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Abstract

Federated learning is an important framework in modern machine learning that seeks to integrate
the training of learning models from multiple users, each user having their own local data set, in a
way that is sensitive to data privacy and to communication loss constraints. In clustered federated
learning, one assumes an additional unknown group structure among users, and the goal is to train
models that are useful for each group, rather than simply training a single global model for all
users. In this paper, we propose a novel solution to the problem of clustered federated learning
that is inspired by ideas in consensus-based optimization (CBO). Our new CBO-type method is
based on a system of interacting particles that is oblivious to group memberships. Our model is
motivated by rigorous mathematical reasoning, which includes a mean-field analysis describing the
large number of particles limit of our particle system, as well as convergence guarantees for the
simultaneous global optimization of general non-convex objective functions (corresponding to the
loss functions of each cluster of users) in the mean-field regime. Experimental results demonstrate
the efficacy of our FedCBO algorithm compared to other state-of-the-art methods and help validate
our methodological and theoretical work.

Keywords: consensus-based optimization, clustered federated learning, interacting particle sys-
tem, mean-field limit, asymptotic convergence analysis.

1. Introduction

The wide use of internet of things (IoT) devices in various applications such as home automation,
personal health monitoring, and vehicle-to-vehicle communications has led to the generation of vast
amounts of data across a collective of users. However, concerns around data privacy and security,
as well as limitations on communication costs and bandwidth, have made it challenging for an
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individual user to take advantage of this large amount of stored information. This has motivated
the design and development of federated learning (FL) strategies, which aim at pooling information
from learning models trained on local devices to build models without relying on the collection of
local data (McMahan et al., 2017; Kairouz et al., 2021).

Standard FL approaches aim to learn one global model for all local clients/users (McMahan
et al., 2017; Li et al., 2020; Mohri et al., 2019; Karimireddy et al., 2020). However, data hetero-
geneity, also known as non-i.i.d. data setting, naturally arises in FL applications since data are
usually generated from users’ personal devices. Thus, it is expected that no single global model
can perform well across all clients (Sattler et al., 2020). On the other hand, it is reasonable to
expect that users with similar backgrounds are likely to make similar decisions and thus generate
data following similar distributions. This paper studies one formulation of federated learning with
non-i.i.d. data, namely Clustered Federated Learning (CFL) (Sattler et al., 2020; Ghosh et al.,
2020; Ruan and Joe-Wong, 2022; Long et al., 2023; Ma et al., 2022). In CFL, users are partitioned
into different clusters, and the objective is to train a distinct model for each cluster of users.
These clusters may represent, for example, groups of users with preferences in different categories
of movies and TV series. Our focus in this work is on the mathematical modeling and analysis
of CFL methods and on exploring CFL’s effectiveness in improving the performance of FL when
dealing with non-i.i.d. data. Specifically, we investigate how CFL can create personalized models
for clusters of users with similar preferences. Our research is motivated by previous studies of CFL
that have shown promising results in enhancing the performance of FL in the non-i.i.d. data setting
(Sattler et al., 2020; Ghosh et al., 2020; Ruan and Joe-Wong, 2022).

To start making our set-up more precise, let us consider the clustered federated learning setting
with one global server and N different agents. We assume that each agent belongs to one of K
non-overlapping groups denoted by S∗1 , . . . , S

∗
K . We further assume that each agent belonging to

group S∗k owns data points generated from distribution Dk, and the agent may use these points to
train their own learning model. In an ideal scenario, an agent would further seek to communicate
with other agents in their group to accelerate the training process of their own model. However,
to satisfy data privacy constraints, the underlying partition S∗1 , . . . , S

∗
K is never revealed to the

learning algorithm, and in particular a single agent will not know the other agents belonging to
their group. In other words, no agent shares their local data with a global server or with other
agents (see the discussion on privacy in Remark 7). Let l(·; z) : Θ→ R be a loss function associated
with a data point z, where Θ ⊂ Rd is the parameter space for the learning models. Our goal is to
minimize the population loss function

Lk(θ) := Ez∼Dk [l(θ; z)] (1)

for all k ∈ [K] simultaneously. In other words, the goal is to find minimizers θ∗k for all loss functions

θ∗k ∈ arg min
θ∈Θ

Lk(θ), k ∈ [K]. (2)

A toy example illustrating the clustered federated learning framework is shown in Fig. 1.

As suggested by the discussion above, the main difficulty in CFL comes from the fact that
cluster identities of users are unknown. A CFL algorithm must then be able to induce clustering
among users and simultaneously train models in a distributed setting without relying on local data
collection. In order to propose an algorithm that accomplishes this, in this paper we abstract the
CFL problem and formulate it mathematically borrowing ideas from consensus-based optimization
(CBO) (Pinnau et al., 2017; Carrillo et al., 2021; Totzeck, 2021)). CBO is a family of global
optimization methodologies based on systems of interacting particles that seek consensus around
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Figure 1: Toy example of a clustered federated learning problem. Each mobile phone user has an
underlying cluster identity, here represented by the colors orange and blue. We aim to
identify the group memberships of users while simultaneously training models for every
cluster by communicating model parameters with the cloud global server.

global minimizers of target objectives. Precisely, consider

min
θ∈Rd

L(θ),

where the target function L, which may be non-convex, is a continuous function with a unique
global minimizer θ∗. In what follows we give a brief introduction to the standard CBO framework.

Standard CBO: For each i ∈ [N ], let θi ∈ Rd represent the position of particle i and consider
the following system of equations

dθit = −λ
(
θit −mt

)
dt+ σ

∣∣θit −mt

∣∣ dBi
t, for i = 1, 2, . . . , N, (3)

where the {Bi}i are independent Brownian motions and mt is a weighted average defined by

mt :=

∑N
i=1 θ

i
t exp

(
− αL(θit)

)∑N
i=1 exp

(
− αL(θit)

) .

One can alternatively consider other types of noise for (3) (see (Carrillo et al., 2021, 2022)). For
instance, one may substitute the diffusion term in (3) with a geometric component-wise Brownian
motion as in (Carrillo et al., 2021). This noise model improves the performance of the CBO
algorithm in that its convergence rate toward the global optimizer of the loss function L in the
mean-field limit becomes independent of the dimension d (Fornasier et al., 2022). Due to this, this
noise model is suitable for machine learning applications in high dimensions. One can also modify
the dynamics and introduce an anisotropic noise term by using a covariance matrix defined similarly
to mt as in (Carrillo et al., 2022) to give rise to a method called Consensus Based Sampling (CBS)
in optimization mode. Here we will stick to the basic CBO method for simplicity and refer the
interested reader to (Carrillo et al., 2021, 2022) for more details on other existing variants of CBO.

We notice that the term exp(−αL(θ)) in the formula for mt is the Gibbs distribution corre-
sponding to the objective function L(θ) and temperature 1

α . The motivation for assigning weights
in this way comes from the Laplace principle (Miller, 2006; Dembo, 2009), which states that for
any probability measure ρ ∈ P(Rd) compactly supported with θ∗ ∈ supp(ρ) we have

lim
α→+∞

(
− 1

α
log

(∫
Rd

exp
(
− αL(θ)

)
dρ(θ)

))
= L(θ∗).
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Hence, if θ∗ is the unique minimizer of L, then the measure exp(−αL(θ))ρ(θ), normalized by a con-
stant factor, will assign most of its mass to a small neighborhood of θ∗, and if α is large enough, this
measure will approximate the Dirac delta distribution at θ∗. Consequently, the weighted-average
mt, which is the empirical first moment of a normalized version of the measure exp(−αL(θ))ρ(θ),
is a reasonable target for particles to follow, as induced by equation (3).

Although CBO can be easily adapted to the distributed setting when cluster identities are
known (as one could simply run CBO on each cluster), this approach is not directly applicable to
CFL if the goal is to propose dynamics that are oblivious to agents’ identities. Our problem is also
different from standard multi-objective optimization, for which CBO has already been adapted;
see (Borghi et al., 2023a, 2022). Indeed, in standard multi-objective optimization the goal is to
find a point that is Pareto optimal for K different target functions, whereas our goal is to find,
simultaneously, K global minimizers for K different objective functions. On the other hand, the
CBO approach is inherently gradient-free, so it is particularly suitable when the objective function
is not smooth enough or its derivative is expensive to evaluate. However, if communication costs are
expensive as in real FL applications, one may consider introducing additional local gradient terms
in the dynamics of each user so that training may continue even when there is no communication
among users.

1.1 Contributions and Related Works

1.1.1 Contributions

Motivated by the discussion above, we propose a new CBO-inspired interacting particle system
(see (4) below and the discussion right after) that is suited for the clustered federated learning
setting. In our system, the evolution of each individual particle is completely determined by its
own loss function, its own identity, and the locations of the other particles but no knowledge of
their identities. More precisely, our main contributions can be summarized as follows:

(1) We introduce a novel CBO-type framework that enables the minimization of K objective
functions in a CFL setting without knowing the cluster identity of any of the particles. This is
achieved by introducing a mechanism that secretly forces consensus among particles belonging to
the same cluster. Moreover, we incorporate a local gradient term for each agent in the particle
dynamics, which dramatically reduces the number of communication rounds required for the CBO
algorithm to achieve good performance.

(2) We provide rigorous theoretical justification for the proposed framework. In particular,
we first prove the well-posedness of the proposed finite particle system and of its corresponding
mean-field limit system. Secondly, we study the consensus formation in the mean-field dynamics
and explore the dynamics’ ability to concentrate around global minimizers of each of the underlying
loss functions. Thirdly, we study the approximation of the finite particle system to the mean-field
system, and further establish a non-asymptotic concentration bound of the finite particle system
around global minimizers.

(3) We discretize our continuous dynamics in a reasonable way and fit it into the conventional
federated training protocol to obtain a new federated learning algorithm that we call FedCBO. We
conduct extensive numerical experiments to verify the effectiveness and efficacy of our algorithm
and demonstrate that it outperforms other state-of-the-art methods in the non-i.i.d. data setting.

1.1.2 Related work in clustered federated learning

In the setting of CFL, it is assumed that there is an underlying cluster structure among users, and
the goal is to identify the clusters’ identities and federate among each group. Both IFCA (Ghosh
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et al., 2020) and HypCluster (Mansour et al., 2020) alternate between identifying cluster identities
of users and updating models for the user clusters via local gradient descent. These methods
identify cluster identities by finding the model with the lowest loss on each local dataset. FedSEM
(Long et al., 2023) groups the users at each federated step by measuring the distance between users
using model parameters and accuracy and then running a simple K-means algorithm. All these
methods require prior knowledge or estimation of the number of underlying clusters, which may be
difficult to have/do in practice. In contrast, as we discuss below, our method does not require any
prior knowledge of the clustering structure, and consensus among clients in the same cluster will
be automatically induced by our particle dynamics.

In (Sattler et al., 2020), clusters are found in a hierarchical way. In particular, clients are
recursively divided into two sets based on the cosine similarity of the clients’ model gradients or
weight-updates. WeCFL (Ma et al., 2022) formalizes clustered federated learning problems into a
unified bi-level optimization framework. Unlike the two framework mentioned above (Sattler et al.,
2020; Ma et al., 2022), which conduct the convergence analysis under convexity assumptions, our
paper considers target functions that are non-convex and provide an asymptotic convergence result
in the mean-field regime.

1.1.3 Related work in consensus-based optimization

The idea of using interacting particle dynamics with consensus-inducing terms to solve global
optimization problems was first introduced in (Pinnau et al., 2017). Since then, this approach has
gained a lot of interest from both theoretical and applied perspectives.

On the theoretical side, (Carrillo et al., 2018) provided the first local convergence analysis of a
mean-field CBO equation under relatively stringent assumptions on the initialization of the system.
This is achieved by first proving consensus formation at the mean-field level in the infinite time
horizon and then tuning the consensus point using the Laplace principle. Later, (Fornasier et al.,
2024a) relaxed some of these stringent assumptions and proved that mean-field dynamics can reach
an arbitrary level of concentration around a global minimizer within a finite time interval; however,
this time horizon may be difficult to estimate a priori. By showing that the finite particle CBO
system converges to the mean-field limit, (Huang and Qiu, 2022; Fornasier et al., 2024a) furthers
the theoretical underpinnings of the CBO framework. In our paper, we use similar strategies as
in (Fornasier et al., 2024a; Riedl, 2023) to study the behavior of our mean-field system (Section
4) and prove that our proposed finite particle dynamics form consensus around global minimizers
of each underlying loss functions (Section 5). In our setting, we need to face new challenges due
to the fact that particles may have different dynamics that depend on the loss functions that they
try to optimize. For instance, we need to estimate the time horizon needed to achieve a given
accuracy at the mean-field level differently from (Fornasier et al., 2024a; Riedl, 2023). Likewise,
our convergence of the finite particle system toward a suitable mean-field limit involves additional
technical difficulties arising from the fact that in our setting there are multiple types of particles
interacting with each other. More recently, (Riedl et al., 2023) establishes the connection between
consensus-based optimization (derivative-free method) and gradient-based method, and interprets
CBO as a stochastic relaxation of gradient descent. In (Fornasier et al., 2024b), the authors
incorporate truncated noise in the original CBO system, which enhances a better theoretical well-
behavedness of the law of the dynamics.

On the algorithmic side, with motivations from a variety of applications, researchers have ex-
tended and adapted the original CBO model to include new settings such as global optimization
on compact manifolds like the sphere (Fornasier et al., 2021), general constraints (Bae et al., 2022;
Carrillo et al., 2023; Borghi et al., 2023b), high-dimensional machine learning problems (Carrillo
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et al., 2021), global optimization of objective functions with multiple minimizers (Bungert et al.,
2024; Fornasier and Sun, 2024), sampling from distributions (Carrillo et al., 2022; Bungert et al.,
2024), saddle point optimization problems (Huang et al., 2024), and non-convex multi-player games
(Chenchene et al., 2023). In (Riedl, 2023), the author introduces a gradient term in the CBO sys-
tem which is shown to be beneficial numerically when applied the compressed sensing problems.
In our paper, we also incorporate gradient information in our particle dynamics, but our motiva-
tion, different from the one in (Riedl, 2023), is to reduce communication costs among users, one of
the important practical constraints in federated learning. For a more comprehensive review of the
development of CBO-type methods we refer the interested reader to the recent survey (Totzeck,
2021).

1.2 Notation

We use |·| to denote the absolute value or `2-norm of vectors in Euclidean space and denote by Br(θ)
the open ball of radius r centered at θ ∈ Rd. We use k ∈ [K] as a short notation for k = 1, 2, . . . ,K.
We denote by C(X,Y ) the space of continuous functions f : X → Y between X ⊂ Rn and a
given topological space Y . The space C(X,Y ) is endowed with the sup-norm as is standard. When
Y = R, we simply use the notation C(X). We also use Ckc (X) and Ckb (X) to denote, respectively, the
space of real-valued functions that are k-times continuously differentiable with compact support
and the space of bounded functions that are k-times continuously differentiable. Let P(Rd) be the
space of all Borel probability measures over Rd equipped with the Levy-Prokhorov metric, which
metrizes the topology of weak convergence. For a given p ≥ 1, we let Pp(Rd) ⊆ P(Rd) be the
collection of probability measures ρ ∈ P(Rd) with finite p-th moments, i.e.,

∫
Rd |θ|

pdρ(θ) <∞. The
space Pp(Rd) is endowed with the p-Wasserstein distance Wp (1 ≤ p <∞) defined according to

Wp(ρ, ρ̂) :=

(
inf

π∈Γ(ρ,ρ̂)

∫
Rd×Rd

∣∣∣θ − θ̂∣∣∣p π(dθ, dθ̂)

)1/p

, ρ, ρ̂ ∈ Pp(Rd),

where Γ(ρ, ρ̂) denotes the set of all joint probability measures over Rd × Rd with first and second
marginals ρ and ρ̂, respectively.

For ρ ∈ C([0, T ],P(Rd)), we denote the law at time t as ρt ∈ P(Rd). Given a continuous function
f ∈ C(Rd) and a fixed probability measure ρ ∈ P(Rd), we denote by ‖f‖L1(ρ) :=

∫
Rd |f(θ)|dρ(θ) the

L1-norm of f with respect to the measure ρ.

1.3 Organization of the Paper

The rest of the paper is organized as follows. In Section 2.1, we introduce the interacting particle
system motivating our FedCBO algorithm. In Section 2.2, we state our main theoretical results,
which include the well-posedness of both our proposed interacting particle dynamics and its as-
sociated mean-field limit system (Theorems 1 and 2), the behavior of the mean-field limit system
in time and its ability to concentrate around global optimizers for each of the objective functions
(Theorem 3), and finally, large time convergence property of proposed finite particle system (The-
orem 4). Motivated by our particle system, in Section 2.3 we introduce our FedCBO algorithm. In
Section 2.4, we present a series of numerical experiments to validate our proposed algorithm. Sec-
tion 3 is devoted to the proof of Theorem 2, Section 4 to the proof of Theorem 3, and Section 5 to
the proof of Theorem 4. We wrap up the paper in Section 6, where we summarize our contributions
and discuss future research directions.
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2. CBO for Clustered Federated Learning

2.1 Model Formulation

Finite particle system: In the rest of the paper we assume, without the loss of generality, that
there are only two clusters in the CFL problem (2), i.e., K = 2. Indeed, it will become clear from
our discussion below that extending the proposed model and its corresponding theoretical analysis
to the case K > 2 is completely straightforward. We also assume that all agents in class 1 use a
single loss function L1 and all agents in class 2 use a single loss function L2 (see the discussion
on this assumption in Remark 5).1 In order to optimize L1 and L2 simultaneously, we consider
a collection of N = N1 + N2 ∈ N interacting particles with positions {θ1,i1

t }
N1
i1=1 ∈ Rd (class 1

particles) and {θ2,i2
t }

N2
i2=1 ∈ Rd (class 2 particles) described by the system of stochastic differential

equations:

dθ1,i1
t = −λ1

(
θ1,i1
t −m1

t

)
dt−λ2∇L1(θ1,i1

t )dt+σ1

∣∣∣θ1,i1
t −m1

t

∣∣∣ dB1,i1
t +σ2

∣∣∣∇L1(θ1,i1
t )

∣∣∣ dB̃1,i1
t , (4a)

dθ2,i2
t = −λ1

(
θ2,i2
t −m2

t

)
dt−λ2∇L2(θ2,i2

t )dt+σ1

∣∣∣θ2,i2
t −m2

t

∣∣∣ dB2,i2
t +σ2

∣∣∣∇L2(θ2,i2
t )

∣∣∣ dB̃2,i2
t , (4b)

m1
t :=

∑
k=1,2

∑Nk
ik=1 θ

k,ik
t wαL1

(θk,ikt )∑
k=1,2

∑Nk
ik=1w

α
L1

(θk,ikt )
, m2

t :=

∑
k=1,2

∑Nk
ik=1 θ

k,ik
t wαL2

(θk,ikt )∑
k=1,2

∑Nk
ik=1w

α
L2

(θk,ikt )
, (4c)

with λ1, λ2, σ1, σ2 > 0, wαLk(θ) := exp(−αLk(θ)) for k = 1, 2, and α > 0. In the sequel, we may use
the terms particle and user interchangeably to refer to an agent.

Let us discuss the above system term by term. Equation (4a) describes the time evolution of
the model parameters of agent i1 in class 1, while equation (4b) does the same for agent i2 in class
2. The term m1

t defined in (4c) is a weighted average of all particle positions {θ1,i1
t }

N1
i1=1, {θ

2,i2
t }

N2
i2=1

with respect to the loss function L1. In particular, note that an agent in class 1 can compute
m1
t without knowing the class identities of any of the other agents, an essential feature for our

purposes. If we imagine for a moment that class 1 particles concentrate around regions where L1 is
small, one should expect that {θ1,i1

t }
N1
i1=1 have smaller L1-loss than the class 2 particles {θ2,i2

t }
N2
i2=1,

which presumably should concentrate around regions where the loss function L2 is small. Then,
intuitively, in the expression for m1

t class 1 particles {θ1,i1
t }

N1
i1=1 will receive higher weights than class

2 particles and hence m1
t should be close to the weighted average of the particles {θ1,i1

t }
N1
i1=1 only.

Thus, m1
t can be thought of as an evolving consensus point that corresponds to class 1 particles only.

A similar intuition holds for m2
t , which is an evolving consensus point for class 2 particles only. The

first part of the drift terms in both (4a) and (4b) can then be thought of as a consensus-inducing
term for each of the classes. The second part of the drift terms in (4a) and (4b), on the other hand,
introduces local gradient information, which can be interpreted as a local model update through
gradient descent. In federated learning, using local gradient information ensures that all models
continue to update even when there is no communication between them; as discussed in (McMahan
et al., 2017), communication in federated settings is in general costly. Finally, the diffusion terms
in the dynamics guarantee that each particle continues to explore the optimization landscape of
its loss function until it reaches a critical point and aligns with its class consensus point. The

1. In practice, each agent only has access to finite data samples and thus their empirical loss function may actually
differ from that of other agents in the same cluster. We leave the modelling and study of this more realistic and
more difficult setting to future work.
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d-dimensional Brownian motions {Bk,ik}k,ik , {B̃k,ik}k,ik for k = 1, 2 are assumed to be independent
of each other.

Let us denote by θ1,N
t := {θ1,(i1,N)

t }N1
i1=1, θ2,N

t := {θ2,(i2,N)
t }N2

i2=1
2 with N = N1 + N2 ∈ N the

solution of the particle system (4). Consider the empirical measures

ρ1,N
t :=

1

N1

N1∑
i1=1

δ
θ
1,(i1,N)
t

, ρ2,N
t :=

1

N2

N2∑
i2=1

δ
θ
2,(i2,N)
t

, ρNt :=
N1

N
ρ1,N
t +

N2

N
ρ2,N
t , (5)

where we use δθ to represent a Dirac delta measure at θ ∈ Rd. Observe that m1
t ,m

2
t can be rewritten

in terms of ρNt as follows:

m1
t =

1

‖wαL1
‖L1(ρNt )

∫
θwαL1

dρNt := mα
L1

[ρNt ], m2
t =

1

‖wαL2
‖L1(ρNt )

∫
θwαL2

dρNt := mα
L2

[ρNt ].

In turn, system (4) can be rewritten as

dθ1,i1
t = −λ1(θ1,i1

t −mα
L1

[ρNt ])dt− λ2∇L1(θ1,i1
t )dt+ σ1|θ1,i1

t −mα
L1

[ρNt ]|dB1,i1
t + σ2|∇L1(θ1,i1

t )|dB̃1,i1
t ,

dθ2,i2
t = −λ1(θ2,i2

t −mα
L2

[ρNt ])dt− λ2∇L2(θ2,i2
t )dt+ σ1|θ2,i2

t −mα
L2

[ρNt ]|dB2,i2
t + σ2|∇L2(θ2,i2

t )|dB̃2,i2
t .

Mean-field system: Based on the above rewriting of the finite particle system in terms of empirical
measures, we can formally postulate a mean-field SDE system characterizing the time evolution of
“typical” particles as N1, N2 →∞. Precisely, we consider the system of two SDEs:

dθ
1
t = −λ1

(
θ

1
t −mα

L1
[ρt]
)
dt− λ2∇L1(θ

1
t )dt+ σ1

∣∣∣θ1
t −mα

L1
[ρt]
∣∣∣ dB1

t + σ2

∣∣∣∇L1(θ
1
t )
∣∣∣ dB̃1

t , (7a)

dθ
2
t = −λ1

(
θ

2
t −mα

L2
[ρt]
)
dt− λ2∇L2(θ

2
t )dt+ σ1

∣∣∣θ2
t −mα

L2
[ρt]
∣∣∣ dB2

t + σ2

∣∣∣∇L2(θ
2
t )
∣∣∣ dB̃2

t , (7b)

where for k = 1, 2,

mα
Lk

[ρt] =

∫
θdηαk,t, ηαk,t = wαLkρt/‖w

α
Lk
‖L1(ρt), ρkt = Law(θ

k
t ), ρt = w1ρ

1
t + w2ρ

2
t ,

subject to the independent initial conditions θ
1
0 ∼ ρ1

0 and θ
2
0 ∼ ρ2

0; in the above, B1, B̃1, B2, B̃2 are
independent d-dimensional Brownian motions. Equations (7a) and (7b) describe, respectively, the
effective time evolutions of individual particles of class 1 and 2 in the regime of a large number of
particles. The weight wk represents the asymptotic proportion of particles of type k in the system.
Finally, ρ1

t and ρ2
t represent, respectively, the distributions of particles of class 1 and 2 at time

t. Notice that the system (7) is coupled through the distribution ρt of agents of both types. In
Section 5, we discuss in precise mathematical terms the relationship between the finite system of
interacting particles (4) and the mean-field limit system described in (7).

The system of Fokker-Planck equations corresponding to (7) reads:

∂tρ
1
t := ∆(κ1

tρ
1
t ) +∇ · (µ1

tρ
1
t ), lim

t→0
ρ1
t = ρ1

0 (8a)

∂tρ
2
t := ∆(κ2

tρ
2
t ) +∇ · (µ2

tρ
2
t ), lim

t→0
ρ2
t = ρ2

0, (8b)

2. Here {θ1,(i1,N)
t }N1

i1=1 and {θ2,(i2,N)
t }N2

i2=1 are defined exactly as {θ1,i1t }N1
i1=1 and {θ2,i2}N2

i2=1 in (4). The super-index

N in θ
1,(i1,N)
t , θ

2,(i2,N)
t emphasizes that this is the system of interacting particles with N total particles. We will

omit this super-index when the context is clear.

8
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where

µkt := λ1

(
θ −mα

Lk
[ρt]
)

+ λ2∇Lk(θ), κkt :=
σ2

1

2

∣∣θ −mα
Lk

[ρt]
∣∣2 +

σ2
2

2
|∇Lk(θ)|2 , for k = 1, 2.

This is a non-linear system of equations that describes the time evolution of the distributions of
agents of each class in the mean-field limit.

In the sequel, we interpret the Fokker-Planck system (8) in the weak sense.

Definition 1 For k = 1, 2, let ρk0 ∈ P(Rd). Let T > 0 be a given time horizon. We say that
ρ1, ρ2 ∈ C([0, T ],P(Rd)) satisfy, in the weak sense, the Fokker-Planck equation (8) for the time
interval [0, T ] and with initial conditions (ρ1

0, ρ
2
0) if ∀φ ∈ C∞c (Rd), ∀t ∈ (0, T ), and k = 1, 2, we

have

d

dt

∫
φ(θ)dρkt (θ) =

∫ (
−λ1(θ −mα

Lk
[ρt])− λ2∇Lk(θ)

)
· ∇φ(θ)dρkt (θ)

+

∫ (
σ2

1

2

∣∣θ −mα
Lk

[ρt]
∣∣2 +

σ2
2

2
|∇Lk(θ)|2

)
∆φ(θ)dρkt (θ),

(9)

and in addition limt→0 ρ
k
t = ρk0 (in the sense of weak convergence of probability measures).

Our main theoretical results, presented in the next section, are split into four key theorems.
First, we discuss the well-posedness of the proposed finite particle system (4) and of its correspond-
ing mean-field SDE system (7) in Theorem 1 and Theorem 2, respectively. Second, we discuss in
Theorem 3 the long-time behavior properties of the mean-field PDEs (8) and show that, under some
mild assumptions on initialization and the correct tuning of parameters, each of the distributions
ρ1
t and ρ2

t concentrates around the global minimizers of L1 and L2, respectively, within a certain
time interval. Finally, we prove that by running the finite particle system (4) for long enough, the
particles in each cluster will reach consensus around the global minimizer of their objective function.
This result is presented in Theorem 4 and is established by combining the quantitative mean-field
approximation result proved in Proposition 1 and the long-time behavior of the mean-field system
discussed in Theorem 3. The practical implication of the combination of these theoretical results
is the following: by considering the system (4) with sufficiently large N1 and N2, and assuming
appropriate initialization, particles of class 1 will concentrate around the global minimizer of the
loss function L1, while particles of class 2 will do the same around the global minimizer of L2. In
Section 2.3, we use our mathematical model to motivate a new algorithm for clustered federated
learning. In Section 2.4, we show through numerical experimentation that the proposed algorithm
can indeed produce highly-performing learning models for groups of users with similar data sets.

2.2 Main Theoretical Results

In all our theoretical analysis, we make the following assumptions on the loss functions L1, L2.

Assumption 1 For k = 1, 2, the loss function Lk : Rd → R is assumed to be bounded from below
and we denote Lk := inf Lk the largest lower bound. Moreover, we assume there exist constants

MLk , CLk ,M∇Lk , C∇Lk ,M, cqk > 0

9
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such that for all θ, θ̂ ∈ Rd,

Lk(θ)− Lk ≤ CLk
(
1 + |θ|2

)
(10a)∣∣∣∇Lk(θ)−∇Lk(θ̂)∣∣∣ ≤M∇Lk ∣∣∣θ − θ̂∣∣∣ (10b)

|∇Lk(θ)| ≤ C∇Lk (10c)

Lk(θ) ≤ Lk := supLk or Lk(θ)− Lk ≥ cqk |θ|
2 for all |θ| ≥M . (10d)

In simple words, in (10a) we assume the loss functions Lk are bounded above by quadratic functions.
We also assume the gradients of Lk to be Lipschitz and bounded in (10b) and (10c). In (10d), we
consider loss functions Lk that either are (1) bounded from above, in particular, Lk has the upper
bound Lk := supLk; or (2) quadratic growth at infinity, i.e., there exist constants M > 0 and
cqk > 0 such that Lk(θ)− Lk ≥ cqk |θ|2 for all |θ| ≥M .

On our first main result, we study the existence of a unique process {θNt | t ≥ 0} with

θN :=
(
θ1,(1,N), · · · θ1,(N1,N), θ2,(1,N), · · · , θ2,(N2,N)

)T
∈ RNd,

following the interacting particle system (4). In particular, by invoking standard existence results
of strong solutions for systems of SDEs from (Durrett, 2018), we have the following theorem.

Theorem 1 (Well Posedness of the Microscopic Model) For fixed N ∈ N, the stochastic
differential equation system (4) has a unique strong solution {θNt | t ≥ 0} for any initial condi-
tion θN0 satisfying E|θN0 |2 <∞.

The above theorem for fixed number of particles N doesn’t directly generalize to the mean-field
limit N → ∞ (see Remark 10). In our second main result, we establish the well-posedness of the
mean-field system of equations.

Theorem 2 (Well Posedness of mean-field equations) Let L1, L2 satisfy Assumption 1 and
be either bounded or have quadratic growth at infinity, and let ρ1

0, ρ
2
0 ∈ P4(Rd). Then there exist

unique nonlinear processes θ
1
, θ

2 ∈ C([0, T ],Rd), T > 0, satisfying

dθ
1
t = −λ1

(
θ

1
t −mα

L1
[ρt]
)
dt− λ2∇L1(θ

1
t )dt+ σ1

∣∣∣θ1
t −mα

L1
[ρt]
∣∣∣ dB1

t + σ2

∣∣∣∇L1(θ
1
t )
∣∣∣ dB̃1

t ,

dθ
2
t = −λ1

(
θ

2
t −mα

L2
[ρt]
)
dt− λ2∇L2(θ

2
t )dt+ σ1

∣∣∣θ2
t −mα

L2
[ρt]
∣∣∣ dB2

t + σ2

∣∣∣∇L2(θ
2
t )
∣∣∣ dB̃2

t ,

ρt = w1ρ
1
t + w2ρ

2
t , w1 + w2 = 1

in the strong sense, with ρ1
t = Law(θ

1
t ), ρ

2
t = Law(θ

2
t ), ρt ∈ C([0, T ],P4(Rd)) satisfying the corre-

sponding Fokker-Planck equations (8a) and (8b) in the weak sense, with limt→0 ρ
k
t = ρk0 ∈ P4(Rd)

for k = 1, 2.

Remark 1 As illustrated in (Fornasier et al., 2024a, Theorem 8), the additional regularity of
ρ1, ρ2 ∈ C

(
[0, T ],P4(Rd)

)
stated in Theorem 2 is a consequence of the regularity of the initial

conditions ρ1
0, ρ

2
0 ∈ P4(Rd). Namely, if ρ1, ρ2 ∈ C

(
[0, T ],P4(Rd)

)
solves (8a) and (8b) in the weak

sense, identity (9) holds for all φ ∈ C2
∗(Rd), where for some constant C > 0 we define the test

function space

C2
∗(Rd) :=

{
φ ∈ C2(Rd) : ‖∇φ(v)‖2 ≤ C(1 + ‖v‖2) and sup

v∈Rd
|∆φ(v)| <∞

}
.

10
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Knowing that both the mean-field SDE system (7) and its corresponding Fokker-Planck system
are well-posed, we can now state precisely the global convergence property of the mean-field system.
For our next result, we impose additional assumptions on the loss functions L1, L2.

Assumption 2 For k = 1, 2, we assume that the function Lk ∈ C(Rd) satisfies

(I) There exists θ∗k ∈ Rd such that Lk(θ
∗
k) = infθ∈Rd Lk(θ) := Lk.

(II) There exist Lk∞, R
k
0 , ηk > 0, and νk ∈ (0, 1

2 ] such that

|θ − θ∗k| ≤
1

ηk

(
Lk(θ)− Lk

)νk for all θ ∈ BRk0 (θ∗k), (12)

Lk∞ < Lk(θ)− Lk for all θ ∈
(
BRk0

(θ∗k)
)c
. (13)

Assumption 2 is similar to assumptions used in (Fornasier et al., 2024a). Assumption (I) states
that the minimum value Lk of the objective function is reached at some point θ∗k. Assumption
(II) specifies certain required properties of the objective functions’ landscapes for our theory to
hold. Specifically, the first part, inequality (12), imposes lower bounds on the local growth of Lk
around the global minimizer θ∗k. This condition is also known as the inverse continuity condition as
discussed in (Fornasier et al., 2021), and it has been observed to hold globally for objectives useful
in machine learning problems as in (Xu et al., 2017; Fornasier et al., 2021). The second part of (II),
condition (13), rules out the possibility that Lk(θ) ≈ Lk for some θ outside a neighborhood of θ∗k.

Theorem 3 (Concentration of mean-field around global minimizers) For k = 1, 2, sup-
pose Lk ∈ C(Rd) satisfy Assumptions 1 and 2. Moreover, let ρk0 ∈ P4(Rd) be such that ρk0(Br(θ

∗
k)) >

0 for all r > 0. Define V(ρkt ) := 1
2

∫
|θ − θ∗k|2dρkt (θ). For any ε ∈ (0,V(ρ1

0) + V(ρ2
0)), ϑ ∈ (0, 1), pa-

rameters λ1, λ2, σ1, σ2 > 0 satisfying 2λ1 > 2λ2M+dσ2
1 +dσ2

2M
2, where M := max{M∇L1 ,M∇L2},

and the time horizon

T ∗ :=
1

(1− ϑ)(2λ1 − 2λ2M − dσ2
1 − dσ2

2M
2)

log

(
V(ρ1

0) + V(ρ2
0)

ε

)
, (14)

there exists α0 > 0, which depends among other problem dependent quantities, on ε, ϑ and the
distance between the global minimizers θ∗1 and θ∗2 (see (48) for a precise definition), such that
for all α > α0, if ρ1, ρ2 ∈ C([0, T ],P4(Rd)) are the weak solutions to the Fokker-Planck equa-
tions (8a) and (8b), respectively, on the time interval [0, T ∗] with initial conditions ρ1

0, ρ
2
0, we have

mint∈[0,T ∗]

(
V(ρ1

t )+V(ρ2
t )
)
≤ ε. Furthermore, up until V(ρ1

t )+V(ρ2
t ) reaches the prescribed accuracy

ε for the first time, we have the exponential decay

V(ρ1
t ) + V(ρ2

t ) ≤
(
V(ρ1

0) + V(ρ2
0)
)

exp
(
− (1− ϑ)(2λ1 − 2λ2M − dσ2

1 − dσ2
2M

2)t
)
. (15)

Remark 2 The parameter λ1 in (4) determines the strength of the force driving particles toward
their respective consensus points. Similarly, λ2 and σ1, σ2 characterize the strength of the gradient
and noise terms, respectively. In Theorem 3, we require the parameters λ1, λ2, σ1, σ2 > 0 to satisfy
2λ1 > 2λ2M+dσ2

1 +dσ2
2M

2. This requirement ensures that the consensus inducing terms dominate
the other terms in the dynamics, a crucial feature for the system to reach consensus around the global
minimizers of the loss functions. This, however, is an assumption that we impose for theoretical
purposes, as in fact a stronger drift toward consensus translates to more communication rounds
between agents. Nevertheless, as we will see in our numerical experiments in section 2.4, our
proposed FedCBO algorithm, introduced in the next section, continues to induce consensus among
cluster members even when reasonable communication constraints are imposed.
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Based on Theorem 3, we also establish a convergence result for the finite particle system (4a)
and (4b) toward the global minimizers θ∗1 and θ∗2, respectively, by following the proof techniques
developed in (Fornasier et al., 2021, 2022). By excluding a bad set with small probability we can
further establish a polynomial sample complexity for the approximation, provided that particles
are initialized by sampling distributions satisfying the assumptions in Theorem 3.

Theorem 4 (Finite particle system converges in probability) Let εtotal > 0 and ξ ∈ (0, 1
2)

be fixed. Under the same assumptions as in Theorem 3, let {θ1,i1}N1
i1=1, {θ2,i2}N2

i2=1 be generated by
running the finite particle system (4) up to time T ∗ (defined in (14)) initialized by sampling the
measures ρ1

0 and ρ2
0, respectively. Then there is T ≤ T ∗ such that∣∣∣∣∣ 1

N1

N1∑
i1=1

θ1,i1
T − θ∗1

∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N2

N2∑
i2=1

θ2,i2
T − θ∗2

∣∣∣∣∣
2

≤ εtotal (16)

with probability greater than 1 −
(
ξ + ε−1

total(2CMFA(N−1
1 +N−1

2 ) + 4ε)
)
. Here, ε is the error from

Theorem 3. CMFA > 0 depends on the particle system parameters α, λ1, λ2, σ1 and σ2, on the time
horizon T ∗, and on ξ−1.

Remark 3 Notice that the probability of the event where (16) holds can be made to be larger than
1 − δ by choosing ε to be small enough so that 4ε

εtotal
≤ δ/3, then taking ξ smaller than δ/3, and,

finally, N1 and N2 large enough so that 2CMFA
εtotal

(N−1
1 +N−1

2 ) is less than δ/3.

Remark 4 The error analysis of the numerical scheme (20) approximating the continuous dy-
namics (4) is out of scope for this paper. Therefore, in Theorem 4 the error analysis is for the
continuous time scheme only and we leave the analysis of the error introduced by time discretization
for future work.

2.3 The FedCBO Algorithm

To make the system (4) into a practical algorithm for federated learning, we need to make a
series of adjustments. Firstly, we discretize the proposed continuous-time system, which can be
done using a standard Euler-Maruyama discretization of (4). Secondly, the resulting discretized
scheme must be adapted to fit the conventional federated training protocol where the number of
communication rounds among users is restricted. The resulting algorithm, which we name FedCBO,
is the combination of these adjustments. We provide more details next.

Let {θ1,i1
0 }N1

i1=1, {θ
2,i2
0 }N2

i2=1 be sampled from fixed distributions ρ1
0, ρ

2
0 ∈ P(Rd), respectively.

Since class memberships are not given, it is reasonable to assume that ρ1
0 and ρ2

0 are the same, but
this assumption is not required. Consider the iterates

θ1,i1
n+1 ← θ1,i1

n − λ1γ
(
θ1,i1
n −m1

n

)
− λ2γ∇L1(θ1,i1

n ) + σ1
√
γ
∣∣θ1,i1
n −m1

n

∣∣ z1,i1
n + σ2

√
γ
∣∣∇L1(θ1,i1

n )
∣∣ z̃1,i1
n ,

(17a)

θ2,i2
n+1 ← θ2,i2

n − λ1γ
(
θ2,i2
n −m2

n

)
− λ2γ∇L2(θ2,i2

n ) + σ1
√
γ
∣∣θ2,i2
n −m2

n

∣∣ z2,i2
n + σ2

√
γ
∣∣∇L2(θ2,i2

n )
∣∣ z̃2,i2
n ,

(17b)

for n = 0, 1, 2, . . . . Here, γ is the discretization step size; zk,ikn , z̃k,ikn for k = 1, 2 are independent
normal random vectors N(0, Id×d); m

k
n, k = 1, 2 are the weighted averages of {θ1,i1

n }N1
i1=1, {θ

2,i2
n }N2

i2=1

12
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defined by

m1
n

[
{θ1,i1
n }, {θ2,i2

n }
]

=

∑
k=1,2

∑Nk
ik=1 θ

k,ik
n wαL1

(θk,ikn )∑
k=1,2

∑Nk
ik=1w

α
L1

(θk,ikn )
, (18a)

m2
n

[
{θ1,i1
n }, {θ2,i2

n }
]

=

∑
k=1,2

∑Nk
ik=1 θ

k,ik
n wαL2

(θk,ikn )∑
k=1,2

∑Nk
ik=1w

α
L2

(θk,ikn )
, , (18b)

where wαLk(θ) = exp(−αLk(θ)) for k = 1, 2. Given a fixed integer τ > 0, by summing over (17a)
and (17b) τ times, we can rewrite (17a) and (17b) (omitting noise terms for simplicity. See the
discussion in Appendix E) as

θ1,i1
(n+1)τ ← θ1,i1

nτ − λ1γ
τ−1∑
q=0

(
θ1,i1
nτ+q −m1

nτ+q

)
− λ2γ

τ−1∑
q=0

∇L1(θ1,i1
nτ+q), (19a)

θ2,i2
(n+1)τ ← θ2,i2

nτ − λ1γ
τ−1∑
q=0

(
θ2,i2
nτ+q −m2

nτ+q

)
− λ2γ

τ−1∑
q=0

∇L2(θ2,i2
nτ+q), (19b)

However, the above update rule would require the computation of the consensus points m1
nτ+q

and m2
nτ+q at each iterate. This would result in an excessive amount of communication among

users and server, a situation that must be avoided in practical settings. Indeed, note that an
agent would need to download the parameters of all other users participating in the training to
compute its corresponding mk

nτ+q. If this communication is done too often, it could quickly become
prohibitively expensive. To accommodate our algorithm to this practical constraint, we consider a
splitting scheme that approximates the update formula (19a) and (19b) in the following way: for
n = 0, 1, 2, · · · ,

θ̂1,i1
nτ ← θ1,i1

nτ , θ̂2,i2
nτ ← θ2,i2

nτ , (20a)

θ̂1,i1
nτ+q+1 ← θ̂1,i1

nτ+q − λ2γ∇L1(θ̂1,i1
nτ+q), θ̂2,i2

nτ+q+1 ← θ̂2,i2
nτ+q − λ2γ∇L2(θ̂2,i2

nτ+q) for q = 0, . . . , τ − 1,

(20b)

θ1,i1
(n+1)τ ← θ̂1,i1

(n+1)τ − λ1γ
(
θ̂1,i1

(n+1)τ −m
1
(n+1)τ

)
, θ2,i2

(n+1)τ ← θ̂2,i2
(n+1)τ − λ1γ

(
θ̂2,i2

(n+1)τ −m
2
(n+1)τ

)
,

(20c)

where the consensus points mk
(n+1)τ := mk

(n+1)τ

[
{θ̂1,i1

(n+1)τ}, {θ̂
2,i2
(n+1)τ}

]
for k = 1, 2 are the weighted

average of {θ̂1,i1
(n+1)τ}

N1
i1=1, {θ̂

2,i2
(n+1)τ}

N2
i2=1 defined as in (18a) and (18b). In simple terms, at each

communication round we first update models through gradient descent τ times (20b) and then
compute the consensus points once (20c). For the above scheme to resemble (19a) as much as
possible, we set a larger value for λ1 than for λ2. In the standard terminology in federated training,
(20b) can be interpreted as a local update of each user’s model parameters through τ epochs of
local gradient descent, while (20c) can be viewed as the aggregation step. One interesting feature of
our update rules is that the model aggregation does not occur at the global server. Instead, agents
may download other users’ models and aggregate them through (20c) locally. Thus, the server can
be assumed to be completely oblivious to not only class memberships but also to the actual values
of all user parameters. This feature makes our FedCBO approach a rather decentralized approach
to federated learning.

We are ready to present the FedCBO algorithm (Algorithm 1) in precise terms. At the n-
th iteration of FedCBO, the central server selects a subset of participating agents Gn ⊆ [N ]; in
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Algorithm 1 FedCBO

Input: Initialized model θj0 ∈ Rd, j ∈ [N ]; Number of iterations T ; Number of local gradient steps

τ ; Number of models downloaded M ; CBO system hyperparameters λ1, λ2, α; Discretization

step size γ; Initialized sampling likelihood P0 ∈ RN×(N−1);

1: for n = 0, · · · , T − 1 do

2: Gn ← random subset of agents (participating devices);

3: LocalUpdate(θjn, τ, λ2, γ) for j ∈ Gn;

4: LocalAggregation(agent j) for j ∈ Gn;

5: end for

Output: θjT for j ∈ [N ].

LocalUpdate(θ̂0, τ, λ2, γ) at j-th agent

6: for q = 0, · · · , τ − 1 do

7: (stochastic) gradient descent θ̂q+1 ← θ̂q − λ2γ∇L̃j(θ̂q);
8: end for

9: return θ̂τ ;

practice, the server can select this group among the agents that are currently online and available.
Each selected agent j ∈ Gn performs local SGD updates on its model θjn using its personal data set
(denoted the loss function as L̃j). After the local update, each participating agent j ∈ Gn begins
local aggregation (Algorithm 2). In particular, agent j first selects a subset of agents An ⊆ Gn
using, for example, a ε-greedy sampling strategy (Zhang et al., 2021) (see Remark 6 for details)
and then downloads their models (see Remark 7 for a discussion on data privacy vulnerabilities
of this and other federated learning schemes). Agent j then evaluates all downloaded models
θij , i ∈ An, on its local dataset and obtains their corresponding losses L̃ij . Using the losses L̃ij ,

agent j calculates the consensus point mj following (21) and updates its own model θjn following

equation (22). Finally, agent j updates its sampling likelihood vector P jn according to (23) for
future communication rounds. As had already been suggested above, the model aggregation step in
FedCBO is different from the one in most conventional federated learning algorithms. In FedCBO,
models are aggregated locally on each device, whereas conventional federated learning algorithms
average models at the global server.

Remark 5 In practice, each agent only has access to finite data samples and thus their empirical
loss functions may actually differ from those of the other agents in the same cluster. This is a
different setting from our theoretical assumption that agents in the same cluster have the same
objective function. On the experimental side, our numerical results show that when agents in the
same cluster have similar but still different objective functions, our FedCBO algorithm still works
well. On the theoretical side, to generalize our theoretical results to more practical settings we
would need to study the case where agents in the same cluster have different objective functions that
are nonetheless slight perturbations of a common underlying “true” loss function. This is closely
related to analyzing the sensitivity of our proposed interacting particle system to perturbations of
the objective functions. We leave the detailed modeling and study of this more realistic and difficult
setting to future work.
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Algorithm 2 LocalAggregation(agent j)

Input: Agent j’s model θjn ∈ Rd; Participating devices at n iteration Gn; Sampling likelihood

P jn ∈ RN−1; CBO system hyperparameters λ1, α; Discretization step size γ; Random sample

proportion ε ∈ (0, 1); Number of models downloaded M ;

1: An ← ε-greedySampling(P jn, Gn,M);

2: Agent j downloads models θin for i ∈ An;

3: Evaluate models θin on agent j’s data set respectively and denote the corresponding loss as L̃ij ;

4: Calculate consensus point mj by

mj ←
1∑

i∈An µ
i
j

∑
i∈An

θinµ
i
j , with µij = exp(−αL̃ij) (21)

5: Update agent j’s model by
θjn+1 ← θjn − λ1γ

(
θjn −mj

)
, (22)

6: Update sampling likelihood P jn by

P j,in+1 ← P j,in +
(
L̃jj − L̃

i
j

)
, for i ∈ An (23)

Output: θjn+1, P
j
n+1

ε-greedySampling(P jn, Gn,M)

7: Randomly sample ε ∗M number of agents from Gn, denoted as A1
n;

8: Select (1− ε) ∗M numbers of agents in Gn\A1
n with top value P j,ij , i ∈ Gn\A1

n, denoted as A2
n;

9: return An = A1
n ∪A2

n

Remark 6 (ε-greedy sampling strategy) For each agent j, we use ε-greedy sampling scheme
as in (Zhang et al., 2021) to select which models to download from other agents. In particular,
we maintain a matrix P consisting of row vectors pj = (pj,1, . . . , pj,N ), where pj,i measures the
likelihood of agent j downloading model θi. Initially, we set P to be the zero matrix, i.e., each
model has an equal chance of being selected by any other agent. During each federated iteration, we
update P by (23). Since the number of allowed downloaded models M is much smaller than the total
number of agents N , we may benefit from extra exploration by randomly selecting ε proportion of
agents and then selecting the remaining proportion of agents based on the top sampling likelihoods
according to P . After a few iterations, the likelihood matrix P should become more accurate in
identifying similar agents. Therefore, we gradually decrease the value of ε to control the random
exploration rate.

Remark 7 Given the data privacy constraints motivating federated learning methods, individual
agents must not share their local data with the global server or other agents. In standard federated
training protocols, agents typically exchange either the gradients or the parameters of the models
that are being trained on their respective local data sets. It should be noted that the sharing of
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gradients or model parameters is not entirely secure, as it is possible for the private training data to
be retrieved from publicly shared gradients (Zhu and Han, 2020; Geiping et al., 2020; Zhao et al.,
2020; Yin et al., 2021; Huang et al., 2021; Li et al., 2022) or shared parameters (Haim et al.,
2022; Buzaglo et al., 2023). While the recovery of data from parameters is still quite difficult, our
FedCBO framework may benefit from the incorporation of other privacy protection techniques like
DP-SGD in (Abadi et al., 2016) and secure aggregation in (Bonawitz et al., 2017). A detailed
implementation of these mechanisms is out of the scope of this paper.

2.4 Experiments

In this section, we present an empirical study of our proposed FedCBO algorithm and assess its
performance in relation to other state-of-the-art methodologies designed for the clustered federated
learning setting3.

Dataset Setup: We follow the approach used in (Ghosh et al., 2020) to create a clustered
FL setting that is based on the standard MNIST dataset (Lecun et al., 1998). Precisely, we begin
with the original MNIST dataset containing 60, 000 training images and 10, 000 test images. We
augment this dataset by applying 0, 90, 180, and 270 degrees of rotation to each image, producing
in this way k = 4 clusters, each of them corresponding to one of the 4 rotation angles. For training,
we randomly partition the total number of training images 60000k into N agent machines so that
each agent holds n = 60000k

N images, all coming from the same rotation angle. For inference, we
do not split the test data. Therefore, the model from each local agent will be evaluated on 10000
rotated test images according to the cluster to which the agent belongs to. A few examples of the
rotated MNIST dataset are shown in Fig. 2.

Figure 2: Examples of rotated MNIST dataset. Each row contains a collection of samples from one
particular rotation.

Baselines & Implementations: We compare our FedCBO algorithm with three baseline al-
gorithms: IFCA (Ghosh et al., 2020), FedAvg (McMahan et al., 2017), and a local model training
scheme. We use fully connected neural networks with a single hidden layer of size 200 and ReLU

3. Implementation of our experiments is open sourced at https://github.com/SixuLi/FedCBO.
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activation as base model. We set the total number of agents N = 1200 and the number of com-
munication rounds T = 100. In each communication round, all agents participate in the training,
i.e., |Gn| = N for all n. When an agent trains its own model on its local dataset (local update step
in each round), we run τ = 10 epochs of stochastic gradient descent (SGD) with a learning rate of
γ = 0.1 and momentum of 0.9. In what follows, we provide some implementation details for each
baseline algorithm:

• FedCBO: We set the model download budget M = 200. We choose the hyperparameters
λ1 = 10, λ2 = 1 and α = 10. For the ε-greedy sampling, we use the decay scheme ε(n) =
max{0.5 − 0.01n, 0.1}, i.e., the initial random sample proportion ε = 0.5. This parameter is
decreased by 0.01 at each communication round until it reaches the threshold 0.1.

• IFCA (Ghosh et al., 2020): We set the number of models initialized at the global server
to equal the number of underlying clusters (k = 4) as suggested in (Ghosh et al., 2020) for a
fair comparison. This should provide the best result for the IFCA algorithm.

• FedAvg (McMahan et al., 2017): The algorithm tries to train a single global model that
works for all the local distributions. Hence, in the model aggregation step, the local models
trained by the agents are averaged to obtain the updated global model.

• Local model training: Agents train their own model using only their local data and with
no communication with the global server or to any of the other agents. To ensure a fair
comparison, each agent trains its model for a total of T ∗ τ = 1000 epochs.

Remark 8 Notice that in FedCBO we do not have to input the number of underlying clusters k,
in contrast to IFCA where we need to input this value or an estimate thereof.

For FedCBO and the local model training scheme we perform inference by testing the trained
model on the test data with the same distribution as their training data (i.e., data points with
the same rotation). For IFCA and FedAvg, following (Ghosh et al., 2020), we run inference on
all learned models (k models for IFCA and one model for FedAvg) on each data distribution and
calculate the accuracy of the model that produces the smallest loss value. We conduct experiments
with 5 different random seeds for all the algorithms and report the average accuracy and standard
deviation.

Experimental Results: The test results are summarized in Table 1. We observe that our
FedCBO algorithm outperforms the three baseline methods. Although the IFCA algorithm can
gradually estimate the cluster identities of users correctly and average over users’ models that are
estimated to belong to the same clusters, it gives models the same weights during the model aggre-
gation step, thus preventing the algorithm from further utilizing the relative similarities between
different models. In contrast, as we run the FedCBO algorithm we observe that, during the (local)
model aggregation steps, agents successfully select models from other users having the same data
distribution (as discussed in Remark 9) and assign different importance (weights) to the down-
loaded models using (21) during the aggregation steps. In this way, each user can better utilize the
most beneficial models from others. As pointed out in (Ghosh et al., 2020), the FedAvg baseline
performs worse than FedCBO and IFCA as it tries to fit heterogeneous data using a single model
and thus cannot provide cluster-wise predictions. Since each agent only stores a small amount of
data, the local model training scheme can easily overfit to the local dataset. This explains why it
produces the worst performance among all other methodologies.
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Table 1: Test accuracy ± standard deviation % on rotated MNIST.

FedCBO IFCA FedAvg Local

96.51 ± 0.04 94.44± 0.01 85.50± 0.19 81.27± 0.02

Remark 9 To verify the correctness of the sampling scheme in FedCBO, we define the successful
selection rate (SR) for agent j at iteration n as follows:

SRj
n :=

Number of selected agents in the same cluster as agent j

Total number of selected agents
, (24)

where the total number of selected agents equals the model download budget M . During the FedCBO
algorithm, we calculate the average successful selection rate SRn := 1

N

∑N
j=1 SRj

n at each commu-
nication round n, which corresponds to the blue curve in Fig. 3. Meanwhile, when implementing
the ε-greedy sampling, we set the random exploration proportion ε to 0.5 at n = 0 and use a decay
scheme of ε(n) = max{0.5− 0.01n, 0.1}. Hence we can calculate the oracle expected successful se-
lection rate at each round: this is shown as the orange curve in Fig. 3. We note that the empirical
average successful SR (blue curve) is very close to the best expected successful SR (orange curve).
This indicates that our FedCBO algorithm can successfully identify the agents with the same data
distributions. We leave the task of designing better sampling strategies to close the gap between
empirical successful SR and oracle successful SR to future work.

Figure 3: Average successful selection rate (SR) at each communication round.

3. Well-posedness of Finite Particle System and Mean-field System

3.1 Well-posedness of the Microscopic Model

In this section, we prove Theorem 1. Before that, we first introduce some useful notation and
preliminary lemmas. In this section, to make the notation simpler we write the solution of the
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interacting particle system (4) as {θN | t ≥ 0} with θNt :=
(
θ(1,N), · · · , θ(N,N)

)T
without distin-

guishing between agents of cluster 1 or 2. Moreover, we assume the objective functions L1 and
L2 to be the same, and we denote them as L.4 For an arbitrary but fixed N ∈ N, we rewrite the
system (4) as

dθNt = −FN (θNt )dt+MN (θNt )dBN
t , (25)

where B :=
(
B(1,N), · · · , B(N,N)

)T
is the standard Brownian motion in RNd, and

FN (θ) :=
(
F 1
N (θ), · · · , FNN (θ)

)T ∈ RNd, with F iN (θ) := λ1G
i
N (θ) + λ2∇L(θi),

MN (θ) := diag
(
|M1

N (θ)|Id, · · · , |MN
N (θ)|Id

)
∈ RNd×Nd,

with M i
N (θ) := σ1|GiN (θ)|+ σ2|∇L(θi)|, and GiN (θ) :=

∑
j 6=i(θ

i − θj)ωαL(θj)∑
j ω

α
L(θj)

.

As in Assumption 1, we assume that the gradient of objective function L satisfies the following
conditions for all θ, θ̂ ∈ Rd:

|∇L(θ)−∇L(θ̂)| ≤M∇L|θ − θ̂| and |∇L(θ)| ≤ C∇L, (26)

with constants M∇L, C∇L > 0. Under these conditions on ∇L, we can show that GiN , for i ∈ [N ], is
locally Lipschitz continuous and has linear growth. Consequently, FN and MN are locally Lipschitz
continuous and have linear growth. We summarize the previous observations in the following lemma.

Lemma 1 ((Carrillo et al., 2018, Lemma 2.1)) Let N ∈ N, α, r > 0 be arbitrary. Then, for
any θ, θ̂ ∈ RNd with |θ|, |θ̂| ≤ r and all i ∈ [N ], it holds

|GiN (θ)−GiN (θ̂)| ≤ |θi − θ̂i|+
(

1 +
2cr
N

√
N |θ̂i|2 + |θ̂|2

)
|θ − θ̂|,

|GiN (θ)| ≤ |θi|+ |θ|,

where cr := αC∇L exp(α‖L− L‖L∞(Br)) and Br := {θ ∈ Rd | |θ| ≤ r}.

Combining the above lemma with the assumptions (26) we deduce the following corollary.

Corollary 1 Under the same assumptions as in Lemma 1, it holds

|F iN (θ)− F iN (θ̂)| ≤ (λ1 + λ2M∇L) |θi − θ̂i|+ λ1

(
1 +

2cr
N

√
N |θ̂i|2 + |θ̂|2

)
|θ − θ̂|,

|M i
N (θ)−M i

N (θ̂)| ≤ (σ1 + σ2M∇L) |θi − θ̂i|+ λ1

(
1 +

2cr
N

√
N |θ̂i|2 + |θ̂|2

)
|θ − θ̂|,

|M i
N (θ)| ≤ σ1(|θi|+ |θ|) + σ2C∇L,

(27)

where cr := αC∇L exp(α‖L− L‖L∞(Br)) and Br := {θ ∈ Rd | |θ| ≤ r}.

Proof Based on Lemma 1 and the assumptions on ∇L, we can compute

|F iN (θ)− F iN (θ̂)| = |λ1(GiN (θ)−GiN (θ̂)) + λ2(∇L(θi)−∇L(θ̂i))|
≤ λ1|GiN (θ)−GiN (θ̂)|+ λ2|∇L(θi)−∇L(θ̂i)|

≤ (λ1 + λ2M∇L) |θi − θ̂i|+ λ1

(
1 +

2cr
N

√
N |θ̂i|2 + |θ̂|2

)
|θ − θ̂|.

4. For the case that objective functions L1 and L2 are different and two classes of agents are distinguishable, the
proof of the well-posedness of the microscopic model can be easily adapted.
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|M i
N (θ)−M i

N (θ̂)| = σ1

(
|GiN (θ)| − |GiN (θ̂)|

)
+ σ2

(
|∇L(θi)| − |∇L(θ̂i)|

)
≤ σ1|GiN (θ)−GiN (θ̂)|+ σ2|∇L(θi)−∇L(θ̂i)|

≤ (σ1 + σ2M∇L) |θi − θ̂i|+ λ1

(
1 +

2cr
N

√
N |θ̂i|2 + |θ̂|2

)
|θ − θ̂|.

|M i
N (θ)| = σ1|GiN (θ)|+ σ2|∇L(θi)| ≤ σ1(|θi|+ |θ|) + σ2C∇L.

Now we may invoke standard results on the existence of strong solutions of SDEs from (Durrett,
2018) to prove Theorem 1.
Proof [Proof of Theorem 1] We first show that there exists a constant bN > 0 such that

−2θ · FN (θ) + trace(MNM
T
N )(θ) ≤ bN (1 + |θ|2). (28)

By Corollary 1, the following holds:

−θi · F iN (θ) = −θi ·

(
λ1

∑
j 6=i(θ

i − θj)ωαL(θj)∑
j ω

α
L(θj)

+ λ2∇L(θi)

)
≤ −λ1|θi|2 + (λ1|θ|+ λ2C∇L)|θi|

|M i
N (θ)|2 ≤

∣∣σ1(|θi|+ |θ|) + σ2C∇L
∣∣2 ≤ 4σ2

1(|θi|2 + |θ|2) + 2σ2
2C

2
∇L.

Then one can obtain

−2θ · FN (θ) + trace(MNM
T
N )(θ) =

∑
i

(
−2θi · F iN (θ) + d|M i

N (θ)|2
)

≤
∑
i

(
− 2λ1|θi|2 + 2 (λ1|θ|+ λ2C∇L) |θi|

+ 4dσ2
1

(
|θi|2 + |θ|2

)
+ 2dσ2

2C
2
∇L
)

≤ −2λ1|θ|2 + λ1N |θ|2 + λ1|θ|2 + λ2C∇LN + λ2C∇L|θ|2

+ 4dσ2
1|θ|2 + 4dσ2

1N |θ|2 + 2dσ2
2C

2
∇LN

=
(
λ1(N − 1) + λ2 + 4dσ2

1(N + 1)
)
|θ|2

+
(
λ2C∇L + 2dσ2

2C
2
∇L
)
N

≤ bN
(
1 + |θ|2

)
.

Together with the local Lipschitz continuity and linear growth of FN and MN , we deduce the
desired result by applying Theorem 3.1 in (Durrett, 2018).

Remark 10 From the estimate (28), we can obtain a uniform bound on the second moment of θNt .
In particular, by the Itô formula, we have

d

dt
E|θNt |2 = −E[θNt · FN (θNt )] + E[trace(MNM

T
N )(θNt )] ≤ bN

(
1 + E|θNt |2

)
.

Therefore, Grönwall inequality yields

E|θNt |2 ≤ exp(bN t)E|θN0 |2 + bN

∫ t

0
exp(bN (t− s))ds for all t ≥ 0,

i.e., the solution exists globally in time for each fixed N ∈ N.
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3.2 Well-posedness of Mean-field System

In this section we prove Theorem 2. We present the details in the case in which the loss functions
are assumed to be bounded. The proof for the quadratic growth case is similar, and we refer the
reader to Appendix B for more details.

Before we prove Theorem 2, we first need a “Lipschitz continuity” property for the operators
mα
Lk

for k = 1, 2. The proof of the next lemma can be found in Appendix B.

Lemma 2 Let objective functions L1, L2 satisfy Assumption 1 and let ν1, ν2 ∈ C([0, T ],P2(Rd)) be
such that supt∈[0,T ]

∫
|θ|4dν1

t ≤ K, supt∈[0,T ]

∫
|θ|4dν2

t ≤ K. Let us denote by L1, L2 the supremum

of each of the loss functions. Let w1, w2 > 0 be such that w1 + w2 = 1, and let ν := w1ν
1 + w2ν

2.
Then, for all s, t ∈ (0, T ), the following stability estimates hold∣∣mα

Lk
[νt]−mα

Lk
[νs]
∣∣ ≤ C (√w1W2

(
ν1
t , ν

1
s

)
+
√
w2W2

(
ν2
t , ν

2
s

))
, (29)

for k = 1, 2 and for a constant C that depends only on α,C∇Lk and K.

With the above lemma in hand, the proof of Theorem 2 reduces to a careful application of
the Leray-Schauder fixed point theorem which follows similar steps as in (Carrillo et al., 2018,
Theorem 3.1).

Proof [Proof of Theorem 2] Step 1: For a given pair u1, u2 ∈ C([0, T ],Rd), we may apply standard
theory of SDEs (see, e.g., Chapter 6.2 of (Arnold, 1974)) to conclude that there exists a unique
strong solution to the SDE

dY 1
t = −λ1

(
Y 1
t − u1

t

)
dt− λ2∇L1(Y 1

t )dt+ σ1

∣∣Y 1
t − u1

t

∣∣ dB1
t + σ2

∣∣∇L1(Y 1
t )
∣∣ dB̃1

t (30a)

dY 2
t = −λ1

(
Y 2
t − u2

t

)
dt− λ2∇L2(Y 2

t )dt+ σ1

∣∣Y 2
t − u2

t

∣∣ dB2
t + σ2

∣∣∇L2(Y 2
t )
∣∣ dB̃2

t , (30b)

for initial conditions Y 1
0 ∼ ρ1

0 and Y 2
0 ∼ ρ2 (independent of each other), where ρ1

0, ρ
2
0 ∈ P4(Rd).

Let ν1
t = Law(Y 1

t ) and ν2
t = Law(Y 2

t ) be the laws of Y 1
t and Y 2

t , respectively. Since the variables
Y 1, Y 2 take values in C([0, T ],Rd), it follows that ν1, ν2 ∈ C([0, T ],P(Rd)). Moreover, ν1

t , ν
2
t satisfy

the following system of Fokker-Planck equations (in weak form):

d

dt

∫
ϕdν1

t =

∫ [(
−λ1(θ−u1

t )−λ2∇L1(θ)
)
·∇ϕ+

(
σ2

1

2

∣∣θ − u1
t

∣∣2 +
σ2

2

2
|∇L1(θ)|2

)
∆ϕ

]
dν1
t , (31a)

d

dt

∫
ϕdν2

t =

∫ [(
−λ1(θ−u2

t )−λ2∇L2(θ)
)
·∇ϕ+

(
σ2

1

2

∣∣θ − u2
t

∣∣2 +
σ2

2

2
|∇L2(θ)|2

)
∆ϕ

]
dν2
t , (31b)

for all ϕ ∈ C2
c (Rd). Let us consider the product space C([0, T ],Rd)×C([0, T ],Rd) endowed with the

norm ‖ · ‖ defined as

‖(f, g)‖ := ‖f‖∞ + ‖g‖∞,

where f, g ∈ C([0, T ],Rd) and ‖f‖∞ := supt∈[0,T ] |ft|. Notice that mα
Lk

[ν] ∈ C([0, T ],Rd) for k = 1, 2
and thus we can define the map

T : C([0, T ],Rd)× C([0, T ],Rd) −→ C([0, T ],Rd)× C([0, T ],Rd),
(u1, u2) −→ T (u1, u2) = (mα

L1
[ν],mα

L2
[ν]),

where ν = w1ν
1 + w2ν

2. Next, we show that T has a unique fixed point.
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Step 2: First, we show that T is compact, i.e., any bounded sequence {(fn, gn)}n∈N in
C([0, T ],Rd) × C([0, T ],Rd) is precompact. Let (ϕn, ψn) := T (fn, gn). It is sufficient to show that
each of the sequences {ϕn}n∈N and {ψn}n∈N is precompact. We show the details for the sequence
{ϕn}n∈N. Since ρ1

0, ρ
2
0 ∈ P4(Rd), standard theory of SDEs (see, e.g., Chapter 7 of (Arnold, 1974))

provides a fourth-order moment estimate for solutions to (30a) and (30b) of the form

E|Y 1
t |4 ≤

(
1 + E|Y 1

0 |4
)

exp(ct) and E|Y 2
t |4 ≤

(
1 + E|Y 2

0 |4
)

exp(ct),

for some constant c > 0 only depending on ‖u1‖∞ and ‖u2‖∞. In particular,

sup
t∈[0,T ]

∫
|θ|4dν1

t , sup
t∈[0,T ]

∫
|θ|4dν2

t ≤ K

for some K <∞. On the other hand, for any t > s in (0, T ), the Itô isometry and Cauchy-Schwarz
inequality yield

E
∣∣Y 1
t − Y 1

s

∣∣2 = E
∣∣∣∣ ∫ t

s

(
− λ1

(
Y 1
τ − u1

τ

)
− λ2∇L1(Y 1

τ )
)
dτ

+

∫ t

s
σ1

∣∣Y 1
τ − u1

τ

∣∣ dB1
τ +

∫ t

s
σ2

∣∣∇L1(Y 1
τ )
∣∣ dB̃1

τ

∣∣∣∣2
≤ 2E

∣∣∣∣ ∫ t

s

(
− λ1

(
Y 1
τ − u1

τ

)
− λ2∇L1(Y 1

τ )
)
dτ

∣∣∣∣2
+ 2E

[ ∫ t

s

(
σ2

1

∣∣Y 1
τ − u1

τ

∣∣2 + σ2
2

∣∣∇L1(Y 1
τ )
∣∣2 )dτ]

≤ 4λ2
1 |t− s|E

[∫ t

s

∣∣Y 1
τ − u1

τ

∣∣2 dτ]+ 4λ2
2 |t− s|E

[∫ t

s

∣∣∇L1(Y 1
τ )
∣∣2 dτ]

+ 2E
[ ∫ t

s

(
σ2

1|Y 1
τ − u1

τ |2 + σ2
2

∣∣∇L1(Y 1
τ )
∣∣2 )dτ]

≤ 4λ2
1

(
K + ‖u1‖2∞

)
T |t− s|+ 4λ2

2C
2
∇L1

T |t− s|
+ 2σ2

1

(
K + ‖u1‖2∞

)
|t− s|+ 2σ2

2C
2
∇L1
|t− s|

:= C1|t− s|.

Similarly, E
∣∣Y 2
t − Y 2

s

∣∣2 ≤ C2 |t− s| for a constant C2 > 0. Therefore, W2

(
ν1
t , ν

1
s

)
≤ c1 |t− s|

1
2

and W2

(
ν2
t , ν

2
s

)
≤ c2 |t− s|

1
2 , for some constants c1, c2 > 0 only depending on ‖u1‖∞ and ‖u2‖∞.

Applying Lemma 2, we obtain∣∣mα
L1

[νt]−mα
L1

[νs]
∣∣ ≤ C(

√
w1c1 +

√
w2c2) |t− s|

1
2 ,

which proves that t → mα
L1

[νt] is Hölder continuous with exponent 1
2 . From this we can conclude

that {ϕn}n∈N is precompact due to the compact embedding C0,1/2([0, T ],Rd) ↪→ C([0, T ],Rd), where
C0,1/2([0, T ],Rd) is the space of 1

2 -Hölder continuous functions from [0, T ] into Rd.
Step 3: Next, we verify the conditions in the Leray-Schauder fixed point theorem. For that

purpose, suppose the pair (u1, u2) ∈ C([0, T ],Rd) × C([0, T ],Rd) satisfies (u1, u2) = τT (u1, u2) for
some τ ∈ [0, 1]. In particular, there exist ν1, ν2 ∈ C([0, T ],P2(Rd)) satisfying (31a) and (31b), re-
spectively, such that (u1, u2) = τ(mα

L1
[ν],mα

L2
[ν]), where ν = w1ν1 +w2ν2. Due to the boundedness
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assumption on L1
5, we have for all t ∈ (0, T )∣∣u1

t

∣∣2 = τ2 |mL1 [ν]|2 ≤ τ2 exp
(
α(L1 − L1)

) ∫
|x|2dνt

= τ2 exp(α(L1 − L1))

(
w1

∫
|x|2dν1

t + w2

∫
|x|2dν2

t

)
.

(32)

A computation of the second moment of ν1
t gives

d

dt

∫
|θ|2dν1

t =

∫ [(
− λ1

(
θ − u1

t

)
− λ2∇L1(θ)

)
· 2θ + 2d

(
σ2

1

2

∣∣θ − u1
t

∣∣2 +
σ2

2

2
|∇L1(θ)|2

)]
dν1
t

=

∫ [
− 2λ1|θ|2 + 2λ1θ · u1

t − 2λ2θ · ∇L1(θ)

+ dσ2
1

(
|θ|2 − 2θ · u1

t + |u1
t |2
)

+ dσ2
2 |∇L1(θ)|2

]
dν1
t

≤
∫ [

(dσ2
1 − 2λ1 + |χ|+ λ2)|θ|2 + (dσ2

1 + |χ|)|u1
t |2 + (λ2 + dσ2

2)|∇L1(θ)|2
]
dν1
t

≤ (dσ2
1 − 2λ1 + |χ|+ λ2)

∫
|θ|2dν1

t + (dσ2
1 + |χ|)|u1

t |2 + (λ2 + dσ2
2)C2

∇L1

≤ (dσ2
1 + |χ|+ λ2)

(
1 + exp(α(L1 − L1))

)(∫
|θ|2dν1

t +

∫
|θ|2dν2

t

)
+ (λ2 + dσ2

2)C2
∇L1

,

where χ := λ1 − dσ2
1. Similarly,

d

dt

∫
|θ|2dν2

t ≤ (dσ2
1 + |χ|+ λ2)

(
1 + exp(α(L2 − L2))

)(∫
|θ|2dν1

t +

∫
|θ|2dν2

t

)
+ (λ2 + dσ2

2)C2
∇L2

.

Adding the above two inequalities we conclude that

d

dt

(∫
|θ|2dν1

t +

∫
|θ|2dν2

t

)
≤ C1

(∫
|θ|2dν1

t +

∫
|θ|2dν2

t

)
+ C2,

for some constants C1, C2 > 0. Using Grönwall’s inequality we obtain∫
|θ|2dν1

t +

∫
|θ|2dν2

t ≤
(∫

|θ|2dν1
0 +

∫
|θ|2dν2

0

)
exp(C1t) +

C2

C1

(
exp(C1t)− 1

)
.

Then, from (32), we conclude that there is a constant q1 > 0 such that ‖u1‖∞ < q1. A sim-
ilar bound holds for ‖u2‖∞, i.e., there is a constant q2 > 0 such that ‖u2‖∞ < q2. Hence,
‖(u1, u2)‖ = ‖u1‖∞ + ‖u2‖∞ < q1 + q2. We may now invoke the Leray-Schauder fixed point
theorem (Section 9.2 in (Evans, 2010)) to conclude that there exists a fixed point (u1, u2) for the
mapping T and thereby a solution of (30a) and (30b).

Step 4: As for uniqueness, we first note that a fixed point (u1, u2) of T must satisfy ‖(u1, u2)‖ <
q. Hence, the fourth-order moment estimates provided in Step 2 hold and supt∈[0,T ]

∫
|x|4dνkt ≤

K <∞ for k = 1, 2. Now suppose we have two fixed points (u1, u2) and (û1, û2) with∥∥(u1, u2
)∥∥ , ∥∥(û1, û2

)∥∥ < q, sup
t∈[0,T ]

∫
|θ|4dνkt , sup

t∈[0,T ]

∫
|θ|4dν̂kt ≤ K for k = 1, 2,

5. The proof for the case in which L1 has quadratic growth at infinity is provided in Appendix B.2.
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and consider their corresponding processes (Y 1
t , Y

2
t ), (Ŷ 1

t , Ŷ
2
t ), which satisfy (30a) and (30b) with

the same Brownian motions. Taking the differences zkt := Y k
t − Ŷ k

t for k = 1, 2, we obtain

zkt = zk0 +

∫ t

0

(
−λ1z

k
s + λ1

(
uks − ûks

)
− λ2

(
∇Lk(Y k

s )−∇Lk(Ŷ k
s )
))

ds

+ σ1

∫ t

0

(∣∣∣Y k
s − uks

∣∣∣− ∣∣∣Ŷ k
s − ûks

∣∣∣) dBk
s + σ2

∫ t

0

(∣∣∣∇Lk(Y k
s )
∣∣∣− ∣∣∣∇Lk(Ŷ k

s )
∣∣∣) dB̃k

s .

Squaring both sides, taking expectations, and using Itô isometry we obtain

E|zkt |2 = E
[
zk0 +

∫ t

0

(
−λ1z

k
s + λ1

(
uks − ûks

)
− λ2

(
∇Lk(Y k

s )−∇Lk(Ŷ k
s )
))

ds

+ σ1

∫ t

0

(∣∣∣Y k
s − uks

∣∣∣− ∣∣∣Ŷ k
s − ûks

∣∣∣) dBk
s + σ2

∫ t

0

(∣∣∣∇Lk(Y k
s )
∣∣∣− ∣∣∣∇Lk(Ŷ k

s )
∣∣∣) dB̃k

s

]2

≤ 2E|zk0 |2 + 2tE
[ ∫ t

0

(
−λ1z

k
s + λ1(uks − ûks)− λ2

(
∇Lk(Y k

s )−∇Lk(Ŷ k
s )
))2

ds

]
+ 2σ2

1E
[ ∫ t

0

(∣∣∣Y k
s − uks

∣∣∣− ∣∣∣Ŷ k
s − ûks

∣∣∣)2
ds

]
+ 2σ2

2E
[ ∫ t

0

(∣∣∣∇Lk(Y k
s )
∣∣∣− ∣∣∣∇Lk(Ŷ k

s )
∣∣∣)2

ds

]
≤ 2E|zk0 |2 + 6tλ2

1

∫ t

0
E|zks |2ds+ 6tλ2

1

∫ t

0

∣∣∣uks − ûks ∣∣∣2 ds+ 6tλ2
2

∫ t

0
E
[
∇Lk(Y k

s )−∇Lk(Ŷ k
s )
]2
ds

+ 2σ2
1E
[ ∫ t

0

∣∣∣(Y k
s − Ŷ k

s

)
−
(
uks − ûks

)∣∣∣2 ds]+ 2σ2
2E
[∫ t

0

∣∣∣∇Lk(Y k
s )−∇Lk(Ŷ k

s )
∣∣∣2 ds]

≤ 2E|zk0 |2 +
(
6λ2

1t+ 4σ2
1

) ∫ t

0
E|zks |2ds+

(
6λ2

1t+ 4σ2
1

) ∫ t

0

∣∣∣uks − ûks ∣∣∣2 ds
+ 6λ2

2M
2
∇L1

∫ t

0
E|zks |2ds+ 2σ2

2M
2
∇L1

∫ t

0
E|zks |2ds

= 2E|zk0 |2 +
[
6λ2

1t+ 4σ2
1 +M2

∇L1

(
6λ2

2 + 2σ2
2

)] ∫ t

0
E|zks |2ds+

(
6λ2

1t+ 4σ2
1

) ∫ t

0

∣∣∣uks − ûks ∣∣∣2 ds.
By Lemma 2, for k = 1, 2, we get

|uks − ûks |2 = |mα
Lk

[νs]−mα
Lk

[ν̂s]|2 ≤ C2
(√
w1W2(ν1

s , ν̂
1
s ) +

√
w2W2(ν2

s , ν̂
2
s )
)2

≤ C2
(√

w1

√
E|z1

s |2 +
√
w2

√
E|z2

s |2
)2

≤ 2C2
(
E|z1

s |2 + E|z2
s |2
)
.

(33)

We further obtain

E|z1
t |2 ≤ 2E|z1

0 |2 + C̃1

∫ t

0
E|z1

s |2ds+ C̃2

∫
E|z2

s |2ds

E|z2
t |2 ≤ 2E|z2

0 |2 + C̃1

∫ t

0
E|z2

s |2ds+ C̃2

∫
E|z1

s |2ds,

where C̃1 = (1 + 2C2)(6λ2
1t + 4σ2

1) + (6λ2
2 + 2σ2

2) max{M2
∇L1

,M2
∇L2
} and C̃2 = 2C2(6λ2

1t + 4σ2
1).

Combining the above two inequalities we deduce

E|z1
t |2 + E|z2

t |2 ≤ 2
(
E|z1

0 |2 + E|z2
0 |2
)

+ (C̃1 + C̃2)

∫ t

0

(
E|z1

s |2 + E|z2
s |2
)
ds.
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Then, by Grönwall’s inequality and the fact that E|z1
0 |2 = E|z2

0 |2 = 0, we infer that E|z1
t |2+E|z2

t |2 =
0 for all t ∈ [0, T ]. From inequality (33), we obtain ‖u1 − û1‖∞ = ‖u2 − û2‖∞ = 0, i.e.,
(u1, u2) ≡ (û1, û2), proving in this way the uniqueness.

Remark 11 Notice that the stochastic processes Y 1 and Y 2 in (30a) and (30b) are independent
from each other for any input functions (u1, u2). In turn, since (7a) and (7b) are realized as
(Y 1, Y 2) for a specific choice of (u1, u2) (i.e., for a fixed point of T ), we conclude that the processes

θ
1
, θ

2
from (7a) and (7b) are independent as stochastic processes. Notice, however, that both SDEs

share parameters, e.g., the distribution ρ appearing in both the drift and diffusion terms of the
equations.

4. Large time behavior of mean-field equation and consensus formation

In this section we prove the global convergence of the mean-field system as stated in Theorem 3
by following the strategies that were first used in (Fornasier et al., 2024a) and further refined in
(Riedl, 2023). In Section 4.1, we outline the main steps in the proof and state some important
preliminary lemmas. In Section 4.2 we complete the proof of Theorem 3.

4.1 Proof Sketch

We consider the evolution of the energy functional V(ρkt ) defined by

V(ρkt ) =
1

2

∫
|θ − θ∗k|2dρkt (θ)

for k = 1, 2. Our primary objective is to demonstrate that the combined energy functional V(ρ1
t ) +

V(ρ2
t ) decreases over time according to the differential inequality

d

dt

(
V(ρ1

t ) + V(ρ2
t )
)
≤ −

(
2λ1 − 2λ2M − dσ2

1 − dσ2
2M

2
) (
V(ρ1

t ) + V(ρ2
t )
)

(34)

until a time T ≤ T ∗ at which V(ρ1
T ) + V(ρ2

T ) ≤ ε. In the case T = T ∗, one can easily check that
V(ρ1

T ∗) + V(ρ2
T ∗) ≤ ε by the definition of T ∗ in Theorem 3.

To accomplish this, we first derive a differential inequality for the evolution of V(ρ1
t ) +V(ρ2

t ) by
using the dynamics of ρ1 and ρ2. In particular, by considering the test functions φ1(θ) := 1

2 |θ−θ
∗
1|2

and φ2(θ) := 1
2 |θ− θ

∗
2|2 on the PDE (9), respectively, we derive in Lemma 3 an initial form for the

sought differential inequality:

d

dt

(
V(ρ1

t ) + V(ρ2
t )
)
≤ −(2λ1 − 2λ2M − dσ2

1 − dσ2
2M

2)
(
V(ρ1

t ) + V(ρ2
t )
)

+
√

2(λ1 + dσ2
1)
(
|mα

L1
[ρt]− θ∗1|+ |mα

L2
[ρt]− θ∗2|

)√
V(ρ1

t ) + V(ρ2
t )

+
dσ2

1

2

(
|mα

L1
[ρt]− θ∗1|2 + |mα

L2
[ρt]− θ∗2|2

)
.

To find suitable bounds on the second and third terms in the above inequality, we need to control
the quantity |mα

L1
[ρt]− θ∗1|+ |mα

L2
[ρt]− θ∗2|. This is done using the quantitative Laplace principle

in Lemma 4. To be more specific, under the inverse continuity property (12), we show that

|mα
L1

[ρt]− θ∗1|+ |mα
L2

[ρt]− θ∗2| . l(r) + exp(−αr)
(

1

ρt(Br(θ∗1))
+

1

ρt(Br(θ∗2))

)
,
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with r > 0 small enough and l a strictly positive but monotonically decreasing function with
l(r)→ 0 as r → 0. As long as ρt(Br(θ

∗
1)), ρt(Br(θ

∗
2)) > 0, one can choose

α >
log
(

1
ρt(Br(θ∗1)) + 1

ρt(Br(θ∗2))

)
− log(l(r))

r

to guarantee |mα
L1

[ρt]− θ∗1|+ |mα
L2

[ρt]− θ∗2| . l(r), which can be made arbitrarily small by suitable
choices of r � 1 and α� 1.

To conclude the proof, we need to show that ρt(Br(θ
∗
1)), ρt(Br(θ

∗
2)) > 0 for all r > 0. We prove

this in Lemma 5 by showing that the initial masses ρ0(Br(θ
∗
1)), ρ0(Br(θ

∗
2)) > 0 can decay at most

exponentially fast for any r > 0, and therefore remain positive in any finite time interval [0, T ].

Lemma 3 (Evolution of energy functional V) For k = 1, 2, let objective functions Lk : Rd →
R and fix α, λ1, λ2, σ1, σ2 > 0. Moreover, let T > 0 and ρ1, ρ2 ∈ C([0, T ],P4(R)) form the weak
solution to the Fokker-Planck equations (8a) and (8b). Then the functional V(ρkt ) satisfies

d

dt
V(ρkt ) ≤ −

(
2λ1 − 2λ2M − dσ2

1 − dσ2
2M

2
)
V(ρkt )

+
√

2(λ1 + dσ2
1)|mα

Lk
[ρt]− θ∗k|

√
V(ρkt ) +

dσ2
1

2
|mα

Lk
[ρkt ]− θ∗k|2,

with M := max{M∇L1 ,M∇L2}.

Lemma 4 (Quantitative Laplace principle) For k = 1, 2, denote Lk := infθ∈Rd Lk(θ). Let
ρ ∈ P(Rd) and fix α > 0. For any r > 0, we define Lkr := supθ∈Br(θ∗k) Lk(θ). Then, under

Assumption 2, for any r ∈ (0,min{R1
0, R

2
0}] and qk > 0 such that qk + Lkr − Lk ≤ Lk∞, we have

|mα
Lk

[ρ]− θ∗k| ≤
(qk + Lkr − Lk)νk

ηk
+

exp(−αqk)
ρ(Br(θ∗k))

∫
|θ − θ∗k|dρ(θ).

Lemma 5 For k = 1, 2, let T > 0, r > 0, and fix parameters α, λ1, λ2, σ1, σ2 > 0. Assume
ρ1, ρ2 ∈ C([0, T ],P(Rd)) weakly solve the Fokker-Planck equations (8a) and (8b) respectively with
initial conditions ρ1

0, ρ
2
0 ∈ P(Rd). Furthermore, denote Bk := supt∈[0,T ] |mα

Lk
[ρt]− θ∗k|. Then for all

t ∈ [0, T ] we have

ρkt (Br(θ
∗
k)) ≥

( ∫
φkr (θ)dρ

k
0(θ)

)
exp

(
− (qlk + qgk)t

)
,

with the functions φ1
r and φ2

r as in (64) and

qlk := max

{
2λ1(
√
cr +Bk)

√
c

(1− c)2r
+

2σ2
1(cr2 +B2

k)(2c+ d)

(1− c)4r2
,

4λ2
1

(2c− 1)σ2
1

}
,

qgk := max

{
2λ2cM∇Lk

(1− c)2
+
σ2

2M
2
∇Lkc(2c+ d)

(1− c)4
,

4λ2
2

(2c− 1)σ2
2

}
,

where c ∈ (1
2 , 1) can be any constant that satisfies the inequality

(2c− 1)c ≥ d(1− c)2. (35)

The proofs of Lemmas 3,4, and 5 are presented in Appendix C.
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4.2 Proof of Theorem 3

We are now ready to present the detailed proof of Theorem 3.

Proof [Proof of Theorem 3] Let M := max{M∇L1 ,M∇L2}. Using Lemma 3 we get

d

dt

(
V(ρ1

t ) + V(ρ2
t )
)
≤ −(2λ1 − 2λ2M − dσ2

1 − dσ2
2M

2)
(
V(ρ1

t ) + V(ρ2
t )
)

+
√

2(λ1 + dσ2
1)

(√
V(ρ1

t )|mα
L1

[ρt]− θ∗1|+
√
V(ρ2

t )|mα
L2

[ρt]− θ∗2|
)

+
dσ2

1

2

(
|mα

L1
[ρt]− θ∗1|2 + |mα

L2
[ρt]− θ∗2|2

)
≤ −(2λ1 − 2λ2M − dσ2

1 − dσ2
2M

2)
(
V(ρ1

t ) + V(ρ2
t )
)

+
√

2(λ1 + dσ2
1)
(
|mα

L1
[ρt]− θ∗1|+ |mα

L2
[ρt]− θ∗2|

)√
V(ρ1

t ) + V(ρ2
t )

+
dσ2

1

2

(
|mα

L1
[ρt]− θ∗1|2 + |mα

L2
[ρt]− θ∗2|2

)
.

(36)

Let Tα ≥ 0 be given by

Tα := sup
{
t ≥ 0 : V(ρ1

t′) + V(ρ2
t′) > ε, |mα

L1
[ρt′ ]− θ∗1|+ |mα

L2
[ρt′ ]− θ∗2| < C̃(t′) ∀t′ ∈ [0, t]

}
, (37)

where

C̃(t) := C
√
V(ρ1

t ) + V(ρ2
t ) (38)

with

C := min

{
ϑ

2

(2λ1 − 2λ2M − dσ2
1 − dσ2

2M
2)√

2(λ1 + dσ2
1)

,

√
ϑ

(2λ1 − 2λ2M − dσ2
1 − dσ2

2M
2)

dσ2
1

}
. (39)

Then, combining (36) with (37), for all t ∈ [0, Tα] we have

d

dt

(
V(ρ1

t ) + V(ρ2
t )
)
≤ −(1− ϑ)(2λ1 − 2λ2M − dσ2

1 − dσ2
2M

2)
(
V(ρ1

t ) + V(ρ2
t )
)
< 0, (40)

where the last inequality comes from the assumption 2λ1 > 2λ2M+dσ2
1 +dσ2

2M
2. This implies that

the sum V(ρ1
t ) +V(ρ2

t ) is decreasing in time in the interval [0, Tα]. Moreover, Grönwall’s inequality
implies the upper bound

V(ρ1
t )+V(ρ2

t ) ≤
(
V(ρ1

0)+V(ρ2
0)
)

exp
(
−(1−ϑ)(2λ1−2λ2M−dσ2

1−dσ2
2M

2)t
)
, for t ∈ [0, Tα]. (41)

Accordingly, the decay in time of the sum V(ρ1
t ) + V(ρ2

t ) implies that the auxiliary function C̃(t)
decreases as well. Hence, for k = 1, 2,

max
t∈[0,Tα]

|mα
Lk

[ρt]− θ∗k| ≤ max
t∈[0,Tα]

|mα
L1

[ρt]− θ∗1|+ |mα
L2

[ρt]− θ∗2| ≤ max
t∈[0,Tα]

C̃(t) ≤ C
√
V(ρ1

0) + V(ρ2
0).

(42)
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Also, note that∫
|θ − θ∗1|dρTα(θ) = w1

∫
|θ − θ∗1|dρ1

Tα(θ) + w2

∫
|θ − θ∗1|dρ2

Tα(θ)

≤ w1

√
2V(ρ1

Tα
) + w2

∫
|θ − θ∗2|+ |θ∗1 − θ∗2|dρ2

Tα(θ)

≤
√

2V(ρ1
Tα

) +
√

2V(ρ2
Tα

) + |θ∗1 − θ∗2|

≤ 2
√
V(ρ1

Tα
) + V(ρ2

Tα
) + |θ∗1 − θ∗2|

≤ 2
√
V(ρ1

0) + V(ρ2
0) + |θ∗1 − θ∗2|,

(43)

and, similarly, ∫
|θ − θ∗2|dρTα(θ) ≤ 2

√
V(ρ1

0) + V(ρ2
0) + |θ∗1 − θ∗2|. (44)

To conclude that V(ρ1
Tα

) + V(ρ2
Tα

) ≤ ε, it remains to analyze the following different cases.
Case Tα ≥ T ∗: If Tα ≥ T ∗, we can use the definition of T ∗ in (14) and the bound for V(ρ1

t )+V(ρ2
t )

in (41) to conclude that V(ρ1
T ∗) + V(ρ2

T ∗) ≤ ε and that V(ρ1
t ) + V(ρ2

t ) decayed exponentially fast
up to that point.
Case Tα < T ∗ and V(ρ1

Tα
) + V(ρ2

Tα
) ≤ ε: Nothing needs to be discussed in this case.

Case Tα < T ∗, V(ρ1
Tα

) + V(ρ2
Tα

) > ε and |mα
L1

[ρTα ] − θ∗1| + |mα
L2

[ρTα ] − θ∗2| < C̃(Tα) : This case
actually doesn’t arise, since, if it did, it would contradict the definition of Tα.
Case Tα < T ∗, V(ρ1

Tα
) + V(ρ2

Tα
) > ε, and |mα

L1
[ρTα ] − θ∗1| + |mα

L2
[ρTα ] − θ∗2| ≥ C̃(Tα): We will

show there exists α0 > 0 so that for any α > α0 we have

|mα
L1

[ρTα ]− θ∗1|+ |mα
L2

[ρTα ]− θ∗2| < C̃(Tα), (45)

which would contradict |mα
L1

[ρTα ]− θ∗1|+ |mα
L2

[ρTα ]− θ∗2| ≥ C̃(Tα). In other words, we prove that
the last case never happens if we choose α sufficiently large. To show (45), we define

q1 :=
1

2
min

{(η1

4
C
√
ε
) 1
ν1 , L1

∞

}
and r1 := max

s∈[0,R1
0]

{
max

θ∈Bs(θ∗1)
L1(θ)− L1 ≤ q1

}
,

where L1 := infθ∈Rd L1(θ), and η1, ν1, L
1
∞ come from assumption (II) and C is defined in (39).

By construction, these choices satisfy r1 ≤ R1
0 and q1 + supθ∈Br1 (θ∗1) L1(θ) − L1 ≤ 2q1 ≤ L1

∞.

Furthermore, we note q1 > 0, and by the continuity of L1, there exists sq1 > 0 such that L1(θ)−L1 ≤
q1 for all θ ∈ Bsq1 (θ∗1), thus yielding r1 > 0. Therefore, we can apply Lemma 4 with q1 and r1 as
above to get

|mα
L1

[ρTα ]− θ∗1| ≤
(
q1 + supθ∈Br1 (θ∗1) L1(θ)− L1

)ν1
η1

+
exp(−αq1)

ρTα(Br1(θ∗1))

∫
|θ − θ∗1|dρTα(θ)

≤ (2q1)ν1

η1
+

exp(−αq1)

ρTα(Br1(θ∗1))

∫
|θ − θ∗1|dρTα(θ)

≤
[(η1

4 C
√
ε
) 1
ν1

]ν1
η1

+
exp(−αq1)

ρTα(Br1(θ∗1))

∫
|θ − θ∗1|dρTα(θ)

=
C

4

√
ε+

exp(−αq1)

ρTα(Br1(θ∗1))

∫
|θ − θ∗1|dρTα(θ).

(46)
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Similarly, by choosing

q2 :=
1

2
min

{(η2

4
C
√
ε
) 1
ν2 , L2

∞

}
and r2 := max

s∈[0,R2
0]

{
max

θ∈Bs(θ∗1)
L2(θ)− L2 ≤ q2

}
,

we have

|mα
L2

[ρTα ]− θ∗2| ≤
C

4

√
ε+

exp(−αq2)

ρTα(Br2(θ∗2))

∫
|θ − θ∗2|dρTα(θ).

Combining with inequalities (43) and (44), we further obtain

|mα
L1

[ρTα ]− θ∗1|+ |mα
L2

[ρTα ]− θ∗2| ≤
C

2

√
ε+

exp(−αq1)

ρTα(Br1(θ∗1))

∫
|θ − θ∗1|dρTα(θ)

+
exp(−αq2)

ρTα(Br2(θ∗2))

∫
|θ − θ∗2|dρTα(θ)

≤ C

2

√
ε+

(
exp(−αq1)

ρTα(Br1(θ∗1))
+

exp(−αq2)

ρTα(Br2(θ∗2))

)(
2
√
V(ρ1

0) + V(ρ2
0) + |θ∗1 − θ∗2|

)
≤ C

2

√
ε+ exp(−αq)

(
1

ρTα(Br1(θ∗1))
+

1

ρTα(Br2(θ∗2))

)(
2
√
V(ρ1

0) + V(ρ2
0) + |θ∗1 − θ∗2|

)
,

(47)

with q := min
{
q1, q2

}
. By (42) we have the boundGα,k := maxt∈[0,Tα] |mα

Lk
[ρt]−θ∗k| ≤ C

√
V(ρ1

0) + V(ρ2
0) :=

G, which implies that all assumptions of Lemma 5 are satisfied. Therefore, by Lemma 5, for k = 1, 2
and mollifiers φkrk defined in (64), there exist ak := alk + agk > 0 such that

ρkTα
(
Brk(θ∗k)

)
≥
∫
φkrk(θ)dρk0(θ) exp(−akTα),

where

alk := max

{
hl1 + hl2

Gα,k
rk

+ hl3
G2
α,k

r2
k

, hl4

}
and agk := max

{
hg1M∇Lk + hg2M

2
∇Lk , h

g
3

}
,

with hl1, h
l
2, h

l
3, h

l
4 and hg1, h

g
2, h

g
3 only depending on λ1, λ2, σ1, σ2 and d. Now we let ã := ãl + ãg,

where

ãl := max

{
hl1 + hl2

G

r
+ hl3

G2

r2
, hl4

}
and ãg := max

{
hg1M + hg2M

2, hg3

}
,

with r := min{r1, r2} and M := max{M∇L1 ,M∇L2}. Then

ρTα(Br1(θ∗1)) = w1ρ
1
Tα(Br1(θ∗1)) + w2ρT 2

α
(Br1(θ∗1))

≥ w1ρ
1
Tα(Br1(θ∗1))

≥ w1

∫
φ1
r1(θ)dρ1

0(θ) exp(−a1Tα)

≥ w1

∫
φ1
r1(θ)dρ1

0(θ) exp(−ãT ∗) > 0,

since ã ≥ a1 and T ∗ ≥ Tα, and, similarly,

ρTα(Br2(θ∗2)) ≥ w2

∫
φ2
r2(θ)dρ2

0(θ) exp(−ãT ∗) > 0.
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Denote K := min

{
w1

∫
φ1
r1(θ)dρ1

0(θ), w2

∫
φ2
r2(θ)dρ2

0(θ)

}
. Then by using α > α0 with

α0 :=

ãT ∗ + log

(
2
√
V(ρ10)+V(ρ20)+|θ∗1−θ∗2 |

CK
√
ε

)
q

, (48)

the second term in (47) is strictly smaller than C
2

√
ε. That is,

exp(−αq)
(

1

ρTα(Br1(θ∗1))
+

1

ρTα(Br2(θ∗2))

)(
2
√
V(ρ1

0) + V(ρ2
0) + |θ∗1 − θ∗2|

)
< exp(−α0q)

2

K exp(−ãT ∗)

(
2
√
V(ρ1

0) + V(ρ2
0) + |θ∗1 − θ∗2|

)
=
C

2

√
ε.

It follows from (47) that

|mα
L1

[ρTα ]− θ∗1|+ |mα
L2

[ρTα ]− θ∗2| < C
√
ε < C

√
V(ρ1

Tα
) + V(ρ2

Tα
),

contradicting in this way (45).

Remark 12 Theorem 3 can be naturally extended to the case in which the number of underlying
clusters K is strictly greater than 2. Here we highlight how the important constant α0 in (48) would
change in this case. Let us denote by ρkt the distribution of the k-th cluster for k ∈ [K], and let
ρt :=

∑K
k=1wkρ

k
t with

∑K
k=1wk = 1. Furthermore, we denote by θ∗k the global minimizer of the

objective function corresponding to cluster k. Similarly to the computations in (36), from Lemma
3 we obtain

d

dt

K∑
k=1

V(ρkt ) ≤ −(2λ1 − 2λ2M − dσ2
1 − dσ2

2M
2)

K∑
k=1

V(ρkt )

+
√

2(λ1 + dσ2
1)

(
K∑
k=1

|mα
Lk

[ρt]− θ∗k|

)√√√√ K∑
k=1

V(ρkt ) +
dσ2

1

2

(
K∑
k=1

|mα
Lk

[ρt]− θ∗k|

)
.

Following the arguments in the proof of Theorem 3, it would remain to bound the term
∑K

k=1 |mα
Lk

[ρt]−
θ∗k| as in (47). In particular, one can easily obtain

K∑
k=1

|mα
Lk

[ρt]− θ∗k| ≤
C

2

√
ε+

K∑
k=1

exp(−αqk)
ρTα(Brk(θ∗k))

∫
|θ − θ∗k|dρTα(θ)
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and ∫
|θ − θ∗k|dρTα(θ) =

K∑
l=1

wl

∫
|θ − θ∗k|dρlTα(θ)

≤
K∑
l=1

wl (|θ − θ∗l |+ |θ∗l − θ∗k|) dρlTα(θ)

≤
K∑
l=1

√
2V(ρlTα) +

K∑
l=1

|θ∗l − θ∗k|

≤ 2

√√√√ K∑
l=1

V(ρlTα) +

K−1∑
l=1

K∑
h=l+1

|θ∗l − θ∗h|.

Therefore, we obtain

K∑
k=1

|mα
Lk

[ρt]− θ∗k| ≤
C

2

√
ε+

K∑
k=1

exp(−αq)
ρTα(Brk(θ∗k))

2

√√√√ K∑
l=1

V(ρlTα) +
K−1∑
l=1

K∑
h=l+1

|θ∗l − θ∗h|

 ,

with q := mink∈[K] qk. Then again following the arguments in the proof of Theorem 3, we can
estimate the important constant α0 similarly to (48) and obtain:

α0 :=

ãT ∗ + log

(
2
√∑K

l=1 V(ρl0)+
∑K−1
l=1

∑K
h=l+1 |θ∗l −θ

∗
h|

CK
√
ε

)
q

.

5. Large Time Behavior of Finite Particle Systems

In this section, we present the proof of Theorem 4 on the convergence of the finite particle system
toward global minimizers of the objective functions. The proof is based on the combination of the
mean-field convergence result established in Theorem 3 and a quantitative mean-field approximation
result stated in Proposition 1 below. To get this quantitative approximation result, we work on a
set with large probability in which the dynamics of the finite particle system stay withing a compact
set. Let {θ̄1,i1

t }
N1
i1=1, {θ̄

2,i2
t }

N2
i2=1 be independent copies of the solution to the mean-field dynamics

(7a) and (7b), respectively. In what follows we use (Ω,F ,P) to denote a common probability space
over which all considered stochastic processes get their realizations. In this probability space, we
consider the subset ΩM of Ω defined according to:

ΩM :=

ω ∈ Ω : sup
t∈[0,T̃ ]

1

N

∑
k=1,2

Nk∑
ik=1

max

{∣∣∣θk,ikt (ω)
∣∣∣4 , ∣∣∣θ̄k,ikt (ω)

∣∣∣4} ≤M
 .

In the following, M > 0 is a constant that will be properly chosen in the proof of Theorem 4, and
θk,ik continues to denote the interacting particles of system (4). Finally, T̃ is a time horizon that
will be chosen later on.

Before presenting the non-asymptotic mean-field approximation result, Proposition 1, we first
prove that the stochastic processes of interest stay bounded with high probability (i.e., we estimate
the probability of the set ΩM ). This is the content of Lemma 6. The proofs of these two statements
are deferred to Appendix D.
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Lemma 6 Let T̃ > 0, ρ0 := w1ρ
1
0 + w2ρ

2
0 ∈ P4(Rd) and let N = N1 + N2 ∈ N be fixed. More-

over, let {θ1,i1
t }

N1
i1=1, {θ

2,i2
t }

N2
i2=1 be the solution of the finite interacting particle system (4), and let

{θ̄1,i1
t }

N1
i1=1, {θ̄

2,i2
t }

N2
i2=1 denote independent copies of the solutions to the mean-field dynamics (4a)

and (4b), respectively. Then, under Assumption 1, for any M > 0 we have

P(ΩM ) = P

 sup
t∈[0,T̃ ]

1

N

∑
k=1,2

Nk∑
ik=1

max

{∣∣∣θk,ikt (ω)
∣∣∣4 , ∣∣∣θ̄k,ikt (ω)

∣∣∣4} ≤M
 ≥ 1− 2CBound

M
, (49)

where CBound = CBound(λ1, λ2, σ1, σ2, T̃ , b11, b12, b21, b22) is a constant that is independent of N and
d. Here, b11, b12, b21 and b22 are problem-dependent constants defined in Lemma 10.

Lemma 6 shows that all the considered processes are bounded uniformly in time with high
probability. By restricting to the set ΩM , we can obtain the following quantitative mean-field
approximation.

Proposition 1 (Quantitative Mean-field Approximation) Under the same assumptions as

in Lemma 6, for k = 1, 2, if (θk,ikt )t≥0 and (θ̄k,ikt )t≥0 share the same initial data as well as the

Brownian motion paths (Bk,ik
t )t≥0, (B̃

k,ik
t )t≥0 for all ik ∈ [Nk], then we have a probabilistic mean-

field approximation of the form

max
k=1,2,
ik∈[Nk]

sup
t∈[0,T̃ ]

E
[∣∣∣θk,ikt − θ̄k,ikt

∣∣∣2 ∣∣∣∣ ΩM

]
≤ CMFA(N−1

1 +N−1
2 ), (50)

where CMFA := CMFA (α,CL1 , CL2 , C∇L1 , C∇L2 ,M,M2, b11, b12, b21, b22), andM2 is an upper bound
on the second moment of ρNt uniformly over time t ∈ [0, T̃ ].

Proposition 1 states that, for a fixed time horizon T̃ , it is possible to take N large enough so
that, on average, the trajectories of the interacting particles are close to the independent particles
with the law specified by the mean field dynamics. It is is a quantitative propagation of chaos
estimate.

Equipped with Lemma 6 and Proposition 1, we are now ready to prove Theorem 4.

Proof [Proof of Theorem 4] Let T be the first time in [0, T ∗] for which

V(ρ1
T ) + V(ρ2

T ) ≤ ε,

where ρ1, ρ2 form the solution to the mean field Fokker-Planck equation. Notice that this T exists
by the analysis in Theorem 3. Now, let us denote by KN

εtotal
the subset of Ω where (16) does not

hold, where T is chosen as above. Finally, let T̃ = T ∗ in the definition of the set ΩM . Then one
can estimate the measure of the set KN

εtotal
as:

P
(
KN
εtotal

)
= P

(
KN
εtotal

∩ ΩM

)
+ P

(
KN
εtotal

∩ Ωc
M

)
≤ P (ΩM )

εtotal
E

∣∣∣∣∣ 1

N1

N1∑
i1=1

θ1,i1
T − θ∗1

∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N2

N2∑
i2=1

θ2,i2
T − θ∗2

∣∣∣∣∣
2 ∣∣∣∣∣ ΩM

+ P (Ωc
M ) ,

where the last inequality comes from the conditional Markov’s inequality.
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By the triangle inequality, we have the error decomposition

E

∣∣∣∣∣ 1

N1

N1∑
i1=1

θ1,i1
T − θ∗1

∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N2

N2∑
i2=1

θ2,i2
T − θ∗2

∣∣∣∣∣
2 ∣∣∣∣∣ ΩM


≤ 2E

∣∣∣∣∣ 1

N1

N1∑
i1=1

(
θ1,i1
T − θ̄1,i1

T

)∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N2

N2∑
i2=1

(
θ2,i2
T − θ̄2,i2

T

)∣∣∣∣∣
2 ∣∣∣∣∣ ΩM


+ 2E

∣∣∣∣∣ 1

N1

N1∑
i1=1

θ̄1,i1
T − θ∗1

∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N2

N2∑
i2=1

θ̄2,i2
T − θ∗2

∣∣∣∣∣
2 ∣∣∣∣∣ ΩM

 ,
(51)

which divides the overall error into the mean-field approximation error and the optimization error in
the mean-field limit. The first term can be bounded using the quantitative mean-field approximation
in Proposition 1, i.e.,

E

∣∣∣∣∣ 1

N1

N1∑
i1=1

(
θ1,i1
T − θ̄1,i1

T

)∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N2

N2∑
i2=1

(
θ2,i2
T − θ̄2,i2

T

)∣∣∣∣∣
2 ∣∣∣∣∣ ΩM

 ≤ CMFA(N−1
1 +N−1

2 ) .

For the second term, since the law of each θ
1,i1

is ρ1 and the law of each θ
2,i2

is ρ2 we conclude

E

∣∣∣∣∣ 1

N1

N1∑
i1=1

θ̄1,i1
T − θ∗1

∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N2

N2∑
i2=1

θ̄2,i2
T − θ∗2

∣∣∣∣∣
2
 ≤ 2

(
V(ρ1

T ) + V(ρ2
T )
)
≤ 2ε,

from where it follows that

E

∣∣∣∣∣ 1

N1

N1∑
i1=1

θ̄1,i1
T − θ∗1

∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N2

N2∑
i2=1

θ̄2,i2
T − θ∗2

∣∣∣∣∣
2 ∣∣∣∣∣ ΩM

 ≤ 2ε

P(ΩM )
.

Combining the above estimates with (51) gives the error bound

E

∣∣∣∣∣ 1

N1

N1∑
i1=1

θ1,i1
T − θ∗1

∣∣∣∣∣
2

+

∣∣∣∣∣ 1

N2

N2∑
i2=1

θ2,i2
T − θ∗2

∣∣∣∣∣
2 ∣∣∣∣∣ ΩM

 ≤ 2CMFA(N−1
1 +N−1

2 ) +
4ε

P(ΩM )
. (52)

and thus

P
(
KN
εtotal

)
≤ 1

εtotal
(2CMFAN

−1 + 4ε) + P(Ωc
M ) ≤ 1

εtotal
(2CMFA(N−1

1 +N−1
2 ) + 4ε) +

CBound

M
.

Notice that, as discussed in Remark 3, we can make the right hand in the above display be
smaller than some fix δ by first choosing ε to be small enough, for example so that 4ε

εtotal
≤ δ/3;

then taking M large enough so that Cbound/M ≤ ξ ≤ δ/3; and finally, setting N1 and N2 large
enough so that 2CMFA

εtotal
( 1
N1

+ 1
N2

) is less than δ/3.
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6. Conclusions

This paper is a first step in bridging the consensus-based optimization literature and other PDE-
based optimization methods with the federated learning problem. In particular, we have proposed
a new CBO-type system of interacting particles that can be used to solve non-convex optimization
problems arising in practical clustered federated learning settings. We prove that our particle
system converges to a suitable mean-field limit when the number of interacting particles goes to
infinity. In turn, we analyze the time evolution of the mean-field model and discuss how it forces
particles within each cluster to reach consensus around a global minimizer of the cluster’s objective
function. This mean-field point of view may actually not be too far from reality, specially when
dealing with cross-devices federated learning problems, where the number of users is indeed quite
large. Motivated by our new CBO-type particle dynamics, we propose the FedCBO algorithm and
empirically asses its performance. In our experiments, we show that our algorithm outperforms
current state-of-the-art methods for federated learning.

Some important questions motivated by our work that deserve further investigation are the
following. On the theoretical side, the long-term stability behavior of the mean-field system is still
an open problem. In particular, it is unclear how the model behaves after the variance (defined
in Theorem 3) reaches the prescribed tolerance level ε. In addition, it is of interest to analyze
the more realistic setting where agents within the same cluster may have different, although re-
lated, loss functions. On the experimental side, we would like to investigate the robustness to
adversarial attacks of the FedCBO algorithm. Indeed, given the weighted averaging mechanism in
the model aggregation step (21) it is not unreasonable to expect that the FedCBO algorithm can
offer some protection against adversarial attacks. Finally, exploring further strategies to reduce the
communication cost of our algorithm is another research topic of interest.
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Appendix A. Moment Estimates for the Stochastic Empirical Measures

For the solution θ1,N ∈ C([0, T ],Rd)N1 ,θ2,N ∈ C([0, T ],Rd)N2 of the particle system (4), we denote
by

ρ1,N
t =

1

N1

N1∑
i1=1

δ
θ
1,(i1,N)
t

ρ2,N
t =

1

N2

N2∑
i2=1

δ
θ
2,(i2,N)
t

ρNt =
N1

N
ρ1,N
t +

N2

N
ρ2,N
t

the empirical measures corresponding to θ1,N ,θ2,N for each t ∈ [0, T ].

Lemma 7 (Moment Estimates) Let L1, L2 satisfy Assumption 1 and either (i) boundedness, or
(ii) quadratic growth at infinity, and ρ0 ∈ P2p(Rd), p ≥ 1. Further, let θ1,N ,θ2,N be the solution

of the particle system (4) with ρ⊗N0 -distributed initial data θ1,N
0 ,θ2,N

0 and ρ1,N1 , ρ2,N2 and ρN the
corresponding empirical measures. Then, there exists a constant K > 0, independent of N , such
that

sup
t∈[0,T ]

E
∫
|θ|2pdρNt , sup

t∈[0,T ]
E|mα

L1
[ρNt ]|2p, sup

t∈[0,T ]
E|mα

L2
[ρNt ]|2p ≤ K, (53)

and consequently also the estimates

sup
t∈[0,T ]

E
∫
|θ|2dηα,N1,t , sup

t∈[0,T ]
E|θ1,i1

t |2p ≤ K,

sup
t∈[0,T ]

E
∫
|θ|2dηα,N2,t , sup

t∈[0,T ]
E|θ2,i2

t |2p ≤ K,

for i1 = 1, 2, . . . , N1 and i2 = 1, 2, . . . , N2.

Proof Let θ1,N ,θ2,N be the solution of the particle system (4). Using the inequality (a + b)q ≤
2q−1(aq + bq), q ≥ 1 and the Itô isometry and Jensen’s inequality yields

E|θ1,i1
t |2p = E

∣∣∣∣θ1,i1
0 +

∫ t

0

(
− λ1(θ1,i1

s −mα
L1

[ρNs ])− λ2∇L1(θ1,i1
s )

)
ds

+

∫ t

0
σ1|θ1,i1

s −mα
L1

[ρNs ]|dB1,i1
s +

∫ t

0
σ2|∇L1(θ1,i1

s )|dB̃1,i1
s

∣∣∣∣2p
≤ 22p−1E|θ1,i1

0 |2p + 23(2p−1)E
∣∣∣∣∫ t

0

(
− λ1(θ1,i1

s −mα
L1

[ρNs ])− λ2∇L1(θ1,i1
s )

)
ds

∣∣∣∣2p
+ 23(2p−1)E

∣∣∣∣∫ t

0
σ1|θ1,i1

s −mα
L1

[ρNs ]|dB1,i1
s

∣∣∣∣2p + 23(2p−1)E
∣∣∣∣∫ t

0
σ2|∇L1(θ1,i1

s )|dB̃1,i1
s

∣∣∣∣2p
≤ 22p−1E|θ1,i1

0 |2p + 24(2p−1)λ2p
1 T

2p−1

∫ t

0

(
E|θ1,i1

s |2pds+ E|mα
L1

[ρNs ]|2p
)
ds

+ 23(2p−1)λ2p
2 T

2p−1

∫ t

0
E|∇L1(θ1,i1

s )|2pds (by Hölder’s inequality)

+ 24(2p−1)T p−1σ2p
1 p(2p− 1)p

∫ t

0

(
E|θ1,i1

s |2pds+ E|mα
L1

[ρNs ]|2p
)
ds

+ 23(2p−1)T p−1σ2p
2 p(2p− 1)p

∫
E|∇L1(θ1,i1

s )|2pds

= 22p−1E|θ1,i1
0 |2p + 24(2p−1)

(
λ2p

1 T
p + p(2p− 1)pσ2p

1

)
T p−1

∫ t

0

(
E|θ1,i1

s |2pds+ E|mα
L1

[ρNs ]|2p
)
ds

+ 23(2p−1)
(
λ2p

2 T
p + σ2p

2 p(2p− 1)p
)
T pC2p

∇L1
,

(55)
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for i1 ∈ [N1]. Similar computations give for i2 ∈ [N2]

E|θ2,i2
t |2p ≤ 22p−1E|θ2,i2

0 |2p + 24(2p−1)
(
λ2p

1 T
p + p(2p− 1)pσ2p

1

)
T p−1

∫ t

0

(
E|θ2,i2

s |2p + E|mα
L2

[ρNs ]|2p
)
ds

+ 23(2p−1)
(
λ2p

2 T
p + σ2p

2 p(2p− 1)p
)
T pC2p

∇L2
.

Summing above two inequalities over i1 ∈ [N1] and i2 ∈ [N2], dividing by N , we have

E
∫
|θ|2pdρNt ≤ 22p−1E

∫
|θ|2pdρN0

+ 24(2p−1)
(
λ2p

1 T
p + p(2p− 1)pσ2p

1

)
T p−1

∫ t

0

[
E
∫
|θ|2pdρNs

+
N1

N
E|mα

L1
[ρNs ]|2p +

N2

N
E|mα

L2
[ρNs ]|2p

]
ds

+ 23(2p−1)
(
λ2p

2 T
p + σ2p

2 p(2p− 1)p
)
T p
(N1

N
C2p
∇L1

+
N2

N
C2p
∇L2

)
.

(56)
As shown in Lemma 10, for loss functions L1, L2 satisfying Assumption 1 and either bounded above
or growing quadratically at infinity, we have

|mα
Lk

[ρNs ]|2 ≤
∫
|θ|2dηα,Nk,s ≤ c1 + c2

∫
|θ|2dρNs , (57)

for k = 1, 2 and appropriate constants c1, c2 independent of N , where by construction mα
Lk

[ρNs ] =∫
θdηα,Nk,t with ηα,Nk,t =

wαLk
ρNt

‖wαLk‖L1(ρNt )
. Therefore, we further obtain

|mα
Lk

[ρNs ]|2p ≤
(
c1 + c2

∫
|θ|2dρNs

)p ≤ 2p−1
(
cp1 + cp2

∫
|θ|2pdρNs

)
.

Inserting above inequalities into (56) and applying the Grönwall’s inequality provides a constant
Kp > 0, independent of N , such that supt∈[0,T ] E

∫
|θ|2pdρNt ≤ Kp holds, and consequently also

sup
t∈[0,T ]

E|mα
Lk

[ρNt ]|2p ≤ 2p−1(cp1 + cp2Kp),

which concludes the proof of the estimates in (53) by choosing K sufficiently large. The other two
estimates easily follow by (57) and by applying the Grönwall’s inequality on (55), respectively.

Appendix B. Auxiliary Propositions and Lemma for Well-posedness of System

Lemmas 8, 9 and 10 are direct consequences of Lemmas 3.1, 3.2 and 3.3 in (Carrillo et al., 2018). We
state these results here for completeness and refer the reader to (Carrillo et al., 2018) for detailed
proofs.

B.1 Loss Functions Bounded Above

Lemma 8 Let L1, L2 satisfy Assumption 1 and µ ∈ P2(Rd) with
∫
|θ|2dµ ≤ K. Then

e−αL1

‖wαL1
‖L1(µ)

≤ exp(αCL1(1 +K)) =: CK1 ,
e−αL2

‖wαL2
‖L1(µ)

≤ exp(αCL2(1 +K)) =: CK2
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Lemma 9 Let L1, L2 satisfy Assumption 1 and µ, µ̂ ∈ P2(Rd) with
∫
|θ|4dµ,

∫
|θ̂|4dµ̂ ≤ K. Then

for k = 1, 2, the following stability estimates hold

|mα
Lk

[µ]−mα
Lk

[µ̂]| ≤ c0,kW2(µ, µ̂),

with constants c0,k > 0 depending only on α,C∇Lk and K.

Proof By the assumption (10c), we know that the objective functions Lk is Lipschitz, i.e.

|Lk(θ)− Lk(θ̂)| ≤M∇Lk |θ − θ̂|

Then the proof follows (Carrillo et al., 2018, Lemma 3.2).

Now we are ready to prove the Lipschitz property of the consensus operator mα
Lk

[ν] stated in
Lemma 2.

Lemma 2 Let objective functions L1, L2 satisfy Assumption 1 and let ν1, ν2 ∈ C([0, T ],P2(Rd)) be
such that supt∈[0,T ]

∫
|θ|4dν1

t ≤ K, supt∈[0,T ]

∫
|θ|4dν2

t ≤ K. Let us denote by L1, L2 the supremum

of each of the loss functions. Let w1, w2 > 0 be such that w1 + w2 = 1, and let ν := w1ν
1 + w2ν

2.
Then, for all s, t ∈ (0, T ), the following stability estimates hold∣∣mα

Lk
[νt]−mα

Lk
[νs]
∣∣ ≤ C (√w1W2

(
ν1
t , ν

1
s

)
+
√
w2W2

(
ν2
t , ν

2
s

))
, (29)

for k = 1, 2 and for a constant C that depends only on α,C∇Lk and K.

Proof By Lemma 9, we have

|mα
Lk

[νt]−mα
Lk

[νs]| ≤ c0,kW2(νt, νs). (58)

On the other hand, we know that

W2(νt, νs) =

(
inf

π∈Γ(νt,νs)

∫
Rd×Rd

|θ − θ̂|2π(dθ, dθ̂)

)1/2

≤

 inf
π1∈Γ(ν1t ,ν

1
s ),

π2∈Γ(ν2t ,ν
2
s )

∫
Rd×Rd

|θ − θ̂|2(w1π1 + w2π2)(dθ, dθ̂)


1/2

=

(
w1 inf

π1∈Γ(ν1t ,ν
1
s )

∫
Rd×Rd

|θ − θ̂|2π1(dθ, dθ̂) + w2 inf
π2∈Γ(ν2t ,ν

2
s )

∫
Rd×Rd

|θ − θ̂|2π2(dθ, dθ̂)

)1/2

≤
√
w1W2(ν1

t , ν
1
s ) +

√
w2W2(ν2

t , ν
2
s )

(59)
We conclude the proof by combining inequalities (58) and (59).

B.2 Loss Functions with Quadratic Growth at Infinity

In this section, we will prove the Theorem 2 for the case that the objective functions have quadratic
growth at infinity, i.e. there exist constants M > 0 and cqk > 0 such that Lk(θ)− Lk ≥ cqk |θ|2 for
all |θ| ≥M .
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Carrillo, Garćıa Trillos, Li and Zhu

Lemma 10 Let L1, L2 satisfy Assumption 1 and have quadratic growth at infinity, and µ ∈ P2(Rd).
Then for k = 1, 2 ∫

|θ|2dηαk ≤ bk,1 + bk,2

∫
|θ|2dµ, ηαk =

wαLkµ

‖wαLk‖L1(µ)
,

with constants

bk,1 := M2 + bk,2, bk,2 = 2
CLk
Cqk

(
1 +

1

αCqkM
2

)
.

Proof [Proof of Theorem 2] Here we provide the proof for the case of quadratic growth at infinity.
Since steps 1, 2 and 4 remain the same, we only show step 3.
Step 3: Let (u1, u2) ∈ C([0, T ],Rd) × C([0, T ],Rd) satisfy (u1, u2) = τT (u1, u2) for τ ∈ [0, 1]. In
particular, there exists ν1, ν2 ∈ C([0, T ],P2(Rd)) satisfying (31a) and (31b) respectively such that
(u1, u2) = τ(mα

L1
[ν],mα

L2
[ν]), where ν = w1ν1 +w2ν2. From Lemma 10 and Jensen’s inequality, we

have

|u1
t |2 = τ2|mα

L1
[νt]|2 ≤ τ2

(
b1,1 + b1,2

∫
|θ|2dνt

)
≤ τ2

[
b1,1 + b1,2

(
w1

∫
|θ|2dν1

t + w2

∫
|θ|2
)
dν2
t

]
.

(60)
Therefore, a similar computation of the second moment estimate as in bounded case gives

d

dt

∫
|θ|2dν1

t ≤ (dσ2
1 − 2λ1 + |γ|+ λ2)

∫
|θ|2dν1

t + (dσ2
1 + |γ|)|u1

t |2 + (λ2 + dσ2
2)C2

∇L1

≤ (dσ2
1 + |γ|+ λ2)(1 + b1,2)

∫
|θ|2dν1

t + (dσ2
1 + |γ|+ λ2)b1,2

∫
|θ|2dν2

t

+ (dσ2
1 + |γ|+ λ2)b1,1 + (λ2 + dσ2

2)C2
∇L1

.

Similarly, we have

d

dt

∫
|θ|2dν2

t ≤ (dσ2
1 + |γ|+ λ2)b2,2

∫
|θ|2dν1

t + (dσ2
1 + |γ|+ λ2)(1 + b2,2)

∫
|θ|2dν2

t

+ (dσ2
1 + |γ|+ λ2)b2,1 + (λ2 + dσ2

2)C2
∇L2

.

Adding above two inequalities gives

d

dt

(∫
|θ|2dν1

t +

∫
|θ|2dν2

t

)
≤ C1

(∫
|θ|2dν1

t +

∫
|θ|2dν2

t

)
+ C2.

Then the Grönwall’s inequality yields∫
|θ|2dν1

t +

∫
|θ|2dν2

t ≤ exp(C1t)

(∫
|θ|2dν1

t +

∫
|θ|2dν2

t

)
+
C2

C1

(
exp(C1t)− 1

)
.

Consequently, we know that ‖u1‖∞ is bounded via (60). Similar bound also hold for ‖u2‖∞. Then
we conclude the proof by the argument as in Step 3 for the bounded case.
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Appendix C. Auxiliary Lemma for Large-time Behavior of the Mean-field
Particle System

In this section, we prove Lemmas 3, 4 and 5 that we used to derive the convergence to the global
minimizers in the mean-field law as stated in Section 4.

Lemma 3 (Evolution of energy functional V) For k = 1, 2, let objective functions Lk : Rd →
R and fix α, λ1, λ2, σ1, σ2 > 0. Moreover, let T > 0 and ρ1, ρ2 ∈ C([0, T ],P4(R)) form the weak
solution to the Fokker-Planck equations (8a) and (8b). Then the functional V(ρkt ) satisfies

d

dt
V(ρkt ) ≤ −

(
2λ1 − 2λ2M − dσ2

1 − dσ2
2M

2
)
V(ρkt )

+
√

2(λ1 + dσ2
1)|mα

Lk
[ρt]− θ∗k|

√
V(ρkt ) +

dσ2
1

2
|mα

Lk
[ρkt ]− θ∗k|2,

with M := max{M∇L1 ,M∇L2}.

Proof Since test function φ(θ) := 1
2 |θ − θ∗|2 is in C2

∗(Rd) and ρ1 is the weak solution of the
Fokker-Planck equation (8a) (see Remark 1), then the evolution of V(ρ1

t ) reads

d

dt
V(ρ1

t ) =
1

2

d

dt

∫
|θ − θ∗1|2dρ1

t (θ)

= −λ1

∫
(θ −mα

L1
[ρt]) · (θ − θ∗1)dρ1

t − λ2

∫
∇L1(θ) · (θ − θ∗1)dρ1

t

+
dσ2

1

2

∫
|θ −mα

L1
[ρt]|2dρ1

t +
dσ2

2

2

∫
|∇L1(θ)|2dρ1

t

=: T1 + T2 + T3 + T4.

Expanding the right-hand side of the inner product in the integral of T1 by subtracting and adding
θ∗1 yields

T1 = −λ
∫
|θ − θ∗1|2dρ1

t (θ)− λ
∫

(θ∗1 −mα
L1

[ρt]) · (θ − θ∗1)dρ1
t (θ)

≤ −2λV(ρ1
t ) + λ|E[ρ1

t ]− θ∗1||mα
L1

[ρt]− θ∗1|,
(61)

where the last step is due to Cauchy-Schwarz inequality. Also note that

|E[ρ1
t ]− θ∗1| ≤

∫
|θ − θ∗1|dρ1

t (θ) ≤

√∫
|θ − θ∗1|2dρ1

t (θ) =
√

2V(ρ1
t ). (62)

Hence, we get
T1 ≤ −2λ1V(ρ1

t ) + λ1

√
2V(ρt)|mα

L1
[ρt]− θ∗1|

For term T2, by the fact ∇L1(θ∗1) = 0 and Assumption (10b) one can compute

T2 = −λ2

∫
∇L1(θ) · (θ − θ∗1)dρ1

t ≤ λ2M∇L1

∫
|θ − θ∗1|2dρ1

t = 2λ2M∇L1V(ρ1
t ).

For term T3, again by subtracting and adding θ∗1, we have

T2 =
dσ2

2

∫
|θ −mα

L1
[ρt]|2dρ1

t (θ)

=
dσ2

2

(∫
|θ − θ∗1|2dρ1

t (θ)− 2

∫
(θ − θ∗1) · (mα

L1
[ρt]− θ∗1)dρ1

t (θ) + |mα
L1

[ρt]− θ∗1|2
)

≤ dσ2

(
V(ρ1

t ) + |mα
L1

[ρt]− θ∗1|
∫
|θ − θ∗1|dρ1

t (v) +
1

2
|mα

L1
[ρt]− θ∗1|2

)
,

(63)
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with Cauchy-Schwarz inequality being used in the last step. For term T4, again by ∇L1(θ∗1) = 0
and Assumption (10b) one can compute

T4 =
dσ2

2

2

∫
|∇L1(θ)|2dρ1

t (θ) ≤
dσ2

2

2

∫
M2
∇L1
|θ − θ∗1|2dρ1

t (θ) = dσ2
2M

2
∇L1
V(ρ1

t ).

Therefore, combining the estimations of T1, T2, T3 and T4, we get

d

dt
V(ρ1

t ) ≤ −
(
2λ1 − 2λ2M∇L1 − dσ2

1 − dσ2
2M

2
∇L1

)
V(ρ1

t )

+
√

2(λ1 + dσ2
1)|mα

L1
[ρt]− θ∗1|

√
V(ρ1

t ) +
dσ2

1

2
|mα

L1
[ρ1
t ]− θ∗1|2.

The computations for V(ρ2
t ) are similar and hence we get the upper bound as in the statement.

Lemma 4 (Quantitative Laplace principle) For k = 1, 2, denote Lk := infθ∈Rd Lk(θ). Let
ρ ∈ P(Rd) and fix α > 0. For any r > 0, we define Lkr := supθ∈Br(θ∗k) Lk(θ). Then, under

Assumption 2, for any r ∈ (0,min{R1
0, R

2
0}] and qk > 0 such that qk + Lkr − Lk ≤ Lk∞, we have

|mα
Lk

[ρ]− θ∗k| ≤
(qk + Lkr − Lk)νk

ηk
+

exp(−αqk)
ρ(Br(θ∗k))

∫
|θ − θ∗k|dρ(θ).

Proof The same as the proof of Proposition 21 in (Fornasier et al., 2024a).

Definition 2 (Mollifier) For k = 1, 2, r > 0, we define the mollifiers φkr : Rd → R by

φkr (θ) :=

{
exp

(
− r2

r2−|θ−θ∗k|2

)
, if ‖θ − θ∗k‖2 < r,

0, else
(64)

We have φkt (θ
∗
k) = 1, Im(φkt ) = [0, 1], supp(φkr ) = Br(θ

∗
k), φ

k
r ∈ C∞c (Rd) and

∇φkr (θ) = −2r2 θ − θ∗k
(r2 − |θ − θ∗k|2)2

φkr (θ),

∆φkr (θ) = 2r2

(
2(2|θ − θ∗k|2 − r2)|θ − θ∗k|2 − d(r2 − |θ − θ∗k|2)2

(r2 − |θ − θ∗k|2)4

)
φkr (θ).

Lemma 5 For k = 1, 2, let T > 0, r > 0, and fix parameters α, λ1, λ2, σ1, σ2 > 0. Assume
ρ1, ρ2 ∈ C([0, T ],P(Rd)) weakly solve the Fokker-Planck equations (8a) and (8b) respectively with
initial conditions ρ1

0, ρ
2
0 ∈ P(Rd). Furthermore, denote Bk := supt∈[0,T ] |mα

Lk
[ρt]− θ∗k|. Then for all

t ∈ [0, T ] we have

ρkt (Br(θ
∗
k)) ≥

( ∫
φkr (θ)dρ

k
0(θ)

)
exp

(
− (qlk + qgk)t

)
,

with the functions φ1
r and φ2

r as in (64) and

qlk := max

{
2λ1(
√
cr +Bk)

√
c

(1− c)2r
+

2σ2
1(cr2 +B2

k)(2c+ d)

(1− c)4r2
,

4λ2
1

(2c− 1)σ2
1

}
,

qgk := max

{
2λ2cM∇Lk

(1− c)2
+
σ2

2M
2
∇Lkc(2c+ d)

(1− c)4
,

4λ2
2

(2c− 1)σ2
2

}
,

where c ∈ (1
2 , 1) can be any constant that satisfies the inequality

(2c− 1)c ≥ d(1− c)2. (35)
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Proof Here we will prove the case for ρkt (Br(θ
∗
1)), the computation for the other one is similar.

By the properties of the mollifier in Definition 2 we have 0 ≤ φ1
r(θ) ≤ 1 and supp(φ1

r) = Br(θ
∗
1).

This implies ρ1
t (Br(θ

∗
1)) = ρ1

t

(
{θ ∈ Rd : |θ − θ∗1| ≤ r}

)
≥
∫
φ1
r(θ)dρ

1
t (θ). Similar to the proof in

((Fornasier et al., 2024a; Riedl, 2023)), we will derive a lower bound for the right-hand side of this
inequality. Since ρ1 is the weak solution of (8a) and φ1

r ∈ C∞c (Rd), we have

d

dt

∫
φ1
r(θ)dρ

1
t (θ) =

∫ (
T1(θ) + T2(θ) + T3(θ) + T4(θ)

)
dρ1

t (θ),

with

T1(θ) := −λ1(θ −mα
L1

[ρt]) · ∇φ1
r(θ), T2(θ) := −λ2∇L1(θ) · ∇φ1

r(θ),

T3(θ) :=
σ2

1

2
|θ −mα

L1
[ρt]|2∆φ1

r(θ), T4(θ) :=
σ2

2

2
|∇L1(θ)|2∆φ1

r(θ).

From the proof in ((Fornasier et al., 2024a; Riedl, 2023)), we know that

T1(θ) + T3(θ) ≥ −ql1φ1
r(θ) for all θ ∈ Rd, (65)

where

ql1 := max

{
2λ1(
√
cr +B1)

√
c

(1− c)2r
+

2σ2
1(cr2 +B2

1)(2c+ d)

(1− c)4r2
,

4λ2
1

(2c− 1)σ2
1

}
.

Now we aim to show that T2(θ) + T4(θ) ≥ −qg1φ1
r(θ) holds for all θ ∈ Rd and some constants

qg1 > 0. Since the mollifier φ1
r and its first and second derivatives vanish outside of Ωr := {θ ∈ Rd :

|θ − θ∗1| < r} we can restrict our attention to the open ball Ωr. To achieve the lower bound over
Ωr, we introduce the subsets

K1 :=
{
θ ∈ Rd : |θ − θ∗1| >

√
cr
}
,

K2 :=

{
θ ∈ Rd : −λ2∇L1(θ) · (θ − θ∗1)(r2 − |θ − θ∗1|2)2 > (2c− 1)r2σ

2
2

2
|∇L1(θ)|2|θ − θ∗1|2

}
,

where c is the constant adhering to (35). We now decompose Ωr according to

Ωr = (Kc
1 ∩ Ωr) ∪ (K1 ∩Kc

2 ∩ Ωr) ∪ (K1 ∩K2 ∩ Ωr).

In the following we treat each of these three subsets respectively.
Subset Kc

1 ∩ Ωr: On this subset we have |θ − θ∗1| ≤
√
cr, then one can compute

T2(θ) = 2λ2r
2∇L1(θ) · (θ − θ∗1)

(r2 − |θ − θ∗1|2)2
φ1
r(θ)

≥ −2λ2r
2 M∇L1 |θ − θ∗1|2

(r2 − |θ − θ∗1|2)2
φ1
r(θ)

≥ −2λ2r
2 M∇L1cr

2

(1− c)2r4
φ1
r(θ)

=
−2cλ2M∇L1

(1− c)2
φ1
r(θ) =: −qg,1φ1

r(θ).
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For term T4, we deduce

T4(θ) =
σ2

2

2
|∇L1|22r2

(
2(2|θ − θ∗1|2 − r2)|θ − θ∗1|2 − d(r2 − |θ − θ∗1|2)2

(r2 − |θ − θ∗1|2)4

)
φ1
r(θ)

≤ −σ2
2M

2
∇L1
|θ − θ∗1|2r2

(
2c(2c− 1)r4 − d(1− c)2r4

(1− c)4r8

)
φ1
r(θ)

≤ −
σ2

2M
2
∇L1

c(2c+ d)

(1− c)4
φ1
r(θ) =: −qg,2φ1

r(θ).

Subset K1 ∩Kc
2 ∩ Ωr: By the definition of K1 and K2 we have |θ − θ∗1| >

√
cr and

−λ2∇L1(θ) · (θ − θ∗1)(r2 − |θ − θ∗1|2)2 ≤ (2c− 1)r2σ
2
2

2
|∇L1|2|θ − θ∗1|2,

respectively. Our goal now is to show that T2(θ) + T4(θ) ≥ 0 for all θ in this subset. We first
compute

T2(θ) + T4(θ)

2r2φ1
r(θ)

=
λ2∇L1(θ) · (θ − θ∗1)(r2 − |θ − θ∗1|2)2

(r2 − |θ − θ∗1|2)4

+
σ2

2

2
|∇L1|2

2(2|θ − θ∗1|2 − r2)|θ − θ∗1|2 − d(r2 − |θ − θ∗1|2)2

(r2 − |θ − θ∗1|2)4
.

Therefore, we have T2(θ) + T4(θ) ≥ 0 whenever we can show(
−λ2∇L1(θ) · (θ − θ∗1) +

dσ2
2

2
|∇L1|2

)
(r2 − |θ − θ∗1|2)2 ≤ σ2

2|∇L1|2
(
2|θ − θ∗1|2 − r2

)
|θ − θ∗1|2.

The first term on the left-hand side can be bounded above by

−λ2∇L1(θ) · (θ − θ∗1)(r2 − |θ − θ∗1|2)2 ≤ (2c− 1)r2σ
2
2

2
|∇L1(θ)|2|θ − θ∗1|2

≤ σ2
2

2
|∇L1|2(2|θ − θ∗1|2 − r2)|θ − θ∗1|2.

For the second term on the left-hand side, we can use d(1− c)2 ≤ (2c− 1)c to get

dσ2
2

2
|∇L1|2(r2 − |θ − θ∗1|2)2 ≤ dσ2

2

2
|∇L1|2(1− c)2r4

≤ σ2
2

2
|∇L1|2(2c− 1)r2cr2

≤ σ2
2

2
|∇L1|2(2|θ − θ∗1|2 − r2)|θ − θ∗1|2.

Hence we have T2(θ) + T4(θ) ≥ 0 uniformly on this subset.
Subset K1 ∩K2 ∩ Ωr: On this subset we have |θ − θ∗1| >

√
cr and

−λ2∇L1(θ) · (θ − θ∗1)(r2 − |θ − θ∗1|2)2 > (2c− 1)r2σ
2
2

2
|∇L1(θ)|2|θ − θ∗1|2.

42



Federated Consensus-Based Optimization

We first note that T2(θ) = 0 whenever λ2
2|∇L1(θ)|2 = 0 provided that λ2 > 0. On the other hand,

if λ2
2|∇L1(θ)|2 > 0, one can compute

T2(θ) = 2λ2r
2∇L1(θ) · (θ − θ∗1)

(r2 − |θ − θ∗1|2)2
φ1
r(θ)

≥ 2λ2r
2 −λ2(∇L1(θ) · (θ − θ∗1))2

(2c− 1)r2 σ
2
2
2 |∇L1(θ)|2|θ − θ∗1|2

φ1
r(θ)

≥ −2λ2
2r

2 |∇L1(θ)|2|θ − θ∗1|2

(2c− 1)r2 σ
2
2
2 |∇L1(θ)|2|θ − θ∗1|2

φ1
r(θ)

= − 4λ2
2

(2c− 1)σ2
2

φ1
r(θ) =: −qg,3φ1

r(θ).

For term T4, we deduce

T4(θ) =
σ2

2

2
|∇L1|22r2

(
2(2|θ − θ∗1|2 − r2)|θ − θ∗1|2 − d(r2 − |θ − θ∗1|2)2

(r2 − |θ − θ∗1|2)4

)
φ1
r(θ)

≥ σ2
2

2
|∇L1|22r2

(
2(2c− 1)r2cr2 − d(1− c)2r4

(r2 − |θ − θ∗1|2)4

)
φ1
r(θ)

=
σ2

2

2
|∇L1|22r2

(
[2(2c− 1)c− d(1− c)2]r4

(r2 − |θ − θ∗1|2)4

)
φ1
r(θ) ≥ 0,

provided c satisfies 2(2c− 1)c ≥ d(1− c)2.
Concluding the proof: From the above computations, one can obtain∫ (

T2(θ) + T4(θ)
)
dρ1

t (θ) =

∫
Kc

1∩Ωr

(
T2(θ) + T4(θ)

)︸ ︷︷ ︸
≥−(qg,1+qg,2)φ1r(θ)

dρ1
t (θ) +

∫
K1∩Kc

2∩Ωr

(
T2(θ) + T4(θ)

)︸ ︷︷ ︸
≥0

dρ1
t (θ)

+

∫
K1∩K2∩Ωr

(
T2(θ) + T4(θ)

)︸ ︷︷ ︸
−qg,3φ1r(θ)

dρ1
t (θ)

≥
∫
−qg1φ

1
r(θ)dρ

1
t (θ),

where

qg1 := max

{
qg,1 + qg,2, qg,3

}
= max

{
2λ2cM∇L1

(1− c)2
+
σ2

2M
2
∇L1

c(2c+ d)

(1− c)4
,

4λ2
2

(2c− 1)σ2
2

}
.

Combining above estimation with (65), we get

d

dt

∫
φ1
r(θ)dρ

1
t (θ) ≥ −(ql1 + qg1)

∫
φ1
r(θ)dρ

1
t (θ).

By applying Grönwall’s inequality and multiplying both sides (−1) gives∫
φ1
r(θ)dρ

1
t (θ) ≥

(∫
φ1
r(θ)dρ

1
0(θ)

)
exp

(
− (ql1 + qg1)t

)
. Hence, we conclude

ρ1
t (Br(θ

∗
1)) ≥

(∫
φ1
r(θ)dρ

1
0(θ)

)
exp

(
− (ql1 + qg1)t

)
.
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Appendix D. Auxiliary Lemmas for Large Time Behavior of Finite Particle
System

In this section, we present the detailed proof of the non-asymptotic mean-field approximation of
FedCBO system stated in Proposition 1. Before that, we first prove the auxiliary Lemma 6, which
ensures that all considered stochastic processes stay bounded with high probability.

Lemma 6 Let T̃ > 0, ρ0 := w1ρ
1
0 + w2ρ

2
0 ∈ P4(Rd) and let N = N1 + N2 ∈ N be fixed. More-

over, let {θ1,i1
t }

N1
i1=1, {θ

2,i2
t }

N2
i2=1 be the solution of the finite interacting particle system (4), and let

{θ̄1,i1
t }

N1
i1=1, {θ̄

2,i2
t }

N2
i2=1 denote independent copies of the solutions to the mean-field dynamics (4a)

and (4b), respectively. Then, under Assumption 1, for any M > 0 we have

P(ΩM ) = P

 sup
t∈[0,T̃ ]

1

N

∑
k=1,2

Nk∑
ik=1

max

{∣∣∣θk,ikt (ω)
∣∣∣4 , ∣∣∣θ̄k,ikt (ω)

∣∣∣4} ≤M
 ≥ 1− 2CBound

M
, (49)

where CBound = CBound(λ1, λ2, σ1, σ2, T̃ , b11, b12, b21, b22) is a constant that is independent of N and
d. Here, b11, b12, b21 and b22 are problem-dependent constants defined in Lemma 10.

Proof Denote ρNt := 1
N

∑
k=1,2

∑Nk
ik=1 δθk,ikt

as the empirical measure associated to the processes

{(θ1,i1
t )t≥0}N1

i1=1, {(θ
2,i2
t )t≥0}N2

i2=1. Similarly, we let ρ̄Nt := 1
N

∑
k=1,2

∑Nk
ik=1 δθ̄k,ikt

to be the empirical

measure corresponding to the processes {(θ̄1,i1
t )t≥0}N1

i1=1, {(θ̄
2,i2
t )t≥0}N2

i2=1. By Markov’s inequality,
we have

P

 sup
t∈[0,T ]

1

N

∑
k=1,2

Nk∑
ik=1

max

{∣∣∣θk,ikt

∣∣∣4 , ∣∣∣θ̄k,ikt

∣∣∣4} > M



≤
E
[
supt∈[0,T ]

1
N

∑
k=1,2

∑Nk
ik=1 max

{∣∣∣θk,ikt

∣∣∣4 , ∣∣∣θ̄k,ikt

∣∣∣4}]
M

≤
E
[
supt∈[0,T ]

∫
|θ|4dρNt (θ)

]
+ E

[
supt∈[0,T ]

∫
|θ|4dρ̄Nt (θ)

]
M

In the following, we estimate the two terms in the numerator respectively. For k = 1, 2, ik ∈ [Nk]
one can compute that

E

[
sup
t∈[0,T ]

∣∣∣θk,ikt

∣∣∣4] . E
[∣∣∣θk,ik0

∣∣∣4]+ λ4
1E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(
θk,ikt −mα

Lk
[ρNt ]

)
dτ

∣∣∣∣4
]

+ λ4
2E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
∇Lk(θk,ikτ )dτ

∣∣∣∣4
]

+ σ4
1E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

∣∣∣θk,ikt −mα
Lk

[ρNt ]
∣∣∣ dBk,ik

t

∣∣∣∣4
]

+ σ4
2E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
∇Lk(θk,ikτ )dB̃k,ik

τ

∣∣∣∣4
]

(66)

By the regularity established in Lemma 7 and boundedness of |∇Lk(θ)| in Assumption 1, the last
two terms in the above inequalities are martingale, which is a direct consequence of (Oksendal,
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2013, Corollary 3.2.6). Then applying the Burkholder-Davis-Gurdy inequality yields

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

∣∣∣θk,ikt −mα
Lk

[ρNt ]
∣∣∣ dBk,ik

t

∣∣∣∣4
]
. E

[∫ T

0

∣∣∣θk,ikτ −mα
Lk

[ρNt ]
∣∣∣2 dτ]2

,

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
∇Lk(θk,ikτ )dB̃k,ik

τ

∣∣∣∣4
]
. E

[∫ T

0
C2
∇Lkdτ

]2

= T 2C4
∇Lk .

For the third term in the inequality (66), we again use Assumption 1 to get

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0
∇Lk(θk,ikτ )dτ

∣∣∣∣4
]
≤ T 4C4

∇Lk .

For the remaining terms, one may apply the same technique as in (Fornasier et al., 2022, Lemma 15)
and obtain

E

[
sup
t∈[0,T ]

∣∣∣θk,ikt

∣∣∣4] ≤ Ck (1 + E
∣∣∣θk,ik0

∣∣∣4 + E
[∫ T

0

(∣∣∣θk,ikτ

∣∣∣4 +

∫
|θ|4dρNτ (θ)

)
dτ

])
, (67)

with constants Ck = Ck (λ1, λ2, σ1, σ2, T, C∇Lk , b11, b12, b21, b22) for k = 1, 2. Averaging (67) over
k = 1, 2 and ik ∈ [Nk] yields the estimate

E

[
sup
t∈[0,T ]

∫
|θ|4dρNt (θ)

]
≤ C

(
1 + E

∫
|θ|4dρN0 (θ) + 2

∫ T

0
E sup
τ̂∈[0,τ ]

∫
|θ|4dρNτ̂ (θ)dτ

)
.

Then by Grönwall’s inequality, E
[
supt∈[0,T ]

∫
|θ|4dρNt (θ)

]
is bounded by a constant K that is

independent from number of particles N and dimension d. Similar arguments allow to show

E
[
supt∈[0,T ]

∫
|θ|4dρ̄Nt (θ)

]
≤ K. Then we conclude the proof by the Markov’s inequality.

We now present the proof of Proposition 1, which mainly follows the idea in (Fornasier et al.,
2022, Proposition 16).

Proposition 1 (Quantitative Mean-field Approximation) Under the same assumptions as

in Lemma 6, for k = 1, 2, if (θk,ikt )t≥0 and (θ̄k,ikt )t≥0 share the same initial data as well as the

Brownian motion paths (Bk,ik
t )t≥0, (B̃

k,ik
t )t≥0 for all ik ∈ [Nk], then we have a probabilistic mean-

field approximation of the form

max
k=1,2,
ik∈[Nk]

sup
t∈[0,T̃ ]

E
[∣∣∣θk,ikt − θ̄k,ikt

∣∣∣2 ∣∣∣∣ ΩM

]
≤ CMFA(N−1

1 +N−1
2 ), (50)

where CMFA := CMFA (α,CL1 , CL2 , C∇L1 , C∇L2 ,M,M2, b11, b12, b21, b22), andM2 is an upper bound
on the second moment of ρNt uniformly over time t ∈ [0, T̃ ].

Proof Let us define the cutoff process

IM (t) :=

 1, if 1
N

∑
k=1,2

∑Nk
ik=1 max

{∣∣∣θk,ikτ

∣∣∣4 , ∣∣∣θ̄k,ikτ

∣∣∣4} ≤M for all τ ∈ [0, t],

0, else,
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which is adapted to the natural filtration of the underlying Brownian motions and has the property
IM (t) = IM (t)IM (τ) for all τ ∈ [0, t]. By Jensen’s inequality and Itô isometry, we have for k = 1, 2,
ik ∈ [Nk],

E
[∣∣∣θk,ikt − θ̄k,ikt

∣∣∣2 IM (t)

]
= E

[ ∣∣∣∣λ1

∫ t

0

((
θk,ikτ −mα

Lk
[ρNτ ]

)
−
(
θ̄k,ikτ −mα

Lk
[ρτ ]
))

dτ

+ λ2

∫ t

0

(
∇Lk(θk,ikτ )−∇Lk(θ̄k,ikτ )

)
dτ

+ σ1

∫ t

0

((
θk,ikτ −mα

Lk
[ρNτ ]

)
−
(
θ̄k,ikτ −mα

Lk
[ρτ ]
))

dBk,ik
τ

+ σ2

∫ t

0

(
∇Lk(θk,ikτ )−∇Lk(θ̄k,ikτ )

)
dB̃k,ik

τ

∣∣∣∣2IM (t)

]
. Ck

∫ t

0
E
[∣∣∣θk,ikτ − θ̄k,ikτ

∣∣∣2 +
∣∣mα

Lk
[ρNτ ]−mα

Lk
[ρτ ]
∣∣2 IM (τ)dτ

]
,

(68)

where Ck :=
(
λ2

1 + λ2
2M

2
∇Lk

)
T + σ2

1 + σ2
2. In what follows, let us denote the empirical measure of

the processes {θ̄1,i1
τ }, {θ̄2,i2

τ } by ρ̄Nτ . Then by the same arguments as in the proofs of Lemma 2 and
(Fornasier et al., 2021, Lemma 3.1), we have for k = 1, 2

E
[∣∣mα

Lk
[ρNτ ]−mα

Lk
[ρτ ]
∣∣2 IM (τ)

]
. E

[∣∣mα
Lk

[ρNτ ]−mα
Lk

[ρ̄Nτ ]
∣∣2 IM (τ)

]
+ E

[∣∣mα
Lk

[ρ̄Nτ ]−mα
Lk

[ρτ ]
∣∣2 IM (τ)

]
≤ C̃k

 max
k=1,2,
ik∈[Nk]

E
[∣∣∣θk,ikτ − θ̄k,ikτ

∣∣∣2 IM (τ)

]
+

1

N1
+

1

N2

 ,

(69)

with constants C̃k = C̃k (α,CL1 , CL2 , C∇L1 , C∇L2 ,M,M2, b11, b12, b21, b22), whereM2 is a constant
upper bound of the second moment of ρNt uniformly in time t ∈ [0, T ]. Note that 1ΩM ≤ IM (t)
pointwise and for all t ∈ [0, T ]. Then by plugging the above estimates into (68) and taking the
maximum over k = 1, 2, ik ∈ [Nk], and further applying the Grönwall’s inequality, we obtain the
non-asymptotic mean-field approximation result in (50).

Appendix E. Additional Experiments

In this section, we present the results of an additional experiment where we compare the differences
in performance of the dynamics with an isotropic noise term as originally introduced in (4) versus
dynamics with an anisotropic noise term as proposed in (Carrillo et al., 2021). In particular, in
Algorithm 2, we add the noise term to the aggregation step of local agents in (22) to yield a modified
update rule: 6

θjn+1 ← θjn − λ1γ
(
θjn −mj

)
+ σ1

√
γ
∣∣θjn −mj

∣∣ zj , zj ∼ N (0, Id×d) (isotropic noise) (70)

θjn+1 ← θjn − λ1γ
(
θjn −mj

)
+ σ1

√
γ
(
θjn −mj

)
◦ zj , zj ∼ N (0, Id×d) (anisotropic noise)

(71)

6. We didn’t include the noise term B̃k,ik as introduced in (4) since we use stochastic gradient descent in the local
agent update in Algorithm 1, which already has added noise.
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Table 2: Test accuracy ± standard deviation % on rotated MNIST using FedCBO with different
noise terms (levels).

FedCBO (no noise) Isotropic (σ1 = 0.01) Isotropic (σ1 = 0.05) Anisotropic (σ1 = 0.01) Anisotropic (σ1 = 0.05)

96.51± 0.04 96.41± 0.02 10.49± 0.05 96.33± 0.01 96.34± 0.02

We follow the same experimental setting as described in Section 2.4, and use same hyperparameters
in FedCBO as before. We then vary the value of the hyperparameter σ1 in the noise term. We
present the results in Table 2. We can observe that 1) when the noise level is small (σ1 = 0.01), the
performance of FedCBO with or without noise is similar; 2) when the noise level is relatively large
(σ1 = 0.05), FedCBO with isotropic noise fails while the anisotropic version behaves as in the small
noise level case. This observation aligns with the findings in (Carrillo et al., 2021), as the impact
of noise terms on the algorithm’s performance is not significant when training a neural network on
the MNIST dataset.
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