
Journal of Machine Learning Research 25 (2024) 1-7 Submitted 5/23; Revised 12/23; Published 1/24

Pygmtools: A Python Graph Matching Toolkit

Runzhong Wang runzhong.wang@sjtu.edu.cn

Ziao Guo ziao.guo@sjtu.edu.cn

Wenzheng Pan pwz1121@sjtu.edu.cn

Jiale Ma heatingma@sjtu.edu.cn

Yikai Zhang 1065543666@sjtu.edu.cn

Nan Yang advancing-sheep@sjtu.edu.cn

Qi Liu purewhite@sjtu.edu.cn

Longxuan Wei weilongxuan189034@sjtu.edu.cn

Hanxue Zhang zhx jiaxue@sjtu.edu.cn

Chang Liu only-changer@sjtu.edu.cn

Zetian Jiang maple jzt@sjtu.edu.cn

Xiaokang Yang xkyang@sjtu.edu.cn

Junchi Yan∗ yanjunchi@sjtu.edu.cn

CSE Department and MoE Key Lab of AI, Shanghai Jiao Tong University, Shanghai, 200240, China

Editor: Alexandre Gramfort

Abstract

Graph matching aims to find node-to-node matching among multiple graphs, which is a
fundamental yet challenging problem. To facilitate graph matching in scientific research
and industrial applications, pygmtools is released, which is a Python graph matching
toolkit that implements a comprehensive collection of two-graph matching and multi-graph
matching solvers, covering both learning-free solvers as well as learning-based neural graph
matching solvers. Our implementation supports numerical backends including Numpy,
PyTorch, Jittor, Paddle, runs on Windows, MacOS and Linux, and is friendly to install
and configure. Comprehensive documentations covering beginner’s guide, API reference
and examples are available online. pygmtools is open-sourced under Mulan PSL v2 license.

Keywords: graph matching, combinatorial optimization, graph learning, python toolkit

1. Introduction and motivations

Graph matching (GM) is the NP-hard combinatorial optimization problem of finding the
node-to-node matching between two graphs or more. GM is recognized for its history over
fifty years (Emmert-Streib et al., 2016), and has attracted attention again in the deep
learning era, e.g., Zanfir and Sminchisescu (2018) received best paper honorable mention
in CVPR. Since graphs are ubiquitous, the application of GM have been vastly explored:
in machine learning, Liu et al. (2022) aligns neural networks via GM to improve federated
learning; in computer vision, He et al. (2021) improves multi-object trackers by viewing
adjacent frames as graphs, Sarlin et al. (2020) tackles general image matching by exploiting
the underlying graph structures, Fu et al. (2021); Ling and Qin (2022) align point clouds

∗. Correspondence author.

c©2024 Runzhong Wang, Ziao Guo, Wenzheng Pan, Jiale Ma, Yikai Zhang, Nan Yang, Qi Liu, Longxuan Wei,
Hanxue Zhang, Chang Liu, Zetian Jiang, Xiaokang Yang and Junchi Yan.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0572.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0572.html

Wang, Guo, Pan, Ma, Zhang, Yang, Liu, Wei, Zhang, Liu, Jiang, Yang and Yan

Figure 1: Showcasing pygmtools in two-graph matching, multi-graph matching, and deep
learning tasks, with the support of switching among multiple numerical backends.

by deep GM; in computer graphics, Dym et al. (2017) adopt GM for shape registration.
However, GM is also found to be useful for data retrieval (Blumenthal et al., 2020), and
malware detection (Li et al., 2019). In science domains, Guo et al. (2022) apply GM to
understand the shape of brain arterial network, Luo et al. (2021) integrate GM in the
deep learning pipeline of drug discovery. There are two reasons for the success of GM. On
the one hand, GM explicitly integrates both node and edge features under a well-defined
math formulation (Lawler, 1963), while other popular matching methods (e.g. Kuhn (1955);
Fischler and Bolles (1981)) only consider the node features. On the other hand, the recent
achievements in neural graph matching (Wang et al., 2020; Qin et al., 2022; Wang et al.,
2022, 2023c) show the feasibility of integrating GM into deep learning pipelines.

Despite the merits, implementing GM algorithms can be challenging, particularly when
striving for high efficiency and the off-the-shelf incorporation with deep learning. With a
growing interest of GM from the research community, we are aware of the necessity of an
easily-accessible high-quality GM toolkit covering the most popular GM solvers. Python is
supported because it is the de facto language for deep learning and widely used in scientific
computing, with a well-developed ecosystem, e.g., Paszke et al. (2017); Hu et al. (2020).

As shown in Figure 1, we integrate state-of-the-art GM methods in our toolkit for a range
of scenarios: from matching two graphs and multiple graphs to neural GM that seamlessly
complement other neural networks. It is worth mentioning that multi-graph matching is a
more challenging task than two-graph matching and it involves a different set of solvers. Our
implementation is compatible with various deep learning and scientific computing backends,
including Numpy, PyTorch, Jittor, Paddle, TensorFlow, and MindSpore. A consistent API
is maintained across different GM methods and diverse backends. Under the Mulan PSL v2
license, our toolkit relies solely on open-source libraries. A beginner’s guide to GM is offered
with numerous examples, encompassing general graph matching, subgraph discovery, image
matching, and neural network fusion, among others.

2. Existing graph matching toolkits

Table 1 compares the key features of existing GM toolkits, where most of them are open-
source code delivered with technical papers. ZAC GM is the official implementation of a classic

2

Pygmtools: A Python Graph Matching Toolkit

tool name pygmtools ThinkMatch LPMP ZAC GM multiway

reference (ours) (Wang et al., 2021) (Roĺınek et al., 2020) (Wang et al., 2020) (Wang et al., 2018)

#linear solvers 2 2 1 2 1
#classic solvers 4 1 9 1

#multi-graph solvers 3 1 4
#neural solvers 5 7 1
relative runtime 1× - - 11.9× 4.1×

deep learning support X X X
GPU support X X (X)

online doc X X X
pip install X (X)

switch backends X
programming language Python Python C++/Python Matlab Matlab

Table 1: Comparison among different GM toolkits (code links available in reference).

GM solver (Wang et al., 2020), and multiway is the official code of a multi-graph solver
(Wang et al., 2018). These two packages also include a collection of Matlab code from related
previous methods. As a common limitation, they pay less attention to the accessibility of
users (especially those who are new to GM) and are not actively maintained.

LPMP and ThinkMatch are the most relevant packages. LPMP implements several GM
solvers by the same authors, covering various topics in GM (Swoboda et al., 2017, 2019;
Roĺınek et al., 2020). However, LPMP has imperfections in GPU support and accessibility.
For example, the GPU implementation is limited for CNNs, and the solver modules are
CPU-only. While it supports pip install, the requirement of configuring a local compiler
often causes problems for users. ThinkMatch is an alternative to LPMP, offering more compre-
hensive neural GM solvers and better GPU support. Our design philosophy for pygmtools
sets it apart from the two mentioned earlier. The goal is to offer a Python GM package that
is user-friendly for both GM experts and beginners. Installing pygmtools is straightforward
with a simple pip command, relieving users from the burden of environment configurations.
Additionally, we support switching between different deep learning backends.

Table 1 also provides insights into the relative running times of pygmtools (PyTorch
backend) compared to ZAC GM (Matlab), using RRWM on graphs containing 50 nodes.
Additionally, it is compared to multiway (Matlab) with GAMGM on 10 graphs comprising
250 nodes. It’s important to mention that Table 1 only includes a high-level comparison,
and the performance may vary among different solvers and different backends. For more
comprehensive information, readers can refer to the detailed online benchmark.1

3. Toolkit usage and design details

Essentially, pygmtools is designed as a user-friendly Python library for general audience of
practitioners that are interested in applying graph matching in their downstream applica-
tions. GM can be divided into two steps: build the math form of GM and mathematically
solving the GM problem. In the following example, denote A1, A2 as two adjacency ma-
trices, vf1, vf2 as the node features, n1, n2 are their numbers of nodes, GM can be
performed with the following lines of code.

1 import numpy as np; from functools import partial

2 import pygmtools as pygm

1. https://pygmtools.readthedocs.io/en/latest/guide/benchmark.html#running-time-evaluation

3

https://github.com/Thinklab-SJTU/pygmtools
https://github.com/Thinklab-SJTU/ThinkMatch
https://github.com/LPMP/LPMP
https://github.com/wangfudong/ZAC_GM
https://github.com/zju-3dv/multiway
https://pygmtools.readthedocs.io/en/latest/guide/benchmark.html#running-time-evaluation

Wang, Guo, Pan, Ma, Zhang, Yang, Liu, Wei, Zhang, Liu, Jiang, Yang and Yan

3 con1 , ef1 = pygm.utils.dense_to_sparse(A1) # A1, vf1 , n1 are graph 1 inputs

4 con2 , ef2 = pygm.utils.dense_to_sparse(A2) # A2, vf2 , n2 are graph 2 inputs

5 f = partial(pygm.utils.gaussian_aff_fn , sigma =1.) # affinity function

6 K = pygm.utils.build_aff_mat(vf1 , ef1 , con1 , vf2 , ef2 , con2 , edge_aff_fn=f)

build the math form of GM

7 S = pygm.rrwm(K, n1 , n2) # solve the GM problem

8 X = pygm.hungarian(S) # to discrete solution

When building the math form of GM, we transform node and edge features into the affinity
matrix K ∈ Rn1n2×n1n2 , where its diagonal elements are node-to-node affinities, off-diagonal
elements are edge-to-edge affinities. The function pygm.utils.build aff mat builds the
math form of GM, known as Quadratic Assignment Problem (QAP) (Lawler, 1963)

max
X

vec(X)>Kvec(X), s.t. X ∈ {0, 1}n1×n2 ,X1n2 = 1n1 ,X
>1n1 ≤ 1n2 , (1)

with vec(·) we denote column-wise vectorization, 1n is an n-length column vector with all 1s,
and it is assumed that n1 ≤ n2. This example shows a recommended practice of GM, where
the GM problem is solved by the Reweighted Random Walk Matching (RRWM) solver (Cho
et al., 2010), followed by a discretization step where the Hungarian algorithm (Kuhn, 1955)
projects RRWM’s output (in the continuous domain) to a discrete matching solution.

Multi-backend support. In pygmtools, a user can select various numerical backends.
It allows flexibility as the preferred backend can vary depending on different situations, con-
sidering computer compatibility, existing toolchains, and conventions. By default, Numpy
serves as the backend, but users can configure other backends with a better support of GPU
and deep learning. In our code design, we maintain a consistent front-end API, and the
backend library is imported only when needed.

1 pygm.set_backend(’pytorch ’) # set default backend globally

2 S = pygm.rrwm(pygm.utils.from_numpy(K), n1 , n2) # S is a PyTorch Tensor

3 X = pygm.hungarian(S.numpy(), backend=’numpy’) # X is a Numpy array

Examples. Several examples and notebooks are offered with pygmtools to presents
typical applications of GM. GM solvers are illustrated on matching synthetic graphs, and
representative real-world applications such as matching images (Zanfir and Sminchisescu,
2018; Wang et al., 2023a,b) and fusing deep neural networks (Liu et al., 2022).

4. Conclusions and outlook

In summary, we present pygmtools, a Python toolkit for graph matching. It’s accessible
under the Mulan PSL v2 license, accompanied by extensive documentation and easy in-
stallation, making it suitable for a wide audience, especially for researchers and developers
integrating graph matching into their projects. Our toolkit features a range of matching
solvers, including linear, classic two-graph, multi-graph, and state-of-the-art deep learning
solvers. These solvers are compatible with a wide range of numerical backends like Numpy,
PyTorch, Jittor, Paddle, TensorFlow and MindSpore, enabling versatile applications in sci-
entific research, education, and industry. The detailed guidance and practical examples can
be found in our comprehensive online documentation. Moreover, pygmtools is a dynamic
project, continually evolving and actively maintained. We eagerly encourage contributions
and suggestions from the open-source community to enhance its capabilities further.

4

Pygmtools: A Python Graph Matching Toolkit

Acknowledgments

This work was partially supported by National Key Research and Development Program
of China (2020AAA0107600), National Natural Science Foundation of China (62222607)
and Shanghai Committee Science and Technology Project (22511105100). The authors
Runzhong Wang, Zetian Jing, Chang Liu were also in part sponsored by Wen-Tsun Wu
Honorary Doctoral Scholarship, AI Institute, Shanghai Jiao Tong University. We thank all
community members, as well as all students attending the course AI3607 (in 2022&2023) at
Shanghai Jiao Tong University for their valuable feedback and bug reports on this toolkit.

References

David B. Blumenthal, Nicolas Boria, Johann Gamper, Sébastien Bougleux, and Luc Brun.
Comparing heuristics for graph edit distance computation. Int. J. Very Large Data Bases,
29(1):419–458, 2020.

Minsu Cho, Jungmin Lee, and Kyoung Mu Lee. Reweighted random walks for graph match-
ing. In Eur. Conf. Comput. Vis., pages 492–505. Springer, 2010.

Nadav Dym, Haggai Maron, and Yaron Lipman. DS++: A flexible, scalable and provably
tight relaxation for matching problems. ACM Trans. Graph., 36(6):1–14, November 2017.

Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. Fifty years of graph matching,
network alignment and network comparison. Info. Sci., 346:180–197, 2016.

Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Comm. of the
ACM, 24(6):381–395, 1981.

Kexue Fu, Shaolei Liu, Xiaoyuan Luo, and Manning Wang. Robust point cloud registration
framework based on deep graph matching. In Comput. Vis. Pattern Recog., pages 8893–
8902, 2021.

Xiaoyang Guo, Aditi Basu Bal, Tom Needham, and Anuj Srivastava. Statistical shape
analysis of brain arterial networks (BAN). The Annals of Applied Statistics, 16(2):1130–
1150, 2022.

Jiawei He, Zehao Huang, Naiyan Wang, and Zhaoxiang Zhang. Learnable graph matching:
Incorporating graph partitioning with deep feature learning for multiple object tracking.
In Comput. Vis. Pattern Recog., pages 5299–5309, 2021.

Shi-Min Hu, Dun Liang, Guo-Ye Yang, Guo-Wei Yang, and Wen-Yang Zhou. Jittor: a novel
deep learning framework with meta-operators and unified graph execution. Sci. China
Info. Sci., 63(222103):1–21, 2020.

Harold W Kuhn. The hungarian method for the assignment problem. Naval Res. Logistics
Quart., 2(1-2):83–97, 1955.

E. L. Lawler. The quadratic assignment problem. Management Sci., 9(4):586–599, 1963.

5

Wang, Guo, Pan, Ma, Zhang, Yang, Liu, Wei, Zhang, Liu, Jiang, Yang and Yan

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching
networks for learning the similarity of graph structured objects. In Int. Conf. Mach.
Learn., pages 3835–3845. PMLR, 2019.

Xiao Ling and Rongjun Qin. A graph-matching approach for cross-view registration of
over-view and street-view based point clouds. J. of Photogram. and Remote Sens., 185:
2–15, 2022.

Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan.
Deep neural network fusion via graph matching with applications to model ensemble and
federated learning. In Int. Conf. Mach. Learn., pages 13857–13869. PMLR, 2022.

Shitong Luo, Chence Shi, Minkai Xu, and Jian Tang. Predicting molecular conformation
via dynamic graph score matching. Neural Info. Process. Systems, 34:19784–19795, 2021.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in pytorch. 2017.

Tianxiang Qin, Shikui Tu, and Lei Xu. IA-NGM: A bidirectional learning method for neural
graph matching with feature fusion. Mach. Learn., pages 1–27, 2022.

Michal Roĺınek, Paul Swoboda, Dominik Zietlow, Anselm Paulus, Vı́t Musil, and Georg
Martius. Deep graph matching via blackbox differentiation of combinatorial solvers. code
https://github.com/LPMP/LPMP. In Eur. Conf. Comput. Vis., pages 407–424. Springer,
2020.

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Super-
glue: Learning feature matching with graph neural networks. In Comput. Vis. Pattern
Recog., pages 4938–4947, 2020.

P. Swoboda, C. Rother, H.A. Alhaija, D. Kainmuller, and B. Savchynskyy. A study of
lagrangean decompositions and dual ascent solvers for graph matching. In Comput. Vis.
Pattern Recog., pages 1607–1616, 2017.

Paul Swoboda, Ashkan Mokarian, Christian Theobalt, Florian Bernard, et al. A convex
relaxation for multi-graph matching. In Comput. Vis. Pattern Recog., pages 11156–11165,
2019.

Fudong Wang, Nan Xue, Jin-Gang Yu, and Gui-Song Xia. Zero-assignment constraint
for graph matching with outliers. code https://github.com/wangfudong/ZAC_GM. In
Comput. Vis. Pattern Recog., pages 3033–3042, June 2020.

Qianqian Wang, Xiaowei Zhou, and Kostas Daniilidis. Multi-image semantic matching by
mining consistent features. code https://github.com/zju-3dv/multiway. In Comput.
Vis. Pattern Recog., pages 685–694, 2018.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Combinatorial learning of robust deep
graph matching: an embedding based approach. Trans. Pattern Anal. Mach. Intell.,
pages 6984–7000, 2020.

6

https://github.com/LPMP/LPMP
https://github.com/wangfudong/ZAC_GM
https://github.com/zju-3dv/multiway

Pygmtools: A Python Graph Matching Toolkit

Runzhong Wang, Ziao Guo, and Junchi Yan. ThinkMatch, 2021. URL https://github.

com/Thinklab-SJTU/ThinkMatch.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learn-
ing lawler’s quadratic assignment problem with extension to hypergraph and multiple-
graph matching. Trans. Pattern Anal. Mach. Intell., pages 5261–5279, 2022.

Runzhong Wang, Ziao Guo, Shaofei Jiang, Xiaokang Yang, and Junchi Yan. Deep learning
of partial graph matching via differentiable top-k. In Comput. Vis. Pattern Recog., pages
6272–6281, 2023a.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Unsupervised learning of graph matching
with mixture of modes via discrepancy minimization. Trans. Pattern Anal. Mach. Intell.,
pages 10500–10518, 2023b.

Runzhong Wang, Yunhao Zhang, Ziao Guo, Tianyi Chen, Xiaokang Yang, and Junchi Yan.
Linsatnet: The positive linear satisfiability neural networks. In Int. Conf. Mach. Learn.,
2023c.

A. Zanfir and C. Sminchisescu. Deep learning of graph matching. In Comput. Vis. Pattern
Recog., pages 2684–2693, 2018.

7

https://github.com/Thinklab-SJTU/ThinkMatch
https://github.com/Thinklab-SJTU/ThinkMatch

	Introduction and motivations
	Existing graph matching toolkits
	Toolkit usage and design details
	Conclusions and outlook

