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Abstract

In this paper, we propose DRAGON (for DiRected Acyclic Graph OptimizatioN), an algo-
rithmic framework to automatically generate efficient deep neural networks architectures
and optimize their associated hyperparameters. The framework is based on evolving Di-
rected Acyclic Graphs (DAGs), defining a more flexible search space than the existing ones
in the literature. It allows mixtures of different classical operations: convolutions, recur-
rences and dense layers, but also more newfangled operations such as self-attention. Based
on this search space we propose neighbourhood and evolution search operators to opti-
mize both the architecture and hyper-parameters of our networks. These search operators
can be used with any metaheuristic capable of handling mixed search spaces. We tested
our algorithmic framework with an asynchronous evolutionary algorithm on a time series
forecasting benchmark. The results demonstrate that DRAGON outperforms state-of-the-
art handcrafted models and AutoML techniques for time series forecasting on numerous
datasets. DRAGON has been implemented as a python open-source package1.

Keywords: neural architecture search, hyperparameters optimization, metaheuristics,
evolutionary algorithm, time series forecasting

1. Introduction

With the recent successes of deep learning in many research fields, deep neural networks
(DNN) optimization stimulates the growing interest of the scientific community (Talbi,
2021). While each new learning task requires the handcrafted design of a new DNN, auto-

1. https://dragon-tutorial.readthedocs.io/en/latest/index.html
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mated deep learning facilitates the creation of powerful DNNs. Interests are to give access
to deep learning to less experienced people, to reduce the tedious tasks of managing many
parameters to reach the optimal DNN, and finally, to go beyond what humans can design
by creating non-intuitive DNNs that can ultimately prove to be more efficient.

Optimizing a DNN means automatically finding an optimal architecture for a given
learning task: choosing the operations and the connections between those operations and
the associated hyperparameters. The first task is known as Neural Architecture Search
(Elsken et al., 2019), also named NAS, and the second, as Hyperparameters Optimization
(HPO). Most works from the literature try to tackle only one of these two optimization
problems. Many papers related to NAS (White et al., 2021; Loni et al., 2020; Wang et al.,
2019; Sun et al., 2018; Zhong et al., 2020) focus on designing optimal architectures for
computer vision tasks with stacked convolution and pooling layers. Because each DNN
training is time-consuming, researchers tried to reduce the search space by adding many
constraints preventing from finding irrelevant architectures. These strategies are relevant
in the case of computer vision or NLP, where the models to be trained are huge and the
high performance architectures are well identified. However, there is a gap in the literature
regarding the use of NAS and HPO for problems where neural networks could be efficient,
but the relevant models have not been clearly identified.

To fill this gap, we introduce DRAGON (for DiRected Acyclic Graphs OptimizatioN), a
new optimization framework for DNNs based on the evolution of Directed Acyclic Graphs
(DAGs). The encoding and the search operators are highly flexible and may be used with
various deep learning and AutoML problems. We ran experiments on time series forecasting
tasks and demonstrate on a large variety of datasets that DRAGON can find DNNs which
outperform state-of-the-art handcrafted forecasters and AutoML frameworks. In summary,
our contributions are as follows:

• The precise definition of a flexible search space based on DAGs, for the optimization of
DNN architectures and hyperparameters. This search space may be used for various
tasks, and is particularly useful when the performing architectures for a given problem
are not clearly identified.

• The design of efficient neighbourhoods and variation operators for DAGs. With these
operators, any metaheuristic designed for a mixed and variable-size search space can
be applied. In this paper, we investigate the use of an asynchronous evolutionary
algorithm.

• The validation of the algorithmic framework on a popular time series forecasting
benchmark (Godahewa et al., 2021). We compare ourselves with 15 handcrafted
statistical and machine learning models (Godahewa et al., 2021) as well as 6 AutoML
frameworks on 27 datasets (Shchur et al., 2023). We show that DRAGON outperforms
the 21 models from this baseline on 11 out of 27 datasets. The only competitive model
is the AutoML framework AutoGluon (Shchur et al., 2023), which outperforms the
baseline on 10 out of 27 datasets and was beaten by DRAGON on 14 out of 27
datasets.

The paper is organized as follows: we review section 2, the literature on deep learn-
ing models for time series forecasting and AutoML. Section 3 defines our search space.
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Section 4 presents our neighbourhoods and variation operators within the evolutionary al-
gorithm. Section 5 details our experimental results obtained on a popular time series fore-
casting benchmark. Finally, Section 6 gives a conclusion and introduces further research
opportunities.

2. Related Work

2.1 Deep Learning for Time Series Forecasting

Time series forecasting has been studied for decades. The field has been dominated for a
long time by statistical tools such as ARIMA, Exponential Smoothing (ES), or (S)ARIMAX,
this last model allowing the use of exogenous variables. It now opens itself to deep learning
models (Liu et al., 2021). These new models recently achieved great performances on many
datasets. Three main parts compose typical DNNs: an input layer, several hidden layers
and an output layer. In this paper we apply our framework to optimize the hidden layers
for a given time series forecasting task (see Figure 5). In this part, we introduce usual DNN
layers for time series forecasting, which can be used in our search space.

The first layer type from our search space is the fully-connected layer, or Multi-Layer
Perceptron (MLP). The input vector is multiplied by a weight matrix. Most architectures
use such layers as simple building blocks for dimension matching, input embedding or output
modelling. The N-Beats model is a well-known example of a DNN based on fully-connected
layers for time series forecasting (Oreshkin et al., 2019).

The second layer type (LeCun et al., 2015) is the convolution layer (CNN). Inspired by
the human brain’s visual cortex, it has mainly been popularised for computer vision. The
convolution layer uses a discrete convolution operator between the input data and a small
matrix called a filter. The extracted features are local and time-invariant if the considered
data are time series. Many architectures designed for time series forecasting are based on
convolution layers such as WaveNet (Oord et al., 2016) and Temporal Convolution Networks
(Lea et al., 2017).

The third layer type is the recurrent layer (RNN), specifically designed for sequential
data processing, therefore, particularly suitable for time series. These layers scan the se-
quential data and keep information from the sequence past in memory to predict its future.
A popular model based on RNN layers is the Seq2Seq network (Cho et al., 2014). Two
RNNs, an encoder and a decoder, are sequentially connected by a fixed-length vector. Var-
ious versions of the Seq2Seq model have been introduced in the literature, such as the
DeepAR model (Salinas et al., 2020), which encompasses an RNN encoder in an autore-
gressive model. The major weakness of RNN layers is the modelling of long-term dynamics
due to the vanishing gradient. Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) layers have been introduced (Hochreiter and Schmidhuber, 1997; Chung et al.,
2014) to overcome this problem.

Finally, the layer type from our search space is the attention layer. The attention layer
has been popularized within the deep learning community as part of Vaswani’s transformer
model (Vaswani et al., 2017). The attention layer is more generic than the convolution. It
can model the dependencies of each element from the input sequence with all the others.
In the vanilla transformer (Vaswani et al., 2017), the attention layer does not factor the
relative distance between inputs in its modelling but rather the element’s absolute position
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in the sequence. The Transformer-XL (Dai et al., 2019), a transformer variant created
to tackle long-term dependencies tasks, introduces a self-attention version with relative
positions. Cordonnier et al. (2019) used this new attention formulation to show that, under
a specific configuration of parameters, the attention layers could be trained as convolution
layers. Within our search space, we chose this last formulation of attention, with the relative
positions.

The three first layers (i.e. MLP, CNN, RNN) were frequently mixed into DNN architec-
tures. Sequential and parallel combinations of convolution, recurrent and fully connected
layers often compose state-of-the-art DNN models for time series forecasting. Layer diver-
sity enables the extraction of different and complementary features from input data to allow
a better prediction. Some recent DNN models introduce transformers into hybrid DNNs.
In Lim et al. (2021), the authors developed the Temporal Fusion Transformer, a hybrid
model stacking transformer layers on top of an RNN layer. With this in mind, we built a
flexible search space which generalizes hybrid DNN models including MLPs, CNNs, RNNs
and transformers.

2.2 Search Spaces for Automated Deep Learning

Designing an efficient DNN for a given task requires choosing an architecture and tuning
its many hyperparameters. It is a difficult, fastidious, and time-consuming optimization
task. Moreover, it requires expertise and restricts the discovery of new DNNs to what
humans can design. Research related to the automatic design and optimization of DNNs
has therefore risen this last decade (Talbi, 2021). The first challenge in automatic deep
learning (AutoDL), and more specifically neural architecture search (NAS), is search space
design. Typical search spaces for Hyperparameters Optimization (HPO) are a product
space of a mixture of continuous and categorical dimensions (e.g. learning rate, number of
layers, batch size), while NAS focuses on optimizing the topology of the DNN (White et al.,
2023). Encoding a DNN topology is a complex task because the encoding should not be too
broad and allow too many architectures to keep the search efficient. On the contrary, if the
encoding is too restrictive, we may miss promising solutions and novel architectures. This
means before creating the search space we need to choose which DNNs or type of DNNs are
relevant or not to the problem at hand. Once we have decided on this broad set of DNNs,
we define the search space following a set of rules (Talbi, 2021):

• Completeness: all (or almost all) relevant DNNs from this broad set should be encoded
in the search space.

• Connectedness: a path should always be possible between two encoded DNNs in the
search space.

• Efficiency: the encoding should be easy to manipulate by the search operators (i.e.
neighbourhoods, variation operators) of the search strategy.

• Constraint handling: the encoding should facilitate the handling of the various con-
straints to generate feasible DNNs.

A complete classification of encoding strategies for NAS is presented in Talbi (2021)
and reproduced in Figure 1. We can discriminate between direct and indirect encodings.
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With direct strategies, the DNNs are completely defined by the encoding, while indirect
strategies need a decoder to find the architecture back. Amongst direct strategies, one can
discriminate between two categories: flat and hierarchical encodings. In flat encodings, all
layers are individually encoded (Loni et al., 2020; Sun et al., 2018; Wang et al., 2018, 2019).
The global architecture can be a single chain, with each layer having a single input and a
single output, which is called chain structured (Assunção et al., 2019), but more complex
patterns such as multiple outputs, skip connections, have been introduced in the extended
flat DNNs encoding (Chen et al., 2021). For hierarchical encodings, they are bundled
in blocks (Pham et al., 2018; Shu et al., 2019; Liu et al., 2017; Zhang et al., 2019). If the
optimization is made on the sequencing of the blocks, with an already chosen content, this is
referred to as inner-level fixed (Camero et al., 2021; White et al., 2021). If the optimization
is made on the blocks’ content with a fixed sequencing, it is called outer level fixed. A
joint optimization with no level fixed is also an option (Liu et al., 2019). Regarding the
indirect strategies, one popular encoding is the one-shot architecture (Bender et al., 2018;
Brock et al., 2017). One single large network resuming all candidates from the search space
is trained. Then the architectures are found by pruning some branches. Only the best
promising architectures are retrained from scratch.

Solution Encoding

Direct Indirect

Flat Hierarchical

Chain
structured

Extended
Flat DNNs

Outer
Level fixed

Inner
Level Fixed

No level
fixed

One-shot

Figure 1: Classification of encoding strategies for NAS (Talbi, 2021).

Our search space can be categorized as a direct and extended flat encoding. It is based
on the representation of DNNs by DAGs. This representation is very popular among the
NAS community and is used by cell-based search spaces such as NAS-Bench-101 inspired by
the ResNet architecture (Ying et al., 2019), as well as one-shot representation such as the
DARTS framework (for Differentiable Architecture Search) proposed by Liu et al. (2018b).
In cell-based search spaces, DNNs are represented by repeated cells encoded as DAGs, where
each node is an operation belonging to a well-defined list, typically: convolution of size 1,
3, or 5, pooling of size 3, skip connection, or zeroed operation for an image classification
task for example. The graphs are then represented either as vectors using path encoding,
or as adjacency matrices. In the case of path encoding, different search algorithms can
be used, such as Bayesian optimization (White et al., 2021), reinforcement learning (Zoph
et al., 2018), particle swarm optimization (Wang et al., 2019), or evolutionary algorithms
(Xie and Yuille, 2017), for which classical mutation and crossover operators are usually
used and consist in modifying the elements of the path. Adjacency matrices, on the other
hand, are more complex objects to optimize. The matrix itself represents the connections
within the graph and is usually accompanied by a list representing the nodes content. In
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the literature, these matrices have been optimized directly with random search algorithms
(Irwin-Harris et al., 2019) or indirectly with neural predictors based on auto-encoders (see
for example Zhang et al. (2019) or Chatzianastasis et al. (2021)). In the case of one-shot
representations, an initial large graph containing all the considered DNN is pruned with
a certain search algorithm to only keep the best possible subgraph (and thus the best
possible DNN). Various search algorithms can be used to simplify this meta-graph (Bender
et al., 2018) like evolutionary algorithm (Guo et al., 2020). One of the most widely used
techniques is DARTS (Liu et al., 2018b), where each edge is associated with a candidate
operation, assigned to a probability of being retained in the final subgraph, optimized by
gradient descent. The candidate operations can be quite commons: convolution or pooling
layers for instance, such as for cell-based search spaces, but Chen et al. (2021) proposes to
use DARTS with other types of operations, such as inter-variable attention, for multivariate
time series prediction. While cell-based and one-shot architecture search spaces have proven
to be efficient for tasks like image classification or language processing, White et al. (2023)
pointed out that current NAS search spaces are not very expressive and prevents finding
highly novel architectures. This problem is amplified when dealing with tasks for which no
known architectures have yet been found.

Compared to these search spaces, the one we define in this paper is more flexible. We
address the optimization of both the architecture and the hyperparameters. We do not fix
a list of possible operations with fixed hyperparameters, as is done in these works, but leave
the user free to use any operation coded as PyTorch nn.Module and to optimize any chosen
parameters. Furthermore, we do not fix the generic form of our graph as a maximum number
of incoming or outgoing edges and we allow to expand or reduce the graphs. DRAGON
is capable of generating innovative, original, yet well-performing DNNs. This flexibility
may hinder the framework’s ability to find good DNNs compared to the NAS state-of-
the-art for well-known tasks such as image classification or language processing. However,
in cases where DNNs have not been extensively studied and well-performing architectures
have not yet been found, such as time series forecasting, DRAGON may be an efficient
DNN designer. Finally, we encode our DAGs using their adjacency matrices and provide
evolutionary operators to directly modify this representation. To our knowledge, neither
such a large search space nor such operators have been used in the literature.

2.3 AutoML for Time Series Forecasting

The automated design of DNNs called Automated Deep Learning (AutoDL), belongs to a
larger field (Hutter et al., 2019) called Automated Machine Learning (AutoML). AutoML
aims to automatically design well-performing machine learning pipelines, for a given task.
Works on model optimization for time series forecasting mainly focused on AutoML rather
than AutoDL (Alsharef et al., 2022). The optimization can be performed at several levels:
input features selection, extraction and engineering, model selection and hyperparameters
tuning. Initial research works used to focus on one of these subproblems, while more recent
works offer complete optimization pipelines.

The first subproblems, input features selection, extraction and engineering, are specific
to our learning task: time series forecasting. This tedious task can significantly improve the
prediction scores by giving the model relevant information about the data. Methods to select
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the features are among computing the importance of each feature on the results or using
statistical tools on the signals to extract relevant information. Next, the model selection
aims at choosing among a set of diverse machine learning models the best-performing one
on a given task. Often, the models are trained separately, and the best model is chosen.
In general, the selected model has many hyperparameters, such as the number of hidden
layers, activation function or learning rate. Their optimization usually allows for improving
the performance of the model.

Nowadays, many research works implement complete optimization pipelines combining
those subproblems for time series forecasting. The Time Series Pipeline Optimization frame-
work (Dahl, 2020), is based on an evolutionary algorithm to automatically find the right
features thanks to input signal analysis, then the model and its related hyperparameters.
AutoAI-TS (Shah et al., 2021) is also a complete optimization pipeline, with model selection
performed among a wide assortment of models: statistical models, machine learning, deep
learning models and hybrids models. Closer to our work, the framework AutoPytorch-TS
(Deng et al., 2022) is specific to deep learning models optimization for time series forecast-
ing. The framework uses Bayesian optimization with multi-fidelity optimization. Finally,
a recent work from Amazon (Shchur et al., 2023) introduces a time series version to their
AutoML framework, AutoGluon, leveraging ensembles of statistical and machine learning
forecasters.

Except for AutoPytorch-TS, cited works covering the entire optimization pipeline for
time series do not deepen model optimization and only perform model selection and hyper-
parameters optimization. However, time series data becomes more complex, and there is a
growing need for more sophisticated and data-specific DNNs. Our framework DRAGON,
presented in this paper, only tackles the model selection and hyperparameters optimization
parts of the pipeline. We made this choice to show the effectiveness of our framework for
designing better DNNs. If we had implemented feature selection, it would have been harder
to determine whether the superiority of our results came from the input features pool or
the model itself.

3. Search Space Definition

The development of our optimization framework DRAGON requires the definition of a
search space, an objective function and a search algorithm. In this section, we formu-
late the handled optimization problem an then we detail DRAGON’s search space and its
characteristics.

3.1 Optimization Problem Formulation

Our optimization problem consists in finding the best possible DNN for a given time series
forecasting problem. To do so, we introduce an ensemble Ω representing our search space,
which contains all considered DNNs. We then consider our time series dataset D. For any
subset D0 = (X0, Y0) ∈ P(D), we define the forecast error ` as:

` : Ω×P(D)→ R
f ×D0 7→ `

(
f(D0)

)
= `
(
Y0, f(X0)

)
.
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The explicit formula for ` will be given later in the paper. Each element f from Ω is
a DNN defined as an operator parameterized by three parameters. First, its architecture
α ∈ A. The search space of all considered architectures is called A and will be detailed
in Subsection 3.2. Given the DNN architecture α, the DNN is then parameterized by its
hyperparameters λ ∈ Λ(α), with Λ(α) the search space of the hyperparameters induced
by the architecture α and defined Subsection 3.3. Finally, α and λ generate an ensemble
of possible weights Θ(α, λ), from which the DNN optimal weights θ are found by gradi-
ent descent when training the model. The architecture α and the hyperparameters λ are
optimized by our framework DRAGON.

We consider the multivariate time series forecasting task. Our dataset D = (X,Y ) is
composed of a target variable Y = {yt}Tt=1, with yt ∈ RN the target value at the time step
t, and a set of explanatory variables (features) X = {xt}Tt=1, with xt ∈ RF1×F2 . The size
of the target Y at each time step is N and F1, F2 are the shapes of the input variable X
at each time step. We choose to represent xt by a matrix to extend our framework’s scope,
but it can equally be defined as a vector by taking F2 = 1. DRAGON can be applied to
univariate signals by taking N = 1. We partition our time indexes into three groups of
successive time steps and split accordingly D into three datasets: Dtrain, Dvalid and Dtest.

After choosing an architecture α and a set of hyperparamaters λ, we build the DNN
fα,λ and use Dtrain to train fα,λ and optimize its weights θ by stochastic gradient descent:

θ̂ ∈ arg min
θ∈Θ(α,λ)

(
`(fα,λθ ,Dtrain)

)
.

The forecast error of the DNN parameterized by θ̂ on Dvalid is used to assess the perfor-
mance of the selected α and λ. The best architecture and hyperparameters are optimized
by solving:

(α̂, λ̂) ∈ arg min
α∈A

(
arg min
λ∈Λ(α)

(
`(fα,λ

θ̂
,Dvalid)

))
.

The function (α, λ) 7→ `(fα,λ
θ̂

,Dvalid) corresponds to the objective function of DRAGON.
We finally will evaluate the performance of DRAGON by computing the forecast error on
Dtest using the DNN with the best architecture, hyperparameters and weights:

`(f α̂,λ̂
θ̂

,Dtest).

In practice, the second equation optimizing α and λ can be solved separately or jointly.
If we fix λ for each α, the optimization is made only on the architecture and is referred
to as Neural Architecture Search (NAS). If α is fixed, then the optimization is only made
on the model hyperparameters and is referred to as Hyperparameters Optimization (HPO).
DRAGON allows to fix α or λ during parts of the optimization to perform a hierarchical
optimization: ordering optimisation sequences during which only the architecture is opti-
mised, and others during which only the hyperparameters are optimised. In the following,
we will describe our search space Ω = (A × {Λ(α), α ∈A}).
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Figure 2: DNN encoding as a Directed Acyclic Graph (DAG). The elements in blue
(crosshatch) are fixed by the framework, the architecture elements from α are displayed
in beige and the hyperparameters λ are in pink (dots).

3.2 Architecture Search Space

First, we define our architecture search space A. We propose to model a DNN by a Directed
Acyclic Graph (DAG) with a single input and output (Fiore and Devesas Campos, 2013).
A DAG Γ = (V,E) is defined by its nodes (or vertices) set V = {v1, ..., vn} and its edges set
E ⊆ {(vi, vj)|vi, vj ∈ V}. Each node v represents a DNN layer as defined in Subsection 2.1,
such as a convolution, a recurrence, or a matrix product. To eliminate isolated nodes, we
impose each node to be connected by a path to the input and the output. The graph
acyclicity implies a partial ordering of the nodes. If a path exists from the node va to a
node vb, then we can define a relation order between them: va < vb. Acyclicity prevents the
existence of a path from vb to va. However, this relation order is not total. When dealing
with symmetric graphs where all nodes are not connected, several nodes’ ordering may be
valid for the same graph. For example in Figure 2a, the orderings v1 > v2 and v2 > v1 are
both valid.

Hence, a DAG Γ is represented by a sorted list L, such that |L| = m, containing the
graph nodes, and its adjacency matrix M ∈ {0, 1}m×m (Zhang et al., 2019). The matrix M
is built such that: M(i, j) = 1⇔ (vi, vj) ∈ E. Because of the graph’s acyclicity, the matrix
is upper triangular with its diagonal filled with zeros. The input node has no incoming
connection, and the output node has no outcoming connection, meaning

∑m
i=1Mi,1 = 0

and
∑m

j=1Mm,j = 0. Besides, the input is necessarily connected to the first node and
the last node to the output for any graph, enforcing: M1,2 = 1 and Mm−1,m = 1. As
isolated nodes do not exist in the graph, we need at least a non-zero value on every row
and column, except for the first column and last row. We can express this property as:
∀i < m :

∑m
j=i+1Mi,j > 0 and ∀j > 1 :

∑m
i=j+1Mi,j > 0. Finally, the ordering of the partial

nodes does not allow a bijective encoding: several matrices M may encode the same DAG.
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To summarize, we have A = {Γ = (V,E) = (L,M)}. The graphs Γ are parameterized
by their size m which is not equal for all graphs. As we will see in Section 4.1 the DNNs
size may vary during the optimization.

3.3 Hyperparameters Search Space

For any fixed architecture α ∈ A, let’s define our hyperparameters search space induced
by α : Λ(α). As mentioned above, the DAG nodes represent the DNN hidden layers. A
set of hyperparameters λ, also called a graph node, is composed of a combiner, a layer
operation and an activation function (see Figure 2c). Each layer operation is associated
with a specific set of parameters, like output or hidden dimensions, convolution kernel size
or dropout rate. We provide in Appendix A a table with all available operations and their
associated parameters. The hyperparameters search space Λ(α) is made of sets λ composed
with a combiner, the layer’s parameters and the activation function.

First, we need a combiner as each node can receive an arbitrary number of input con-
nections. The parents’ latent representations should be combined before being fed to the
operation. Taking inspiration from the Google Brain Team Evolved Transformer (So et al.,
2019), we propose three types of combiners: element-wise addition, element-wise multi-
plication and concatenation. The input vectors may have different channel numbers and
the combiner needs to level them. This issue is rarely mentioned in the literature, where
authors prefer to keep a fixed channel number (Liu et al., 2018b). In the general case,
for element-wise combiners, the combiner output channel matches the maximum channel
number of latent representation. We apply zero-padding on the smaller inputs. For the
concatenation combiner, we consider the sum of the channel number of each input. Some
operations, for instance, the pooling and the convolution operators, have kernels. Their
calculation requires that the number of channels of the input vector is larger than this ker-
nel. In these cases, we also perform zero-padding after the combiner to ensure that we have
the minimum number of channels required. We use the node order to create our DNN. We
build the nodes one at a time, following their order in L. The first node is created using the
data input shape as argument. After its creation we compute and gather its output shape.
Then, for each following node, we compute the layer operation input shape according to
the output shapes of the connected nodes and the combiner. After building the operation
we compute its output shape for the next layers. Finally, as depicted in Figure 2c, each
node ends with an activation function. The hyperparameters optimized for each node can
be found Annex A.

To summarize, we define every node as the sequence of combiner → layer → activation
function. In our search space Λ(α), the nodes are encoded by Python objects having
as attributes the combiner name, the layer corresponding to the operation set with the
hyperparameters encoded as a PyTorch Module followed by the activation function. The
set L is a variable-length list containing each node.

4. Search Algorithm

The search space from DRAGON Ω = (A×{Λ(α), α ∈A}) defined in the previous section
is a mixed and variable space: it may contain integers, float, and categorical values, and the
dimension of its elements, the DNNs, is not fixed. We need to design a search algorithm
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able to efficiently navigate through this search space. While several metaheuristics can
solve mixed and variable-size optimization problems (Talbi, 2023), we chose to start with
an evolutionary algorithm. This metaheuristic was the most intuitive for us to manipulate
Directed Acyclic Graphs. It has been used to optimize graphs in other fields, for example
on logic circuits (Aguirre and Coello Coello, 2003). In Section 5 we compare our model
to other simple metaheuristics: the Random Search and the Simulated Annealing, but the
design of more complex metaheuristics using our search space and their comparison with
the evolutionary algorithm are left to future work.

4.1 Evolutionary Algorithm Design

Evolutionary algorithms represent popular metaheuristics which are well adapted to solve
mixed and variable-space optimization algorithms (Talbi, 2023). They have been widely
used for the automatic design of DNNs (Li et al., 2022). The idea is to evolve a randomly
generated population of DAGs to converge towards an optimal DNN. An optimal solution
for a time series forecasting task is defined as a DNN minimizing a forecasting error. As
training a DNN is expensive in time and computational resources, we implemented an
asynchronous version, also called steady-state, of the evolutionary algorithm. This version
is more efficient on High-Performance Computing (HPC) systems as detailed by Liu et al.
(2018a). At the beginning of the algorithm, a set of K random DNNs is generated. Each
solution is train on Dtrain and evaluate on Dvalid to create a population of size K. Then,
for a certain number of iterations or a fixed time budget B, once a processus is free, a
selection operator selects two solutions from the population. Those solutions are modified
using crossover and mutation operators to create two offsprings. Those are trained and
evaluated by the free process. Then, for each offspring, if its loss ` is less than the worst
loss from the population, the offspring replaces the worst individual. Using an asynchronous
version instead of the classical one avoids waiting for a whole generation to be evaluated
and saves some time. The complete flowchart is shown in Figure 3.

DRAGON’s search space defined Section 3 is not directly efficient with common muta-
tion and crossover operators. Therefore, we had to define evolution operators specific for
our search space. Those operators can be used with various metaheuristics: a mutation
operator for example can be used as a neighborhood operator for a local search. We split
the operators into two categories: hyperparameters specific operators and architecture op-
erators. The idea is to allow a sequential or joint optimization of the hyperparameters and
the architecture. All the candidate operations which can be used in the the graphs nodes
do not share the same hyperparameters. Thus, drawing a new layer means modifying all its
parameters and one can lose the optimization made on the hyperparameters of the previ-
ous operation. Using sequential optimization, the algorithm can first find well-performing
architectures and operations during the architecture search and then fine-tune the found
DNNs during the hyperparameters search.

4.2 Architecture Evolution

In this section, we introduce the architecture-specific search operators from DRAGON. By
architecture, we mean the search space A defined above: the nodes’ operation and the
edges between them.
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Is the final criterium B reached?

Tournament selection

Reproduction:
crossover and mutation

Offsprings evaluation

Replacement

→ Create and initialize a population of size K

No

Yes
Best model

Figure 3: Evolutionary algorithm flowchart.

Mutation. The mutation operators are simple modifications inspired by the Graph Edit
Distance (Abu-Aisheh et al., 2015): insertion, deletion and substitution of both nodes and
edges. Given a graph Γ = (L,M), the mutation operator will draw the set L′ ⊆ L and
apply a transformation to each node of L′. Let’s have vi ∈ L′ the node that will be
transformed:

• Node insertion: we draw a new node with its combiner, operation and activation
function. We insert the new node in our graph at the position i + 1. We draw its
incoming and outgoing edges by verifying that we do not generate an isolated node.

• Node deletion: we delete the node vi. In the case where it generates other isolated
nodes, we draw new edges.

• Parents modification: we modify the incoming edges for vi and make sure we always
have at least one.

• Children modification: we modify the outgoing edges for vi and make sure we always
have at least one.

• Node modification: we draw the new content of vi, the new combiner, the operation
and/or the activation function.

Thanks to these mutation operators, we make our search space connected, as explained in
Section 2. In fact, by successively using these operations, we can move from any graph to
any other, since the Graph Edit Distance can be used with any pair of graphs.

12
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Crossover. The second architecture-specific operator we implemented is the crossover.
The idea is to inherit patterns from two parents to create two offsprings. The original
crossover is applied to two vectors. It exchanges two parts of these vectors. In our case,
the individuals are graphs. Let’s say we have two parents Γ1 and Γ2. The first step is to
randomly select one subgraph from each parent, γ1 ⊂ Γ1 and γ2 ⊂ Γ2 to exchange (see
figure 4a). Next the two offspring Γ′1 and Γ′2 are generated from Γ1 and Γ2 by removing γ1

and γ2, as shown in figure 4b. Next, we need to define the position at which each of the
subgraphs will be inserted into the host graph. The idea is to preserve the overall structure
of the graph. In other words, if the subgraph was at the beginning of the parent graph,
it should also be at the beginning of the child graph, and vice versa. We denote here, for
a node v ∈ Γ, p(v,Γ) its position in the graph Γ, and P (Γ) = {p(v,Γ), v ∈ Γ} the set
of all nodes positions in Γ. We compute the future positions of each node v ∈ γ1 in Γ′2
sequentially, starting with the first node, v1 ∈ arg minv∈γ1 p(v, γ1). The position p(v1,Γ

′
2)

of v1 in the graph Γ′2 can be computed as:

p(v1,Γ
′
2) ∈ arg min

p∈P (Γ′2)

(|p− p(v1,Γ1)|)

The positions from the following nodes {v2, ..., vg} ∈ γ1 are computed to respect the struc-
ture of Γ1 and γ1:

p(vi,Γ
′
2) = min

(
p(vi,Γ1)− p(vi−1,Γ1) + p(vi−1,Γ

′
2), |Γ′2|+ |γ1|

)
Finally, as shown Figure 2a, the rows and columns corresponding to the nodes from

γ1 and γ2 are inserted in the adjacency matrices of Γ′2 and Γ′1 at the previously computed
positions. If the process has generated orphan nodes, we randomly generate the necessary
connections.

4.3 Hyperparameters Evolution

One of the architecture mutations consists in disturbing the node content. In this case, the
node content is modified, including the operation. A new set of hyperparameters is then
drawn. To refine this search, we defined specific mutations for the search space Λ(α). In the
hyperparameters case, edges and nodes number are not affected. As for architecture-specific
mutation, the operator will draw the set L′ ⊆ L and apply a transformation on each node
of L′. For each node vi from L′, we draw hi hyperparameters, which will be modified by a
neighbouring value. The hyperparameters in our search space belong to three categories:

• Categorical values: the new value is randomly drawn among the set of possibilities
deprived of the actual value. For instance, the activation functions, combiners, and
recurrence types (LSTM/GRU) belong to this type of categorical variable.

• Integers: we select the neighbours inside a discrete interval around the actual value.
For instance, it has been applied to convolution kernel size and output dimension.

• Float: we select the neighbours inside a continuous interval around the actual value.
Such a neighbourhood has been defined for instance to the dropout rate.
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Input
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(a) 1st step: we select the two subgraphs γ1 ⊂ Γ1 and γ2 ⊂ Γ2 that would be exchanged. They are
highlighted with dotted lines and darker colors.
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Input
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(b) 2nd step: create the two offsprings Γ′
1 and Γ′

2 from Γ1 and Γ2 by removing γ1 and γ2.
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(c) 3rd step: we insert the nodes from γ1 in Γ′
2 and the nodes from γ2 in Γ′

1 and reconstruct the
edges.

Figure 4: Crossover operator illustration.
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5. Experimental Study

In this section, we describe how we evaluated DRAGON on a time series forecasting task.
In the first three sections (5.1, 5.2 and 5.3), we define our experiments: the time series
dataset we used, the models and AutoML frameworks we compared to DRAGON, and the
meta-architecture we defined specifically for time series. Then, in the next three sections
(5.4, 5.5 and 5.6) we present and analyze the results. Finally, the last two sections (5.7 and
5.8) discuss the limitations of the work and give some hints for further work.

5.1 Baseline

We compared our framework to two baselines. The first consists of 15 handcrafted models
(Godahewa et al., 2021), the second is more recent and compares 6 AutoML frameworks
specifically designed for time series forecasting (Shchur et al., 2023).

Handcrafted models. These are statistical, machine learning and deep learning models
that were built and optimised by hand. We first have 5 traditional univariate forecast-
ing models: Simple Exponential Smoothing (SES), Exponential Smoothing (ETS), Theta,
Trigonometric Box-Cox ARMA Trend Seasonal (TBATS), Dynamic Harmonic Regression
ARIMA (DHR-ARIMA) and 8 global forecasting models: Pooled Regression (PR), Cat-
Boost, Prophet, Feed-Forward Neural Network (FFNN), N-BEATS, WaveNet, Transformer
and DeepAR. The last 5 models are Deep Neural Networks. Refer to the original paper
(Godahewa et al., 2021) and the Monash Time Series Forecasting Repository website2 for
more information about the models and their implementation. Finally, Shchur et al. (2023)
also provides the univariate forecasting model SeasonalNaive and the global deep learning
model Temporal Fusion Transformer (TFT).

AutoML frameworks. Shchur et al. (2023) compares 6 AutoML frameworks specifically
designed for time series forecasting. They first used 4 AutoML frameworks that are based
on automated tuning of statistical models: AutoARIMA, AutoETS, AutoTheta, and Stat-
sEnsemble. The first three automatically tune the hyperparameters of the ARIMA, ETS
and Theta models for each time series individually. The optimization of the parameters
is based on an information criterion. The last one, StatEnsemble, takes the median of
the predictions of three statistical models. Then, they included the AutoDL framework
AutoPyTorch-Forecasting, which optimizes the architecture and hyperparameters of DNNs
using a combination of Bayesian and multi-fidelity optimization and then uses the model en-
semble. Finally, AutoGluon-TS, the AutoML framework proposed by Shchur et al. (2023),
relies on the ensemble techniques of local models such as ARIMA, Theta, ETS, and Sea-
sonalNaive, as well as global models such as DeepAR, PatchTST, and Temporal Fusion
Transformer. While it is interesting to compare ourselves with these state-of-the-art Au-
toML techniques, it is worth remembering that our framework does not yet provide an
ensembling technique, and the scores obtained during optimization are based on the pre-
dictions of a single DNN.

2. https://forecastingdata.org/
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5.2 Experimental Protocol

We evaluated DRAGON on the established benchmark of Monash Time Series Forecasting
Repository (Godahewa et al., 2021). This archive contains a benchmark of more than 40
datasets, from which we selected the 27 that Shchur et al. (2023) used for their experiments.
The time series are of different kinds and have variable distributions. More information on
each dataset from the archive is available Section B. This task diversity allows to test
DRAGON generalization and robustness abilities.

For these experiments, we configured our algorithm to have a population of K = 100
individuals and we set the total budget to B = 8 hours. We investigated a joint optimization
of the architecture α and the hyperparameters λ. We ran our experiments on 5 cluster nodes,
each equipped with 4 Tesla V100 SXM2 32GB GPUs, using PyTorch 1.11.0 and Cuda 10.2.

We took the data, the data generation functions, the training parameters (batch size,
number of epochs, learning rate), the training and prediction functions from the Monash
Time Series Forecasting Repository, and we only changed the models themselves. We also
kept for each time series the forecast horizon and the lag used in the repository. We believe
our comparison is fair to the handcrafted and automatically designed models. Finally, to
evaluate the models’ performance, we used the same metric and metric implementation
as in the repository. This metric represents the forecast error `, and is the Mean Absolute
Scaled Error (MASE), an absolute mean error divided by the average difference between two
consecutive time steps (Hyndman and Koehler, 2006). Given a time series Y = (y1, ...,yn)
and the predictions Ŷ = (ŷ1, ..., ŷn), the MASE can be defined as:

MASE(Y, Ŷ ) = n−1
n ×

∑n
t=1 |yt−ŷt|∑n
t=2 |yt−yt−1| .

In our case, for f ∈ Ω, D0 = (X0, Y0) ⊆ D, we have `
(
Y0, f(X0)

)
= MASE

(
Y0, f(X0)

)
.

5.3 Search Space

The generic search space defined Section 3 introduces a brick, the Directed Acyclic Graph,
which cannot directly be our search space. We used it to define a meta-architecture as repre-
sented Figure 5, which can directly replace the repository’s models. The meta-architecture
begins with the DAG Γ, which may be composed with various one-dimensional candidate
operations (e.g. 1D convolution, LSTM, MLP). They can be found with their associated
hyperparameters Table A. The DAG Γ is followed by a Multi-layer Perceptron (MLP) used
to retrieve the time series output dimension, as the number of channels may vary within Γ.
This search space is designed specifically for time series forecasting, but it could be modified
for other tasks. For example if we want to use it for image classification, we would need a
first graph with two-dimensional candidate operations, followed by a flatten layer, followed
by a second graph with one-dimensional candidate operations and a final MLP layer.

5.4 Results

We report a summary of the results in Table 1. According to this summary, DRAGON
outperforms all algorithms on 11 out of 27 datasets (41%). The second best algorithm,
AutoGluon, was the only algorithm able to beat DRAGON on more than a third of the
datasets. The direct competitor of DRAGON, namely AutoPytorch which is another Au-
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Time Series input

DNN:fα,λθ

Directed Acyclic
Graph: Γ = fα,λ

Multi-layer Perceptron

Time Series Prediction

Figure 5: Meta-architecture for Monash time series datasets.

Algorithm(s) Wins Losses Champion Failures
SES 1 25 0 1

Theta 6 20 0 1
TBATS 6 20 0 1

ETS 8 18 1 1
(DHR-)ARIMA 4 21 0 2

PR 1 25 0 1
CatBoost 1 25 0 1

FFNN 0 26 0 1
N-BEATS 0 26 0 1
WaveNet 2 23 0 2

Transformer 0 26 0 1
DeepAR 1 25 1 1

TFT 4 23 0 0
SeasonalNaive 1 26 0 0

Prophet 2 24 1 1
AutoPytorch 7 20 0 0
AutoARIMA 4 20 0 3

AutoETS 8 19 0 0
AutoTheta 9 16 0 2

StatEnsemble 9 15 3 3
AutoGluon 13 14 10 0
DRAGON - - 11 0

Table 1: Performance comparison of the baseline algorithms with DRAGON (based on
the MASE metric) on 27 datasets. Wins corresponds to the number of datasets where
the method produced a smaller loss than DRAGON, Losses corresponds to the number of
datasets where the method produced a larger loss than DRAGON, Champion corresponds
to the number of datasets where the method produced the smallest loss, and Failures cor-
responds to the number of datasets where the method failed.
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toDL framework, was only able to beat it on 7 datasets out of 27 (26%). More detailed
results can be found in Table 2, and visual representations of the DNNs found for some
time series can be found in Figure 6. The content of the Γ graph is shown in yellow, while
the last MLP layer is shown in pink.

tourism quarterly

add,MLP,436,gelu

MLP,leaky_relu

(a) Tourism Quarterly

m1 yearly

concat,Attention1D,4,conv,softmax

concat,Identity

concat,Dropout,0.5241619743212671

concat,Identity 1

add,MLP,268,swish

concat,Identity 2

mul,Attention1D,4,conv,id

concat,MLP,300,gelu

MLP,gelu

(b) M1 Yearly

m4 hourly

add,Attention1D,7,random,softmax

concat,1DCNN,13,gelu

concat,Identity

mul,Attention1D,2,random,elu

add,Dropout,0.21022065413900148

MLP,sigmoid

(c) M4 Hourly

covid death

concat,MLP,430,sigmoid

add,Dropout,0.7410721529003726

concat,Attention1D,7,random,gelu

MLP,leaky_relu

(d) Covid Death

Figure 6: Best DNNs output by DRAGON for several time series.

To have a more visual comparison of the different algorithms from the baseline, we used
the performance profile as defined by Dolan and Moré (2002). We name P the set of the
27 datasets, S the set of the 22 algorithms from the baseline and lp,s the final score (loss)
of the algorithm s ∈ S on the dataset p ∈ P. We define the performance ratio rp,s of s on
p as:

rp,s =
lp,s

min{lp,s : s ∈ S}
.
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Table 2: Mean MASE for each dataset. We did not report all the individual scores from the handcrafted
baseline, but the best score from the 15 models for each time series. The grayed values correspond to the
minimal loss for the corresponding dataset.
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From this we can define the performance profile as the probability for the algorithm s ∈ S

that the performance ratio on any dataset is within a factor τ ∈ R of the best possible ratio:

ρs(τ) =
1

27
size{p ∈ P : rp,s ≤ τ} ,

the function ρs is the (cumulative) distribution function for the performance ratio. We
compute the performance profile for each algorithm from the AutoML baseline, which can
be found Figure 7. From the performance profile, we can see that compared to the baseline,

Figure 7: Performance profile ρs(τ) for each algorithm s from the AutoML baseline, with
τ ∈ [1, 7].

DRAGON has an error close to the best for every dataset. It is also the only algorithm for
which the performance ratio is less than two for all datasets. This diagram also suggests
that the performance of AutoPytorch and AutoGluon are not that different.

5.5 Computation Time

To be consistent with the other algorithms from the baseline, we set a fixed time budget
of 8 hours for our experiments. But in most cases the algorithm found the best solution in
less time than this. Figure 8 represents the time convergence of DRAGON for each dataset.
For almost every one of them, a close solution to the final one was found in less than an
hour. For some datasets like M4 weekly or M1 Quarterly, DRAGON did not improve the
results after the first hour. The models from the baseline train faster, with AutoGluon for
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Figure 8: Computation time of DRAGON for each dataset. The curves represent the time
when the best loss so far has been found for each dataset.
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example having an average runtime of 33 minutes (Shchur et al., 2023). However, those
algorithms are based on Machine Learning models, wherease the runtime of AutoPytorch,
the other AutoDL framework was set to 4 hours for each datasets. The training time of
DNNs are indeed usually higher than for traditional machine learning models. We think we
can improve our training time using a multi-fidelity approach. Indeed, with our evolutionary
algorithm, every DNN is trained for 100 epochs before being evaluated. With a multi-fidelity
approach we could speed up the identification of good performing models and stop training
the worst ones sooner.

5.6 Best Models Analysis

In the AutoDL literature, little effort is usually made to analyze the generated DNNs. Shu
and Cai (2019) found that architectures with wide and shallow cell structures are favored
by the NAS algorithms, which do not generalize well. We performed a light analysis on the
best models found by DRAGON to see if our framework favors such structures as well. In
this section we try to answer some questions about the results of our framework. To do so,
we first define some structural indicatore. We computed them on the best model found for
each time series dataset and summarize this in the table 3:

• Nodes: Number of nodes (i.e. operations) in the graph.

• Width : Network width, which can be defined as the maximum of incoming or out-
going edges to all nodes in the graph.

• Depth : The depth of the network, which is the size of the longest path in the graph.

• Edges: The number of edges relative to the number of nodes in the graph. It indicates
how complex the graph can be and how sparse the adjacency matrix is.

• The last 7 indicators correspond to the number of occurrences of each layer type
within the DNN.

Does DRAGON always converge to complex models or is it able to find simple DNNs?

From the table 3 we see that the models found are really small compared to a transformer
model for example, and all have less than 8 hidden layers, while we let the algorithms
have cells with up to 10 nodes. Moreover, two models consist of only one layer, such as
the one displayed Figure 6a. Another indicator of model simplicity is the percentage of
feed-forward and identity layers found in the best models. The feed-forward layer (also
called MLP Table 3) is the most frequent layer, as it appears on average at least once per
graph, although more complex layers such as convolution, recurrence or attention layers are
less frequently selected in our search space. This proves that even without regularization
penalties, our algorithmic framework does not systematically search for overly complicated
models.

Does DRAGON always converge to similar architectures for different datasets?

The structural indicators for all datasets from table 3 are significantly different for each
dataset, which means that the framework does not converge to similar architectures. As
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Dataset Nodes Width Depth Edges MLP Att CNN RNN Drop Id Pool
m3 monthly 6 3 4 12 2 1 1 1 0 0 1
covid death 3 1 3 3 1 1 0 0 1 0 0

m3 quarterly 4 2 3 6 1 0 0 2 0 1 0
vehicle trips 4 3 4 8 1 0 0 1 0 0 2
m1 yearly 8 5 5 17 2 2 0 0 1 3 0

m4 monthly 6 3 4 12 2 1 1 1 0 0 1
m3 other 4 4 3 8 2 1 0 1 0 0 0

tourism quarterly 1 1 1 1 1 0 0 0 0 0 0
pedestrian 2 2 2 3 0 0 1 0 1 0 0
nn5 daily 5 5 3 12 1 1 1 0 0 2 0

Web Traffic 7 4 6 16 2 2 2 0 0 1 0
m1 quarterly 1 1 1 1 1 0 0 0 0 0 0

tourism yearly 7 3 6 15 2 1 1 0 1 1 1
electricity weekly 7 5 7 18 3 1 1 0 0 2 0

m4 hourly 5 4 5 11 0 2 1 0 1 1 0
electricity hourly 3 3 3 5 0 1 0 0 0 2 0

m3 yearly 6 4 5 13 1 2 0 0 0 3 0
m4 weekly 2 2 2 3 1 0 0 0 0 1 0
m4 daily 2 2 2 3 0 1 0 0 0 1 0

nn5 weekly 2 2 2 3 1 0 1 0 0 0 0
kdd cup 7 6 5 17 2 1 2 1 1 0 0
hospital 4 4 3 8 1 0 2 1 0 0 0

m1 monthly 2 1 2 2 1 0 0 0 0 1 0
fred md 5 4 3 9 0 1 1 0 1 1 1
car parts 7 3 6 15 2 1 1 0 1 1 1

Mean 4.40 3.08 3.60 8.84 1.20 0.80 0.64 0.32 0.32 0.84 0.28

Table 3: Structural indicators of the best model for each dataset found by DRAGON.

we set the seed, the initial population of size K is identical for each dataset, but then the
performance of the evaluated models affects the creation of the following graphs, leading
to different final models optimized for each time series. Furthermore, Figure 9 shows that
DRAGON can find different performing architectures for the same dataset.

What is the diversity of the operations within the best models?

The MLP layer is definitively the most used operation within the candidates ones. On
average, each model from Table 3 is using at least one MLP layer. Interestingly the CNN
and Attention layers are more often used than RNN layers, which were designed for time
series. Another intersting insight is that every candidate operation has been at least picked
once, which states the operations diversity within the best models.

Are the best models still “deep” neural networks or are they wide and shallow as stated
in Shu and Cai (2019)?

To answer this question, the observations from Shu and Cai (2019) do not necessary
apply to our results. Our models are on average a bit deeper than wide, bearing in mind
that the indicators do not take into account the last MLP as shown Figure 5. If we were
doing multi-fidelity in the future, this observation might change as one of the reasons men-
tioned in the paper for wider DNNs is the premature evaluation of architecture before full
convergence.
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Figure 9: Two different models having similar good performance on the Electricity Weekly
dataset (best MASE: 0.644).

5.7 Ablation Study

We chose two datasets, M1 monthly and Tourism monthly, in order to reduce the number
of experiments we had to perform, as the benchmark was quite large. We compared four
search algorithms for both datasets; these were random search, a population based evolu-
tionary algorithm (EA) with alternating optimisation of hyperparameters and architecture,
as well as a version with joint optimisation, and, lastly, simulated annealing. To explore
the search space, we used an exponential multiplicative monotonic cooling schedule in our
simulated annealing algorithm: Tk = T0.α

k. We evaluated 40 neighborhood solutions at
each iteration to accomplish this. To ensure fairness between each search algorithm, we
conducted five experiments with different seeds (0, 100, 200, 300, and 400), and parame-
terised the algorithms to evaluate 4000 DNNs. The results of this study are presented in
Table 4.

Search Algorithm M1 Monthly Tourism Monthly

Random search 1.098± 0.006 1.645± 0.018

EA joint mutation 1.073± 0.004 1.450± 0.003

EA alternating mutation 1.080± 0.005 1.451± 0.004

Simulated Annealing 1.141± 0.044 2.640± 0.037

Table 4: Comparison between several search algorithms over two datasets: M1 Monthly
and Tourism Monthly. Each configuration has been ran with five different seeds.

The findings suggest that the most exploratory algorithms, specifically the random
search algorithm and the evolutionary algorithm, yielded better results than the more locally
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focused, ie: the simulated annealing. The findings imply the presence of several potential
solutions in the search space, but none of them could be accessed by the simulated annealing
algorithms from their starting points. The figure 10 indicates that the most effective DNN
was achieved with the help of simulated annealing when Temp = Tempmax. This suggests
greater exploration by the algorithm. Additionally, the random search method produced
favorable results. The assessment of 4000 solutions for the Tourism Monthly dataset and
M1 dataset was completed within 12 minutes and 4 hours respectively, thanks to the par-
allelisation of the solution. This shows that the search space has been suitably designed for
our problem. However, it does not achieve the same level of performance as our evolution-
ary algorithms, highlighting the significance of our variational operators. Ultimately, both
types of mutation produce very similar results.
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Figure 10: Simulated annealing algorithm for the M1 Monthly dataset with seed=100,
MASE=1.120.

5.8 Nondeterminism and Instability of DNNs

An often overlooked robustness challenge with DNN optimization is their uncertainty in
performance (Summers and Dinneen, 2021). A unique model with a fixed architecture and
set of hyperparameters can produce a large variety of results on a dataset. Figure 11 shows
the results on two datasets: M3 Quarterly and Electricity Weekly. For both datasets, we
selected the best models found with our optimization and drew 80 seeds summing all insta-
bility and nondeterministic aspects of our models. We trained these models and plotted the
MASE Figure 11. On the M3 Quarterly, the MASE reached values two times bigger than
our best result. On the Electricity Weekly, it went up to five times worst. To overcome this
problem, we represented the parametrization of stochastic aspects in our models as a hy-
perparameter, which we added to our search space. Despite its impact on the performance,
we have not seen any work on NAS, HPO or AutoML trying to optimize the seed of DNNs.
Our plots of Figure 11 showed that the optimization was effective as no other seeds gave
better results than the one picked by DRAGON.
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Figure 11: MASE histogram of the best model performances with multiple seeds for two
datasets.

6. Conclusion and Future Work

In this article, we introduce DRAGON, a novel algorithmic framework to optimize jointly
the architectures of DNNs and their hyperparameters. We initially presented a search
space founded on Directed Acyclic Graphs, which is flexible for architecture optimization
and also allows fine-tuning of hyperparameters. We then develop search operators that are
compatible with any metaheuristic capable of handling a mixed and variable-size search
space. We prove the efficiency of DRAGON on a task rarely tackled by AutoDL or NAS
works: time series forecasting. On this task where the performing DNNs have not been
clearly identified, DRAGON shows superior forecasting capalities compare to the state-of-
the-art in AutoML and handcrafted models.

Although we obtained satisfactory results compared to our baseline, we note that our
algorithm runs slower than AutoGluon, its main competitor, and does not improve it much.
However, we would like to point out that AutoGluon produces mixtures of machine learn-
ing models, while DRAGON produces a single DNN. To be more competitive in terms of
computation time and results, we could consider using multi-fidelity techniques to identify
and eliminate unpromising solutions more quickly, using multi-objective techniques to in-
crease the value of simpler, easier-to-train DNNs, and taking inspiration from AutoGluon
and AutoPytorch techniques and blending DNNs and machine learning predictors to fur-
ther improve forecasting accuracy. Moreover, for each generated architecture, we optimize
the hyperparameters using the same evolutionary algorithm. However, hyperparameters
play a large role in the performance of a given architecture, and it could be interesting
to investigate an optimization that alternates between specific search algorithms for the
architecture and for the hyperparameters. In fact, while the graph structure representing
the architecture is difficult to manipulate, once fixed, the hyperparameter search space can
be considered as a vector that could be optimized with more efficient algorithms such as
Bayesian or bi-level optimization, allowing a greater number of possibilities to be evaluated.

Furthermore, given our search space and search algorithms’ universality, we could extend
our framework to several other tasks. Indeed, only the candidate operations included as
node content are task-related, and the representation of DNNs as DAG is not. Further
research can test our framework on various learning tasks, necessitating the creation of new
operations, such as 2-dimensional convolution and pooling, for the treatment of images,
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for example. Additionally, this framework can also function as a cell-based search space,
utilising normal and reduction cells as opposed to a single convolution operation.

Finally, our study demonstrates that incorporating a variety of cutting-edge DNN op-
erations into a single model presents a promising approach for enhancing the performance
of time series forecasting. We consider these models as innovative within the deep learning
community, and further research investigating their efficacy could be interested.
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Appendix A. Available Operations and Hyperparameters

Operation Optimized hyperparameters

Identity -

Fully-Connected (MLP) Output shape Integer

Attention
Initialization type [convolution, random]

Heads number Integer

1D Convolution Kernel size Integer

Recurrence
Output shape Integer

Recurrence type [LSTM, GRU, RNN]

Pooling
Pooling size Integer
Pooling type [Max, Average]

Dropout Dropout Rate Float

Table 5: Operations available in our search space and used for the Monash time series
archive dataset and their hyperparameters that can be optimized.

Activation functions, ∀x ∈ RD

• Id: id(x) = x

• Sigmoid: sigmoid(x) = 1
1+e−x

• Swish: swish(x) = x× sigmoid(βx) = x
1+e−βx

• Relu: relu(x) = max(0, x)

• Leaky-relu: leakyRelu(x) = relu(x) + α×min(0, x), in our case: α = 10−2

• Elu: elu(x) = relu(x) + α×min(0, ex − 1)

• Gelu: gelu(x) = xP(X ≤ x) ≈ 0.5x(1 + tanh[
√

2/π(x+ 0.044715x3)])

• Softmax: σ(x)j = exj∑D
d=1 exd

∀j ∈ {1, . . . , D}
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Appendix B. Monash Datasets Presentation

Dataset Domain Nb of series Multivariate Lag Horizon

Carparts Sales 2674 Yes 15 12
Elec. hourly Energy 321 Yes 30 168
Elec. weekly Energy 321 Yes 65 8

Fred MD Economic 107 Yes 15 12
Hospital Health 767 Yes 15 12

KDD Nature 270 No 210 168
M1

monthly
Multiple 1001 No 15 18

M1 quart. Multiple 1001 No 5 8
M1 yearly Multiple 1001 No 2 6

M3
monthly

Multiple 3003 No 15 18

M3 other Multiple 3003 No 2 8
M3 quart. Multiple 3003 No 5 8
M3 yearly Multiple 3003 No 2 6
M4 daily Multiple 100000 No 9 14

M4 hourly Multiple 100000 No 210 48
M4

monthly
Multiple 100000 No 15 18

M4 quart. Multiple 100000 No 5 8
M4 weekly Multiple 100000 No 65 13
NN5 daily Banking 111 Yes 9 56

NN5 weekly Banking 111 Yes 65 8
Pedestrians Transport 66 No 210 24

Tourism
monthly

Tourism 1311 No 2 24

Tourism
quart.

Tourism 1311 No 5 8

Tourism
yearly

Tourism 1311 No 2 4

Traffic
weekly

Transport 862 Yes 65 8

Vehicle
trips

Transport 329 No 9 30

Table 6: Information about the Monash datasets (Godahewa et al., 2021).
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