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Abstract

The expense of acquiring labels in large-scale statistical machine learning makes par-
tially and weakly-labeled data attractive, though it is not always apparent how to leverage
such data for model fitting or validation. We present a methodology to bridge the gap
between partial supervision and validation, developing a conformal prediction framework
to provide valid predictive confidence sets—sets that cover a true label with a prescribed
probability, independent of the underlying distribution—using weakly labeled data. To
do so, we introduce a (necessary) new notion of coverage and predictive validity, then
develop several application scenarios, providing efficient algorithms for classification and
several large-scale structured prediction problems. We corroborate the hypothesis that the
new coverage definition allows for tighter and more informative (but valid) confidence sets
through several experiments.

Keywords: Conformal inference, Confidence sets, Coverage validity, Weak supervision,
Partial labels

1. Introduction

Consider the typical supervised learning pipeline that we teach students learning statistical
machine learning: we collect data in (X,Y ) pairs, where Y is a label or target to be
predicted; we pick a model and loss measuring the fidelity of the model to observed data;
we choose the model minimizing the loss and validate it on held-out data. This picture
obscures what is becoming one of the major challenges in this endeavor: that of actually
collecting high-quality labeled data (Sculley et al., 2015; Donoho, 2017; Ratner et al., 2017).
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Hand labeling large-scale training sets is often impractically expensive. Consider, as simple
motivation, a ranking problem: a prediction is an ordered list of a set of items, yet available
feedback is likely to be incomplete and partial, such as a top element (for example, in web
search a user clicks on a single preferred link, or in a grocery, an individual buys one kind of
milk but provides no feedback on the other brands present). Developing methods to leverage
such partial and weak feedback is therefore becoming a major focus, and researchers have
developed methods to transform weak and noisy labels into a dataset with strong, “gold-
standard” labels (Ratner et al., 2017; Zhang et al., 2017).

In this paper, we adopt this weakly labeled setting, but instead of considering model
fitting and the construction of strong labels, we focus on validation, model confidence,
and predictive inference, moving beyond point predictions and single labels. Our goal is
to develop methods to rigorously quantify the confidence a practitioner should have in a
model given only weak labels. First consider the standard supervised learning scenario for
data (X,Y ) ∈ X × Y: here, given a desired confidence level α, the goal, rather than to
provide point estimates Ŷ of Y given X, is to give a confidence set mapping Ĉn based on
(Xi, Yi)

n
i=1 that guarantees the distribution-free coverage

P
[
Yn+1 ∈ Ĉn(Xn+1)

]
≥ 1− α, (1)

where (Xn+1, Yn+1) is a new observation following the same distribution as the first n points.
Conformal inference provides precisely these guarantees (Vovk et al., 2005; Lei, 2014; Lei
and Wasserman, 2014; Lei et al., 2018; Barber et al., 2021).

There are many scenarios, however, where it is natural to transition away from this
strongly supervised setting with fully labeled examples. Above we note ranking: individuals
are very unlikely to provide full feedback (Ailon et al., 2008; Duchi et al., 2013; Negahban
et al., 2016). In multi-label image classification (Boutell et al., 2004; Elisseeff and Weston,
2001), a labeler may identify a few items in a given scene but not all, leading to partial
labeled feedback. A major challenge in industrial machine learning deployment is to monitor
models once they are in production, where it may be challenging to collect high-quality
labels, but weak supervision—in the form of clicks on a recommended website, or agreeing
to a suggested text message completion—is relatively easy and cheap to collect. In all
of these, developing valid confidence sets and measures for our predictions is of growing
importance, as we wish for models to be trustable, usable, verifiable.

With this as motivation, we consider supervised learning problems where, instead of
directly observing the ground truth labels {Yi}ni=1, we observe only noisy partial labeling.
We make this formal in two equivalent ways. In the first, for each instance i ∈ [n], there
exists a (random) function ϕi : Y → Yweak, that belongs to a set Φ ⊂ {Y → Yweak} of
partially supervising functions, such that we only observe Y weak

i = ϕi(Yi). Equivalently,
the pair (Y weak

i , ϕi) specifies a weak set Wi ⊂ Y that contains Yi:

Wi :=
{
y ∈ Y | ϕi(y) = Y weak

i

}
⊂ Y, (2)

so that we observe a set Wi consistent with Yi. Instead of observing strong labels (Xi, Yi)
iid∼

P , we thus observe only (Xi, ϕi, Y
weak
i )ni=1. Consider for instance a supervised problem

where the goal is to rank elements of the set C := {C1, C2, C3, C4}, hence each label
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Y ∈ S(C, [4]). In this setting, assume that the j-th data point has a strong label Yj
such that Yj(C1) > Yj(C2) > Yj(C3) > Yj(C4), but we only observe the partial ranking
Yj(C1) > Yj(C3). This translates in our framework to having ϕi be a mapping from the set of
permutations of K = 4 elements to the set of all partial rankings (equivalently the collection
of sets of binary comparisons), and ϕj be the mapping y ∈ S(C, [4])→ (1{y(C1) > y(C3}).
Other individuals may provide more or less information about their own personal rankings,
but the key assumption of the paper is to assume that these random preferences are ex-
changeable with the future test point: if 50% data points rank C1 and C3 in the present
dataset, there is a 50% chance that the test user also cares about it.

We emphasize that in this paper, ϕi is a random preference function with a crucial
dual function. On the one hand, it describes which fraction of the ground truth label we
actually observe in the partially labeled dataset. On the other hand, it describes which
piece of information from the ground truth label actually matters to the test user, in short
what they are likely to “query”. The key assumption of this paper is to assume that these
two distributions (partial feedback acquisition and future user query) coincide, hence that
providing a label y ∈ Y that correctly answers the query (such that ϕn+1(y) = Y weak

n+1 ) is
beneficial to the test user. We argue that the assumption is plausible in various settings,
for instance in item ranking problems, where an individual is intuitively more likely to
both provide feedback and care about the elements at the top of their ranking. Finally,
without loss of generality, one can always assume that Yweak = 2Y , since any preference
function implicitly maps each element y ∈ Y to a subset of Y (containing of course y, see
equation (2)).

We consider two fundamental questions in this weakly-labeled setting: (i) for what is it
even possible to provide (distribution-free) coverage (e.g., true labels Y , weak labels W , or
something else), and (ii) what methods can guarantee coverage?

While a first goal would be to produce a confidence mapping using (Xi, Y
weak
i , ϕi)

n
i=1

guaranteeing the coverage (1), as we prove in Section 2.1, this would in general produce
large and hence, uninformative confidence sets. We therefore relax our coverage desiderata,
instead seeking a confidence set Ĉn : X ⇒ Y that covers the weak counterpart Y weak

n+1 =
ϕn+1(Yn+1) of the true label in the sense that

P
[
Ĉn(Xn+1) ∩Wn+1 6= ∅

]
= P

[
∃y ∈ Ĉn(Xn+1) s.t. ϕn+1(y) = Y weak

n+1

]
≥ 1− α. (3)

One could certainly think of using standard conformal inference approaches (Vovk et al.,
2005; Lei, 2014; Barber et al., 2021) to obtain this, but the direct application of conventional
conformal inference methods to make predictions in the space of weak labels is practically
impossible since the space of weak labels is a priori unknown. We do not know what the
user’s preference function ϕ will be. For example, in situations like item rankings, it is
uncertain which item attributes are most important to a given user in the test sample.
Hence, we wish to return usable labels and configurations in the actual target space Y of
interest. The condition (3) is weaker than the initial coverage (1), and any confidence set
satisfying the former will also satisfy the latter, though it allows smaller confidence set sizes.
A major challenge is that the function ϕn+1 representing an individual’s weak supervision is
a priori unknown (e.g., we do not know precisely what items a labeler will label in an image
ahead of time). Indeed, if we observe ϕn+1 prior to our prediction, a simple and optimal way
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to achieve coverage (3) follows. First, construct a valid confidence set mapping Ĉn,weak :
X ⇒ Yweak for Y weak

n+1 using classical conformal methodology Vovk et al. (2005); Lei (2014);

Barber et al. (2021), which as in (1) would guarantee P(Y weak
n+1 ∈ Ĉn,weak(Xn+1)) ≥ 1 − α,

Then define Ĉn(x) ⊂ Y to include a single y ∈ Y for each yweak ∈ Ĉn,weak(x) such that
ϕn+1(y) = yweak. Such an approach is unfortunately impossible: we do not know ahead
of time if an individual cares only about the top item of her ranking or requires a ranking
accurate up to the 10th item.

Given the subtleties of coverage (3), we dedicate Section 2 to question (i) above: what
types of coverage are even possible. We devote Sections 3 and 4 to question (ii): the
development of methodologies that can guarantee the coverage (3). In the former (Sec. 3),
we provide a general recipe, while in Section 4 we provide more tailored methods for large
output spaces, such as those in structured prediction. To provide some initial insights
into the methods and potential applications, we provide experiments on several real-world
domains in Section 5.

1.1 Related Work

An extensive line of work addresses prediction with partially labeled data. The major focus
is on strong label recovery under weak supervision, including in multiclass (Cour et al.,
2011; Nguyen and Caruana, 2008) and multilabel Yu et al. (2014) tasks as well as struc-
tured prediction problems, such as ranking (Hüllermeier et al., 2008; Korba et al., 2018),
segmentation (Triggs and Verbeek, 2008; Papandreou et al., 2015), and natural language
processing (Fernandes and Brefeld, 2011; Mayhew et al., 2019). More recent work tack-
les constructing strongly labeled datasets from disparate weak supervision tasks (Ratner
et al., 2017; Zhang et al., 2017), while the papers (Cid-Sueiro et al., 2014; van Rooyen and
Williamson, 2018; Cabannes et al., 2020) provide generic theoretical conditions allowing
strong label recovery. Yet this literature focuses primarily on point prediction problems,
where a model only returns a single label with the (putative) highest likelihood, in con-
trast to our confidence-based approach, which provides calibrated uncertainty estimates
and guarantees valid confidence sets with virtually no distributional assumptions.

Our work also connects to the substantial literature on conformal inference, where the
goal is to provide valid predictive confidence sets (1). Vovk et al. (2005) introduce the main
techniques—that examples are exchangeable, and so essentially can provide p-values for
significance of one-another—and suggest the simple and generic split-conformal algorithm
for building valid confidence sets. Essentially all conformalized confidence sets offer the
coverage guarantee (1), so it is of interest to improve various aspects of the mappings
Ĉn. For example, works focus on improving the precision of these methods and optimizing
average confidence set size (Lei et al., 2018; Sadinle et al., 2019; Hechtlinger et al., 2019;
Romano et al., 2019a; Angelopoulos et al., 2020; Barber et al., 2021), or on bridging the gap
with other forms of coverage, like classwise (Sadinle et al., 2019) or conditional (Romano
et al., 2019b; Barber et al., 2021; Cauchois et al., 2021; Romano et al., 2020; Cauchois
et al., 2020; Gupta and Rothenhäusler, 2021; Duchi et al., 2024; Gupta, 2022; Cauchois
et al., 2022) coverage.

Along these lines, Bates et al. (2021) generalize conformal inference to offer error control
with respect to loss functions beyond the 0-1 loss (coverage or non-coverage) central to the
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guarantee (1), taking structured prediction problems as motivation—as we do. Bates et al.
(2021) focus on settings where the loss function naturally reflects the structure of the label
space Y, such as hierarchical classification problems where one wishes to label an example
X at a resolution (level of the tree) appropriate to the confidence with which it can be
labeled. We view our approaches as complementary to theirs: their approaches make sense
for scenarios with fully labeled data in which a particular loss function is natural, for example
in tree-structured hierarchical classification, where a prediction can be made at a given level
in the tree. Conversely, approaches are sensible when one receives weakly supervised data
and wishes to make a single good prediction; think of a grocery store deciding which of a
large collection of shaving creams to stock, a ranking problem with the where one wishes
to make sure that each individual’s desired shaving cream is stocked (in this context, this
is the guarantee (3)). In that respect, our approach relates to the expanded admission
problem Fisch et al. (2021), which allows for multiple labels to be “admissible”, except
that we do not observe to strongly supervised labels in our setting. Consequently, we
motivate our distinct coverage guarantees from a set of impossibility results we present in
the next section. Additionally, we pay special attention (see Sec. 4) to developing practical
algorithms that scale to large label spaces, an important consideration with real-world weak
supervision.

Notation Throughout this paper, [n] stands for the set {1, 2, . . . , n}. We use C : X ⇒ Y
to denote a set valued mapping C : X → 2Y := {W | W ⊂ Y}. P is either the probability
distribution generating the data (X,Y, ϕ) ∈ X ×Y×Φ, or equivalently (X,Y,W ) ∈ X ×Y×
2Y , as both notations are equivalent for our purpose, and U ∼ Uni[0, 1] defines a uniform
random variable on [0, 1]. S(U, V ) is the set of bijections between two sets U and V , using
the shorthand SK := S([K], [K]); (i, j) is the transposition of elements i and j ∈ [K], and
for k ∈ N, ∆k := {p ∈ Rk+ | pT1 = 1} is the space of probability distributions on [k].

2. Conformal inference with weakly supervised data

The starting point of this paper is to delineate realistic goals in weak-conformal inference
by determining what is actually possible—as we show, a form of weak coverage—and what
is unachievable. To that end, we demonstrate that strong coverage (1), while desirable,
this may yield prediction sets that are potentially expansive and challenging to interpret.
We thus relax our goals, presenting a general weak conformal scheme (Section 2.2) that
relies on weakly supervised data. For example, in ranking four items C := {C1, C2, C3, C4},
assume that the j-th data point has a weak label Yj such that Yj(C1) > Yj(C3), as long
as the prediction set has element that preserves the ordering of C1 and C3, it serves the
purpose. Aiming for strong coverage leads to a prediction set of size at least 4!/2! = 12,
making interpretation challenging.

2.1 The strong coverage dilemma with partially supervised data

Consider a fully supervised classification setting with feature space X and output space
Y, and let Pstrong be a joint distribution on X × Y representing strong, as opposed to

weak, supervision. In this fully supervised setting, we observe samples (Xi, Yi)
iid∼ Pstrong,
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in contrast to observing the weak label set W ⊂ Y satisfying only Y ∈W . We first require
definitions of consistency and validity.

Definition 1 A probability distribution P on (X,Y,W ) ∈ X × Y × 2Y is consistent if
P (Y ∈ W ) = 1. For any consistent distribution P , Pweak and Pstrong denote the marginal
distributions of (X,W ) and (X,Y ), respectively, when (X,Y,W ) ∼ P .

Definition 2 Let Ĉn : X ⇒ Y be a (potentially randomized) procedure depending only on
the weakly supervised sample (Xi,Wi)

n
i=1 ∈ X ×2Y . Then Ĉn provides (1−α)-strong distri-

bution free coverage if for all consistent distributions P on X×Y×2Y and (Xi, Yi,Wi)
n+1
i=1

iid∼
P , we have Eq. (1), i.e.

P
[
Yn+1 ∈ Ĉn(Xn+1)

]
≥ 1− α,

and that Ĉn provides (1− α)-weak distribution free coverage if it satisfies Eq. (3), i.e.

P
[
Wn+1 ∩ Ĉn(Xn+1) 6= ∅

]
≥ 1− α.

With these definitions, we can provide the (negative) result that, on average over the
data set, any procedure satisfying strong distribution free coverage (1) must include every
individual label y ∈Wn+1 with probability at least 1−α. To formalize this, for a confidence
set mapping Ĉn : X ⇒ Y constructed with (Xi,Wi)

n
i=1, define the function

pn(x, y) := P
(
y ∈ Ĉn(x)

)
,

which is the probability, taken over the weakly supervised sample (Xi,Wi)
n
i=1, that Ĉn(x)

contains the potential label y. We prove the following theorem in Appendix B.1.1.

Theorem 3 Suppose that Ĉn : X ⇒ Y provides (1 − α)-strong distribution free coverage.
Then for all consistent distributions P on X × Y × 2Y ,

E
{(Xi,Wi)}n+1

i=1
iid∼Pweak

[
inf

y∈Wn+1

pn(Xn+1, y)

]
≥ 1− α.

Theorem 3 essentially states that Ĉn simultaneously includes each element y ∈ Wn+1

with probability at least 1−α. The theorem is generally not improvable, as Wn+1 need not
be a subset of Ĉn(Xn+1). Indeed, think of the trivial procedure Ĉn that includes every label
y ∈ Y independently with probability 1 − α: it obviously satisfies strong distribution-free
coverage but has no connection with Wn+1. As an additional immediate corollary, if the
sets W contain at least a fixed number of labels, then so does Ĉn(Xn+1).

Corollary 4 Suppose that Ĉn : X ⇒ Y provides (1 − α)-strong distribution free coverage,
and that P (|W | ≥ L) = 1 for some L ≥ 1. Then

E
{(Xi,Wi)}n+1

i=1
iid∼Pweak

[∣∣Ĉn(Xn+1)
∣∣] ≥ L(1− α).
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Proof By Theorem 3,

E
[∣∣Ĉn(Xn+1)

∣∣] = E

∑
y∈Y

pn(Xn+1, y)

 ≥ E
[
|Wn+1| inf

y∈Wn+1

pn(Xn+1, y)

]
≥ L(1− α)

as claimed.

An alternative perspective is to consider large-sample limits; often, the procedure Ĉn
converges to some population confidence set mapping C : X ⇒ Y as n→∞, in that

E
[∣∣Ĉn(X)4C(X)

∣∣]→ 0 (4)

as n → ∞, where the expectation is over both the construction of Ĉn and X independent

of (Xi,Wi)
iid∼ Pweak. Typically, the limiting C is a (nearly) deterministic function1 of x; for

example, the standard construction (e.g. Vovk et al., 2005; Lei, 2014; Barber et al., 2021)
takes C(x) = {y ∈ Y | s(x, y) ≤ τ} for some scoring function s : X × Y → R and threshold
τ , which is deterministic. In this case, we can show that we nearly have W ⊂ C(X), so
C(X) must be large whenever W is. To formalize, let

DetC(x) := {y ∈ Y | P(y ∈ C(x)) ∈ {0, 1}}

be the labels that are deterministically in or out of C(x) (where the probability is over any
randomization in the mapping C) so that DetC(x) = Y whenever C is deterministic. Then
can show that W ⊂ C(X) with probability at least 1− α:

Corollary 5 Suppose that Ĉn : X ⇒ Y provides (1 − α)-strong distribution free coverage
and satisfies the limit (4). Then

P(W ∩DetC(X) ⊂ C(X)) ≥ 1− α.

See Appendix B.1.2 for a proof.

Theorem 3 and its corollaries suggest that any procedure achieving strong (distribution-
free) coverage necessarily produces inefficient (large) confidence sets when one uses only
weakly supervised data. Even in cases where there is implicitly a single correct label, such
as the structured prediction problems Cabannes et al. (2020) consider, where the weak
labels w that a single x supports (those for which P(W = w | X = x) > 0) have a single
label y in their intersection ∩w:P(w|x)>0{w} = {y}, never disallow large weak sets W . We
thus must take a different tack, targeting new coverage desiderata.

An aside: regression. Although we primarily focus on classification (where Y is finite),
our development applies equally to regression or other problems with continuous or infinite
response sets, e.g., Y = R, as nothing in Theorems 3 or 7 requires Y to be any particular
space. We leverage this in our experiments (Sec. 5) in the sequel to give numerical examples,
touching on the R-valued case here to demonstrate the analogues of our theoretical results.

1. In some cases, we use randomization over a single label to guarantee that P(Y ∈ C(X)) = 1− α
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As an example, weak sets W in the continuous case may be intervals, arising, for ex-
ample, from measurements with limited resolution. We adapt Corollary 4 to regression by
replacing counting measure with the Lebesgue measure Leb, where the response set Y = R
and the weak sets W ⊂ R. Assuming that the weak sets all have a minimal volume, any
valid confidence set mapping necessarily is large (on average) as well:

Corollary 6 Suppose that Ĉn : X ⇒ Y = R provides (1 − α)-strong distribution free
coverage, and let L > 0. If P (Leb(Wi) ≥ L) = 1, for i = 1, . . . , n+ 1, then

E
[
Leb

(
Ĉn(Xn+1)

)]
≥ L(1− α).

An analogy to Corollary 5 follows nearly immediately from Corollary 6, just as Corollary 5
follows Corollary 4. That is, if there exists a deterministic set-valued mapping C : X ⇒ Y
for which E[Leb(Ĉn(X)4C(X))]→ 0, then P(W ⊂ Ĉn(Xn+1)) ≥ 1− α.

2.2 A general weak-conformal scheme via scoring functions

The theoretical limitations we identify motivate the weak coverage (3) we target instead of
the strong converage (1). Following our discussion above, the new coverage definition stems
from two desiderata: if the problem is actually low-noise and there already exists a highly
predictive model we can leverage to build our confidence sets—roughly, that conditional
on x, a single label y belongs to the weak sets W with high probability and a model
exists that can predict this y—then while we should return this singleton even if we cannot
guarantee strong coverage. In the alternative perspective that we care only about the value
ϕ(Y )—recall the weak set (2)—providing any y satisfying ϕ(y) = Y weak should suffice for
prediction. We turn now to provide our general weak conformalization scheme.

Our starting point is via the typical output of a machine-learned model, a scoring
function s : X × Y → R that ranks potential labels (or responses) y for an input example
x ∈ X . We treat s(x, y) is a non-conformity score, meaning the model predicts that
values of y for which s(x, y) is small are more likely. Standard examples of such scoring
functions include s(x, y) := −|y − µ̂(x)| in regression, where µ̂ : X → R predicts y | x;
or s(x, y) := − log py(x) in multiclass classification, where py(x) models the conditional
probability of y | x. Throughout this section, we adopt a split-conformal perspective (Vovk
et al., 2005; Barber et al., 2021), assuming the practitioner provides a scoring function
independent of the sample (Xi, ϕi, Y

weak
i )ni=1 (the sample would typically be a validation

set), and we show how to transform any such scoring function into a valid (weakly-covering)
confidence mapping.

Algorithm 1 starts from a simple observation, assuming that the scoring function s is
relatively good. Given a query function ϕ and weak label Y weak—equivalently, the weak
set W = {y | ϕ(y) = Y weak}—the most likely label should typically be the y satisfying
ϕ(y) = Y weak minimizing s(x, y).
Note that a completely equivalent scheme to the scores (5) with label mappings ϕ and weak
labels Y weak

i uses weak sets Wi, where we replace the scores (5) with

Si := min
y∈Wi

s(Xi, y).

In either case, Algorithm 1 achieves valid coverage weak (3):
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Algorithm 1 Partially supervised conformalization

Input: sample {(Xi, Y
weak
i , ϕi)}ni=1; score function s : X × Y → R independent of the

sample; desired coverage 1− α ∈ (0, 1)
For each i ∈ [n], compute

Si := min
y: ϕi(y)=Y weak

i

s(Xi, y). (5)

Set t̂n := (1 + n−1)(1− α)-quantile of {Si}ni=1.

Return: predictive set mapping Ĉn : X ⇒ Y defined by

Ĉn(x) :=
{
y ∈ Y | s(x, y) ≤ t̂n

}
.

Theorem 7 Let (Xi, Yi, ϕi)
n+1
i=1

iid∼ P and Y weak
i = ϕi(Yi) for i ∈ [n+ 1]. Then Algorithm 1

returns a confidence set mapping satisfying

P
[
There exists y ∈ Ĉn(Xn+1) s.t ϕn+1(y) = ϕn+1(Yn+1) = Y weak

n+1

]
≥ 1− α.

Proof Let Si := minϕi(y)=Y weak
i

s(Xi, y) for each i ∈ [n+ 1]. By definition of Ĉn, we have{
y ∈ Ĉn(Xn+1) | ϕn+1(y) = Y weak

n+1

}
=
{
y ∈ Y | ϕn+1(y) = Y weak

n+1 and s(Xn+1, y) ≤ t̂n
}
,

which is nonempty if and only if

Sn+1 := min
ϕn+1(y)=Y weak

n+1

s(Xn+1, y) ≤ t̂n.

As {Si}n+1
i=1 are i.i.d., this occurs with probability at least 1−α (e.g. Tibshirani et al., 2019,

Lemma 1).

3. Constructing effective conformal prediction sets

Algorithm 1 provides a generic method for conformalization in the presence of partially
supervised data, and it makes no assumptions on the input score function s. Though the
coverage guarantee (3) holds regardless, we can delineate a few additional desiderata that
the predictive sets and score functions s should satisfy to make them more practically useful,
which is our focus in this section:

• The score function s must allow the practitioner to efficiently carry out the computa-
tion of the partial infimum scores (5).

• The lower level sets Ĉn(x) = {y ∈ Y | s(x, y) ≤ t̂n} should be efficiently representable.

• The confidence sets Ĉn(x) should be small, as smaller confidence sets (for a fixed
confidence level α) carry more information.
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Deferring our discussion of computational efficiency to Section 4, in this section we only
focus on the last desideratum, implicitly assuming computation is tractable (e.g., if Y is
small). We first (Sec. 3.1) develop conditions sufficient for optimally-sized confidence sets
to even exist—a few subtleties arise—before giving greedy algorithms for confidence set-
size minimization, describing their properties, and providing a few optimality guarantees in
Sections 3.2 and A.

3.1 Size-optimal scoring mechanism

As in standard approaches to conformal inference (Lei, 2014; Lei and Wasserman, 2014;
Barber et al., 2021), we aim to construct a confidence set mapping Ĉn with minimal average
size over X ∼ PX . Our starting point is simply to define size-optimality, where to achieve
exact coverage and size guarantees, we allow randomization of our confidence sets via an
independent variable U ∼ Uni[0, 1].

Definition 8 A randomized confidence set mapping C1−α : X × [0, 1] ⇒ Y is marginally
size-optimal at level α if it solves

minimize
C:X×[0,1]⇒Y

EX,U∼Uni[0,1] [|C(X,U)|]

subject to P(W ∩ C(X,U) 6= ∅) ≥ 1− α.
(Marg)

It is conditionally size-optimal at level α if for almost every x ∈ X , C(x, ·) solves

minimize
C:[0,1]⇒Y

{
EU∼Uni[0,1] [|C(U)|] s.t. P(W ∩ C(U) 6= ∅ | X = x) ≥ 1− α

}
. (Cond)

Even with full knowledge of the distribution P , techniques for finding marginally size-
optimal confidence sets (Marg) are not immediately apparent; as a consequence, we focus
on the conditional case first. Even in this case, it is in general non-trivial to obtain smallest
confidence sets. Yet as we follow the standard practice (Barber et al., 2021; Lei, 2014;
Vovk et al., 2005) in conformal prediction of defining confidence sets via the scores s (recall
Alg. 1) as Ct(x) = {y | s(x, y) ≤ t}, our confidence sets have the natural nesting property
that Ct(x) ⊂ Ct′(x) whenever t < t′. Abstracting away the particular form of C to enable
a purely set-based focus, we thus consider nested confidence sets, where we show that
optimality guarantees are possible.

Definition 9 A collection of mappings {Cη : X × [0, 1] ⇒ Y}η∈(0,1) is nested if

P (Cη1(X,U) ⊂ Cη2(X,U)) = 1 for all 0 < η1 < η2 < 1.

There is an immediate equivalence between score-based conformalization schemes and
nested collections of confidence mappings (Gupta et al., 2022): we simply define

snest(x, y, u) := inf {η ∈ (0, 1) | y ∈ Cη(x, u)} . (6)

The next lemma formalizes this equivalence (see Appendix B.2.1 for a proof).

10
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Lemma 10 Assume the confidence set mappings {Cη}η∈(0,1) are nested and snest(x, y, U)
has continuous distribution for U ∼ Uni[0, 1]. Then

Cη(x, U) =
{
y ∈ Y | snest(x, y, U) ≤ η

}
with U -probability 1.

That is, obtaining weak coverage for nested confidence mappings is equivalent to obtaining
weak coverage using the scoring function snest, which Alg. 1 provides, that is, equivalent to
choosing the smallest η ∈ (0, 1) such that P(W ∩ Cη(X,U) 6= ∅) ≥ 1 − α. A second useful
distributional property of the nested scores (6) is that, assuming the confidence sets Cη
are conditionally valid, we can provide strong distributional results on snest. To make this
precise, we say that Cη is conditionally valid for the weak labels W if for each η ∈ (0, 1) and
with P-probability 1 over X,

P (Cη(x, U) ∩W 6= ∅ | X = x) = η. (7)

We then have the following uniformity property as an immediate consequence of Lemma 10:

Lemma 11 In addition to the conditions of Lemma 10, assume that Cη is conditionally
valid (7) for the weak label W . Then the minimum score (5) is independent of X and
satisfies

inf
y∈W

snest(x, y, U) ∼ Uni[0, 1].

Proof With U -probability 1, infy∈W snest(x, y, U) ≤ η if and only if Cη(x, U)∩W 6= ∅, and
so P(infy∈W snest(x, y, U) ≤ η | X = x) = P(W ∩ Cη(x, U) 6= ∅ | X = x) = η.

A comparable result to Lemma 11 was previously asserted in Proposition 1 of Einbinder
et al. (2022), where the affiliated conformity scores introduced therein also induce prediction
sets that satisfy the nested property. To illustrate this lemma, suppose that there exist
nested conditionally size-optimal mappings {Ccond

η }η∈(0,1) solving problem (Cond): in that
case, they satisfy the conditions for application of Lemma 11 so that the induced scores
Si are uniform; Alg. 1 will thus compute t̂n = (1 − α) + OP (n−1/2) as t̂n is the (1 − α)

quantile of Si
iid∼ Uni[0, 1]. So—in the case that we have (near) conditional coverage—Alg. 1

maintains it. Notably, given a score function s, not necessarily the nested score (6), but
strong in the sense that it models (X,Y ) well enough that for each α, we can choose t so that
P(s(x, Y ) ≤ t | X = x) = α, then the confidence sets Algorithm 1 returns are indeed nested,
and Lemma 11 applies to the induced nested score snest. Unfornately, optimal nested sets
need not always exist (see Example 1 below), but we can provide natural conditions on the
distribution of W | X = x sufficient to allow such nested coverage, which we do in the next
subsection.

3.1.1 From conditionally to marginally valid confidence sets

Our initial criterion (Marg) is purely marginal: we wish to compute a marginally size-
optimal confidence set. Conveniently, conditionally size-optimal mappings can yield marginally
size-optimal problems. In particular, assume that the mappings {Ccond

η }η∈(0,1) are condi-

tionally size-optimal (Cond) and satisfy P(W ∩ Ccond(x, U) 6= ∅ | X = x) ≥ η. The

11
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following proposition shows how to transform these into marginally size-optimal confidence
sets.

Proposition 12 Let the mappings {Ccond
η } be conditionally size-optimal (Cond) as above,

and define the average size(x, η) := EU [|Ccond
η (x, U)|]. Let smarg be any minimizer of

E [size(X, s(X))] s.t. E[s(X)] ≥ 1− α

over s : X → [0, 1]. Then a solution to the initial marginal problem (Marg) is

Cmarg
1−α (x, u) := Ccond

smarg(x)(x, u).

More directly, any conditionally size-optimal sets—which are at least easier to characterize
as they need only randomize over U ∼ Uni[0, 1]—yield marginally size-optimal confidence
sets in a relatively straightforward way: one chooses the probability of miscoverage, s(x),
minimizing the expected confidence set size.

Proof That CMarg
1−α provides valid 1− α coverage is nearly immediate: by conditional size

optimality, we have P(W ∩ Cmarg
1−α (X,U) 6= ∅) = E[tmarg(X)] ≥ 1− α.

Let C be any confidence set mapping such that P(W ∩ C(X,U) 6= ∅) ≥ 1 − α, and
define sC(x) := P(W ∩ C(x, U) 6= ∅ | X = x) ∈ [0, 1], which satisfies E[sC(X)] ≥ 1− α. By
assumption on Ccond, for each fixed x ∈ X , the set Ccond

sC(x)(x, U) is size-optimal (Cond) at

level sC(x), so that for PX -almost every x ∈ X , we have

size(x, sC(x)) = EU∼Uni[0,1]

[
|Ccond
sC(x)(x, U))|

]
≤ EU∼Uni[0,1] [|C(x, U)|] .

Integrating both sides of the inequality over X ∼ PX , and using the assumed optimality
condition on smarg, we obtain

E [size(X, smarg(X))] ≤ E [size(X, sC(X))] ≤ EX,U [|C(X,U))|] .

The left-hand size is the average size of Cmargin
1−α .

3.2 Greedy algorithms for confidence set-size minimization

Given the distribution—or a model of the distribution—of the weak set W conditional on
x, we propose a natural greedy algorithm to construct a confidence set satisfying the weak
coverage constraint: at each step, Algorithm 2 adds the label that increases coverage the
most until the confidence set achieves a desired level. Algorithm 2 draws inspiration from
Algorithm 1 developed in Romano et al. (2020), where the authors formulated conformal
inference methods tailored for categorical and unordered response labels. These methods not
only ensure valid marginal coverage but also afford approximate conditional coverage. As
we show presently, there are natural families of distributions where this greedy algorithm
is optimal; however, there are failure modes, of which we also provide an example. In
Appendix A, we relate this greedy construction to submodular optimization to provide
general guarantees of confidence set size and coverage.

12
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Algorithm 2 Greedy weakly supervised scoring mechanism

Input: model for the distribution of W given X = x; coverage rate η ∈ (0, 1)
for each j ∈ [K] define recursively

yj(x) := argmax
y∈Y

P

(
y ∈W,

j−1⋂
i=1

{yi(x) 6∈W} | X = x

)
.

for each j ∈ [K] define Cgr,j(x) := {yi(x) | i ≤ j} and set

j(x, η) := min
{
j ∈ [K] | P

(
W ∩ Cgr,j(x) 6= ∅ | X = x

)
≥ η

}
.

set

tη(x) :=
η − P (Cgr,j(η,x)−1(x, U) ∩W 6= ∅ | X = x)

P (Cgr,j(x,η)(x, U) ∩W 6= ∅ | X = x)− P (Cgr,j(x,η)−1(x, U) ∩W 6= ∅ | X = x)
.

return function Cgr
η : X × [0, 1] ⇒ Y defined by

Cgr
η (x, u) :=

{
Cgr,j(x,η)(x) if u < tη(x),

Cgr,j(x,η)−1(x) otherwise.

Alg. 2 returns a nested sequence {Cgr
η (x, U)}η∈(0,1), where U ∼ Uni[0, 1] randomizes to

achieve an appropriate level. While the sequence need not necessarily solve problem (Cond)
(see Example 1 to come), there are natural sufficient conditions for Algorithm 2 to return
a size-optimal set, of which we present two. As the first particular case, consider that
conditional on x, labels y ∈ Y belong to W independently:

Definition 13 A probability distribution P on W ∈ 2Y has label-independent structure if
{1{y ∈W}}y∈Y are independent random variables when W ∼ P .

We might expect W to exhibit label independence when all labels y ∈ Y satisfy π(y | x)� 1,
with the exception of a single label y?(x), for which π(y?(x) | x) ≈ 1, as will often be the
case in low-noise classification settings.

Another scenario occurs when the label space exhibits a hierarchical tree structure, as
one may expect in image classification (Deng et al., 2009) or structured prediction tasks (Ca-
bannes et al., 2020). When the weak sets W obey the same structure the distribution—they
are subtrees of the global tree—we say the labels have a tree structure (see Figure 1):

Definition 14 A probability distribution P on W ∈ 2Y has a tree structure if for all
w1, w2 ⊂ Y,

P (W = w1) > 0 and P (W = w2) > 0 imply w1 ∩ w2 ∈ {w1, w2, ∅}. (8)

Both definitions (independent labels and hierarchically-structured weak labels) are suf-
ficient to guarantee size-optimality for the greedy confidence sets Algorithm 2 constructs.
The next Proposition, whose proof we provide in Appendix B.2.2, makes this formal.
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Y?

W0

W1

y1 y3

W2

y2 y5

y4

Figure 1. A tree-structured (8) distri-
bution for W given X = x, with Y? =
{1, 2, 3, 4}. The possible configurations for W
are the singletons {y1}, {y2}, {y3}, {y4}, the two
pairs W1 = {y1, y3} and W2 = {y2, y5}, W0 =
{y1, y2, y3, y5}, and Y? itself.

Proposition 15 Suppose the probability law L(W | X = x) has either label-independent
structure (Def. 13) or a tree structure (Def. 14). Then for all η ∈ (0, 1), Cgr

η is conditionally
size-optimal, and therefore is a minimizer in equation (Cond).

In general, even with perfect knowledge of the distribution of W | X = x, the nested
greedy confidence sets Cgr

η need not be size-optimal, as there may be weak sets appearing
with high probability while their constituents do not, so that the conditionally size-optimal
sets {Ccond

η }η∈[0,1] are not nested. The next example illustrates one such failure mode:

Example 1 Let the distribution of W be

W =



{1, 2} w.p. 0.3

{1, 3} w.p. 0.25

{2} w.p. 0.2

{3} w.p. 0.15

{1} w.p. 0.1.

Then for η = 0.9, it is immediate that Ccond
η (x, u) = {2, 3}, but Cgr

η (x, u) = {1, 2, 3} or {1, 2}
depending on whether u < 1/3. In addition, Ccond

eta′ (x, u) = {1, 3} when η′ = 0.85, showing
that in this case, the confidence set mappings Ccond

η need not be nested.

We show in Appendix A that even in general cases as example 1, the sizes of the
confidence sets Cgr and Ccond cannot be too far apart.

4. Efficient conformalization for large output spaces

While Section 3 provides a generic treatment on for producing scoring functions and asso-
ciated confidence sets of minimal size, in typical practice, a (pre-trained) model provides
a predictive scoring function, which may not be directly associated to a probability met-
ric, and we wish to leverage such models. This is of particular interest when the label
space Y is large, as in structured prediction problems (Taskar, 2005; Cabannes et al., 2020),
where computational efficiency becomes a main challenge. In this section, we thus first
introduce a general method for computing and representing confidence set mappings of the
form {y | s(x, y) ≤ t̂n}, and then describe how to efficiently carry out Alg. 1 in ranking
(Section 4.2) and matching (Appendix C.1) problems.
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4.1 Conformal confidence sets with sequential partitioning

We seek to efficiently compute and represent the confidence set Ĉn(x) for any instance
x ∈ X , typically for a task where the label space contains more configurations than are
efficiently enumerable (K! for matching and ranking problems over K items). At the same
time, recalling that t̂n denotes the threshold Algorithm 1, if our confidence sets are to be
informative they should include relatively few configurations y ∈ Y satisfying s(x, y) ≤ t̂n.
To the end of computing the set Ĉn(x) = {y | s(x, y) ≤ t̂n} in Alg. 1, we focus on methods
for computing a given number M of configurations with the smallest score s(x, y). This is
essentially without loss of generality: while we may not know the appropriate M = Mx =
|Ĉn(x)| to guarantee coverage, if for each M ∈ N we can find the M best configurations
in time polynomial in M , then by sequentially doubling M until we obtain an element
y ∈ Y such that s(x, y) > t̂n, we achieve time polynomial in Mx. Algorithm 3 builds on
this intuition to return a valid confidence set. The Algorithm we suggest is essentially an
extension of the algorithm proposed by Chegireddy and Hamacher (1987) to find the K-
best matchings in a bipartite graph. We reuse the general idea (i.e. compute a sequence of
partitions of the space and maintain a list of the two best configurations for each item of
the partition) and extend it to a more general structured prediction. The key is to observe
that we only need to be able to compute the two best configurations of a given subset of
configurations, which they do on matching problems (and our Algorithm essentially reduces
to theirs in the matching case). We then apply that paradigm to the ranking case.

We remark briefly that an alternative approach is to conformalize directly on the size
M of the confidence set: suppose we learn a function M̂ : X → N predictive of the rank
(according to {s(x, y)}y∈Y) of the first “compatible” configuration, i.e predictive of

Mi := rank of the first configuration y ∈ Y such that ϕi(y) = Y weak
i .

In that case, if we let Q̂n :=
(
1 + n−1

)
(1− α) -quantile of {Mi−M̂(Xi)}ni=1, we would only

need to return

Ĉn(x) :=
{
M̂(x) + Q̂n best configurations y ∈ Y ordered by s(x, y)

}
.

This approach makes prediction more efficient (as we know in advance the number of configu-
rations to compute), but the computational effort of the conformalization step (5) increases,
as we must compute the rank of the best constrained configuration for each instance.

4.1.1 Returning M best configurations with sequential partitioning

Let us now fix M ≥ 1, and focus on retrieving the M configurations with the lowest scores.
Algorithm 3 provides a general recipe using dynamic programming, and it is efficient as long
as we can efficiently compute certain partitions of the label space. We require the following
definition.

Definition 16 A function Partition : 2Y ×Y ×Y → 2Y × 2Y is valid for a score function
s if, for every subset Ỹ ⊂ Y and pair of configurations y1, y2 ∈ Ỹ satisfying

y1 ∈ argmin
y∈Ỹ

s(x, y) and y2 ∈ argmin
y∈Ỹ\{y1}

s(x, y),

Partition(Ỹ, y1, y2) returns a partition (Ỹ1, Ỹ2) of Ỹ such that y1 ∈ Ỹ1 and y2 ∈ Ỹ2.
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Partition Update

Y3
1

Y3
2

Y3
3

Y4
2

Y4
1

Y4
4

Y4
3

y1

y2

y32,2
y31,2 y33,2

y3

y1

y31,2 y33,2
y3

y2

y32,2 = y4

y1

y41,2 y43,2

y3

y2

y4

y44,2

y42,2

Figure 2. Alg. 3 scheme for sequential partitioning: first, partition the subset containing the
m+ 1-th best configuration, y32,2 in this case, then compute both second-best configurations

in the newly formed subsets of the partition—here Y4
2 and Y4

4 .

We thus leverage two conditions: a valid Partition for our score function s and, for each
pair of subsets Y1,Y2 ⊂ Y that it produces, we must be able to (efficiently) compute the
second-best configurations in Y1 and Y2, i.e.,

y1,2 ∈ argmin
y∈Y1\{y1}

s(x, y) and y2,2 ∈ argmin
y∈Y2\{y2}

s(x, y).

Figure 2 encapsulates the main idea Alg. 3: at each step m ∈ [M ], we maintain a
partition {Ymj }mj=1 of Y such that if ymj ∈ argminy∈Ymj s(x, y), then for all j ∈ [m], we have

ymj ∈ argmin
y∈Y\{ym1 ,...,ymj−1}

s(x, y),

i.e., ymj is the j-th best configuration in Y. Now, for each j ∈ [m], let the configuration
ymj,2 ∈ argminy∈Ymj \{ymj } s(x, y) be the second-best configuration in Ymj . The key is then to

observe that if we set

ind(m) := argmin
j∈[m]

s(x, ymj,2),

then ymind(m),2 is the (m+1)st best configuration in Y. The Partition function then divides

Ymind(m) into two sets Ym+1
ind(m) and Ym+1

m+1 such that ymind(m) ∈ Y
m+1
ind(m) and ymind(m),2 ∈ Y

m+1
m+1 .

Under the assumption that Partition is valid (Def. 16) for the score s, the following lemma
guarantees the validity of Algorithm 3.

Lemma 17 Assume the Partition function is valid for the score function s. Then Algo-
rithm 3 returns a set of configurations {yj}Mj=1 such that for each j ∈ [M ],

yj ∈ argmin
y∈Y\{y1,...,yj−1}

s(x, y).

Proof This follows by an induction over m ≥ 1, which guarantees that at every step m ≥ 1,
{Ymj } is a partition of Y such that ymj = argminy∈Ymj and

s(x, ym1 ) ≤ s(x, ym2 ) · · · ≤ s(x, ymm) ≤ min
y∈Y\{ymj }

s(x, y).
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Algorithm 3 Sequential partitioning

Require: score function s : X ×Y → R; valid (Def. 16) Partition: 2Y×Y×Y → 2Y×2Y ;
instance x ∈ X
initialize: Compute y1

1 := argminy∈Y s(x, y) and y1
1,2 := argminy∈Y\{y11} s(x, y).

Set Ym1 := Y {Initialize the partition}
for m = 1, 2, . . . ,M − 1 do

ind(m) := argminj∈[m] s(x, y
m
j,2) {Find the m+ 1-th best configuration}

ym+1
m+1 := ymind(m),2

for j ∈ [m] \ {ind(m)} do
(Ym+1

j , ym+1
j , ym+1

j,2 ) := (Ymj , ymj , ymj,2) {All subsets {Ymj }j 6=ind(m) remain identical}
end for
Ym+1

ind(m),Y
m+1
m+1 := Partition(Ymind(m), y

m
ind(m), y

m+1
m+1) {Partition the set Ymind(m)}

ym+1
ind(m)

:= ymind(m) and ym+1
ind(m),2

:= argminy∈Ym+1
ind(m)

\{ym+1
ind(m)

} s(x, y)

ym+1
m+1,2 := argminy∈Ym+1

m+1\{y
m+1
m+1}

s(x, y) {Compute second-best configurations}
end for
return {yMm }Mm=1

The property transitions from m to m+1 as the Partition function is valid, and we choose
ym+1
m+1 as the best second-best configuration, hence it is the (m+ 1)st best configuration.

The existence of an efficient valid Partition function is instance-dependent and typi-
cally requires a specific choice of scoring function; we provide concrete implementations for
two types of structured prediction problems.

4.2 Structured prediction examples (Ranking problems and partial labeling
mechanisms)

While Algorithm 3 is generic, we now show that efficient partitioning and minimization
functions exist in structured prediction instances, so that we may efficiently carry out above
algorithms in the instance. Here we focus on ranking problems and defer the discussion on
matching tasks in Appendix C.1.

The goal here is to predict a preference ranking y ∈ Y = SK of K different items,
documents, for a certain user or query x ∈ X , where y(i) denotes the item of rank i.
Typically, one achieves this by learning relevance functions rk : X → R, which evaluate each
item 1 ≤ k ≤ K individually before aggregating into a single ranking prediction (Freund
et al., 2003; Duchi et al., 2013; Qin and Liu, 2013; Cao et al., 2007). We assume here that
we have access to such relevance functions.

In ranking tasks, there are two reasonable ways in which practitioners may acquire
partial supervision or user feedback. The first mechanism (Cabannes et al., 2020) assumes
they only receive a subset of all

(
K
2

)
pairwise comparisons

(
1
{
y−1(i) < y−1(j)

})
1≤i<j≤K as

a partial label, which is especially relevant in cases where the practitioner solicits feedback
from users by asking them to compare a small number of items. Unfortunately, carrying out
the computation (5) in Alg. 1 is an NP-hard problem, namely the minimal cost feedback
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arc set problem (Ailon et al., 2008; van Zuylen et al., 2007), for which only an approximate
solution is available (by solving an integer linear program).

Another form of feedback, on which we focus in the rest of the section and that allows
to run both Algs. 1 and 3 efficiently, instead assumes that users only provide a fraction of

their preferred ranking and reveal (y(i))K
partial

i=1 for some Kpartial ≤ K. In order to construct
score functions suitable to the application of Alg. 3, we first introduce ranking-consistent
score functions.

Definition 18 A scoring function srank is ranking-consistent with a set of relevance func-
tions {rk : X → R}k∈[K] if a for all 1 ≤ i < j ≤ K and y ∈ SK ,

srank(x, (i, j) ◦ y)) ≤ srank(x, y) if ry(i)(x) ≤ ry(j)(x), (9)

where (i, j) ◦ y denotes transposition of i and j in the permutation y.

Such a scoring mechanism should always favor a ranking that gives a higher rank to y(j)
than y(i) if ry(i)(x) ≤ ry(j)(x), i.e., if y(j) has a greater relevance than y(i). It ensures in
particular that the (m + 1)st best ranking is always a “neighbor” of one of m best; this
is an immediate property of the score function, as it can always increase by swapping two
elements i and j that are mis-ordered.

An example of ranking-consistent scoring function is the disagreement-based scoring
function (Kendall, 1938; Kemeny, 1959; Duchi et al., 2013)

srank(x, y) :=
∑
i<j

ψ
(
ry(i)(x), ry(j)(x)

)
, (10)

where ψ : R2 → R ≥ 0 is a function satisfying ψ(a, b) = 0 when a ≥ b and ψ(a, b) > 0 when
a < b, non-increasing in the first argument and non-decreasing in the second. Unless we
specify otherwise we use ψ(a, b) = [b− a]+ in our experiments.

Finding the configuration y that minimizes the partial score (5) of a ranking-consistent

score function is straightforward: it suffices to rank all the elements in [K] \ {y(i)}K
partial

i=1

according to their relevance scores (rj(x))Kj=1, and then append them to the first Kpartial

elements. More interestingly, this property allows efficiently retrieving the M ≥ 1 best
configurations with Alg. 3. Throughout the loop, we make sure that any set of permutations
Ymj is a subset of permutations consistent with a finite number of partial rankings (pairwise
comparisons), and that its best and second-best configurations ymj and ymj,2 only differ by a
neighboring transposition of the form (i+ 1, i), satisfying

ymj,2 := argmin
y∈Ymj

{s(x, y) | ∃i ∈ [K], y = (i+ 1, i) ◦ ymj }. (11)

If we can guarantee this loop invariant, then there always exists ij,m ∈ [K] such that
ymj,2 = (ij,m + 1, ij,m) ◦ ymj , and we only need to define the partition function on a smaller

subset of 2Y × Y × Y: for any subset of permutations Ỹ ⊂ Y, ỹ ∈ Ỹ and i ∈ [K] such that
(i+ 1, i) ◦ ỹ ∈ Ỹ, we let

PartitionRanking(Ỹ, ỹ, (i+ 1, i) ◦ ỹ) :=

Ỹ ∩
{
y ∈ Y | y−1(ỹ(i)) < y−1(ỹ(i+ 1))

}
, Ỹ ∩

{
y ∈ Y | y−1(ỹ(i)) < y−1(ỹ(i+ 1))

}
,

(12)
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splitting Ỹ according to whether ỹ(i) has a higher rank than ỹ(i+ 1).

The next lemma, whose proof is in Appendix B.3.1, states that this partition rule indeed
guarantees that, at every step m of the loop in Algorithm 3, the second-best configuration
in Ymj satisfies the invariant (11).

Lemma 19 Assume the score function is ranking-consistent (9) for a set of relevance func-
tions {rk}Kk=1. Then Algorithm 3 with the PartitionRanking function (12) produces a se-
quence of partitions with second-best configurations satisfying equation (11).

That is, Algorithm 3 is correct.

5. Experiments

In this section, we test our weakly supervised methods experimentally, in different classi-
fication and regression problems, on both synthetic and real datasets, with an emphasis
on their computational efficiency and informativeness. Here we focus on ranking problems
and present further experiments on matching and regression problems in the Appendix C.
The primary goal of this paper is not to provide end-to-end models with only partially
supervised data, but rather to introduce a new form of coverage validity and show how
to achieve it with partially labeled data. In contrast to the split-conformal method (Vovk
et al., 2005), which requires fully supervised instances for both training and validating, we
only need these to train a model and form a scoring function suitable for the application
of Alg. 1. In some cases, standard models already exist, such as in image classification (He
et al., 2016).

To provide a meaningful comparison with existing conformal methods and test for pre-
dictive set size efficiency, we use fully labeled real datasets, and introduce different plausible
forms of weak supervision on our calibration and test sets before applying Algorithm 1 to
construct confidence sets. Our method displays similar behavior across all datasets and
forms of partial information. To provide a baseline, we also run a standard fully supervised
conformal scheme (FSC) using the strong labels Yi and true scores s(Xi, Yi), which runs
similarly as Alg. 1, but with threshold

t̂full
n := (1 + n−1)(1− α)-quantile of {s(Xi, Yi)}ni=1. (13)

We can then estimate the gain in efficiency—in the form of decreased confidence set sizes—
that stems from the weakening of strong coverage (1) to weak coverage (3).

5.1 A toy classification example

We first perform an experiment with a toy multiclass data set containing K = 10 different
classes and d = 2 dimensional features. We consider a partially supervised problem on
X × Y = Rd × [K] for which we wish to output valid confidence sets. We use the following
model: each potential response y ∈ [K] has a noisy score depending on the feature vector
X ∈ Rd though a vector θ?y ∈ Rd,

{Soracle
y }y∈[K] | X = x ∼ N({xT θ?y}y∈[K], σ

2IK) (14)
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Figure 3. Results for the simulated multiclass data (14), over Ntrials = 20 trials. The left
plot shows respectively the strong (1) and weak (3) coverage for the greedy weakly supervised
(GWS), the weakly supervised conformal (WSC) and the fully supervised conformal (FSC)
confidence sets. The right plot displays the average confidence set size for these methods.

Ideally, we would recover the strong label Y := argminy∈Y S
oracle
y , but our weakly supervised

methods do not observe Y directly: instead, for a random instance-dependent threshold T ,
we only have access to the weak set

W := {y ∈ Y | Soracle
y ≤ T}.

As motivation, consider a supervised learning task in which, out of all potential responses,
there is always only one ground truth, but there are other labels that are “good enough”
(i.e. have a low enough score) to answer a certain query. In this setting, a confidence set is
weakly valid (3) as long as it contains at least one label y such that Soracle

y ≤ T , whereas it
is strongly valid (1) if it contains Y .

We vary the signal-to-noise ratio σ−1 ∈ {10−2, . . . , 102}: when it is too small, no model
(even an oracle one) can be highly predictive, and a standard conformal method should
provide large uninformative confidence sets, whereas we expect our new definition of cov-
erage to yield smaller sets, as any label in W (i.e. with a low enough score) provides valid
coverage.

In this experiment, we compare three different methods. The “Greedy weakly super-
vised” (GWS) method only uses partially labeled data both when training and confor-
malizating. It first trains K separate logistic regressions with {Xi} as features and each
{1{y ∈Wi}} for all y ∈ Y as potential response, providing a model for P (y ∈ W | X = x),
and models the distribution of W given X = x as label-independent (see Definition 13). It
then computes a nested sequence of confidence sets thanks to Alg. 2, which we then feed to
the conformalization Algorithm 1 using the nested scoring mechanism (6).
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The second and third methods, the “Weakly supervised conformal” (WSC) and the “Full
supervised conformal” (FSC) methods respectively, use fully supervised data for training:
we first train a standard logistic regression model pθ(y | x) ∝ exp(θTy x) on {(Xi, Yi)}, and
then construct a scoring function using the Generalized Inverse Quantile (GIQ) procedure
that Romano et al. (2020) introduce. In the conformalization step, the WSC method runs
Algorithm 2 with partially labeled calibration data, while the FSC method uses strongly
labeled data to compute the threshold t̂full

n in (13). The threshold t̂n in Alg. 2 is always
smaller than t̂full

n , so the FSC method returns larger confidence sets than the WSC method.
We expect that as the signal to noise ratio decreases, the gap between the GWS and WSC
confidence sets and the FSC confidence sets increases.

The precise experimental set-up is as follows: we simulate n = 104 data points, splitting
them into training (30%), calibration (20%) and test (50%) sets. We draw each θy uniform

on Sd−1, {Xi}ni=1
iid∼ N(0, Id), choosing weak threshold T ∼ Uni[miny∈Y{SOracle

y },maxy∈Y{SOracle
y }].

We repeat the entire process Ntrials = 20 times to account for uncertainty, presenting our
results in Figure 3.

As we expect, using an alternative weaker version of coverage (3) allows us to signifi-
cantly decrease the size of the confidence set (by up to a factor of 3), especially when the
signal-to-noise ratio is small, as one must include more classes in the confidence set to main-
tain strong coverage. Indeed, we can see that the strong coverage (1) for the GWS and WSC
procedures fall well below 1−α = 95% in this case, since they only strive for weak 1−α cov-
erage, which they consistently achieve. Since the GWS method aims to construct minimal
confidence sets, we expect that it produces smaller confidence sets than the WSC method,
which simply leverages an existing strongly supervised model; we consistently observe this
across different values of σ.

5.2 Document ordering for query answering

We now present the results of two experiments using Alg. 1 in a ranking problem. The
first one is a simulation of a standard ranking task, while the second focuses on ranking
documents’ relevance to specific queries in the Microsoft LETOR dataset (Qin and Liu,
2013).

5.2.1 Ranking simulation study

In a first simulation study, we aim to predict a ranking of labels y ∈ [K] based on a feature
vector X ∈ Rd. Think here of a supervised problem where we want to rank users’ preferences
for a set of items. Each user has an unknown relevance score SOracle

y ∈ R for each item
y ∈ [K], which induces a ground truth ranking over the labels:

Y := argsort{SOracle
y }y∈[K] ∈ SK .

The problem is to recover this noisy ranking and produce valid confidence sets in SK , but
our weakly supervised methods do not observe the full ranking when conformalizing: they
can only observe the ranking up to the Kpartial ≤ K-th element, leading to the weak set

W = {y ∈ SK | ∀j ∈ [Kpartial], y(j) = Y (j)}. (15)
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In our experiment, we simulate n = 104 i.i.d. different users, using the same (30,20,50)
train/validation/test split as in Section 5.1. With K = 7 and d = 2, we draw the user

feature vector Xi
iid∼ N(0, Id), and then conditionally on Xi, we produce normal item-

wise relevance scores {SOracle
iy }i∈[n],y∈[K] following the distribution (14). We finally simulate

partial supervision by drawing the number of observed elements in the ranking Kpartial
i as

min(K, 1 + Ai), where Ai
iid∼ Poi(.5). The lower left panel of Figure 4 shows the overall

distribution of this quantity: most users only reveal the first 1 to 3 items in their optimal
ranking.

We then produce strongly and weakly valid confidence sets at the 1 − α := 90% level.
We use the same scoring model for both the fully supervised conformal (FSC) and weakly
supervised conformal (WSC) procedures: we learn linear individual relevance score functions
{ry}y∈[K] (with fully supervised training data) via the ListNet procedure (Cao et al., 2007),

which we briefly describe here. Given a set of relevance scores {ry}y∈Y ∈ RK , ListNet
models the probability of a ranking π ∈ SK as

Pr(π) :=
K∏
y=1

exp(rπ(y))∑k
l=y exp(rπ(l))

, (16)

which gives each item y ∈ Y a top-1 probability (of ranking first) equal to

P 1
r (y) := Pr(π(1) = y) =

exp(ry)∑k
l=1 exp(rl)

.

Given a training data set containing pairs (X,R) ∈ X × RK of features/relevance scores,
we learn score mappings by minimizing the log-loss of the top-1 distribution over a set F
of functions

{r̂y}y∈[K] := argmin
r̃∈FY

 ∑
(X,R)∈ training data

K∑
k=1

−P 1
R(k) log

(
P 1
r̃(X)(k)

) .

In our experiment, we only observe the ranking (or even a fraction of), not the true per-
item relevance scores, hence, following common practice (Cao et al., 2007), we use Ry =
K − the rank of the item = K − Y −1(y) as a proxy for our observed item-wise relevance
scores when training our model.

In our experimental set up, each relevance score function ry : X → R ideally estimates
the true conditional mean of the oracle scores, x 7→ xT θ?y. Given these individual scores,
we use the scoring mechanism (10) with ψ(x, y) := (y − x)+ and conformalize using the
strategy we describe in Section 4.2.

The difference between the WSC and FSC methods is the conformalization step on cali-
bration data: WSC runs Alg. 1 with partially supervised data to compute the score threshold
t̂n while FSC uses strongly supervised data to return the more conservative threshold t̂full

n

in (13).
Our results fit our initial expectations, in line with our first experiments: the size of

the confidence set, as Figure 4C shows, benefits from the weaker definition of coverage: for
any value of the signal to noise ratio σ−1 > 0, the WSC method produces much smaller
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and more informative confidence sets than the FSC method, as it only needs to include a
ranking with the correct first Kpartial elements to provide valid coverage. ,At the cost of the
strong coverage falling below 1−α (see Fig. 4A), and with little information (only the first
Kpartial < K labels), the WSC method constructs predictive sets that are much smaller and
yet still valid (in a weak sense).

5.2.2 Ranking experiment with Microsoft LETOR dataset

We now tackle a slightly different type of ranking problem: we wish to rank a set of potential
documents by order of relevance to a specific user query: documents more relevant to the
query should occupy a higher position in the final ranking. A search engine is a good
example of such problem: a user makes a search query, and the task is to sort Web pages
that best answer that query among a (potentially large) set of potential pages.

Learning to rank with Microsoft LETOR dataset (Qin and Liu, 2013) To study
that problem, we design an experiment with Microsoft LETOR data set. For each potential
query/document pair (x, d), the dataset aggregates several quantities of interest to deter-
mine whether d is relevant to x into a d = 46-dimensional feature vector φ(x, d) ∈ Rd. For

a query x with a set of potentially relevant documents D(x) := {dj}|D(x)|
j=1 , our data set

additionally contains a ranking Π(x) ∈ S|D(x)| that orders these documents according to

their relevance. Our goal is to retrieve that ranking using the feature vectors {φ(x, dj)}D(x)
j=1 .

A semi-synthetic weakly supervision set-up Here is how we construct weakly su-
pervised calibration and test data sets. For each split (calibration/test), we first sample
n = 2000 queries from the entire set of queries in LETOR validation and test datasets.
For every query Xi, we select K ∈ {2, 4, 6, 8, 10, 20} documents by first sorting D(Xi) into
K equally sized subsets by relevance, so subset ` ∈ [K] contains the documents with rank

Π(x)y for every y ∈ { (`−1)|D(Xi)|
K + 1, . . . , `|D(Xi)|

K }, and then drawing one document from
each box uniformly at random.

This procedure ensures that there exists a significant relevance gap between any two
potential documents in the query, and that the number of documents to rank is sufficient
to allow reasonably-sized confidence sets. Π(Xi) additionally induces a sub-ranking Yi ∈
SK on these documents, which we treat as a strong label. Similarly to our approach in
Section 5.2.1, we introduce partial labels by assuming that our weakly supervised method

can only access the first Kpartial
i elements of Yi, where Kpartial

i
iid∼ 1 + Poi(.5): this simulates

the plausible setting where a user has given feedback on the most relevant documents to
the query, but certainly not to all of them. We repeat the entire simulation procedure
Ntrials = 20 times.

Building a ranking scoring function (10) We next describe how we use fully supervised
training data to construct the scoring function that we feed Alg. 1 with. We first learn a
linear query/document relevance function

rθ(x, d) := θTφ(x, d) (17)

using the ListNet procedure (16) on LETOR (fully supervised) train data(
xi, (di,j)

D(xi)
j=1 , yi ∈ SD(xi)

)ntrain

i=1
,
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Figure 5. Results for LETOR ranking dataset (Qin and Liu, 2013) over Ntrials = 20 trials.
Each plot represents a different value of K ∈ {2, 4, 8, 10, 15}, the number of documents to
rank, and we compare different scoring functions by varying the value of c ∈ {0, 2, 5, 8} in
equation (18). A: Strong (1) and Weak (3) coverage for the weakly supervised conformal
(WSC) and the fully supervised conformal (FSC) confidence sets. B: Distribution of the

confidence set size |Ĉ(X)| for different numbers K of suggested documents. We display here

the distribution of min(|Ĉ(X)|,M) for M = 100.
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containing 55700 different query/document pairs.
We then use a specific implementation of the score function sRanking as in Eqn (10): if

we rank K documents {dk}k∈[K] for a query x, we rescale our relevance scores to the interval
[0, 1],

{rk(x)}k∈[K] :=

{
rθ(x, dk)−minj∈[K] rθ(x, dj)

maxj∈[K] rθ(x, dj)−minj∈[K] rθ(x, dj)

}
k∈[K]

,

and then, for a choice of c ∈ {0, 2, 5, 8}, apply the scoring mechanism (10) with these
relevance scores and pairwise comparison function

ψc(r1, r2) := exp(−cr1) (r2 − r1)+ . (18)

In this example, we guarantee weak coverage if the true ranking Yi on the first Kpartial
i

elements coincides with either one of the predictive rankings. To keep the predictive set
size small, we thus wish to ensure that it doesn’t contain two rankings with the same first
Kpartial
i elements (as they would be redundant): this is why we introduce the exponential

term exp(−cr1), which makes sure that when ranking all configurations by their score, highly
ranked configurations have different first elements (rather than different last elements). To
estimate the distribution of |Ĉ(X)|, we then compute the M = 100 best rankings for each
query using Alg 3, and then replace the size of the confidence set by min(M, |Ĉ(X)|)),
effectively truncating it to M .

Experimental results We present our results in Figure 5. The confidence sets display
the behavior we expect: when the number K of items to classify is small, the fully supervised
conformal (FSC) and weakly supervised conformal (WSC) methods are similar, since partial
labels are often equal to strong labels. Since the overall number of configurations is small,
both methods are also able to maintain fairly small confidence sets. On the other hand, when
K grows, the weak supervision method quickly departs from the full supervision one, and
is able to produce confidence sets that are much smaller: when K ≥ 8, the FSC method
is unable to produce confidence sets with fewer than 100 configurations, as the number
of configurations is large, and the problem is inherently noisy, especially for comparing
documents with a fairly small relevance. The WSC (partially) overcomes that difficulty
with its restrained notion of coverage, and is able to maintain a majority of confidence
sets with size smaller than M , at least until K = 15. Of course, this method pays a price
in terms of strong coverage, as for large K, the confidence set almost never contains the
actual ground true ranking. That said, it may not a real issue as we are more interested
in detecting which documents are actually relevant, and hence should have a higher rank,
rather than correctly ordering documents with very little relevance to the query at the
bottom of the list.

In addition, as we predicted, higher values of c in the pairwise comparison function (18)
produce much smaller confidence sets by favoring more diverse rankings at the top of the
list.

6. Discussion

The new measures of coverage we develop here—tailored to partially supervised data that
may be easier to collect in many engineering and measurement-centric scientific scenarios—
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help to bridge a gap between typical conformal predictive inference methods, which require
expensive supervised data, and problems with partial supervision, whose typical focus is on
prediction but not uncertainty quantification. Our hope is for this paper to open several
avenues for future work. First, Algorithm 1 does not currently quantify the amount of
coverage it provides conditionally on the query function, which essentially means in an
item ranking framework that we do not know ahead of time whether we guarantee the top
2 or top 10 elements of the ranking to be correct. This occurs first because the query
function is unknown ahead of time, and second because coverage (3) is marginal over the
full randomness of the sample. Similarly to conformal inference extension works bridging
the gap between marginal and conditional coverage, or between marginal and label-wise
coverage, one potential goal is to adapt these methods and even out coverage conditionally
on (plausible) query functions.

Our approach, grounded in conformal inference methods, acts as a wrapper around
any black box machine learning models, providing valid coverage guarantees independent
of model quality. However, it’s crucial to note that poorly trained models may impact
the efficiency of prediction sets, particularly when these sets are large due to factors like
training data scarcity. Thus, efforts to mitigate overfitting and train high-quality models
are paramount to ensuring the efficiency of our method’s prediction sets. Scalability, while
generally manageable with our methods for large datasets, presents challenges primarily
during the conformalization step. Recognizing the absence of a one-size-fits-all solution,
we’ve tailored scalable methods for each machine learning problem presented in the paper,
aiming to effectively address diverse applications. Further, addressing these concerns in
future works holds significant promise for advancing the field.

Additionally, the new definition (3) is intrinsically a 0-1 loss-based approach, in the sense
that the confidence set Ĉn either covers the weakly supervised set or fails. A natural initial
extension is thus similarly to what Bates et al. (2021) propose in the strongly supervised
case, recognizing that many structured prediction problems (e.g., segmentation tasks or
multilabel problems) benefit from more subtle and granular loss functions. In the same vein,
we present a few efficient choices of scoring mechanisms for structured prediction, which
highlight the practicality and potential application of our general methodology; it seems
quite plausible that more sophisticated scoring models could yield substantial improvements.

In our view, one of the more exciting potential applications of this work reposes on
the (growing) centrality of partial and weakly labeled data in statistical learning (Ratner
et al., 2017). Whether this be from partial reporting in surveys, or because collecting
labeled data is quite expensive, a major challenge in modern machine learning deployments
and the release of statistical models is monitoring their performance. The weaker notions of
predictive inference and coverage here, we might hope to build more effective and applicable
guardrails and uncertainty measures for modern statistical systems, even as they are released
to the world.

Appendix A. A general upper bound for the greedy approach

As we saw in section 3, reasonable conditions on label distributions guarantee that the
greedy mappings {Cgr

η }η∈(0,1) solve problem (Cond), while pathologies (as in Example 1)
exist. In this section, we show that even in general cases, the sizes of the confidence sets
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Cgr and Ccond cannot be too far apart. We motivate our approach by noting the similarity
between problem (Cond) and the minimum set cover problem familiar in submodular op-
timization Vazirani (2001); Golovin et al. (2014), which we recall. Let f : 2Y → [0, 1] be a
monotone submodular coverage function, meaning that for each A ⊂ B ⊂ Y and y ∈ Y \B,
f satisfies f(A) ≤ f(B), f(A ∪ {y})− f(A) ≥ f(B ∪ {y})− f(B), f(Y) = 1, and f(∅) = 0.
A solution to the minimum set cover problem is

C?η ∈ argmin
C⊂Y

{|C| s.t. f(C) ≥ η} . (19)

A classical result combinatorial optimization of Wolsey (1982) bounds the size of the set
that a natural greedy algorithm for problem (19) returns. To state the result, we introduce
a bit of notation. For any set C ⊂ Y and y ∈ Y, we define

∆(C, y) := f(C ∪ {y})− f(C),

increase in coverage from adding y to C. At each step j ∈ [K], the greedy algorithm chooses

yj := argmax
y∈Y

∆({y1 . . . , yj−1}, y),

and stops at the first step j(η) ≤ K such that f({y1, . . . , yj(η)}) ≥ η. For the greedy set
Cgr,j := {y1, . . . , yj}, define the constant

Kf,η := min

{
η

η − f(Cgr,j(η)−1)
,

max
y∈Y, j≤j(η)

∆(Cgr,j ,y)>0

(
∆(∅, y)

∆(Cgr,j , y)

)
,

maxy∈Y ∆(∅, y)

maxy∈Y\Cgr,j(η)−1 ∆(Cgr,j(η)−1, y)

}
.

We then have the following result.

Lemma 20 (Wolsey (1982), Theorem 1) Let f : 2Y → [0, 1] be a monotone submodu-
lar coverage function. Then

|Cgr,j(η)| ≤
(

1 + logKf,η

)
· |C?η |

Given the apparent similarity between the problems (19) and (Cond), we would like to
leverage Lemma 20 to establish a similar guarantee for Alg. 2. To apply Lemma 20 to Alg. 2,
we provide the natural analogous quantities, leveraging the notation in the algorithm and
working conditional on X = x. Define fx(C) := P (W ∩ C 6= ∅ | X = x), which is
immediately a submodular coverage function, and for each x we have increment function
∆x(C, y) = P (W ∩ C = ∅, y ∈ W | X = x). Because the greedy sets Cgr

η (x, u) may be
randomized but always satisfy Cgr

η (x, 1) ⊂ Cgr
η (x, 0), we provide a slight alternative to the

constant Kf,η, defining

KP,η,x := min

{
η

η − P (W ∩ Cgr
η (x, 1) 6= ∅ | X = x)

,

max
y∈Y, j≤j(x,η)

∆x(Cgr,j(x),y)>0

(
∆x(∅, y)

∆x(Cgr,j(x), y)

)
,

maxy∈Y ∆(∅, y)

maxy∈Y ∆(Cgr
η (x, 1), y)

}
.

(20)
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Invoking Lemma 20 and simplifying gives the following result, which bounds the size of the
greedy set by a logarithmic quantity times the size of the best (deterministic) covering set.

Corollary 21 Let Cgr
η : X × [0, 1] ⇒ Y be the confidence set mapping Algorithm 2 outputs.

Then for all x ∈ X and u ∈ [0, 1],

|Cgr
η (x, u)| ≤ |Cgr

η (x, 0)| ≤
(

1 + logKP,η,x

)
· min
C⊂Y
{|C| s.t. P (W ∩ C 6= ∅ | x) ≥ η} .

We can roughly interpret the three terms inside the minimum in (20) as follows. The first
term is large when the greedy algorithm nearly attains the required coverage on the iteration
just before terminating, and therefore measures (in a sense) how “wasteful” the algorithm
is. The second term is large when choosing a label earlier would have improved the coverage
more, and so expresses a kind of regret. The third term measures how often the labels y ∈ Y
co-occur in W . Though the bound is a functional of the discrete derivative ∆x(C, y) and
small when the “local” information in ∆x(C, y) gives good indicators of globally optimal
sets C, it can be hard to compute explicitly; we therefore evaluate the size of the sets that
Alg. 2 generates for a few experimental examples in Section 5.

Appendix B. Proofs of mathematical results

B.1 Proofs of lower bounds on confidence set sizes

B.1.1 Proof of Theorem 3

Suppose that P is a consistent distribution on X ×Y×2Y , with marginal Pweak over X ×2Y ,
and consider a procedure Ĉn offering 1− α strong distribution-free coverage. Let P̃ be the
distribution on X × Y × 2Y with P̃weak = Pweak, and where we define P̃ by the triple
(X̃, Ỹ , W̃ ) ∼ P̃ according to

Ỹ = argmin
y∈W̃

{
pn(X̃, y) := P

(Xi,W )ni=1
iid∼Pweak

[
y ∈ Ĉn(X̃)

]}
.

Then, P̃ is a consistent distribution on X × Y × 2Y , which ensures that

P
(Xi,Yi,Wi)

n+1
i=1

iid∼ P̃

[
Yn+1 ∈ Ĉn(Xn+1)

]
≥ 1− α.

By definition of P̃ , we have

P
(Xi,Yi,Wi)

n+1
i=1

iid∼ P̃

[
Yn+1 ∈ Ĉn(Xn+1)

]
= E(Xn+1,Yn+1,Wn+1)∼W̃ [pn(Xn+1, Yn+1)] ,

the law of Ĉn is identical under P or P̃ , as it only depends on (Xi,Wi)
n
i=1

iid∼ Pweak.

On the other hand, we observe that when (Xn+1, Yn+1,Wn+1) ∼ P̃ ,

pn(Xn+1, Yn+1) = inf
y∈Wn+1

pn(Xn+1, y),
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which guarantees that

1− α ≤ E(Xn+1,Yn+1,Wn+1)∼P̃ [pn(Xn+1, Yn+1)]

= E(Xn+1,Yn+1,Wn+1)∼P̃

[
inf

y∈Wn+1

pn(Xn+1, y)

]
= E(Xn+1,Wn+1)∼P̃weak

[
inf

y∈Wn+1

pn(Xn+1, y)

]
= E(Xn+1,Wn+1)∼Pweak

[
inf

y∈Wn+1

pn(Xn+1, y)

]
.

B.1.2 Proof of Corollary 5

Consider (X,W ) ∼ Pweak independent of (Xi,Wi)i≥1, and define p(x, y) = P(y ∈ C(x)),

recalling the definition pn(x, y) = P(y ∈ Ĉn(x)). By Jensen’s inequality,

E
[∣∣∣ inf

y∈W
p(X, y)− inf

y∈W
pn(X, y)

∣∣∣] ≤∑
y∈Y

E [|p(X, y)− pn(X, y)|]

≤ E

∑
y∈Y

∣∣∣1{y ∈ Ĉn(X)} − 1{y ∈ C(X)}
∣∣∣
 = E

[
|Ĉn(X)4C(X)|

]
.

Taking the limit as n→∞ and using that E[infy∈W pn(X, y)] ≥ 1− α from Theorem 3, we
must also have

E
[

inf
y∈W

p(X, y)

]
≥ 1− α.

Since infy∈W p(X, y) ∈ [0, 1], we must have P(infy∈W p(X, y) = 0) ≤ α, which gives the
desired result: there exists y ∈W ∩DetC(x)\C(x) if and only if y ∈W ∩{y ∈ Y : p(x, y) =
0}, i.e. if and only if infy∈W p(x, y) = 0.

B.2 Proofs on size set optimality in weak supervision

B.2.1 Proof of Lemma 10

Fix η0 ∈ (0, 1). Then y ∈ Cη0(x, u) implies that snest(x, y, u) = inf{η | y ∈ Cη(x, u)} ≤ η0

and so snest(x, y, u) ≤ η0. Conversely, assume that snest(x, y, u) ≤ η0. Then by definition of
snest, y 6∈ Cη0(x, u) if and only if for all η > η0, we have y ∈ Cη(x, u) but y 6∈ Cη0(x, u), and
therefore snest(x, y, u) = η0. But of course, by continuity, P(snest(x, y, U) = η0) = 0, and so

P(snest(x, y, U) ≤ η0 and y 6∈ Cη0(x, U)) = 0.

B.2.2 Proof of Proposition 15

The case where W | X = x has a label-independent structure is immediate, hence we focus
on proving the result when W | X = x has a label tree-structure (8).

We prove the result by induction on the size of Y?, observing that the result is immediate
if |Y?| = 1. If |Y?| = K > 1, we assume that the result holds on sets with at most K − 1
elements.
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We denote Px the law of W | X = x, by Pu the law of U and P = Px ⊗ Pu their joint
distribution, and similarly for their expectations.

Fix η ∈ (0, 1), and let C : [0, 1] ⇒ Y? be a confidence set mapping satisfying

P(C(U) ∩W 6= ∅) ≥ η.

We will prove that

Eu|CGreedy
η (x, U)| ≤ Eu|C(U)|.

We use the label ranking y1(x), . . . , yK(x) that Alg. 2 defines, omitting x for simplicity, and
consider two cases:

• Case 1: Pu(yK ∈ C(U)) = 0.

Then C provides coverage at level η using only the K − 1 first labels, which also
guarantees that CGreedy

η (x, u) only contains labels in {y1, . . . , yK−1} (since, in that
case, Jη ≤ K − 1 in Alg. 2). The induction hypothesis applied to the distribution of

W \ {yK} thus ensures that Eu|CGreedy
η (x, U)| ≤ Eu|C(U)|.

• Case 2: Pu(yK ∈ C(U)) > 0.

In that case, we will prove that either Pu(yj ∈ C(U)) = 1 for all j ∈ [K − 1], or that
we can build a new confidence set Cfinal(U) such that

P(Cfinal(U) ∩W 6= ∅ | X = x) ≥ P(C(U) ∩W 6= ∅ | X = x), Eu|Cfinal(x, U)| = Eu|C(U)|,

and verifies either Pu(yj ∈ Cfinal(U)) = 1 for all j ∈ [K−1], or Pu(yK ∈ Cfinal(U)) = 0.

The distribution Px induces a tree whose leaves are the labels y1, . . . , yK , and each
inner node N (apart from the root, which is Y? itself) is a subset of Y? such that
Px(W = N) > 0, and two nodes N1 and N2 share the same parent if any subset C
containing strictly either N1 or N2 such that Px(W = C) > 0 contains N1 ∩N2. This
parent is then the smallest subset Np such that N1 ∩N2 ⊂ Np and Px(W = Np) > 0.
Each parent is then the union of all its children. Figure 1 provides an example of such
a tree.

Defining D(C) := {y ∈ Y? \ {yK} | Pu(yj ∈ C(U)) < 1} 6= ∅, we consider the element
ỹ ∈ D(C) sharing the lowest common ancestor with yK in the tree. For instance, in
Figure 1, if D(C) = {y3, y4}, then yD = y3, as their common ancestor W0 is lower
than the common ancestor of y5 and y4 (Y? itself).

We then proceed to define C̃(U) from C(U) so that

C̃(U) \ {yK , yD} = C(U) \ {yK , yD} (21)

and

Eu|C̃(U) ∩ {yK , yD}| = Eu|C(U) ∩ {yK , yD}|, (22)

but now either

Pu(yD ∈ C̃(U)) = 1 or Pu(yK ∈ C̃(U)) = 0.
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In practice, we do so by replacing yK by yD when C(U) ∩ {yK , yD} = {yK(x)},
or/and decreasing the probabilities that C̃(U) ∩ {yK , yD} = {yD, yK} and C(U) ∩
{yK , yD} = ∅, in such a way that the average size does not vary, but the probability
that C(U) ∩ {yK , yD} = {yD} increases.

We then proceed to check that such a change cannot hurt our coverage, while it
evidently leaves the average confidence set size unchanged (because of equations (21)
and (22)).

The only way we can have C(U) ∩W 6= ∅ and C̃(U) ∩W = ∅ is if W = {yK}. On
the other hand, when W = {yD}, we can have C(U) ∩W = ∅ but C̃(U) ∩W 6= ∅.
Because of the definition of yD with respect to yK , any other value of W such that
C(U)∩W 6= ∅ will be such that C̃(U)∩W 6= ∅. In particular, by independence of W
and U , we have

P(C̃(U) ∩W 6= ∅)− P(C(U) ∩W 6= ∅)

≥ Px(W = {yK(x)})
[
Pu(yK ∈ C̃(U))− Pu(yK ∈ C(U))

]
+ Px(W = {yD})

[
Pu(yD ∈ C̃(U))− Pu(yD ∈ C(U))

]
=
(
Pu(yD ∈ C̃(U))− Pu(yD ∈ C(U))

)
(Px(W = {yD})− Px(W = {yK})) ,

since Pu(yK ∈ C̃(U)) + P (yD ∈ C̃(U)) = Pu(yK ∈ C(U)) + P (yD ∈ C(U)), as the
total average size does not vary.

In addition, since yK gets selected last in Alg. 2, we know that for all y ∈ Y?,

Px (W = {yD}) ≥ Px (W = {yK})) ,

which achieves to prove that

P(C̃(U) ∩W 6= ∅) ≥ P(C(U) ∩W 6= ∅) ≥ η.

If Pu(yD ∈ C̃(U)) = 1, then |D(C̃)| ≤ |D(C)| − 1, and we can repeat the process
until we obtain a final mapping Cfinal such that either D(Cfinal) = ∅ or P(yK(x) ∈
Cfinal(U)) = 0.

In the first scenario where eventually D(Cfinal) = ∅, it means that Cfinal(U) is either
Y? or Y? \ {yK}, and this is immediate to check that since P(Cfinal(U)∩W 6= ∅ | X =
x) ≥ η, we must have Pu(yK ∈ Cfinal(U)) ≥ Pu(yK ∈ CCond-Prox

η (x, U)), which in turn
ensures that

Eu|CCond-Prox
η (x, U)| ≤ Eu|Cfinal(U)| = E|C(U)|.

In the second case, since PU (yK ∈ Cfinal(U)) = 0, Cfinal is effectively a confidence set
over strictly less than K labels, in which case we can apply the induction hypothesis
to conclude that

Eu|CCond-Prox
η (x, U)| ≤ Eu|Cfinal(U)| = Eu|C(U)|.
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B.3 Proofs of algorithms validity

B.3.1 Proof of Lemma 19

We prove the result by proving that if we run Algorithm 3 with M = K!, defining at each
step ymj,2 as in equation (11), then at each step m ≤ K! of the algorithm, {Ymj }j∈[m] is a
valid partition of Y that satisfies the following conditions:

1. For each j ∈ [m], we have Ymj = {ymj } if and only if there exists no i ∈ [K − 1] such
that (i+ 1 i) ◦ ymj ∈ Ymj .

2. If Ymj 6= {ymj } then s(x, ymj ) ≤ s(x, ymj,2).

If the partition satisfies these two conditions at every step, then we can run the algorithm
until step m = K!, at which point it returns a partition {YK!

j }K!
k=1 such that s(x, yK!

1 ) ≤
· · · ≤ s(x, yK!

K!). Now, since we have smj = sK!
j for every 1 ≤ j ≤ m, we conclude that, at

each step m ∈ [K!], we have

s(x, ym1 ) ≤ s(x, ym2 ) ≤ · · · ≤ s(x, ymm) ≤ min
y∈Y\{ym1 ,...,ymm}

s(x, y),

which proves the validity of the algorithm.

This is of course true for m = 1, since the best configuration simply ranks rk(x) in
decreasing order.

1. By definition of ymind(m),2 and yind(m), {Ym+1
j }m+1

j=1 is a valid partition of Y such that

each ym+1
j ∈ Ym+1

j , if {Ymj } is itself a valid partition (and m < K!), so long as
we can prove that if Ymj 6= {ymj }, then there must exist α ∈ [K − 1] such that
(α+ 1 α) ◦ ymj ∈ Ymj (i.e the algorithm does not get stuck and terminates). But this
is immediate as, if for all α ∈ [K − 1], we have (α+ 1 α) ◦ ymj /∈ Ymj , then it must be
by construction that

Ymj ⊂
⋂

α∈[K−1]

{y ∈ Y | y−1(ymj (α)) < y−1(ymj (α+ 1))} = {ymj }.

Therefore, at each step m ≤ K! of the algorithm, {Ymj }j∈[m] is a valid partition of Y,
and the algorithm terminates.

2. On the other hand, it requires more care to justify why, if we set, for all j ≤ m,

ymj,2 := argmin
y∈Ymj

{s(x, y) | ∃α ∈ [K − 1], y = (α+ 1 α) ◦ ymj }

then we should always have

s(x, ymj ) ≤ s(x, ymj,2) (23)

for all j ∈ [m], i.e. why any permutation of the form (α α + 1) ◦ ymj that belongs to
Ymj cannot strictly decrease the score s(x, y).
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Equation (23) actually results from a crucial property of the score function (10), which
ensures that if s(x, y) < s(x, (α α+ 1) ◦ y), then it must hold that

ry(α)(x) < ry(α+1)(x),

i.e. the elements y(α) and y(α+ 1) were originally in the wrong order in y.

But, since we start the partition process with y1
1 such that ry11(1)(x) ≥ · · · ≥ ry11(k)(x),

i.e with all elements in the correct order, it is straightforward to check that at any
time m, there cannot exist a permutation of the form (α α+ 1) ◦ ymj that also belongs
to Ymj such that

rymj (α)(x) < rymj (α+1)(x) :

if that were the case, then there would exist l ≤ j such that ymj (α) and ymj (α + 1)

were the elements exchanged at time l when creating the partition {Y l+1
i }

l+1
i=1. In turn,

since ymj ∈ Ymj , this would guarantee that

Ymj ⊂ {y ∈ Y | y−1(ymj (α)) < y−1(ymj (α+ 1))},

and thus that (α α + 1) ◦ ymj /∈ Ymj . This guarantees that any configuration (α α +
1) ◦ ymj ∈ Ymj satisfies

s(x, (α α+ 1) ◦ ymj ) ≥ s(x, ymj ),

and thus that either Ymj = {ymj }, or

s(x, ymj,2) ≥ s(x, yj),

which concludes the proof.

Appendix C. Further experiments

C.1 Structured prediction example (Perfect matching scores and weak
supervision)

A matching task consists of trying to optimally pair elements of a bipartite graph given
a feature vector x ∈ X (for example, one may wish to identify paired amino acids in
protein folding Taskar et al. (2003)). We assume there exists a bipartite graph G with
disjoint sets U and V of K ≥ 1 nodes; each label Y is then a perfect matching between
U and V , i.e., a bijection Y ∈ Y = S(U, V ). General supervised approaches for perfect
matching problems, such as structured Support Vector Machines Tsochantaridis et al. (2004)
or Adversarial Bipartite Matching Fathony et al. (2018), generally learn pairwise score
functions ϕu,v : X → R for all (u, v) ∈ U × V , which measure the cost of adding the edge
e := (u, v) for a feature vector x ∈ X , and then output a prediction

y?(x) :=

 argmin
y∈S(U,V )

∑
u∈U

ϕu,y(u)(x) =
∑

u∈U,v∈V
1{v = y(u)}ϕu,v(x)

 ,
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Figure 6. Results for the video tracking matching dataset MOT2015 Leal-Taixé et al.
(2015), over Ntrials = 20 trials. We use one video sequence for training (ETH-B, ETH-P or
ETH-S) and the two others for calibration and testing. A: Strong (1) and weak (3) coverage.
B: Average confidence set size for fully supervised (FSC) and weakly supervised conformal
(WSC) methods.

an instance of minimum cost perfect matching solvable in time O(K3) with the Hungarian
algorithm. To efficiently adapt this approach in the context of Alg. 1, we assume we have
trained a set of pairwise score functions {ϕu,v | (u, v) ∈ U × V }, (e.g. using supervised
training data) and wish to conformalize with partially supervised data, using the following
score function

sMatching(x, y) :=
∑

u∈U,v∈V
1{v = y(u)}ϕu,v(x, y). (24)

In a matching problem, weak supervision can arise under the form of a partial matching
between subsets Ui ⊂ U and Vi ⊂ V of the nodes, which we write Y weak

i ∈ S(Ui, Vi): each
u ∈ Ui has a matching element Y weak

i (u) = Yi(u) ∈ Vi. Computing the minimum partial
scores (5) in Alg. 1 is then computationally efficient, as it reduces to yet another minimum
cost perfect matching problem:

Si :=
∑
u∈Ui

ϕu,Y weak
i (u)(x) + min

ỹ∈S(U\Ui,V \Vi)

{ ∑
u∈U\Ui
v∈V \Vi

1{v = ỹ(u)}ϕu,v(x)

}
.

In the matching case, Alg. 3 is equivalent to finding the M -best minimal weight perfect
matching in a bipartite graph, which Chegireddy and Hamacher (1987) efficiently solve. In
the context of Alg. 3, their approach iteratively chooses an edge em ∈ ymind(m)\y

m
ind(m),2, then

partitions the set of matchings M ∈ Ymind(m) depending on whether em ∈ M or not. The
computation of each second-best configuration then amounts to solving at most K different
perfect matching problems, resulting in an overall O(MK4) cost of the procedure.

C.2 Pedestrian tracking with partial matching information

We now apply our weakly supervised conformal methods to a bipartite matching problem.
A common objective in computer vision, relevant for instance for self-driving cars, is to
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track people’s trajectory throughout different time frames. Since we can leverage powerful
algorithms Redmon et al. (2016) to individually detect objects in every single frame, the
problem that we study here is actually a matching task where the goal is to match two
sets of people appearing in two separate frames: this is an instance of a maximal matching
problem.

Weak supervision with partial matchings In this context, we expect partial super-
vision to come under the form of a partial matching: some people, e.g. people that are
easier to track between two consecutive frames because they are in the foreground, already
have their match in the second frame, when others, perhaps more difficult to track, are
still waiting for a potential match. Given these partially labeled instances, the goal then
becomes to return confidence sets of matchings that guarantee 1 − α coverage: to provide
valid weak coverage (3), we wish to include a configuration that contains at least all the
partial matches.

Predicting trajectories in the MOT2D15 data set Leal-Taixé et al. (2015) We
experiment using the MOT2D15 pedestrian video tracking dataset Leal-Taixé et al. (2015).
It is a public benchmark data set that contains short street videos with pedestrians, and for
which the goal is to track each of them while they appear in the frame. Specifically, each
frame already has a set of bounding boxes corresponding to each individual present in that
frame, and we aim at matching boxes representing the same person between two consecutive
frames. Since an individual can enter or exit the frame between two consecutive images,
we need to account for potentially unmatched boxes, which we do by including “virtual”
nodes in the bipartite graph, similarly to previous approaches Kim et al. (2013); Fathony
et al. (2018).

We use the same feature representation of Kim et al. (2013) and Fathony et al. (2018):
given a pair x := (x1, x2) of two consecutive images, and two bounding boxes u ⊂ x1,
v ⊂ x2, we compute a d = 46 dimensional vector φ(x1, x2, u, v) that summarizes key features
(e.g. position of the bounding box, color distribution) allowing to determine whether u
and v represent the same person. We then train our model using a structured S-SVM
approach Tsochantaridis et al. (2004), following the approach of Kim et al. (2013). Such
model outputs a pairwise score function sPW : (x, u, v) 7→ θTφ(x1, x2, u, v) for some vector
θ ∈ Rd where the feature vector x = (x1, x2) ∈ X consists of two consecutive frames, and
(u, v) are two potential bounding boxes (one in each image).

Experimental set-up and partial labels We use the data set MOT2D15 as follows.
For each of the ETH-Bahnhof, ETH-Pedcross2 and ETH-Sunnyday video sequences, which
contain respectively 1000, 837, and 354 consecutive images, we select one of them for train-
ing, one of them for calibration and one of them for actual testing, using α = 0.02 for
conformalization purposes. We further introduce weak supervision by assuming that for
each pair of images, we observe a partial matching, precisely that among the Ki paired

individuals, a user provided us feedback on Kpartial
i

iid∼ 1 + Poi(0.5) matches.

For both our FSC and WSC methods, we use a translated version of the score sMatching (24)
with pairwise functions {su,v : x 7→ sPW(x, u, v)}u,v: for each instance (x, y) ∈ X × Y, we
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use the score

s̃Matching(x, y) := sMatching(x, y)−min
ỹ∈Y

sMatching(x, ỹ)

This operation simply ensures that miny∈Y s̃
Matching(x, y) = 0 for every x ∈ X and thus

does not change the ordering of configurations, nor the score difference between two con-
figurations. We simply use it to make sure to place all the instances Xi on the same
scale when applying Algorithm 1 in the sense that they all have the same best achievable
score. In particular, in the noiseless case where the true label Yi is always the minimizer of
y 7→ sMatching(Xi, y), it guarantees that Ĉ(X) eventually contains a single configuration (as
we should, since the score function in this case outputs perfect predictions).

Experimental results This specific problem is actually low-noise, as it is possible to
achieve a very high accuracy with the S-SVM approach, which is not so surprising as we
assume perfect detection of every person thanks the bounding boxes. As a result, we
can expect the FSC and WSC methods to output very similar confidence sets, as the
configuration minimizing the score is often the true label itself. This is precisely what we
observe in Figure 6, where both methods are actually indistinguishable and where, even with
a very high confidence 1 − α. = 0.98, both the FSC and WSC methods are able to return
confidence sets with a single configuration in average. We only notice a slight difference
between both methods when training on the ETH-Sunnyday sequence, which contains fewer
images, and hence produces slightly worse score functions.

C.3 Prediction intervals for weakly supervised regression

As we mentioned earlier, much of our development thus far goes beyond (finite) spaces
with combinatorial structure, as we saw in the last few examples. Therefore, we finish
with a regression problem. We consider predicting the fraction of votes in each United
States county for the Democratic Party candidate in the 2016 United States presidential
election, using demographic (census) data as covariates and the results of past elections.
It is common during elections for forecasters to build predictive models from both census
and historical election data, as well as current polling data. We view the historical data
as strong supervision (it tells us exactly how many people voted for each candidate), and
the polling data as weak supervision (as polls always come with a margin of error). Our
goal here is to fit a regression model to the strongly supervised past election data, and then
form prediction intervals for the fraction of people in each county who voted Democrat by
leveraging the weakly supervised polling data. We hope by combining both we obtain valid
intervals narrower than the polling margins of error.

Our data comes from the 2013–2017 American Community Survey 5-Year Estimates,
which is a longitudinal survey that records demographic information about each of the 3220
United States counties. We use 34 of the available demographic features. The response
is simply the fraction of people in each county who voted Democratic (and is publicly
available). Thus our sample size is 3220, and the number of dimensions is d = 34.

We construct a stylized version of the above situation in the following way. First, we split
the data set into thirds: 33% of the counties (and their associated fractions of Democratic
voters) go into the training set, 33% go into the calibration set, and the rest go into the test
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set; as our splits are random, they are exchangeable. Then, we fit a Beta regression model
to the strongly supervised training data. To simulate the availability of weakly supervised
polling data, we replace each calibration set response Yi ∈ [0, 1] with a weak response
Wi ⊂ [0, 1], i = 1, . . . , n, by forming

Wi = [Yi − Zi, Yi + Zi], Zi ∼ N(µ, 0.0001), i = 1, . . . , n, (25)

for various values of µ ∈ {.01, .05, .1, .15, .2}, so that Wi captures fluctuations around Yi
that are roughly ±µ. We conformalize by running Alg. 1 with the absolute error scoring
function,

s(x, y) = |ŷ(x)− y|,

where ŷ(x) ∈ [0, 1] denotes the Beta regression model’s prediction for the point x ∈ Rd.
Here, conformalization boils down to solving a simple linear program, i.e.,

s(Xi, Yi) = min
γ∈R

{|ŷ(Xi)− γ| | Yi − Zi ≤ γ, γ ≤ Yi + Zi} , i = 1, . . . , n.

Finally, we evaluate both strong (1) and weak (3) coverage on the test set (we apply the
same transformation as in (25) to generate the weak labels for the test set). We compute
the two types of coverage, as well as the lengths of the prediction intervals, by repeating
this process 20 times. We set the miscoverage level α = .05.

Similar to our other experiments, we find that Alg. 1 achieves weak coverage at the
nominal level .95, for all values of µ (governing the amount of weak supervision), shown
in the middle panel of Figure 7. On the other hand, we expect the strong coverage to be
much lower. The left panel of Figure 7 shows the strong coverage for Alg. 1 in teal and
standard conformal inference in pink, and we can see that this is indeed the case. However,
in return, we expect the prediction intervals that Alg. 1 generates to be smaller than those
coming from standard conformal inference. The right panel of Figure 7 shows that this is
also the case: in particular, when µ ≥ .1, the average length of Alg. 1’s intervals is at least
three times smaller than standard conformal’s, and half the length of the average weakly
supervised interval Wi from (25) (≈ .2). We can also see from these figures, as in our other
experiments, that Alg. 1’s strong coverage degrades as µ grows, whereas its weak coverage
improves and the length of its prediction intervals shrinks.

We view these results from a slightly different perspective in Figures 8 and 9. In Figure 8,
we show the true fraction of people in each county from the test set that voted Democratic.
In Figure 9, we show the lower and upper endpoints of Alg. 1’s prediction intervals, for a
randomly chosen repetition with µ = .05. In these two figures, we color the counties with
strong (predicted) Democratic majorities blue, and those with strong (predicted) Republi-
can majorities red. By comparing the colors, we can see that the prediction intervals only
sometimes contain the true response, which is expected. Finally, we note that the colors of
the lower and upper endpoints in Figure 9 are similar, because the length of the prediction
intervals is usually small.
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Figure 7. Results for the regression problem with the election data, over 20 trials. The
left panel shows the strong coverage (1), and the middle panel shows the weak coverage (3).
The dashed red line indicates the nominal coverage level, 1−α = .95. The right panel shows
the prediction interval lengths. In these plots, we show Alg. 1, denoted “WSC”, in teal. We
show standard conformal inference, denoted “FSC”, in pink.
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Figure 8. Map of United States counties. We color each county according to the actual
fraction votes for the Democratic candidate in the 2016 United States presidential election.
We color counties with strong Democratic majorities blue, and those with strong Republican
majorities red. We color the counties from the training and calibration sets gray.
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Figure 9. Map of United States counties. We color each county according to the value of
the upper (top panel) and lower (bottom panel) endpoints of the confidence interval that
Alg. 1 returns, when µ = .05. We color counties with values close to 1 blue, and those with
values close to 0 red. We color the counties from the training and calibration sets gray.
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