our findings of reduced effective dimension in the latent (internal) space.
In contrast to Merrill and Tsilivis (2022), we introduce a new tensor network, similar to
the tensor-network attention model Žunkovič (2022), and study grokking and structure
formation in a teacher-student learning setup.

Finally, our work is related to the statistical-mechanics theory of supervised learning Engel
and Van den Broeck (2001). In the case of the supervised teacher-student perceptron, an
algebraic decrease in generalisation error with the size of the training set (training time)
has been predicted Engel and Van den Broeck (2001). A first-order phase transition has
been derived only in a restricted setting of discrete weights Engel and Van den Broeck
(2001). These results are typically based on the replica method Gardner and Derrida
(1989) which requires the thermodynamic limit, where both the number of samples and
the dimension are large and their ratio is fixed. Recent outstanding results in this direction
concern the analysis of optimal generalisation errors of generalised linear models Barbier
et al. (2019); Carleo et al. (2019). We study the same teacher-student scenario but with
a restriction to a local teacher (still within the thermodynamic limit). The locality of the
teacher/rule enables us to map the problem to a finite-dimensional latent space where we
discuss grokking (a second-order phase transition) and latent-space structure formation.

3. Perceptron grokking

In this section, we present a simplified model of grokking in a binary classification scenario.
To illustrate our model, a trained deep neural network is divided into two components, as
depicted in Fig. 1. The first component transforms the input probability distribution PD
of the training data, into two distributions that are linearly separable - one for positive
samples and one for negative samples. The second component is a linear classifier. We
avoid the feature learning part by replacing it with separable probability distributions
P±. We then examine the training dynamics of the linear model using gradient descent
optimization, given a training dataset containing N positive and N negative samples from
the distributions P±. This training dynamics does not account for feature learning, which
is a crucial aspect of the grokking process, as discussed in Section 4. Nonetheless, we
show that even this simplified model captures certain aspects of grokking and allows for
an analytical understanding of two probability distributions of interest: the probability of
achieving zero test error (PE(∞)=0), and the probability density P (tG), where tG represents
the time difference between the instances of zero test error and training error.

The training error is determined by the fraction of incorrectly classified training samples.
The test error is calculated as a statistical average of incorrectly classified samples over the
probability distributions P±. This is analogous to the statistical average of an observable,
e.g. magnetisation, over all possible configurations of the system. In our case, the number
of test samples is infinite, in analogy to the thermodynamic limit in statistical models.
The models thus permit non-analytic behaviour of the order parameter. Specifically, in
our case, the order parameter is the test error showing a training phase transition. The
controlled parameter of the transition is the training time t, in analogy with the inverse
temperature in a thermodynamic setting.
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The described setting encompasses behaviours that range from the common training dy-
namics with minimal tG to the recently observed generalisation (zero test error) long after
the training error vanishes, i.e. long tG. Analytical results for PE(∞)=0 and PG provide an
important insight into how probable generalisation beyond overfitting is for a certain class
of probability distributions and how training dynamics are affected by different choices of
regularization schemes.

Figure 1: A schematic separation of the deep neural network into a feature learning part
and a linear classification part. The feature learning part transforms the input
distribution PD into latent space distributions P+ and P−. Blue and red dots
represent the training data in the input space and the blue and red squares
represent the training data in the latent space, e.g., penultimum activations in
a deep neural network. Our main assumption is the linear separation of the
probability distributions in the latent space P+ and P−, represented by the red
and blue shaded regions. The linear model represented by the black line does not
separate all the test data while correctly classifying the training data (blue and
red squares).

3.1 General setting

We consider a simple binary classification problem that exhibits the grokking phenomena.
Let us assume that we have a dataset D consisting of (x̃i, yi) ∈ D, with two linearly
separable classes (yi ∈ {−1, 1}) and D−dimensional features x̃i ∈ RD. More precisely, the
probability densities for the positive class (P+) and the negative (P−) class are linearly
separable in RD. Our model class is a simple perceptron in D dimensions, namely

f(x̃) = sgn(ŷ), ŷ = w · x̃+ b, (1)
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where w, x ∈ RD and b ∈ R. We sample N positive and N negative samples and then train
the model with gradient descent

∂θ

∂t
= −∂R

∂θ
, (2)

R =
1

2N

2N∑
i=1

1

2
|ŷi − yi|2 + λ1||θ||1 +

λ2

2
||θ||2,

where λ1, λ2 denote regularisation parameters, θ denotes the collection of all model param-
eters w, b, and || • ||1,2 denote the one and two norm. By construction, the setup captures
datasets that enable training the model to zero test error. We aim to study how the choice
of latent space probabilities P± and various training parameters influence the training dy-
namics and the appearence of the grokking phenomenon. In particular, the probability of
grokking, the grokking time, and the critical exponent.

The suggested setup is relevant in the transfer learning scenario, where we initially train
a model on one task and then retrain only the final classification layer on another task.
Additionally, in Section 4 we construct a tensor network map that connects the standard
teacher-student statistical learning scenario in the thermodynamic limit to the setup de-
scribed above.

In the following, we will explicitly calculate the dynamics of the model parameters, the
dynamics of the test error, the critical exponent, the probability of grokking, and the
probability density function (PDF) of grokking time for particular choices of the dimension
D and probability densities P±.

3.2 1D exponential model

We start by considering a simple, one-dimensional model where we obtain all results in
closed form. Although the model does not apply to the real-world scenario it captures
several qualitative features and provides a starting point to study more realistic models.

The distribution of the data set is shown in Fig. 2. Positive and negative samples follow
the same probability, i.e. P+(x̃) = P−(−x̃). The minimal distance between the positive
and negative samples is 2ε, therefore P±(|x̃| ≤ ε) = 0.

Since the input x is one dimensional Eq. 1 reduces to

f(x) = sgn(x− b), (3)

where b is the sole model parameter (we fix the weight w = 1). As described above, we
train the model with gradient descent and loss

R =
1

2N

2N∑
i=1

1

2
((x̃i − b)− yi)2 +

λ2b
2

2
+ λ1|w|. (4)

We also assume that the training dataset is balanced, i.e.
∑2N
i=1 y

i = 0.
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P+(x̃)P−(x̃)

ε−ε b

x̃

Figure 2: A schematic representation of the linearly separable random 1D model. The
model is represented by b. The samples between ε and b (marked by a thick blue
line) are incorrectly classified.

3.2.1 Test error dynamics

First, we calculate the model parameter dynamics governed by the negative gradient of the
loss function

∂b

∂t
= −∂R

∂b
=

1

2N

2N∑
i=1

(x̃i − b− yi)− sgn(b)λ1 − λ2b = x̄− sgn(b)λ1 − (1 + λ2)b, (5)

where x̄ = 1
2N

∑2N
i=1 x̃

i denotes the average over training inputs. The solution to Eq. 5 with
the initial condition b(0) is

b(t) = x̄λ − (x̄λ − b(0)) e−(1+λ2)t, x̄λ =

{
x̄−λ1

1+λ2
, b(t) ≥ 0

x̄+λ1

1+λ2
, b(t) < 0

. (6)

In the following, we assume that b(0) > 0. To have a nontrivial train- and test-error
dynamics, we also assume that xmin < b(0), where xmin denotes the minimum of the
positive samples in the training dataset.

To obtain explicit expressions for the test error we choose the exponential distribution of
the samples P+(x) = e−(x−ε)Θ(x− ε), where Θ(x) denotes the Heaviside step function. In
this case, the cumulative probability to get a sample with b < x is given by P (x > b) = eε−b

and the test error is

E(t) =

{
1
2 (1− eε−b(t)) b(t) > ε

0 else
, (7)

where b(t) is determined by Eq. 6. We are interested in the behaviour of the test error just
before the test error drops to zero. The time at which the test error becomes zero (tε) is
given by

tε = log

(
b(0)− x̄λ
ε− x̄λ

)
. (8)
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By expanding the test error (Eq. 7) around tε we get

E(t < tε) ≈
(ε− x̄λ)

2
(1 + λ2)(tε − t). (9)

Interestingly, the first-order coefficient, as well as the critical exponent, do not depend on
the initial condition (assuming b(0) > ε). We now calculate the average test error over
different initial conditions by aligning the phase-transition points tε. Since P (−x̄) = P (x̄),
we find the test error

〈〈E(t)〉〉 ≈ ελ
2

(tε − t), ελ = ε(1 + λ2) + λ1, (10)

where 〈〈•〉〉 denotes the average over all valid initial conditions b(0) and training input
averages x̄.

Grokking in the considered 1D exponential model is a second-order phase transition with
the test-error critical exponent equal to one. The regularisation parameters and the distance
between positive and negative class distributions change only the prefactor. In general,
we expect that the critical exponent depends on the distribution as well as the training
parameters, e.g. regularisation strength.

An example for a particular dataset with N = 10 and x̄ = 0.7 is shown in Fig. 3. We
set λ1,2 = 0, ε = 1 and the initial value of the model parameter b(0) = 21. This example
illustrates that a simple 1D exponential model already captures the phenomenon of general-
isation beyond overfitting (grokking). However, due to the concentration of the exponential
probability near the boundary, the typical training datasets sampled from the probability
distribution considered in this section will not have a large separation between the times
at which zero test and training errors are achieved and would hence not be regarded as an
example of grokking. Still, our model captures datasets that exhibit grokking. We obtain
the non-typical dataset shown in Fig. 3 by first sampling the positive and negative samples
according to the exponential distributions and then shifting the positive samples to the
right and the negative samples to the left by the same amount. In the right panel of Fig. 3
we shift by five.

In the next sections, we also calculate the probability of obtaining zero final test error and
the probability density of the time separation between the zero test and training errors.

3.2.2 Grokking probability

We are also interested in the probability of sampling a training dataset with which we can
train the model to zero test error. We name this probability the grokking probability. In the
considered 1D case the final test error vanishes only if |x̄λ| < ε. We express this condition
for zero test/generalisation error of the trained model as

|x̄| < ελ, (11)

where ελ is given by Eq. 10. Since our training dataset has an equal number of positive
and negative samples, we need to consider the distribution of the mean of N independent
exponentially distributed variables, which is given by the gamma distribution

P expN (x̄) =
NN

Γ(N)
x̄N−1e−Nx̄Θ(x̄), (12)
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Figure 3: An example of train and test error dynamics with a specific dataset sampled from
the 1D model with exponential probabilities. We show the train and test error
on the positive samples since all negative samples are correctly classified from
the start. The left panel corresponds to a typical dataset, where no grokking is
observed. The right panel corresponds to a training dataset far from the clas-
sification boundary obtained by shifting the positive and negative samples away
from the origin by five. In the non-typical (shifted) case, we find a region with a
large test error while the training error vanishes. In both cases N = 10, x̄ = 0.7,
ε = 1, λ1,2 = 0.

where Γ(N) denotes the gamma function. First, we calculate the probability PN (x̄) to get
the average x̄

PN (x̄) =

∫ ∞
x̄+=0

dx̄+P
exp
N (x̄+)

∫ ∞
x̄−=0

dx̄−P
exp
N (x̄−)δ (x̄− (x̄+ − x̄−)/2) (13)

=
2NN+ 1

2 x̄N−
1
2KN− 1

2
(2Nx̄)

√
πΓ(N)

,

where Kn(z) denotes a modified Bessel function of the second kind. The probability to get
the dataset with zero test error is then given by

PE(∞)=0(ελ, N) =2

∫ ελ

x̄=0

PN (x̄)dx̄ (14)

=
√
π(−1)N (Bελ)2N

1F̃2

(
N ;N +

1

2
, N + 1;N2ε2λ

)
+
π(−1)N+1Nελ 1F̃2

(
1
2 ; 3

2 ,
3
2 −N ;N2ε2λ

)
Γ(Nd)

,

where pF̃q (a; b; z) is the regularized generalized hypergeometric function. The above ex-
pression (Eq. 14) simplifies for a particular choice of N , e.g. for N = 2 we get

PE(∞)=0(ελ, N = 2) =1− (1 + 2ελ)e−4ελ . (15)

In Fig. 4 we show several numerically exact grokking probabilities. As expected, the
grokking probability increases with the number of training samples and the effective sepa-
ration between the two classes determined by ελ.
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Figure 4: Exact numerical calculation for grokking probabilities for a different number of
training samples N = 2 (dashed blue line), 5 (dotted orange line), and 10 (full
green line). Grokking probability increases with N and ελ.

The effect of the L1 and L2 regularisations on the trained model is different. The L2

regularisation is multiplicative, and the L1 regularisation is additive concerning the gap
between the positive and negative samples ε. Hence, in the case of a small gap, the L1

regularisation becomes much more effective. In other words, for an infinitesimal gap (ε� 1)
and finite N , the L1 regularisation ensures that the probability of zero test error is finite.
This is not the case when using the L2 regularisation.

It would be interesting to see if L1 regularisation is preferred to L2 regularisation also in
more realistic scenarios. We find a similar distinction between the L1 and L2 normalized
models also in the more general grokking scenario discussed in Section 3.3.2.

3.2.3 Grokking time

We define the grokking time as the difference between tε (zero-test-error time) and the time
when the training error becomes zero. In our simple case, we have

tG =
1

1 + λ2
log

(
ε+ xmin − x̄λ

ε− x̄λ

)
. (16)

The grokking time does not depend on the initial condition as long as b(0) > xmin. To
find the grokking-time PDF, we need to calculate the distribution PN (x̄, xmin) and then
consider only the part |x̄| ≤ ελ. We provide the details of the calculation in the Appendix A.
For a finite N it is possible to obtain a closed-form expression which, however, is not very
instructive. Here we provide the unnormalised grokking-time PDF for N = 2

P unnorm
N=2,ε,λ1

(t) =
1

8
e
− 4et(2et+5)ελ

et+1
−2t

(
exp

(
4etελ(3 sinh(t) + cosh(t) + 4)

et + 1
+ 3t

)
(17)

− 64ε2λe
4
(

4− 3
et+1

)
ελ+3t − 24ελe

2
((

8− 6
et+1

)
ελ+t

)
− 8ελe

4
(

4− 3
et+1

)
ελ+t

− 2e
4(4et+1)ελ

et+1 − 3e
4
(

4− 3
et+1

)
ελ+t −

(
et + 1

)
e

4
(

2et− 1
et+1

+2
)
ελ
(
et
(
et − 8ελ − 1

)
− 2
))

,

which we normalise by dividing with the appropriate grokking probability, see Eq. 14.
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In Fig. 5 we show several numerically exact grokking-time PDFs. The expected grokking
time is smaller with increasing training size N and effective class separation ελ. This is
consistent with the observations of Power et al. (2022); Liu et al. (2022) where a shorter
grokking time has been reported for an increased number of training samples and a larger
weight decay.
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Figure 5: Grokking-time PDF for a different number of training samples N =2 (dashed
blue line), 5 (dotted orange line), 10 (full green line). Left, middle, and right
panels correspond to ελ =0.4 (left), 0.04 (middle), 0.004 (right). Grokking time
is shorter with increasing N and ελ.

3.3 D-dimensional uniform ball model

The second model we consider is shown in Fig. 6. The inputs are D dimensional real vectors
x̃ ∈ RD. Positive and negative samples are distributed uniformly in unit balls shifted from
the origin by vectors ±ε ∈ RD. We will assume that the shift is along the first dimension,
i.e. ε1 = ε, and εj>1 = 0. The student model is a simple perceptron determined by the
vector w ∈ RD (we set the bias to zero b = 0)

f(x̃) = sgn(x̃ · w). (18)

13
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x̃1

x̃⊥

0 ε
r

w

P+(x̃)

P+(x̃)

Figure 6: A two-dimensional projection of the D−dimensional uniform-ball model on the
plane defined by the shift vector ε and the model vector w. The positive and
negative samples are uniformly distributed in unit balls shifted away from the
origin along the x̃1 axis by ±ε, respectively. The model used to separate the
classes is a linear model (determined by the vector w) going through the origin
(green line). The volume of the shaded red and blue regions determines the test
error.

We write the training loss with L1 and L2 regularisation as

R =
1

2N

2N∑
i=1

1

2
(x̃i · w − yi)2 +

λ2||w||22
2

+ λ1|w|1. (19)

=
1

2
w ·
(

1

2N

2N∑
i=1

x̃i ⊗ x̃i + λ21D

)
w − w ·

(
1

2N

2N∑
i=1

yix̃i − λ1sgn(w)

)
+

1

2

=
1

2
w ·Gw − w · a+

1

2
,

G =
1

2N

2N∑
i=1

x̃i ⊗ x̃i + λ21D,

a =
1

2N

2N∑
i=1

yix̃i − λ1sgn(w).

Again we assume that the training dataset is balanced, i.e. yi≤N = 1, yi>N = −1, x̃i≤N =
xi + ε, and x̃i>N = xi− ε. In our model, xi are distributed uniformly in a D− dimensional
ball centred at the origin.

The presented model is relevant in the transfer learning setting Weiss et al. (2016), if only
the last layer of a network is retrained, and with sigmoid activation functions in the penul-
timate layer. If the model transfers well to a new classification task, the latent space distri-
butions of the new classes are linearly separable and can be bounded by a D-dimensional
ball. Since we do not know the details of the distributions, we assume the uniform dis-
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tribution in the ball. Further, the positive and negative feature distributions might be
embedded in a higher dimensional latent space. In this case, D corresponds to the effective
dimension of the data, which can be calculated from the covariance matrix. As we will see
in the next section, the introduced D-dimensional ball model qualitatively reproduces the
critical exponent and the grokking-time PDF in a local-rule learning problem.

3.3.1 Test error dynamics

To determine the test error dynamics we first specify the dynamics of the model parameters
which are determined by the negative gradient of the loss function

∂w

∂t
= −∂R

∂w
= −Gw + a. (20)

The solution to Eq. 20 with the initial condition w(0) is

w(t) = wλ −
(
wλ − w(0)

)
e−Gt, wλ = G−1a. (21)

If N < D/2 and λ2 = 0, the matrix G is not invertible. In this case, we use the pseudo-
inverse.

The test error is given by the volume of an ε-shifted, unit ball that is cut out by the plane
defined by the vector w. The relevant parameter determining this volume is the distance
h between the plane and the origin of the ball. We find that h = ε w1

||w||2 , where ε = ||ε||2
and assuming w1 > 0. The critical angle is given by w1/||w||2 = 1

ε . For larger w1/||w||2
the error is zero. For smaller values of w1/||w||2 the error is given by

ED(h) =

 1
2 −

DΓ(D2 )
2
√
πΓ(D+1

2 ) 2F1

(
1
2 ,

1−D
2 ; 3

2 ;h2
)
h , h ≤ 1

0 , h > 1
, (22)

where 2F1(a, b; c, z) represents the Gaussian hypergeometric function. For h < 1 and close
to the critical point h ≈ 1 we find the following expression for the test error

ED(t) ≈D2
D−3

2 Γ
(
D
2

)
√
πΓ
(
D+3

2

) (1− h(t))
D+1

2 (23)

=
D2

D−3
2 Γ

(
D
2

)
√
πΓ
(
D+3

2

) (1− ε w1(t)

||w(t)||2

)D+1
2

=
D2

D−3
2 Γ

(
D
2

)
√
πΓ
(
D+3

2

) (kG(t− tε)))
D+1

2 ,

where tε is defined as the time at which the test error vanishes, and the coefficient kG is
given by the linear expansion of w(t) around tε. The critical exponent is hence determined
only by the dimensionality of the feature distribution.

As in the previous 1D exponential model, the typical dataset sampled from the initial
probability distribution does not display the grokking behaviour. Still, we find a finite,
albeit very small, probability to sample a training dataset with grokking dynamics. We
obtain the non-typical dataset by sampling according to the following procedure. First,
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we sample a D-dimensional normal distribution with zero mean and unit variance. Then,
we shift the positive samples in the direction of the first coordinate (parallel to ε) and
the second coordinate (perpendicular to ε) for the same amount. We shift the negative
samples in the opposite direction to the positive samples. After the shift, we normalize
the samples and multiply them with a square root of a random number in the interval
[r0, 1]. If the shift and r0 are zero, the procedure corresponds to a random sample from
the original uniform D-dimensional ball distribution. In Fig. 7 we show a simple example
with D = 128, ε = 1.2, λ1 = 0, λ2 = 0.1 and the initial condition with maximum test and
train error. We use the shift equal to 10 and r0 = 0.8 to obtain the non-typical dataset in
the right panel of Fig. 7.
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Figure 7: An example of train and test error dynamics with a specific dataset sampled from
the D-dimensional ball model with uniform distributions. We show the train and
test error as a function of training time. The left panel corresponds to a typical
dataset obtained by random sampling according to the given uniform distribution,
where no grokking is observed. The right panel corresponds to a shifted training
dataset far from the typical region where most samples are concentrated (see
main text for details). In the non-typical dataset case, we find a region with a
large test error while the training error vanishes. As expected the region is larger
with larger shifts. In both cases N = 10, D = 128, ε = 1.2, λ1 = 0, and λ2 = 0.1.

In the setting discussed here, the main condition to observe generalisation beyond overfit-
ting is, that the positive and negative training samples x̃i are far from the concentration
of the probabilities P±(x̃i). In the 1D model, the largest probability density was close to
the boundary at ε. In the uniform D-dimensional ball distribution considered here, the
concentration of the probability density is in the middle of the ball as D � 1. Non-typical
training dataset in combination with measure concentration partly explains the absence of
grokking in more realistic scenarios, where training samples are expected to be typical and
closer to the maximum probability density.

3.3.2 Grokking probability

Next, we will calculate the probability of training a model with zero test error (grokking
probability) for a given number of positive/negative samples N . The condition for the final
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test error to be zero is given by

wλ1
||wλ||2

≥ 1

ε
. (24)

It will be useful to write the zero test error condition in terms of components of wλ

(ε2 − 1)
(
wλ1
)2 ≥ D∑

j=2

(
wλj
)2

= r, (25)

where r denotes the 2-norm squared of the final weights vector wλ with the first component
equal to zero.

A general calculation of the grokking probability and the grokking-time PDF is not feasible
since we would have to invert a random matrix G. Therefore, we consider the limit of many
training samples N � 1, where the matrix G decomposes into a diagonal part proportional
to λ2,D = λ2 + 1

D+2 and an off-diagonal part proportional to N−1/2. We provide the
full derivation of the grokking probability in this limit in Appendix B. Here we consider
a simpler case, where we additionally assume that N � λ2,D � 1. In this case, G is
approximately proportional to the identity

G ≈ λ2,D1D + ε⊗ ε. (26)

The inverse is

[G−1]i,j ≈


(
λ2,D + ε2

)−1
, i = j = 1

λ−1
2,D , i = j 6= 1

0 , i 6= j

. (27)

Finally, we get

wλi=1 ≈
a1

ε2 + λ2,D
, wλi>1 ≈

ai
λ2,D

. (28)

In the limit N � 1, the probability of the mean of 2N random vectors distributed uniformly
in a D-dimensional ball is well approximated by the normal distribution with zero mean
and variance 1D/2N(D + 2),

PD,2N (x̄) ≈ N0,1D/2N(D+2)(x̄). (29)

In the following, we separately describe the grokking probability in the case λ1 = 0 and
the case λ1 > 0.

Case λ1 = 0 – Let us first consider the case without the L1 regularisation, i.e. λ1 = 0.
The grokking probability is given by (see Appendix B)

PE(∞)=0 =

∫
dx̄ PD,2N (x̄)Θ

(
wλ1 (x̄)

||wλ(x̄)||2
− 1

ε

)
(30)

≈
∫ ∞
−ε

dx̄1N0,1/2N(D+2)

∫ 2N(D+2)(ε2−1)

(
x̄1+ε

1+ε2/λ2,D

)2

0

dr χ2
D−1(r)

=

∫ ∞
−ε

dx̄1N0,1/2N(D+2) P

D − 1

2
,
N(D + 2)

(
ε2 − 1

)
(x̄1 + ε)2(

ε2

λ2,D
+ 1
)2

 ,
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where χ2
D−1(r) is the standard Chi-square distribution and P (s, t) is the regularized gamma

function. We also introduced the sample average x̄ = 1
2N

∑2N
i=1 y

ixi. The full grokking
probability without the additional assumption has essentially the same structure with more
complicated expressions for the parameters of the distributions (see Appendix B).

For a given set of parameters λ2, D, and ε we can efficiently numerically evaluate the
integral in Eq. 30 (and the full formula reported in Appendix B). In Fig. 8 we show the full
grokking probability as a function of D, λ2, N , and ε. As expected, the grokking probability
is larger with increasing distance ε and number of samples N . We also observe that the
grokking probability exponentially decreases with the dimensionality of the latent-space
data distribution D. Therefore, latent-space distribution with a low effective dimension
is preferred for better generalisation. This result partially explains the observation in
Liu et al. (2022) which relates grokking to structure formation and effective dimension
decrease at the transition. We expect that low effective dimension in the latent space
increases generalisation in a more general setting, beyond the simple grokking scenario
described in this section. In other words, models with latent space distributions with small
effective dimensions will more likely lead to good generalisation. Finally, by increasing the
L2 regularisation strength λ2 the grokking probability increases up to a maximum that
depends on the remaining parameters. These results provide, some justification of the
numerical observation in Power et al. (2022); Liu et al. (2022); Thilak et al. (2022) that
weight decay increases the parameter region where grokking is observed.
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Figure 8: Grokking probability as a function of D, λ2, N , and ε. We find that larger di-
mension D decreases the grokking probability. In contrast, larger regularisation
strength λ2 increases the grokking probability. As expected, increased class sepa-
ration ε and number of training samples N also increases the grokking probability.
If not specified in the panels, additional parameters are set to D = 10, λ2 = 0.1,
N = 10, and ε = 1.01.

Case λ1 > 0 – Let us again consider the limit N � λ2 � 1. If λ1 > 0 the stationary
solution wλj depends on the sign of |x̄j | −λ1, where x̄ = 1

2N

∑2N
i=1 x

i. The j−th component
of the stationary vector is

wλ1 =

{
0 , λ1 ≥ |x̄1 + ε|
x̄1+ε−λ1sgn(x̄1)

λ2,D+ε2 , else
, wλj 6=1 =

{
0 , λ1 ≥ |x̄j |
x̄j−λ1sgn(x̄j)

λ2,D
, else

. (31)

The number of non-vanishing components of the stationary solution wλ depends on the
value of λ1. Therefore, we get (in the N � 1 limit) an additional sum over the number of
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non-zero elements in the wλ,

PE(∞)=0 =

∫ ∞
λ1−ε

dx̄1N0,1/2N(D+2)

[
(1− pλ)D−1 (32)

+

D−1∑
k=1

(
D − 1

k

)
pkλ(1− pλ)D−1−k

∫ 2N(D+2)(ε2−1)

(
x̄1+ε−λ1

1+(ε/λ2,D)2

)2

0

drRk(r)

]
,

where pλ = 1− erf
(√

N(D + 2)λ1

)
is the probability of the variable |x̄i| (for i > 1) to be

larger than λ1 and Rk(r) is the PDF of the sum of squares of k random variables sampled
from the truncated normal distribution. Since the half-Gaussian distribution has a longer
tail than the truncated Gaussian at λ1, we can lower bound (or estimate) the grokking
probability by using the Chi-squared distribution instead of R(r). In the limit λ1 = 0 we
recover Eq. 30. In the case λ1 > 0, we can approximate the inner integrals in Eq. 30 by
the regularised gamma function and efficiently numerically evaluate Eq. 30.

Further, by discarding the sum over k ≥ 1 in Eq. 32 we obtain a lower bound on the
grokking probability

PE(∞)=0 ≥
∫ ∞
λ1−ε

dx̄1N0,1/2N(D+2)(1− pλ)D−1 (33)

=
1

2

(
1 + erf

(√
N(D + 2)(ε− λ1)

))(
erf
(√

N(D + 2)λ1

))D−1

.

We find a similar distinction between the L1 and L2 regularisations as in the simple 1D case.
At ε = 1 and λ1 = 0 the grokking probability vanishes for any value of λ2. In contrast, for
λ1 > 0 the grokking probability can increase even above 90% for any D ≥ 2. Interestingly,
the grokking probability increases with the dimensionality of the data distribution D. In
fact, if we send D →∞ the grokking probability becomes 100% if 0 < λ1 < ε. This result
is a consequence of the concentration of measure of the uniform distribution. Similarly, by
using the lower bound Eq. 33 we estimate the best value of λ1 for any ε, D and N and find
that the grokking probability maximum is always larger than 0.915. In contrast, in the
λ1 = 0 case, the grokking probability becomes exponentially small with D, independent
of the remaining parameter values. We make similar observations also if we relax the
condition λ2 � 1 (see Appendix B).

The discussed results could be applicable more generally. It would be interesting to check
if L1 weight regularisation in the last (classification) layer significantly improves the gener-
alisation of deep models compared to the L2 regularisation. The works Power et al. (2022);
Liu et al. (2022) do not study the differences between L1 and L2 regularisations. In Liu
et al. (2022) a consistent observation has been made, namely larger weight decay leads
in most cases to a larger parameter region where grokking is observed. We confirm this
expectation on a simple model discussed in Section 4.3.1 and Section 4.3.2.

3.3.3 Grokking time

To calculate the grokking time, we first determine the condition for the zero train error. In
contrast to the simple 1D case, this condition depends non-trivially on the training dataset
and the initial condition w(0). To simplify the calculation, we calculate the distribution of
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the upper bound on the grokking time in the limit N � 1. We obtain the most conservative
estimate for zero train error by selecting the training sample x̃ that forms the smallest angle
with the shift vector ε. We write this condition in terms of the cosine of the angle as

w1

||w||2
≥ ξtrain = max

i

√
||xi + ε||22 − (xi1 + ε)2

||xi + ε||2
, (34)

where ξtrain denotes the cosine of the smallest angle between the plane defined by ε and
any training sample x̃i. We will consider only the zeroth-order solution in 1/

√
N , where

the grokking probability becomes 100%. Namely, we also discard terms proportional to
1/
√
N . In this limit the stationary solution is proportional to ε, i.e. wλ ≈ ε

λD+ε2 . The
time-dependent model parameters are simplified to

w1(t) ≈ ε

λD + ε2
+

(
w1(0)− ε

λD + ε2

)
e−(λ2,D+ε2)t, (35)

wj(t) ≈wj(0)e−λ2,Dt, j > 1. (36)

Since we consider only the leading (zeroth) order in 1√
N

, the value of λ1 does not have such

a dramatic effect as in Section 3.3.2. Therefore, we will study only the case λ1 = 0. To
further simplify the calculation we will also assume λ2,D = λ2 + 1

D+2 � 1. In this limit we
find

ξtrain ≈ max
i

√
1−

(
xi1 + ε

||xi + ε||2

)2

≈ xmax√
x2

max + ε2
≈ 1√

1 + ε2
, (37)

where xmax = maxi ||xi||2. Similarly, Eq. 35 and Eq. 36 simplify to

w1(t) ≈1

ε
+

(
w1(0)− 1

ε

)
e−ε

2t, (38)

wj(t) ≈wj(0)e−λ2,Dt, j > 1. (39)

We find that the first component of w relaxes much faster than the remaining components.
Therefore, the parameter path can be approximated by two straight lines/paths. Along the
first path, w1(t) quickly relaxes towards the stationary value wλ1 ≈ 1/ε. Then, along the
second path, the remaining parameters slowly relax towards the stationary value wλj>1 ≈ 0.
This leads to two different zero train/test error conditions.

First, we consider the case when grokking occurs during the fast relaxation (first path). In
this case, the condition for grokking to occur reads

1 ≥ 1

ε2
+ ||w⊥(0)||22, (40)

where w⊥(t) is obtained from w(t) by setting w1 to zero. The zero train/test error is
achieved after time

t =
1

ε2
ln

 1
ε − w1(0)

1
ε −

ξ√
1−ξ2
||w⊥(0)||2

 . (41)

We assume that w1(0) < wλ1 ≈ 1
ε and obtain the final expression for the grokking time

tG =
1

ε2
ln

 1
ε −

ξtrain√
1−ξ2

train

||w⊥(0)||2
1
ε −

ξtest√
1−ξ2

test

||w⊥(0)||2

 ≈ 1

ε2
ln

(
1− ||w⊥(0)||2

1− ε√
ε2−1
||w⊥(0)||2

)
. (42)

20



Grokking phase transitions in learning local rules with gradient descent

The grokking time in the considered limit depends only on the initial condition w⊥(0),
i.e. on the initial distribution of the classifier weights. We assume that the initial model
weights are sampled independently from a normal distribution with zero mean and unit
variance. Setting r = ||w⊥(0)||22, the variable r follows the χ2

D−1 distribution. Therefore,
we express the grokking-time PDF as

Pfast(tG) ≈ χ2
D−1(r(tG))

∂r(tG)

∂tG
, (43)

where

r(tG) =

(
ε2 − 1

) (
etGε

2 − 1
)2 (

ε
(
εe2tGε

2

+ 2
√
ε2 − 1etGε

2

+ ε
)
− 1
)

(
ε2
(
e2tGε2 − 1

)
+ 1
)2 . (44)

The above result represents only one part of the grokking probability and hence the distri-
bution Pfast(tG) is not normalised. Integrating Pfast(t) over the whole domain we obtain
the probability to start with the initial condition where grokking occurs during the fast
relaxation

pfast =

∫
w

P (w)Θ

(
1− 1

ε2
− |w⊥|2

)
dw =

∫ 1− 1
ε2

0

χ2
D−1(r)dr, (45)

where χ2
D−1 is the standard Chi-squared distribution.

The second part of the grokking-time PDF comes from the initial conditions where the zero
test/train error is obtained during the slow relaxation process. In this case, we assume that
the value w1(t) is stationary, i.e. w1(t) ≈ wλ1 ≈ 1

ε . The remaining model parameters evolve
according to Eq. 39. The time at which the train/test error vanishes reads

ttrain/test =
1

λ2,D
ln

 ||w⊥(0)||2√
1− ξ2

train/testw
λ
1

 . (46)

After simplification, we find the grokking time in the slow relaxation regime

tG =
1

2λ2,D
ln

(
ε4

ε4 − 1

)
. (47)

Interestingly, the grokking time is independent of the initial condition. Therefore, the
distribution of the slow-relaxation grokking time is trivial, i.e. proportional to a Dirac
delta distribution with the weight 1− pfast, where pfast is the probability of initialising the
parameters with grokking during the fast relaxation given in Eq. 45.

By combining the grokking-time PDFs for the fast and the slow relaxation we obtain the
grokking-time PDF in the limit λ2 � ε2. In Fig. 9 we show the grokking-time PDFs for
several parameter sets in the considered limit. Increasing the input size D reduces the prob-
ability of fast-relaxation grokking times and increases the slow-relaxation grokking time.
While the fast-relaxation grokking time does not depend on the regularisation strength λ2,
smaller regularisation leads to increased slow-relaxation grokking time. On the contrary,
larger class separation decreases both fast- and slow-relaxation grokking times. We do not
expect the analytically obtained grokking-time PDF to quantitatively describe real exper-
iments, particularly because it is a zeroth-order large N solution. However, the bimodal
structure and the qualitative parameter dependence should also be present in more realistic
scenarios. We will discuss one such example in Section 4.3.
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Žunkovič and Ilievski

D=4 D=5 D=6

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

tG

P
(t
G
)

λ2=0 λ2=0.01 λ2=0.05

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

1.0

tG

ε=1.5 ε=2 ε=2.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

tG

Figure 9: Grokking-time PDF for several values of D, ε, and λ2. The short relaxation
grokking-time PDFs are represented by full lines. The Dirac-delta long-relaxation
grokking time is represented by vertical bars. The position of the bar is the
position of the Dirac-delta function and the height of the bar represents the
weight of the Dirac-delta part of the distribution. If not specified in the panels,
additional parameters are set to D = 5, λ2 = 0.01, and ε = 2.

3.3.4 Critical exponents for a general isotropic data PDF

By assuming isotropic probability densities on a compact domain P± in RD we can relate
the data PDF close to the domain boundary (D−dimensional sphere) with the critical
exponent. For an isotropic data probability density we can write the test error close to the
grokking transition as

Etest(δh) ≈ 1

2
I2δh−δh−2

(
D − 1

2
,

1

2

)∫ δh

0

drρ(r), (48)

where, Iz(a, b) is the regularized incomplete beta function, ρ(r) is a probability distribution
to find a sample with ||x||2 = 1− r, and δh ≈ k(tε − t), and coefficient k is determined by
expanding Eq. 21 around tε. If the density ρ(r) admits a Taylor expansion around zero,
i.e. ρ(r) = ρ0 + ρ1r +O(r2), we find

Etest(δh) ≈ 2
D−1

2 δh
D−1

2

(D − 1)B
(
D−1

2 , 1
2

) (ρ0δh+
1

2
ρ1δh

2

)
(49)

∝ρ0δh
D+1

2 +
1

2
ρ1δh

D+2
2

∝(t− tε)
D+1

2 ,

where B(a, b) is the Euler beta function. Obtained critical exponent ν = D+1
2 is universal

for isotropic probability densities that do not vanish at the ball boundary and is consistent
with the result in Eq. 23. If in addition the density ρ(δh) has an algebraic divergence, e.g.
ρ(δh) ≈ ρξδh−ξ where 0 < ξ < 1 we get

Etest(t) ∝ (t− tε)
D+1−2ξ

2 . (50)

The critical exponent of the test error reveals the behaviour of the sample density at the
boundary of the sample domain. While both the grokking probability and the grokking-
time PDF depend on the details of the model’s initial parameters and the evolution, the
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critical exponent ν depends only on the data distribution at the boundary of the domain.
Therefore, we expect that Eq. 50 describes the critical exponent quantitatively also in a
more general setting. In this case, we might have to relax the condition 0 < ξ < 1 to
accommodate a more general divergence of the data distribution at the sample domain
boundary.

4. Learning local rules with shallow tensor networks

In this section we go beyond the simple perception grokking model described previously
in Section 3 and discuss grokking in the teacher-student model. In standard rule-learning
theory, the teacher-student model describes a setting where the student model has to learn
a rule given by the teacher model, see Engel and Van den Broeck (2001). In the simplest
scenario where the teacher and the student models are perceptrons of the form Eq. 18, we
use statistical mechanics methods to calculate the expected generalisation error for a given
number of training samples (or training time). This is achieved in the thermodynamic
limit where the input size M , and the number of training samples N go to infinity such
that N = αM . The teacher and student weights are sampled uniformly on an M -sphere.
In this setup, one can use the replica trick Gardner and Derrida (1989) to calculate the
test-error behaviour as a function of α. One finds Etest ∝ 1

α when α → ∞. Although
sudden transitions to zero generalisation error are possible, they are a consequence of a
restriction on the phase space of parameters, e.g. in the Ising perceptron, the parameters
can take only values ±1.

In summary, the standard rule-learning theory does not describe the grokking phenomenon
and it is not clear how to reconcile the standard algebraic decay to zero test error with the
grokking phase transition observed in deep models and presented in Section 3.

In this section, we fill this gap by introducing a local-rule learning scenario and a tensor-
network map, allowing us to interpolate between the standard mean-field-like theory and
the local, grokking setup. In particular, we introduce a local teacher and a tensor-network
student setup which displays the grokking behaviour without any restriction on the values
of the student model parameters. The tensor-network techniques will provide a correspon-
dence between the standard teacher-student setup in the thermodynamic limit and the
setup described in the Section 3. Therefore, the grokking phase transition is enabled by
the locality of the learned rule. In contrast to the previous section, we will also study
the feature learning part of the problem and establish a connection between the structure
formation and grokking based on statistical averages of the test error and the effective
dimension of the latent space representations.

4.1 Local teacher model

In the standard statistical-learning scenario, we determine the output of the teacher model
(the rule) by Eq. 18 (see Engel and Van den Broeck (2001)). In this case, all values of the
input contribute to the final result. In the thermodynamic limit this leads to a mean-field-
like behaviour, i.e. the value of the input at any particular position has only infinitesimal
influence on the result/rule.
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We will study the opposite, local scenario x→ y, where x, y ∈ {−1, 1}M . The i-th compo-
nent of the output vector yi will depend only on a K-neighborhood of the input at position
i

yi = rule(xi−K , . . . , xi, . . . xi+K). (51)

We call such model a K−local model. The Eq. 51 describes a well-known cellular automata
computational paradigm. Cellular automata are universal discrete space-time dynamical
systems with a finite set of possible states at each position Wolfram (1983); Wolfram et al.
(2002). We define a cellular automaton by a set of rules which transform one configuration
of states into another configuration. We will consider the rule-30 one-dimensional automa-
ton (K = 1) Wolfram (1983); Wolfram et al. (2002), which exhibits chaotic behaviour and
is defined by the rule yi = rule30(xi−1, xi, xi+1). The next state of the cell i, i.e. yi, is
determined by the current configuration at cells i − 1, i, and i + 1, i.e. xi−1, xi, xi+1, as
follows

xi−1,xi,xi+1 -1,-1,-1 -1,-1,1 -1,1,-1 -1,1,1 1,-1,-1 1,-1,1 1,1,-1 1,1,1
yi = rule30(xi−1,xi,xi+1) -1 1 1 1 1 -1 -1 -1

.

(52)

We show an example time evolution of the rule-30 cellular automaton in Fig. 10. The
initial condition is represented by the first line, black cells represent the value 1, and white
cells represent the value -1. We will aim to learn one step of this evolution.

Figure 10: Diagramatic representation of the rule-30 cellular automaton. In our convention,
the black cells represent 1 and the white cells represent -1. The diagram is taken
from Wikipedia Wikipedia (2022).

The rule-30 automaton has already been discussed in the context of sequence-to-sequence
prediction with tensor networks Guo et al. (2018); Efthymiou et al. (2019); Žunkovič (2022),
however, no grokking phenomena have been reported. To study the effect of the neigh-
bourhood size K, we shall consider a rule defined by K consecutive applications of rule 30.
We will refer to such a rule as a K–local rule.

In summary, we modify the standard perceptron teacher-student setup by restricting the
teacher model to local instead of global rules. The teacher will be modelled by a local map
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transforming a sequence x into the sequence y. The task will be to approximate the chosen
map by training on a finite set of input samples of length M . For a finite M we can choose
open and closed boundary conditions. Open boundary conditions refer to the case when y1

and yM are calculated as if x0 = xM+1 = −1. In the case of closed boundary conditions,
we have x0 = xM and xM+1 = x1. The test set will include all possible input sizes from
Mtest = 3, 4, . . . ,∞. We will determine the error as the ratio of incorrectly predicted values
yi.

Besides the change from a global to a local rule, we will also modify the student model.
Instead of the standard perceptron student model, we will use the uniform tensor-network
attention model.

4.2 Uniform tensor-network student model

The simplest student model discussed in the literature is a perceptron model, which does
not apply to our problem since we will discuss inputs of different sizes. The standard
architectures applicable to variable-size inputs are the recurrent neural network (RNN)
and convolutional neural network models. However, we found it convenient to use a tensor
network approach, which enables us to construct a bridge between the teacher-student
rule learning scenario and the grokking model discussed in the previous section.1 Before
introducing the tensor-network attention layer and the student model we will summarise the
basic properties of tensor networks applied to machine learning Stoudenmire and Schwab
(2016); Stoudenmire (2018).

4.2.1 Short introduction to tensor network methods

A tensor network is a tensor that is represented as a contraction of two or more tensors. The
tensors that are contracted typically have a much smaller number of dimensions (indices)
and hence fewer parameters. A trivial example of a tensor network is a scalar product of
two vectors, where the second vector is a result of a matrix-vector multiplication, c = u ·Av

= v, = u, = A, (53)

= c.

We introduced a diagrammatic notation, which makes longer tensor contractions more
transparent. A tensor in this notation is represented as a circle with legs. The direction
of the legs is typically not important. The number of legs determines the dimensionality
of the tensor, e.g. a number has zero legs, a vector has one leg, a matrix has two legs etc.
The most prominent tensor network, related to RNNs, is the matrix product state (MPS)
obtained by contracting 3-dimensional tensors

ψ = . (54)

To use a tensor network as a machine learning model, we have to transform the inputs such
that they can be contracted with the tensor network model to produce a scalar output. We

1. Due to a connection between RNNs and tensor networks Wu et al. (2022) we expect that one can rephrase
our tensor network model in the language of RNNs.
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do that by using an embedding function and transforming the elements of the input vector
with a vector transformation

φ(xj) = . (55)

The entire input vector is then transformed as

Φ(x) = φ(x1)⊗ φ(x2)⊗ . . .⊗ φ(xM ) = . (56)

Formally, Φ(x) is an exponentially large vector with a compact MPS representation and
will never be used directly. The output of the MPS model is then a contraction of the
embedded input elements with the MPS tensor-network model

ψ · Φ(x) = (57)

We can produce a vector output by adding one dimension to one of the MPS tensors.
The presented setup has all the main parts of the typical tensor network model. It is
differentiable with respect to tensor-network parameters and applicable to the standard
training methods based on gradient descent.

4.2.2 Tensor-network attention model

In this section, we will introduce a simplified version of the tensor network proposed in
Žunkovič (2022). As in the introductory example above, the entire model has two parts:
an embedding layer and a tensor-network attention layer. Since the input is binary, we
define the embedding layer with a local embedding function φ(xi) : {−1, 1} → R2 as

φ(−1) =

(
1
0

)
, φ(1) =

(
0
1

)
. (58)

After the embedding, we apply the tensor-network attention determined by two parameter
tensors A,B ∈ Rd×d×2. We call the tensor A the attention tensor and the tensor B the
classification tensor. The names of the tensors A and B reflect their role in the tensor-
network attention layer. As we will describe below (see also Section 4.2.3), for a given
position the tensor A determines the context of the input which is then linearly classified
by the tensor B.

First, we construct matrices A(i) by contracting the attention tensor A with the local
embedding vectors φ(xi)

Aµ,ν(i) =

2∑
j=1

Aµ,ν,jφ(xi)j . (59)

Then, we use the matrices A(i) to construct the left and right context matrices HL,R(i)

HL(1) = 1d, HL(i) = HL(i− 1)A(i− 1), (60)

HR(M) = G, HR(i) = A(i+ 1)HR(i+ 1). (61)
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The matrix G determines the boundary conditions of the model. In the case of closed
boundary conditions G = 1d. In the case of open boundary conditions G = vL ⊗ vR,
where the boundary vectors vL,R ∈ Rd are additional model parameters. Alternatively,
the boundary vectors vL,R can be determined as left and right eigenvectors of the matrix
A0 corresponding to the largest eigenvalue. The final local weight vector w(i) is then
obtained by contracting the tensor B with the normalised left and right context matrices
HL,R

N = HL,R/||HL,R||2,

w(i)j = Tr
(
HL

N(i)BjH
R
N (i)

)
, j = 1, 2, i = 1, . . . ,M, (62)

where Bj denotes the matrix with elements [Bj ]µ,ν = Bµ,ν,j . We calculate the attention
layer output at position i as

ŷi = w(i) · φ(xi). (63)

The final model output is then obtained by using the sign nonlinearity f(x) = sgn(ŷ). The
described tensor-network layer is a generalisation of the linear-dot attention mechanism
(see Žunkovič (2022)). Therefore, we refer to it as a tensor-network attention.

It is instructive to present the tensor-network attention layer in a diagrammatic form by
using the following definitions

φ(xi) = , A = , B = , ID = , G = . (64)

We compactly write the entire transformation of an input at the position i as

A(j) = = , (65)

HL(i) = = ,

HR(i) = = ,

ŷi = .

4.2.3 Tensor network map

The described tensor-network attention model also implements a map from inputs of vari-
able length M to vectors of length 2d2. In the case of fixed attention tensors A, all possible
infinitely many inputs define a PDF of vectors zi(x) ∈ R2d2

, where

zi(x) = HR
N (i)HL

N(i)⊗ φ(xi). (66)

We show a schematic representation of the map in Fig. 11. By considering zi(x) as input
features we can interpret the model defined by Eq. 63 as a perceptron defined by the weight
tensor B, namely

ŷ = zi(x) · ~B. (67)

In the above formula ~B denotes the vectorised classification tensor B. By setting D = 2d2,
we have mapped the local-rule learning problem in the thermodynamic limit to a (grokking)
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classification problem of the form discussed in Section 3. Interestingly, for a K−local rule,
we can find 4K-dimensional matrices A for which the transformed problem is solvable
by a simple perceptron model and exhibits the grokking phenomena. Therefore, the 1/α
dependence on the training set size obtained from the standard rule-learning theory seems
to be a consequence of the mean-field type infinite-range rule. For any local rule, we will
observe grokking.

2ε

x

y

M = 3

x

y

M = 4

x ∈ {−1, 1}⊗M HR(i)HL(i)⊗Φ(xi)−−−−−−−−−−→ R2d2

1 −1 1

−1 −1 1

1 −1 −1 1

1 1 1 1

Figure 11: The tensor network map from {−1, 1}M to R2d2 implemented with Eq. 66, with
2ε denoting the distance between the closest positive and negative samples.

4.3 Simulation details and results

In this section, we present the results of training the uniform tensor-network student model
on local algorithmic datasets. First, we consider the setting where the tensors A are
fixed and map the inputs to separable distributions as shown in Fig. 11. We compare
the numerical results with the predictions of the grokking model presented in Section 3.
Second, we train the entire student model, i.e. the tensor A and the tensor B. In this case,
we also discuss structure formation.

4.3.1 Constant attention tensors

We now discuss the simulation results obtained by fixing the attention tensors A. Namely,
we use the proposed tensor-network model as a map from {−1, 1}M to R2d2

as discussed
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in Section 4.2.3 and shown in Fig. 11. We choose the left and the right boundary vectors
vL,R to be the eigenvectors of A0 corresponding to the largest eigenvalue. We also fix the
bond dimension d = 2 and study the 1–local rule, which facilitates the comparison with
the results discussed in Section 3.

We determine the attention tensors A by independently sampling each element according to
the normal distribution with zero mean and unit variance. Since not all attention vectors
lead to solvable problems, we perform rejection sampling by checking if the final model
parameters given by Eq. 21 have zero test error. Once we obtain a solvable instance of the
attention tensor A, we do not change its parameters during training. The rejection sampling
procedure works well for D ≤ 3. In higher dimensions, the probability of sampling a correct
tensor A is very small, therefore, we evaluate the grokking probability and grokking time
distributions only for small d = 2.

An example evolution of training and test errors for bond dimension d = 6 is shown in
Fig. 12. The context tensors A have been trained in advance to ensure that the model
admits zero final test error. Grokking is not as pronounced since we are training only
a linear classifier. Nevertheless, we observe in the left panel of Fig. 12 a plateau of test
error which eventually goes to zero, while the test error remains constant, or in some
cases even slightly increases, the training error vanishes. The test error is much smaller
than in standard cases of grokking due to a significant overlap between the train and
test distributions and in the latent space. The middle and right panels are shown for
completeness to demonstrate a representative range of training behaviour which includes
cases without a test error plateau. The cases shown in Fig. 12 differ only in the initial
condition of the linear classifier.
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Figure 12: Examples of test and train error evolution for a fixed attention tensor with d = 6.
We show three representative situations. In the left panel, the test error has a
pleau while the training error is zero. Finally, the test error drops to zero. The
plateau is significantly smaller compared to the standard cases of grokking due
to the simplicity of the problem. The middle and the right panels do not show
a plateau in the test error and are more representative of the standard training
dynamics. The training parameters are λ1 = 0, λ2 = 0.01.
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Exact 1–local attention We first consider the learning dynamics in the case of exact
attention tensors

A0 =


1 1 0 0
0 0 0 0
1 1 0 0
0 0 0 0

 , A1 =


0 0 0 0
0 0 1 1
0 0 0 0
0 0 1 1

 . (68)

The minimal bond dimension of the exact solution can be reduced to 2 if we generalise the
model and train different left and right attention tensors A. In the exact, 1-local attention
case, the vectors zi(x) contain only information about the state of the neighbouring posi-
tions. Since the smallest size M = 3 contains all eight possible inputs, the larger training
set size M does not change the results. After averaging over many initialisations of the
classifier part of the network B we obtain the average test error shown in Fig. 13. We
observe a first-order transition with a jump of 1/4 in the test/train error. Here the factor
1/4 comes from the fact that the neighbourhood of any given position has four possible
different values.
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Figure 13: The first-order phase transition when learning with the exact attention tensors
A given in Eq. 68. The jump in the transition is 1/4.

In the following, we discuss results obtained by randomly sampling the attention tensors
A. We show results for three different attention tensors A, namely Example 1, Example 2,
and Example 3 reported in Appendix C.

Grokking probability We estimate the grokking probability as the fraction of the
sampled attention tensors A that leads to linearly separable latent space data for the
studied rule. In contrast to the grokking probabilities discussed in Section 3, we fix the
training set to contain all possible samples of length M = 3. In Fig. 14 we show the
dependence of the grokking probability on regularisation strengths λ1,2. We observe that
the L2 regularisation decreases the grokking probability while the L1 regularisation first
slightly increases the grokking probability and then decreases compared to models without
regularisation. In all cases, the L1 regularised model has a larger grokking probability
than the L2 regularised model with the same regularisation strength. A larger grokking
probability for L1 regularised models is another indicator that L1 regularisation could lead
to better generalisation compared to the L2 regularisation.

30



Grokking phase transitions in learning local rules with gradient descent

0 0.01 0.02

0

0.01

0.02

λ1 , λ2

P
G

Figure 14: Grokking probability (PG), representing the fraction of the attention tensors A
that map the 1–local rule to linearly separable data. We show the dependence of
PG on the L1 regularisation strength (λ1 blue circles) and the L2 regularisation
strength (λ2 orange squares). The L1 regularised models have larger grokking
probability compared to the L2 regularised models. We used 20k random atten-
tion tensors to estimate the grokking probability.

Critical exponent ν Sampled attention vectors HL,R(i) also contain information
about the input beyond only the neighbouring sites. Moreover, information about the
neighbours is not complete. Therefore, we observe a second-order transition, as discussed
in Section 3. In Fig. 15 we show the average test error for three different but fixed at-
tention tensors obtained by rejection sampling. The exact values of the attention vectors
are reported in Appendix C. We find that the critical exponent ν does not depend on the
regularisation strengths λ1,2 and is in all cases smaller than one, which is in agreement
with the predictions of the simple grokking model discussed in Section 3.
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Figure 11: Mean test error for fixed attention vectors. From left to right we report results for
Example 1, Example 2, and Example 3 attention tensors A given in Appendix C. The fitted critical
exponents ν are shown in the plots and only mildly depend on λ1,2.
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explained-variance ratios of the principal components of zi(x). Then we calculate the entropy of the ratios.598

Finally, the effective dimension is obtained as the exponent of the entropy. We report the entropies for the599
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We also use the vectors zi(x) to estimate the divergence exponent of the sample PDF at the boundary of601

the domain. In the considered case, the vectors zi(x) are a tensor product of three vectors. Therefore, we602

estimate the PDF divergence by focusing separately on each of the components of the vector zi(x). One of the603

vectors is a constant vector determined by the embedding function and does not contribute to the divergence604

exponent. The remaining, important parts are the left and the right context vectors, namely vLHL
N (i) and605

HR
N (i)vR. We consider the normalised context vectors which in addition have size two. Therefore, they are606

uniquely determined by the angle with the first component and we estimate the divergence at the boundary607

of the domain by studying the PDF of the angle. We estimate the divergence exponent by looking at the608

behaviour of the estimated PDF at the boundary with an increasing number of bins. The final exponent is609

obtained as a sum of the exponents obtained from the left and the right-attention part of the feature vector610

zi(x). We find (see Fig. 12) that the PDF diverges algebraically with the powers reported in Table 1.
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Figure 12: The estimated PDF maximum of the positive (black) and negative (orange) samples.
The dashed line fits correspond to the left context vectors vLHL

N(i) and the full line fits to the right
context vectors HR

N(i)v
R. The final value reported in the panel title is obtained as a maximum

sum of the left and right divergence exponents. From left to right we report results for Example 1,
Example 2, and Example 3 attention tensors A given in Appendix C.
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In Section 3.2.4 we derived a relation between the exponents ν, ξ and the effective dimension for a simple612

D−dimensional ball model. Interestingly, we find that the relation given by Eq. 50 obtained from a simple613

spherically symmetric model is reasonably close in two out of the three considered cases (see Table 1).614
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Example 1, Example 2, and Example 3 attention tensors A given in Appendix C. The fitted critical
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exponents ν are shown in the plots and only mildly depend on λ1,2.
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Figure 15: Average test error during training with fixed attention vectors (log-log plot).
From left to right we report results for Example 1, Example 2, and Example

3 attention tensors A given in Appendix C. The fitted critical exponents ν are
shown in the plots and only mildly depend on λ1,2.

Besides the test-error critical exponent, we estimate several properties of the feature distri-
butions. In particular, we calculate the effective dimension Deff , the divergence exponent
ξ of the sample PDF at the boundary of the domain, and the distance between positive
and negative samples ε. These quantities are calculated from the training-dataset features
zi(x). To calculate the effective dimension Deff we first find σk defined as the fraction
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of the variance explained by the kth principal component of the training dataset features
zi(x). Then we calculate the entropy S of the ratios σk defined as S = −∑k σk log σk.
Finally, the effective dimension is obtained as the exponent of the entropy, i.e. Deff = eS .
We report the effective dimensions for the considered Examples 1-3 in Table 1.

We also use the vectors zi(x) to estimate the divergence exponent of the sample PDF at
the boundary of the domain. In the considered case, the vectors zi(x) are a tensor product
of three vectors. Therefore, we estimate the divergence in the PDF by focusing separately
on each of the components of the vector zi(x). One of the vectors is a constant vector
determined by the embedding function and does not contribute to the divergence exponent.
The remaining, important parts are the left and the right context vectors, namely vLHL

N (i)
and HR

N (i)vR. We consider the normalised context vectors which, in addition, have size two
(since we fix d = 2). Therefore, they are uniquely determined by the angle with the first
component and we can accordingly estimate the divergence at the boundary of the domain
by studying the PDF of the angle. We estimate the divergence exponent by looking at
the behaviour of the estimated PDF at the boundary with an increasing number of bins.
The final exponent is obtained as a sum of the exponents obtained from the left and the
right-attention part of the feature vector zi(x). We find (see Fig. 16) that the PDF diverges
algebraically with the powers reported in Table 1.
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Figure 16: The estimated PDF maximum of the positive (black) and negative (orange)
samples. The dashed line fits correspond to the left context vectors vLHL

N(i)
and the full line fits the right context vectors HR

N(i)vR. The final value reported
in the panel title is obtained as a maximum sum of the left and right divergence
exponents. From left to right we report results for Example 1, Example 2, and
Example 3 attention tensors A given in Appendix C.

In Section 3.3.4 we derived a relation between the exponents ν, ξ and the effective dimension
for a simple D−dimensional ball model. Interestingly, we find that the relation given by
Eq. 50 obtained from a simple spherically symmetric model is reasonably close in two out
of the three considered cases (see Table 1).

We also estimate the class separation from the actual latent space distribution and report
it in the units of the intra-class variance (see Table 1).

Grokking time Finally, we estimate grokking-time PDF, see Fig. 17. We do not expect
that the prediction of Section 3.3.3 will quantitatively describe the estimated grokking-
time PDF. Besides the “worst-case” initial condition assumption, the condition N � 1 is
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Deff ν ξ∗ ξ = 1
2(Deff − 2ν + 1) (Eq. 50) ε

Example 1 3.0 0.85 1.2 1.15 1.45
Example 2 3.8 0.75 1.8 1.65 1.46
Example 3 3.0 0.84 1.6 1.16 1.6

Table 1: Critical exponent ν and numerically calculated characteristic parameters of the
feature vector zi(x) distribution. We also compare the numerically estimated
divergence of the sample PDF at the boundary ξ∗ with the prediction of the
spherical model (Eq. 50).

not valid. Hence, the actual value of G is far from identity. However, some qualitative
predictions of the D-dimensional ball model can still be observed. First, we notice, the
bimodal structure of the estimated grokking-time PDF. In the spherical model, the two
peaks are a consequence of the separation between the slow and fast modes, where the
dynamics of the slow modes were essentially determined by the regularisation strength λ2.
Similarly, in all three considered cases (i.e. Example 1-3) we can separate the eigenvalues of
G by size in two sets. In one set, the eigenvalues are larger by one order of magnitude than
in the other. However, increasing the regularisation strength λ2 often leads to increased
grokking time, which is not the case in the simple uniform ball model. The discrepancy
is a consequence of the non-diagonal matrix G, which mixes different components of the
vector zi(x). We also observe that a larger effective dimension Deff (see Table 1) leads
to longer grokking times and a larger class separation ε to smaller grokking times. The
last two observations are in agreement with the D−dimensional ball model discussed in
Section 3.3.3.
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Figure 17: We show the estimated grokking-time PDFs for three fixed attention tensors:
Example 1 (left), Example 2 (middle), and Example 3 (right). In most cases,
the grokking-time PDF is bimodal, which is in agreement with the prediction of
the simple grokking model discussed in Section 3.3.3.

The presented results are obtained by averaging over many initialisations of the classifica-
tion tensor B. We sample the initial elements of B from a normal distribution with zero
mean and unit variance. Changing the initial distribution can impact the results. Deter-
mining the effect of the initial distribution of B on the grokking-time PDF and the critical
exponent is left for future research.
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Figure 18: We show typical examples of train and test error dynamics while learning the
rule-30 cellular automaton on all inputs of size 8. We show three training runs
with different initial conditions. We set d = 10, lr = 0.005, and λ1,2 = 0. The
three panels correspond to three different initial conditions.

4.3.2 Full model training and structure formation

In this section, we discuss grokking and structure formation properties of the complete
student model introduced in Section 4.2. We initialise the model with a random initial
condition, where all the entries of the tensors A,B are uncorrelated and sampled according
to a normal distribution with zero mean and unit variance. We train the model with the
Adam optimiser (with standard parameter setting) and a learning rate of 0.005. We use the
same loss as in the previous sections Eq. 4 with L1,2 regularisation strength λ1,2 ∈ [0, 0.001].
The regularisation strength is the same for the attention tensor A and the classifier tensor
B. We add a sigmoid non-linearity before the final sign non-linearity to improve the training
stability and reduce the training time. We consider only open boundary conditions and set
x−1 = xM+1 = −1. Finally, in the main text, we consider only the 1-local rule. We discuss
the 2– and 3–local rules in Appendix D. We perform tests in three situations, namely,
without regularisation (λ1,2 = 0), with L2 regularisation (λ1 = 0, λ2 = 0.0001), and with
L1 regularisation (λ1 = 0, λ2 = 0.001). We chose the regularisation strengths λ1,2 to be
the largest regularisation strengths with only a few spikes in the training loss after the
grokking time. To obtain zero test error it is sufficient (in almost all cases) to train only
the attention parameters A and fix the classification parameters B. This is a consequence
of the gauge symmetry of the tensor attention layer Žunkovič (2022). However, we will
always train all model parameters. Since the full tensor-attention model is non-linear, we
do not expect the theory developed in Section 3 to be valid. On the other hand, we do
observe phenomena related to neural collapse Papyan et al. (2020) and structure formation
Liu et al. (2022).

In Fig. 18 we show a typical example of the train and test error dynamics. The grokking
phenomenon is, in this case, a typical behaviour, in contrast to our effective distributions
discussed in the previous section Section 3. The pronounced grokking, i.e. a very short
transition of the test error from zero to one, is a consequence of a concentration of the
latent space distribution close to the boundary of the domain and structure formation at
the transition to zero test error as detailed in the following subsection.
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Average test error and average effective dimension First, we investigate the
dynamics of the average test error and calculate the critical exponent ν. In Fig. 19 we show
that the critical exponent decreases upon increasing regularisation. Larger regularisation
leads to a sharper transition to zero test error, in contrast with the linear case studied
in the Section 3.3.2 and in the Section 4.3.1, where the critical exponent was found to be
independent of the regularisation strengths λ1,2. The test error drops to zero at the grokking
transition. Following the grokking transition, the test error is non-zero and experiences
fluctuations. These fluctuations can be detected as sharp increases in training loss and are
more common in models with large regularisation. Therefore, the L1,2 regularised models
have larger average test error after the grokking transition.
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Figure 19: The average test error at the phase transition. We align the first point where
the test error becomes zero (i.e. the time tε) and take the average over many
(∼ 1000) initialisations of the model parameters. Training without regularisation
results in larger critical exponent ν ≈ 2.5 as training with L1 (ν ≈ 0.7) or L2

(ν ≈ 0.9) regularisation. In all experiments, we used a learning rate of 0.005.
In the legends, we report the bond dimension of the trained models d and the
corresponding fitted critical exponent ν.

The shape of the average test error close to transition point tε (or the critical exponent
ν) depends only slightly on the model size (bond dimension d). This suggests that the
effective dimension of the mapped data Deff is independent of the model size. We confirm
this by calculating the effective dimension of the features z(i). Since we study only open
boundary conditions, we consider only the effective dimension of the left context vectors
vLHL

N(i). The right context vectors HR
N (i)vR have the same properties because of the

model symmetry. As shown in Fig. 20, the average effective dimension drops significantly
just before the grokking transition. We observe that regularisation significantly decreases
the effective dimension of the mapped vectors vLHL

N(i). The effective dimension is smallest
with L1 regularisation, which is expected since the L1 regularisation enforces sparsity while
the L2 regularisation enforces smoothness.

Structure formation and grokking We relate the decrease of the effective dimen-
sion to structure formation. As can be seen in examples shown in Fig. 21 and Fig. 22, a
small effective dimension signals an emergent latent space structure which, however, can be
different in each example. Similarly, in Liu et al. (2022) the authors argue that the grokking
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Figure 20: The average effective dimension corresponding to the error in Fig. 19. Larger
regularisation results in a smaller effective dimension Deff after the grokking
transition. The horizontal dashed line corresponds to the average of the minimal
effective dimension of data with zero test error (over all samples with fixed d).

in deep models is related to structure formation. Our findings differ from those of Liu et al.
(2022) in that we discuss ensemble/average phenomena. The authors of Liu et al. (2022)
discuss the connection between grokking and structure formation on the single-model level.
In contrast, we argue that grokking and structure formation are related on average as shown
in Fig. 19 and Fig. 20, and not for every training run individually. We call the structure
formation and grokking for a single training of a model the model-wise structure formation
and the model-wise grokking. We disentangle model-wise structure formation from model-
wise grokking by observing specific training samples. We typically observe the appearance
of a simple structure in data in the proximity of the grokking transition. This is consistent
with a sharp drop of the average effective dimension at the transition (shown in Fig. 20).
Additionally, we observe that latent space structures can be different for different model
parameters and initialisations.

In Fig. 21 and Fig. 22 we show the structures appearing in the features vLHL
n (i) with bond

dimension d = 3. In Fig. 21 we see that the structure of the latent space data changes
also during a single run. This can be detected as a spike in the training loss or as a step-
like jump in the effective dimension (see Fig. 21). The structures can change from lower to
higher dimensional and vice versa, e.f. see Fig. 21 – the transition between t = 1 and t = 1.2
increases the effective dimension Deff. of the mapped data. The appearance of geometric
structures in the latent space does not necessarily lead to good generalisation, i.e. small
test error (see Fig. 22 at time t = 0.57). Finally, we also show in Fig. 22 that we can have
a small generalisation/test error with complex or not apparent latent space structures (see
Fig. 22 at time t = 1.19). These empirical observations suggest that grokking and structure
formation are not related model-wise. That structure formation and grokking are in general
two distinct phenomena is further corroborated by our simple grokking model discussed in
Section 3, which does not require any special geometric structure (aside from the condition
of linear separability).

Grokking time Finally, we estimate the PDF of the grokking times, see Fig. 23 (top
panels). Taking the non-regularised case as the baseline, we find that L1 regularisation
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Figure 21: Several emergent structures in the latent space (Example 1). The left plots show
the effective dimension Deff (top), train loss (middle), and test error (bottom).
The black markers show the value of the plotted quantities at specific times
marked by vertical dotted lines and written on the top of the left panels. The
right panels show the structure of the features at the marked times. We observe
that an essentially one-dimensional feature distribution with two distinct islands
of features splits into an almost 2D feature distribution with three isolated is-
lands. We can detect this transition as a sharp peak in the loss and a step in
the effective dimension Deff .

decreases the average grokking time tG significantly more than L2 regularisation. Further,
grokking times for L2 regularised models increase with the model size. On the other
hand, non-regularised and L1 regularised models have roughly a model-size-independent
grokking-time PDF, and hence the grokking-time average.

Since the grokking time is measured relative to the time at which the zero train error is
achieved, we estimate also the PDF of times tε (zero-test-error time). We find that both
L1 and L2 reduce the time at which the zero test error is attained. Therefore, both, the L1

and the L2 regularisation decrease the number of steps required for good generalisation.
In addition, the L1 generalisation seems to be more efficient, in the sense, that there is a
shorter time interval with a large difference between training and test error.

5. Summary and discussion

We analyse grokking from two perspectives. First, we propose a simple grokking setup
(perceptron grokking) and consider two solvable grokking models. Second, we introduce
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Figure 22: Several emergent structures in the latent space (Example 2). The left plots show
the effective dimension Deff (top), train loss (middle), and test error (bottom).
Black markers show the value of the plotted quantities at times marked by ver-
tical dotted lines and written on the top of the first plot. The right panels show
the structure of the features at the marked times. We observe that structured
data also appears in the case of high test error (t = 0.57). The zero-test-error
structure (t = 0.67) is different compared to the example in Fig. 21. Here, we
see a 2D structure with four isolated feature islands. Finally, at time t = 1.19
the structure starts to disappear while the test error is still considerably small
(smaller than 1%).

a tensor-network attention map and connect the standard statistical mechanics of the
teacher-student setup with the perceptron grokking setup.

Perceptron grokking By studying two solvable grokking models, we show that grokking
is a phase transition and calculate the critical exponent, grokking probability, and grokking-
time PDF. The obtained analytic expressions allow us to determine the effect of model
and training parameters on the grokking probability and the grokking-time PDF. In par-
ticular, we find a stark difference between the L1- and L2-regularised models. The L1-
regularised models have a higher grokking probability and a shorter grokking time than
the L2-regularised models. We also obtain a universal expression for the test-error critical
exponent of spherically symmetric models, which is relevant in the transfer learning setting,
where only the last layer is retrained.

Learning local rules with shallow tensor networks We use the tensor-network
attention model with fixed attention tensors A to test the predictions of the perceptron
grokking setup on a 1D cellular-automaton rule-30 learning task. Our prediction of the crit-
ical exponent roughly agrees with the numerical estimation, thereby validating the grokking
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Figure 23: The estimated grokking-time PDF and tε PDF. The colours correspond to differ-
ent model sizes, namely d = 10 (blue), d = 20 (orange), and d = 40 (green). The
vertical lines correspond to the averages reported in the legends of the panels.
We find that L1 regularisation reduces tG and tε. By contrast, the L2 regular-
isation decreases only the absolute time tε. In the L2 case and d = 20 we also
find a clear bimodal grokking time distribution. In all cases, we set the learning
rate to 0.005.

scenario on a simple problem. On the other hand, the grokking-time PDF approximation,
which invokes strong assumptions, predicts the actual numerical estimate only qualitatively.

We also perform the training of the full tensor-network student model. Similarly to solvable
perceptron grokking models, we observe a difference between the L1-regularised and the L2-
regularised models. The former has a shorter grokking time and a lower effective dimension,
which agrees with the analytic predictions of the perceptron grokking models. Therefore,
we expect that L1 regularisation leads to improved generalisation properties (e.g. smaller
test error) compared to L2 regularisation also in a more general classification setting.

In the case of training the full tensor-network student model, we discuss the connection be-
tween grokking and structure formation. We determine the grokking transition by observing
the average test error. We show that the average effective dimension of the feature-space
data sharply decreases at the grokking transition. By observing specific models, we also
find that small effective dimensions correspond to particular feature-space structures. We
accordingly relate grokking with structure formation on the ensemble level. By contrast,
we find several models with zero test error without apparent feature-space structures and
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vice versa. This shows that in specific (though rare) cases, the test error drops to zero
even if no structure is present in the data. Similarly, simple structures can appear during
training also when the test error does not vanish. We thus separate the grokking and the
structure formation on the level of individual training runs.

As a distinct feature of the full tensor-network training, we highlight the spikes in the
training loss. We observe that spikes become more frequent with larger L1,2 regularisation.
We also relate the training-loss spikes to the changes in the feature-space structures, which
may become less or more complex during training. We can assess the shape of the feature-
space structures by observing the effective dimension, which shows a step-like behaviour
whenever we observe a training-loss spike. Typically less complex structures correspond
to a smaller effective dimension. These findings can be relevant for deep neural network
training where training-loss spikes are also observed. Frequent training-loss spikes can
be avoided by using a smaller regularisation. Moreover, we can determine whether the
model parameters should be reverted by monitoring the feature-space effective dimension.
For example, we can revert the model only if the training-loss spikes correspond to an
increased effective dimension.

Finally, the proposed tensor network map connects the grokking phenomena, which have so
far been observed only in deep models, with the standard teacher-student learning setup.
The considered local tensor-network rule learning setup is an extreme example of a learning
rule. The standard teacher-student mean-field setup is the opposite extreme. It would be
interesting to study if the proposed grokking setup and the tensor-network map can be
extended to study algebraically decaying rules which interpolate between the two extremes.
Extending the presented theory to deep neural networks appears to be difficult within the
proposed framework.
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Appendix A. Grokking time in the 1D model

In this appendix, we provide the details of the grokking-time PDF calculation in the 1D
model discussed in the main text.

First, we calculate the joint probability to find xmin and x̄ for a given number of positive
and negative training samples N ,

PN (xmin, x̄) =

N∏
k=1

[∫ ∞
0

dx̃kP (x̃k)

∫ ∞
0

dxkP (xk)

]
δ (xmin −min({xl})) δ

(
2x̄− 1

N

N∑
l=1

(xl − x̃l)
)

(69)

= 2

N∏
k=1

[∫ ∞
0

dxkP (xk)

]
δ (xmin −min({xl}))P exp

N (x̄+ − 2x̄) .

With x̄+ we denote the average value of the positive samples, x̄+ = 1
N

∑N
l=1 xl. We

calculate the PDF of the minimum given in Eq. 69 by considering its cumulative density

CN (xmin; x̄) =2

N∏
k=1

[∫ ∞
xmin

dxkP (xk)

]
P exp
N (x̄+ − 2x̄) (70)

=2

N∏
k=1

[∫ ∞
0

dxkP (xk + xmin)

]
P exp
N (x̄+ + xmin − 2x̄)

=2

N∏
k=1

[∫ ∞
0

dxkP (xk)

]
P (Nxmin)P exp

N (x̄+ + xmin − 2x̄)

=2

∫ ∞
0

dx̄+PN (x̄+)P (Nxmin)P exp
N (x̄+ + xmin − 2x̄)

=
2

3
2−NNN+ 1

2 e−NxminΘ(2x̄− xmin)(2x̄− xmin)N−
1
2KN− 1

2
(2Nx̄−Nxmin)

√
πΓ(n)

+

√
π2

3
2−NNN+ 1

2 e−Nxmin csc(πN)Θ(xmin − 2x̄)(xmin − 2x̄)N−
1
2KN− 1

2
(N(xmin − 2x̄))

Γ(1−N)Γ(N)2
.

For N = 2 we find

CN=2(xmin; x̄) =− e−4x̄(4x̄− 2xmin + 1)(Θ(2xmin − 4x̄)− 1) (71)

− e4x̄−4xmin(4x̄− 2xmin − 1)Θ(2xmin − 4x̄)

We obtain the PDF by taking the derivatives of the cumulative probabilities Eq. 70 with

respect to xmin, namely PN (x̄, xmin) = −∂CN (xmin;x̄)
∂xmin

. For N = 2 we get

PN=2(x̄, xmin) =2e−4x̄Θ(2x̄− xmin)− 2e4x̄−4xmin(8x̄− 4xmin − 1)Θ(xmin − 2x̄). (72)

Next, we calculate the joint probability for the grokking time tG and the average x̄

PN,ε,λ(tG, x̄) =
∂xmin

∂tG
PN (x̄, xmin(tG, ε, x̄λ)). (73)

While we can derive a closed-form expression for an arbitrary N , they are not particularly
informative. Thus, we write here only the expressions for N = 2 and λ2 = 0 (we use t
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instead of tG to shorten the notation)

PN=2,ε,λ1
(t, x̄) =2et−4x̄(ελ − x̄)Θ

(
x̄− ελ tanh

(
t

2

))
(74)

+ 2(x̄− ελ)e4(et(x̄−ελ)+ελ)+t
(
4et(x̄− ελ) + 4x̄+ 4ελ − 1

)
Θ

(
ελ tanh

(
t

2

)
− x̄
)
.

Finally, we integrate out the average of the samples x̄ and obtain the grokking-time PDF.

Appendix B. Grokking probability in the D-dimensional ball model

In this section, we derive the grokking probability in the D−dimensional ball model in the
limit of many training samples, i.e. N � 1. The condition for zero test error is

wλ1
||wλ||2

>
1

ε
, (75)

and can be rewritten as

(ε2 − 1)(wλ1 )2 ≥ (wλ2 )2 + (wλ3 )2 + . . . (wλD)2, and (wλ1 ) > 0. (76)

The stationary solution wλ = G−1a is

G =
1

2N

2N∑
i=1

x̃i ⊗ x̃i + λ21D =
1

2N

N∑
i=1

xi ⊗ xi + ε⊗ ε+ ε⊗ x̄+ x̄⊗ ε+ λ2ID, (77)

a =
1

2N

2N∑
i=1

yix̃i − λ1sgn(w) = x̄− λ1sgn(w),

where x̄ = 1
2N

∑2N
i=1 y

ixi. In the limit N � 1 we can separate two contributions to the
matrix G = A+B where

A =λDID + ε⊗ ε, (78)

B =
1

2N

2N∑
i=1

xi ⊗ xi − 1

D + 2
ID + ε⊗ x̄+ x̄⊗ ε,

where λD = 1
D+2 + λ2. In the limit N � 1 we have ||B||F = O(1/

√
N), hence we can

approximate the inverse of the matrix G as,

G−1 ≈ A−1 −A−1BA−1. (79)

The stationary solution can thus be approximated by

wλ ≈A−1a−A−1BA−1a (80)

≈A−1(x̄+ ε− sgn(w)λ1)−A−1BA−1(ε+ sgn(w)λ1),

where we have kept only the first nontrivial order in 1/
√
N . We will separately consider

the case λ1 = 0 and the case λ1 > 0.

45
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B.1 Case λ1 = 0

By explicitly evaluating the above expression, Eq. 80, and assuming λ1 = 0, we find

wλ1 = β + α1x̄1 + α2x2
1, wλj>1 = α3x̄j + α4x1xj , (81)

where

β =
ε

λD + ε2
+

ε

(λD + ε2)2(D + 2)
, (82)

α1 =
1

λD + ε2
− 2ε2

(λD + ε2)2
,

α2 =− ε

(λD + ε2)2
,

α3 =
1

λD
− ε

λD(λD + ε2)
,

α4 =− ε

λD(λD + ε2)
.

The first few nontrivial moments of the uniform distribution in a D-dimensional ball are
reported in Table 2. Considering the variances and the means in Table 2, we find that (in

Statistics Mean Second moment

xj 0 1
D+2

x2
j

1
D+2

3
8+6D+D2

xixj , i 6= j 0 1
8+6D+D2

Table 2: First nontrivial moments of the uniform ball distribution. All odd moments vanish.

the limit N � 1) all random variables appearing in Eq. 81 to be normally distributed,

x̄1 ∼ N
(

0,
1

2N(D + 2)

)
, (83)

x2
1 ∼ N

(
1

D + 2
,

D + 1

N(D + 2)2(D + 4)

)
,

x1xj>1 ∼ N
(

0,
1

2N(8 + 6D +D2)

)
.

The distributions are independent since all the necessary covariances vanish.

The sum of independent normal distributions is again a normal distribution, leading to

w1 ∼ N1(w1) = N
(
β +

α2

D + 2
,

α2
1

2N(D + 2)
+

α2
2(D + 1)

N(D + 2)2(D + 4)

)
, (84)

wj>1 ∼ N
(

0,
α2

3

2N(D + 2)
+

α2
4

2N(8 + 6D +D2)

)
. (85)

The grokking probability is then given by

PE(∞)=0 =

∫ ∞
0

dw1N1(w1)

∫ (ε2−1)w2
1

(
α2

3
2N(D+2)

+
α2

4
2N(8+6D+D2)

)
0

dr χ2
D−1(r). (86)
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In the limit N � λD � 1 we make the following approximations

β ≈ ε

λD + ε2
, α1 ≈

1

λD + ε2
, α2 = 0, α3 ≈

1

λD
, α4 = 0. (87)

With these simplifications, Eq. 86 reduces to the grokking probability obtained in the main
text, see Eq. 30.

B.2 Case 1� λ1 > 0

By explicitly evaluating the expression in Eq. 80 we find

wλ1 =

{
β − λ1sgn(wλ1 )

λD+ε2 + α1x̄1 + α2x2
1 , (λD + ε2)|β + α1x̄1 + α2x2

1| > λ1

0 , else
, (88)

wλj>1 =

{
−λ1sgn(wλj )

λD
+ α3x̄j + α4x1xj , λD|α3x̄j + α4x1xj | > λ1

0 , else
,

with αj and β given in Eq. 82. The number of non-vanishing components of the stationary
solution wλ depends on the value of λ1. Therefore, we get (in the N � 1 limit) an
additional sum over the number of non-zero elements in the wλ,

PE(∞)=0 =

∫ ∞
λ1

λ2,D+ε2

dw1N1(w1)

[
(1− pλ)D−1 (89)

+

D−1∑
k=1

(
D − 1

k

)
pkλ(1− pλ)D−1−k

∫ (ε2−1)

(
w1− λ1

λ2,D+ε2

)2(
α2

3
2N(D+2)

+
α2

4
2N(8+6D+D2)

)
0

drRk(r)

]
,

where pλ = 1−erf

(
λ1

λD
/
√

α2
3

2N(D+2) +
α2

4

2N(8+6D+D2)

)
is the probability that |wj>1| (sampled

from Eq. 85)is larger than λ1/λD. With Rk(r) we denote the PDF of the sum of squares
of k random variables sampled from the truncated normal distribution. As in the main
text (see Section 3.3.2), we can calculate a lower bound on the grokking probability by
discarding the sum over k > 1,

PE(∞)=0 ≥(1− pλ)D−1

∫ ∞
λ1

λ2,D+ε2

dw1N1(w1) (90)

≈ (1− pλ)D−1

2

(
1 + erf

((
β +

α2

D + 2
− λ1

λ2,D + ε2

)
/

√
α2

1

2N(D + 2)
+

α2
2(D + 1)

N(D + 2)2(D + 4)

))
.

Also in the more general case, we find the same difference between the L1 and L2 regular-
isations as discussed in the main text.

Appendix C. Fixed attention

Below we specify the attention tensors for the discussed examples, see Section 4.3.1 in the
main text:
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• Example 1:

A0 =

(
0.782735 0.225481
−0.21562 0.290028

)
, A1 =

(
1.17554 −0.275503
1.18283 −0.157563

)
,

• Example 2:

A0 =

(
1.6749 −1.29059

0.285324 −0.708621

)
, A1 =

(
0.0462428 −0.0797724
−0.509457 0.922777

)
,

• Example 3:

A0 =

(
1.37336 −0.465853
−1.10382 0.720113

)
, A1 =

(
0.128517 0.166033
0.634426 1.13816

)
.

Appendix D. Additional results for the 2–local and the 3–local rules

In this appendix, we present a similar analysis as the one in Section 4.3.2, but for the 2–
local rule and the 3–local rule. In general, we observe a similar behaviour as in the 1–local
case discussed in the main text.

First, we discuss the test error shown in Fig. 24. Again, we find that the critical exponent
ν is roughly independent of the model size and is smaller for larger rule range K.

As in the 1–local case, the grokking transition corresponds to a sharp decrease in the
effective dimension of the HL(i) attention vectors, shown in Fig. 25. In the considered
rule-learning scenario, the smallest effective dimension is determined by the locality of the
rule and is expected to increase exponentially with K Žunkovič (2022). In contrast to the
1–local case, we find that larger regularisation does not necessarily correspond to a smaller
effective dimension. However, this is only the case for smaller instances where the bond
dimension is very close to the effective dimension (or the smallest possible bond dimension
with zero test error). For the larger instances, we again find that larger regularisation
corresponds to smaller effective dimension Deff . In this case, we also find that models with
L1 regularisation have a slightly smaller average effective dimension compared to models
with L2 regularisation.

Finally, we estimate the grokking-time PDF and the generalisation-time (tε) PDF for the
2–local and the 3–local rule, shown in Fig. 26 and Fig. 27.
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Figure 24: The average error at the phase transition for the 2–local rule (first row) and the
3–local rule (second row). We align the first point where the test error becomes
zero (i.e. the time tε) and take the average over many (∼ 1000) initialisations
of the model parameters. As in the 1–local rule case the training without reg-
ularisation results in larger critical exponent ν ≈ 2 as training with L1 or L2

regularisation. In all experiments, we used a learning rate of 0.005.
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Figure 25: The average effective dimension of the 2–local rule (first row) and the 3–local
rule (second row) corresponding to the error in Fig. 24. The horizontal dashed
line corresponds to the average (over the bond dimension d) of the minimal
effective dimension of data with zero test error (over all samples with fixed d).
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Figure 26: The estimated grokking-time PDF for the 2–local rule (first row) and the 3–
local rule (second row). The colours correspond to different model sizes, namely
d = 10 (blue), d = 20 (orange), and d = 40 (green). The vertical lines correspond
to the averages reported in the legends of the panels. We find that grokking time
increases with increased rule range K. As in the 1–local case, we find that L1

regularisation reduces tG in all cases. In contrast, the use of L2 regularisation
can in some cases increase the average grokking time. In the L2 case, we also
find a clear bimodal grokking time distribution. In all cases, we set the learning
rate to 0.005.
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Figure 27: The estimated tε PDF for the 2–local rule (first row) and the 3–local rule (second
row). The colours correspond to different model sizes, namely d = 10 (blue),
d = 20 (orange), and d = 40 (green). The vertical lines correspond to the
averages reported in the legends of the panels. In all cases, we set the learning
rate to 0.005.
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