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Abstract

Systemic bias with respect to gender and race is prevalent in datasets, making it chal-
lenging to train classification models that are accurate and alleviate bias. We propose
a unified method for alleviating bias in structured and unstructured data, based on a
novel optimization approach for optimally flipping outcome labels and training classifica-
tion models simultaneously. In the case of structured data, we introduce constraints on
selected objective measures of meritocracy, and present four case studies, demonstrating
that our approach often outperforms state-of the art methods in terms of fairness and
meritocracy. In the case of unstructured data, we present two case studies on image classi-
fication, demonstrating that our method outperforms state-of-the-art approaches in terms
of fairness. Moreover, we note that the decrease in accuracy over the nominal model is
3.31% on structured data and 0.65% on unstructured data. Finally, we leverage Optimal
Classification Trees (OCTs), to provide insights on which attributes of individuals lead to
flipping of their labels and apply it to interpret the flipping decisions on structured data.
Utilizing OCTs with auxiliary tabular data as well as Gradient-weighted Class Activation
Mapping (Grad-CAM), we provide insights on the flipping decisions for unstructured data.

Keywords: Fair Classification, Bias Alleviation, Mixed Integer Optimization

1. Introduction

In this paper, we consider bias with respect to a sensitive attribute, that can be gender,
race or ethnicity. Often classification tasks for structured data including college admissions
Wightman (1998) and hiring processes Qin et al. (2018) as well as for unstructured data
including face recognition Deng et al. (2019), exhibit a discrimination against people of
certain color or gender (Angwin et al. (2016), Wightman (1998)). One reason behind this
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is the presence of bias in the data. Historical data aggregated in such settings may be
biased against certain demographic groups due to systemic bias. Since the datasets used for
model training consist of historical data populated with choices made by people, systemic
bias may be concealed in them. Consequently, it has been shown that without appropriate
intervention during training or evaluation, classification models trained on such datasets
can be biased against certain groups of individuals (Angwin et al. (2016); Hardt et al.
(2016)). This is due to the fact that during the training process, bias present in the dataset
becomes reinforced into the model Bolukbasi et al. (2016). Thus, bias alleviation in machine
learning (ML) models has become an increasingly important concern, which we address in
this paper.

To address this problem, simple remedies for structured data, such as ignoring the
protected attributes, e.g., gender, race, ethnicity, etc., are largely ineffective due to other
features being correlated with them Pedreshi et al. (2008). Remedies for unstructured data
include the use of boosting methods to replace a deployed deep learning model with a new
one that has equal accuracy in different subpopulations of the sensitive attribute Kim et al.
(2019), however this approach cannot ensure an equal prediction treatment of individuals
in different subpopulations. The given data can be inherently biased in possibly complex
ways, making it difficult to alleviate bias. Moreover, it is both unethical and illegal to design
a system that makes decisions entirely on the basis of protected demographic attributes,
see (Peffer (2009), Barocas and Selbst (2016)) for more details about disparate treatment.
Consequently, classification models that are actively trained on such datasets consisting of
both human-made and model-made choices can progressively become more biased over time
through feedback loops leading to amplified bias against a certain subpopulation. Such
feedback loops have been observed for structured data, in predictive policing Lila et al.
(2019) and credit markets, while the problem of disparity amplification is a possibility in
any deployed machine learning model that is, trained on historical data, either structured
or unstructured. Therefore, it is critical for any ML model to actively identify and alleviate
systemic biases, improving demographic diversity in predicted outcomes.

In the case of structured data, it is important to alleviate bias, while keeping a merito-
cratic decision making procedure. More precisely, we define meritocracy as the practice of
selecting people, based on achievement. A desired classification model for structured data,
would make fair predictions among the classes of the sensitive attribute, while respecting
meritocracy. In our approach, we take both considerations into account when training a
classification model on structured data.

To this end, we propose a unified method for improving fairness in structured and
unstructured data, leveraging a novel optimization formulation to optimally flip outcome
labels, while training classifiers. In the case of structured data, we incorporate additional
constraints on selected objective measures of meritocracy. Finally, utilizing OCTs Bertsimas
and Dunn (2017) and Grad-CAM Selvaraju et al. (2017), we provide insights on attributes
of individuals that lead to flipping of their labels.

Related Work

The literature on fairness in classification and bias alleviation can be categorized into
three main approaches: Pre-processing methods that change the data before training,
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in-processing methods that add constraints or change the objective during training and
post-processing methods that adjust the predictions of the classifier after training.

Pre-processing methods: This approach of bias alleviation involves pre-processing
the training data. (Calders et al. (2009); Kamiran and Calders (2012); Zliobaite et al.
(2011)) introduced several preprocessing techniques for improving fairness in structured
data. First, they proposed removing the sensitive attribute and other correlated attributes.
Further, they suggested flipping some of the training labels, as decided by a ranker. They
also proposed sampling methods, that divide the training data in subgroups and then over-
sample / under-sample them. Moreover, Feldman (2015) proposed modifying attributes
in the data in order to make them independent of the sensitive attribute. Another body
of work involves learning fair data representations. In the case of structured data, Zemel
et al. (2013) formulated an optimization problem for learning fair data representations,
leveraging clusters that do not carry information about the sensitive attribute. In the
case of unstructured data, Louizos et al. (2016) and Quadrianto et al. (2019) proposed
autoencoding neural networks for learning fair data representations and Ramaswamy et al.
(2021) leveraged generative models to obtain perturbed data and then augment the training
set in order to achieve a similar data distribution among the classes of the sensitive attribute.

In-processing methods: This approach of bias alleviation involves modifying the
training of a classifier. Much work for structured data is focused on adding fairness con-
straints or penalties during the training of classifiers in order to improve the overall fairness.
Goh et al. (2016) and Zafar et al. (2017) formulated the fairness requirements as linear con-
straints, which then included in empirical loss minimization for Logistic Regression (LR)
and Support Vector Machines (SVM), resulting in convex optimization problems. Moreover
(Kearns et al. (2018); Agarwal et al. (2018); Cotter et al. (2019)) extended the approach to
the nonconvex setting, by forming the Lagrangian, that is, adding the linear constraints in
the objective with Lagrange multipliers, and framing the constrained optimization problem
as a two-player game where the first player minimizes the model parameters and the second
maximizes the Lagrange multipliers. However, Cotter et al. (2019) showed that training
such models can be difficult and convergence to a solution might not be reached. Moreover,
Corbett-Davies et al. (2017) and Narasimhan (2018) derived algorithmic solutions for the
general empirical risk minimization problem subject to fairness constraints. Another body
of work refers to learning data representations that do not contain any information about
the sensitive attribute through adversarial training. In this case a min-max optimization
problem is formulated by maximizing total accuracy while minimizing the ability of a dis-
criminator to predict the sensitive attribute. Beutel et al. (2017) applied this approach on
structured data, (Edwards and Storkey (2016); Wang et al. (2022)) applied it on unstruc-
tured data and Zhang et al. (2018) applied it on both. Other works include adding penalties
in the objective function to achieve various forms of fairness, refer to (Donini et al. (2018);
Komiyama et al. (2018)) for linear models and kernel methods, respectively. Finally, Kami-
ran and Calders (2012) proposed adding weights to the training data during the training
of a classifier in order to mitigate bias and Hashimoto et al. (2018) incorporated Distribu-
tionally Robust Optimization (DRO) in the training of a classifier, by minimizing the worst
case empirical risk within an appropriately constructed uncertainty set, applicable to both
structured and unstructured data.
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Post-processing methods: This approach of bias alleviation involves calibrating the
output of a trained classifier, which applies to both structured and unstructured data. Hardt
et al. (2016) formulated an optimization problem to achieve this, with equality constraints
on the true/false positive rates. Furthermore, Pleiss et al. (2017) showed that calibration of
the outputs after training can lead to models with a poor accuracy trade-off and also demon-
strated that a deterministic solution is only compatible with a single fairness constraint and
thus cannot be applied to a group of fairness constraints. In certain special cases, Wood-
worth et al. (2017) showed that post-processing the outputs of a classifier can be provably
suboptimal and in doing so, the resulting classifiers are incompatible with other notions of
fairness (Chouldechova (2017); Kleinberg et al. (2016)). Finally, Lohia et al. (2019) pro-
posed modifying the sensitive attribute labels in the test set, in order to improve fairness,
utilizing a bias score, and Kim et al. (2019) proposed modifying the predicted labels in the
test set, utilizing boosted models on top of trained classifiers.

We note that methods that simply remove the sensitive attribute and related attributes
from the training data or under-sample the training data in order to alleviate bias, can
worsen the accuracy of the classifier significantly, while not alleviate bias due to chain of
correlations with other unobserved attributes, see Calders et al. (2013). On the other hand,
in our method we do not throw away data and thus obtain a highly accurate classifier.
Moreover, the pre-processing method by Calders et al. (2009), which consists of flipping
some of the labels as decided by a ranker, depends heavily on the model utilized as the
ranker and can carry out any error it might have. Krasanakis et al. (2018) mentioned that
certain data can cause certain biases to different types of classifiers. This cannot be captured
by Calders et al. (2009), since the label massaging technique is independent of the model
used for the downstream classification task. Krasanakis et al. (2018) further mentioned
that it could be more informative to directly observe the effect of biases on the classifier
and suitably perform adjustments while training, which is exactly the scope of our method.
More precisely, our approach is incorporated in the training of any classifier, for which it
identifies the best label flips in order to alleviate bias. We formulate a min-min optimization
problem to flip a subset of labels and simultaneously optimize for the parameters of the
classification model. Our method is applicable as long as the training data are biased. We
remark that another important difference between our approach and the method by Calders
et al. (2009) is that in our case we take meritocracy into account. Finally, we note that
the label flips from our method only affect the learning of the model parameters and not
the decision making. Once the model parameters are learned, they can be used to obtain
predictions in the test set, without flipping any labels at that time.

We note that apart from fairness, our approach can also improve out of sample accuracy
in certain cases, depending on the amount of bias in the test data. More precisely, if the
test data are less biased than the training data, then both fairness and accuracy can be
improved, whereas if the test data are at least as biased as the training data we can improve
fairness while worsening accuracy, see Wick et al. (2019) for more details.

In summary, our method incorporates the label massaging idea from Calders et al. (2009)
in the training of any classifier, allowing us to find the optimal label flips for that classi-
fication model. To achieve this, we introduce additional binary variables during training
and leverage alternating optimization. In this way, we are able to alleviate bias while not
suffer from the shortcomings of the label massaging technique from Calders et al. (2009).

4



Interpretable algorithmic fairness in structured and unstructured data

Our approach is computationally efficient, and can be applied to a wide class of ML models
trained by stochastic gradient descent, in both structured and unstructured data.

Contributions

Our main contributions can be summarized as follows:

1. We propose a novel optimization approach based on simultaneously optimally flipping
labels and training classification models that alleviate systemic bias, that applies to
both structured and unstructured data. The formulation is very generic and compu-
tationally efficient, leveraging stochastic projected gradient descent. The projection
problem is a mixed integer linear optimization (MILO) problem with binary variables
equal to the size of training data and therefore it is practically solvable.

2. We apply the proposed framework to structured data, for tabular data classification.
We introduce constraints on selected objective measures of meritocracy to restrict
distributional differences among datasets with flipped and non-flipped labels. Further,
we present case studies on four real-world datasets, the Law School Admission Council
(LSAC) dataset, the Crime dataset, the Correctional Offender Management Profiling
for Alternative Sanctions (COMPAS) dataset and the German Credit dataset. We
demonstrate that our method often outperforms state-of-the-art approaches in terms
of fairness and meritocracy.

3. We apply the proposed framework to unstructured data, for image data classification.
We present case studies on two widely used datasets for image classification, Celeb-
Faces Attributes (CelebA) and Labeled Faces in the Wild (LFW), demonstrating that
our approach outperforms state-of-the-art methods in terms of fairness.

4. We utilize Optimal Classification Trees (OCTs) and Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) to provide insights on which attributes lead to flipping of
labels, and to help make changes in the current classification processes in a manner
understandable by human decision makers. In the case of structured data, we illus-
trate that the label flips from our method are intuitive and further that our method
follows a more meritocratic decision making procedure than the method by Calders
et al. (2009). Moreover, in the case of unstructured data, we show that the label flips
from our method are also intuitive.

The rest of the paper is structured as follows: In Section 2, we illustrate the building
blocks of our method, in Section 3, we define the fairness metrics used for evaluation, in
Section 4, we present our numerical results for structured and unstructured data classifica-
tion, in Section 5, we provide a qualitative analysis of our flipping decisions, in Section 6 we
provide a discussion of our method, and finally, we summarize our key findings in Section
7.

The notation that we use is as follows: We use bold faced characters such as x to
represent vectors and bold faced capital letters such as X to represent matrices. We define

[n] = {1, . . . , n}. The ‖·‖2 norm of a vector refers to ‖x‖2 =
√∑n

i=1 x
2
i and the ‖·‖1 norm
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of a vector refers to ‖x‖1 =
∑n

i=1 |xi|. Finally, we note that throughout the paper we say
that a problem is practically solvable if it can be solved for most real-world datasets.

2. Framework

2.1 Method

We assume that we have training data {xi, yi}ni=1, where xi ∈ X and can be either structured
or unstructured data and yi ∈ Y = {−1, 1}. Our goal is to learn a classifier parametrized by
θ ∈ Θ, that minimizes the empirical loss over the training data. Assuming a loss function
`(y,x,θ), the problem can be formulated as follows:

θ̂ = argmin
θ∈Θ

1

n

n∑
i=1

`(yi,xi,θ). (1)

Apart from being accurate, we also want the classifier to be fair in terms of a sensitive
attribute. For this purpose we can flip some of the labels of the training data, while
optimizing the model parameters. We introduce binary variables zi ∈ {0, 1}, i ∈ [n] for
deciding whether the label for the i-th observation is to be flipped (zi = 1) or not (zi = 0).
If the original label is yi ∈ {−1, 1}, then the modified label would be ỹi = yi(1− 2zi). Let
S denote the binary sensitive attribute and S1,S2 ⊆ [n] denote the subset of training data
belonging to each class, with |S1| = n1, |S2| = n2 and n1 + n2 = n. Let p1, p2 denote the
number of positively labeled observations in each class of the sensitive attribute. Let τ1, τ2

denote the proportion of labels that are flipped in S1 and S2, respectively. We require that
z ∈ Zτ1,τ2 , where

Zτ1,τ2 =

z ∈ {0, 1}n :
∑
i∈S1

zi = dτ1 · n1e,
∑
i∈S2

zi = dτ2 · n2e

 .

Recall that a reason for which a classifier predicts a positive label more often in one class of
the sensitive attribute than the other, is a higher rate of positive observations in that class.
Therefore, we can alleviate bias by equalizing the rate of positive observations among the
classes of the sensitive attribute. Instead of enforcing it as a hard constraint which can be
too restrictive and possibly decrease accuracy and meritocracy significantly, we add it as
a soft constraint with a tolerance ε. We note that in the case of multiple or multi-valued
sensitive attributes, equalizing the positive rates among groups might not be possible, see
Section 2.4. Without loss of generality, we assume that the rate of positive observations
among the two classes is greater in class 1, that is, p1/n1 > p2/n2. Since our objective is
to decrease the difference between the rates of positive observations, we decrease the rate
of positive observations in S1 by τ1 and increase it in S2 by τ2. Further, we require that
the total ratio of positive labels in the dataset remains unchanged after label flipping, that
is, the number of labels flipped among the two subgroups is the same. Therefore, we can
derive the following two equations for computing τ1 and τ2:(

p1

n1
− τ1

)
−
(
p2

n2
+ τ2

)
= ε, τ2n2 = τ1n1. (2)
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After solving the equations we obtain the following:

τ1 =
n2p1 − p2n1 − n1n2ε

n1(n1 + n2)
,

τ2 =
n2p1 − p2n1 − n1n2ε

n2(n1 + n2)
.

(3)

We train a classifier on a modified dataset (through label flipping) by solving a “min-
min” optimization problem that decides which labels to flip, while learning the model pa-
rameters. The problem is formulated as follows:

θ̂ = argmin
θ∈Θ

min
z∈Zτ1,τ2

1

n

n∑
i=1

`(yi(1− 2zi),xi,θ). (4)

We note that with the proposed training of a classifier through label flipping, we aim to
improve the out of sample demographic parity, see Section 3 for a definition, among the
groups of the sensitive attribute.

Problem (4) can be solved efficiently with projected stochastic gradient descent, by
alternating between updating the variables θ and z, while also projecting the latter in the
set Zτ1,τ2 . Let α, β denote the learning rate for the model parameters and binary variables,
respectively. Let f denote the objective function of Problem (4). For a batch of data
C = {xi, yi}mi=1, we have the following update:

θ̃ ←− θ − α∇Cf(θ),

z̃C ←− zC − β∇f(zC).

Observe that after each batch update z will no longer be binary at the batch coordinates
and as a result at the end of an epoch z̃ /∈ Zτ1,τ2 . In order to satisfy the constraints we can
project it in the set Zτ1,τ2 by solving the following optimization problem:

ProjZτ1,τ2 (z̃) = min
z

‖z̃ − z‖1

s.t.
∑
i∈S1

zi = dτ1 · n1e,∑
i∈S2

zi = dτ2 · n2e,

zi ∈ {0, 1}.

(5)

We measure distance with the `1 norm and thus obtain a MILO. We remark that in the
period 1991–2015, algorithmic advances in MIO coupled with hardware improvements have
resulted in an astonishing 450 billion factor speedup in solving MIO problems. As a result
Problem (5) is practically solvable for datasets with sizes in the thousands. The proposed
training of a classifier is summarized in pseudocode in Algorithm 1. The index t iterates
over the epochs and Ct denotes the partition of training data in batches at epoch t.
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Algorithm 1 Fair training of a classifier

Input: Training data (X,y), sensitive attribute S, initial guesses θ0, z0, parameters
T, α, β, ε.
Output: Optimal model parameters θK .

1: Compute τ1, τ2 from (3).
2: Initialize θ1, z1 = θ0, z0.
3: Initialize k = 1.
4: for t = 1 : T do
5: for c ∈ Ct do
6: θk+1 ←− θk − α∇cf(θk).
7: z̃t+1

c ←− ztc − β∇f(ztc).
8: end for
9: zt+1 = ProjZτ1,τ2 (z̃t+1).

10: end for
11: Return θK .

2.2 Convergence analysis and modifications

In this section, we examine cases where Algorithm 1 converges to a stationary point of
Problem (4). We make the following assumptions/adaptations:

Assumption 1 The output of the neural network is bounded, that is, |fθ(x)| ≤M .

Adaptation 1 The learning rate at each iteration of Algorithm 1 is obtained from the the
Armijo linesearch algorithm (see Bonettini et al. (2016)).

Adaptation 2 At Step 9 of Algorithm 1, z̃ is rounded to the closest integer before solving
the projection problem.

We note that Adaptation 2 is needed in order to obtain a linear objective in the pro-
jection problem and therefore optimize over the convex hull of the feasible region, that
is,

conv(Zτ1,τ2) =

0 ≤ z ≤ 1 :
∑
i∈S1

zi = dτ1 · n1e,
∑
i∈S2

zi = dτ2 · n2e

 .

Notice that in this case Algorithm 1 is a version of cyclic block coordinate descent with
gradient projections over a convex set for which Bonettini et al. (2016) have established
convergence to a stationary point, under Assumption 1 and Adaptation 1. We summarize
the result in Theorem 1.

Theorem 1 (Convergence to stationary point) Assume that Assumption 1 holds. Then,
Algorithm 1 with the logistic loss, that is, `(y, u) = log (1 + exp(−yu)), and Adaptations 1
and 2, converges to a stationary point for Problem (4).
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Proof We first show that the objective is L-smooth in terms of θ. Let `i(θ) = log(1 +
exp(−yifθ(xi))). We have the following

‖(∇θ`i(θ))‖ =

∥∥∥∥−yi∇θfθ(xi) exp(−yifθ(xi))

1 + exp(−yifθ(xi))

∥∥∥∥
=

∣∣∣∣ −yi
1 + exp(yifθ(xi))

∣∣∣∣ ‖∇θfθ(xi)‖

≤ L,

where L denotes an upper bound on the Lipschitz constant of the gradient of the neural
network. Thus, we obtain

‖∇θ`(θ)‖ =

∥∥∥∥∥
n∑
i=1

∇θ`i(θ)

∥∥∥∥∥ ≤
n∑
i=1

‖∇θ`i(θ)‖ ≤ nL.

We next show that the objective is L-smooth in terms of z. We have the following

|(∇z`(θ, z))i| =
∣∣∣∣2yifθ(xi) exp(−yi(1− 2zi)fθ(xi))

1 + exp(−yi(1− 2zi)fθ(xi))

∣∣∣∣
=

∣∣∣∣ 1

1 + exp(yi(1− 2zi)fθ(xi))

∣∣∣∣ |2yi| |fθ(xi)|

≤ 2M.

Therefore,

‖∇z`(z)‖2 =
n∑
i=1

(∇z`(z))2
i ≤

n∑
i=1

4M2 = n4M2 =⇒ ‖∇z`(z)‖ ≤ 2M
√
n.

Now observe that the constraints in the projection problem can be written as Az = b.
Since the indices of S1,S2 are disjoint, the vector containing the differences between the
first and second row of A has entries in {1,−1}. Therefore, from Corollary 3.2 Bertsimas
and Weismantel (2005) the matrix A is totally unimodular and as a result the polyhedron
is integral. Moreover, for binary z̃ the objective in the projection problem is∑

i:z̃i=1

(1− zi) +
∑
i:z̃i=0

zi.

Since the objective is linear and the polyhedron is integral, we can equivalently optimize
over conv(Zτ1,τ2), which is convex. Therefore, from Theorem 1 in Bonettini et al. (2016),
Algorithm 1 with the proposed modifications converges to a stationary point for Problem
(4).

Herrera et al. (2020) showed that L, an upper bound on the Lipschitz constant of the
gradient of the neural network, depends on many parameters including the maximum norm
of the network input, the number of neurons on each layer and the maximum norm of the
model parameters.
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Observe that in the case of structured data, when the classification model is either
logistic regression (LR) or support vector machines (SVM), Problem (4) admits an exact
mixed integer formulation, which we provide in Appendix B. In both cases the resulting
problems are mixed integer nonlinear optimization problems, which become computationally
intractable for datasets with sizes in the thousands, whereas Algorithm 1 is still applicable
in this case, as the numerical experiments on Section 4 illustrate. In addition, Algorithm 1
can also handle unstructured data, in which case the deployed model can be a deep neural
network.

Finally, we propose some additional constraints to ensure that the labels of the less
privileged class are being flipped from −1 to +1 and those of the more privileged class the
other way around. In order to ensure that the labels in S1 are flipped from +1 to −1, we
add the following constraint:∑

i∈S1

(yi + 1)/2 ≥
∑
i∈S1

(yi(1− 2zi) + 1)/2.

Similarly, in order to ensure that the labels in S2 are flipped from −1 to +1, we add the
following constraint: ∑

i∈S2

(yi + 1)/2 ≤
∑
i∈S2

(yi(1− 2zi) + 1)/2

In addition, we require that the total number of positive labels remains the same after
flipping, that is,

n∑
i=1

(yi + 1)/2 =
n∑
i=1

(yi(1− 2zi) + 1)/2.

Although with the additional linear constraints the feasible region in the projection problem
is no longer integral and therefore we do not have a convergence guarantee, Algorithm 1
exhibits very good performance in practise.

We note that the proposed framework for structured data has been utilized in a case
study for alleviating racial bias in patient discharge disposition classification (home vs.
post-acute care (PAC)), see Gebran et al. (2023). The results indicated that without the
proposed framework 21.5% of white patients and 12.1% of black patients were discharged
to PAC, while with the proposed framework 15.9% of both white and black patients had a
recommended discharge to PAC.

2.3 Meritocracy constraints for structured data

Often we want to achieve fairness in terms of the sensitive attribute, while also satisfy-
ing constraints on selected objective measures of meritocracy. For example, in the college
admission process, we want to increase the number of students admitted from the less repre-
sented class, while maintaining a satisfactory average GPA among the admitted students. In
practice, these two goals are in conflict and we observe an inherent trade-off between them.
Thus, we are in grave need of a systematic approach that alleviate bias without significantly
affecting meritocracy. We propose training a classifier based on Algorithm 1, while placing
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constraints on some selected objective measures of meritocracyM, for example undergrad-
uate GPA, LSAT scores, etc. For each covariate in M, the meritocracy constraints restrict
moments of the distribution of positive observations in the modified dataset to change at
most by a fraction δ (meritocracy tolerance) of the moments in the original dataset. Recall
that p1, p2 are the number of positive observations in S1 and S2, respectively. Let µj denote
the first moment of attribute j ∈M among the positive observations in the original dataset,
that is,

µj =

∑n
i=1 xij (yi + 1)

2(p1 + p2)
.

Note that since yi ∈ {−1, 1}, it follows that (yi + 1)/2 ∈ {0, 1}. Similarly, the first moment
of attribute j ∈M among positive observations in the modified dataset is given by

µ̃j =

∑n
i=1 xij (yi(1− 2zi) + 1)∑n
i=1 (yi(1− 2zi) + 1)

We constraint the first moment to change at most by a fraction δ of the initial value, that
is, |µ̃j − µj | ≤ δµj , which is formulated as follows:∣∣∣∣∑n

i=1 xij (yi(1− 2zi) + 1)∑n
i=1 (yi(1− 2zi) + 1)

− µj
∣∣∣∣ ≤ δµj , j ∈M.

In order to better match the distribution of positive labels in the original and modified
datasets, we also place constraints on the second moments of the merit covariates. Let
µ2
j denote the second moment of attribute j ∈ M among the positive observations in the

original dataset, that is,

µ2
j =

∑n
i=1 x

2
ij (yi + 1)

2(p1 + p2)

Similarly, the second moment of attribute j ∈ M among the positive observations in the
modified dataset is given by

µ̃2
j =

∑n
i=1 x

2
ij (yi(1− 2zi) + 1)∑n

i=1 (yi(1− 2zi) + 1)
.

We then require that the second moment can change at most by a fraction δ of the initial
value, that is, |µ̃2

j − µ2
j | ≤ δµ2

j , which is formulated as follows:∣∣∣∣∣
∑n

i=1 x
2
ij (yi(1− 2zi) + 1)∑n

i=1 (yi(1− 2zi) + 1)
− µ2

j

∣∣∣∣∣ ≤ δµ2
j , j ∈M.

Observe that both first and second moment constraints are linear in the binary variables
z, thus the projection problem remains a MILO. Note that it is also possible to impose
constraints on the Wasserstrein distance of the distributions of the merit covariates among
positive observations between the two datasets. However, in this case the projection problem
becomes much harder since the number of variables and constraints increases significantly,
see Appendix C for the entire formulation.
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2.4 Extensions to multiple and multi-valued sensitive attributes

In this section, we demonstrate how our method can be extended to the case of multiple
sensitive attributes as well as one multi-valued sensitive attribute.

Multiple sensitive attributes. We first assume that we have two sensitive attributes
S1,S2 and that we want to flip labels in order to simultaneously equalize the rate of positive
observations in the two classes of each sensitive attribute. Without loss of generality we
assume that class 1 is privileged in both sensitive attributes. Now, observe that we can
only flip labels for observations that are positive/negative for both sensitive attributes. Let∣∣S1

1 ∩ S2
1

∣∣ = n1,
∣∣S1

2 ∩ S2
2

∣∣ = n2. We obtain the following constraint set:

Zτ1,τ2 =

z ∈ {0, 1}n :
∑

i∈S11∩S21

zi = dτ1 · n1e,
∑

i∈S12∩S22

zi = dτ2 · n2e

 ,

where τ1, τ2 are obtained from equations (2). Note that n1 + n2 6= n. Observe that by
equalizing the ratio of positive observations between the more/less privileged groups we are
also equalizing them with respect to the other two subpopulations whose ratio of positive
observations is in between. In case we have k sensitive attributes, where k > 2, assuming
each one with class 1 as the privileged class, we obtain the following constraint set:

Zτ1,τ2 =

z ∈ {0, 1}n :
∑

i∈S11∩...Sk1

zi = dτ1 · n1e,
∑

i∈S12∩...Sk2

zi = dτ2 · n2e

 ,

where
∣∣S1

1 ∩ . . . ,Sk1
∣∣ = n1,

∣∣S1
2 ∩ . . .Sk2

∣∣ = n2. Observe that in this case we have fewer
options for label flipping and thus we might not be able to equalize the ratio of positive
observations among the classes of a sensitive attribute by as much as only considering that
attribute. However, we are able to equalize the ratio of positive observations among the
intersection of classes of different sensitive attributes.

Multi-valued sensitive attribute. We further treat the case of one multi-valued sensi-
tive attribute. We first assume that we have 3 classes, S1,S2,S3 where |S1| = n1, |S2| =
n2, |S3| = n3 and that 1 is the privileged class. We decrease the rate of positive observations
in class 1 by τ1 and increase it in classes 2, 3 by τ2, τ3. We obtain the following constraint
set:

Zτ1,τ2,τ3 =

z ∈ {0, 1}n :
∑
i∈S1

zi = dτ1 · n1e,
∑
i∈S2

zi = dτ2 · n2e,
∑
i∈S3

zi = dτ3 · n3e

 .

We assume that we want to equalize the rate of positive observations between class 2 and
class 1 by ε2 and those between class 3 and class 1 by ε3. We can determine τ1, τ2, τ3 from
the following equations: (

p1

n1
− τ1

)
−
(
p2

n2
+ τ2

)
= ε2,(

p1

n1
− τ1

)
−
(
p3

n3
+ τ3

)
= ε3,

τ1n1 = τ2n2 = τ3n3.

12
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Substituting the values τ1 = n2
n1
τ2, τ1 = n3

n1
τ3 in the first and second equation, respectively,

we obtain

τ2 =
n2p1 − n1p2 − n1n2ε2

n2(n1 + n2)
, τ3 =

n3p1 − n1p3 − n1n3ε3
n3(n1 + n3)

.

Moreover, we have the equations τ1 = n2
n1
τ2 = n3

n1
τ3 from which we can obtain ε3 = f(ε2),

where f(·) denotes a closed form expression. Observe that in this case we only have freedom
to choose one of the parameters ε2, ε3.

In the general case we assume that we have k classes, S1, . . . ,Sk, where |S1| = n1, . . . , |Sk| =
nk. Without loss of generality we assume that class 1 is the privileged class. We then de-
crease the rate of positive observations in class 1 by τ1 and increase it in class i by τi, i ≥ 2.
We obtain the following constraint set:

Zτ1,...,τk =

z ∈ {0, 1}n :
∑
i∈S1

zi = dτ1 · n1e, . . . ,
∑
i∈Sk

zi = dτk · nke

 .

We assume that we want to equalize the rate of positive observations between class i and
class 1 by εi, where i ≥ 2. We can determine τ1, . . . , τk from the following equations:(

p1

n1
− τ1

)
−
(
p2

n2
+ τ2

)
= ε2,(

p1

n1
− τ1

)
−
(
p3

n3
+ τ3

)
= ε3,

. . . ,(
p1

n1
− τ1

)
−
(
pk
nk

+ τk

)
= εk,

τ1n1 = τ2n2 = . . . = τknk.

In this case, we also have freedom to choose only one of the parameters εi, as Lemma 2
illustrates.

Lemma 2 (Choosing parameters for a multi-valued sensitive attribute) Assume we
have a multi-valued sensitive attribute S, with k classes S1, . . . ,Sk, where |S1| = n1, . . . , |Sk| =
nk and class 1 is the privileged class. When decreasing the rate of positive observations in
class 1 by τ1 and increasing it in class i, i ≥ 2, by τi in order to equalize the rate of positive
observations by εi, we only have freedom to choose one of the parameters ε2, . . . , εk.

Proof If we substitute the value τ1 = ni
n1
τi in the i-th equation we obtain the following

solutions:

τ2 =
n2p1 − n1p2 − n1n2ε2

n2(n1 + n2)
, . . . , τk =

nkp1 − n1pk − n1nkεk
nk(n1 + nk)

Moreover, from the additional equations τ1 = n2
n1
τ2 = . . . = nk

n1
τk, we obtain:

n2

n1
τ2 =

n3

n1
τ3 =⇒ ε3 = f3(ε2),

. . . ,
n2

n1
τ2 =

nk
n1
τk =⇒ εk = fk(ε2),
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where f3(·), . . . , fk(·) denote closed form expressions. Since the choice of ε2 was random, the
result holds for any other choice. We thus observe that it if we pick one of the parameters
εi, the other ones are obtained in closed form in order to satisfy the equations.

Finally, we note that many existing methods for alleviating bias do not extend to the
cases of multiple or multi-valued sensitive attributes, see Table 1 in Zafar et al. (2017), in
which case our approach makes a significant contribution.

3. Quantifying fairness and meritocracy

The main quantities used for evaluating fairness are Demographic Parity and Equalized
Odds, defined as follows (see Wang et al. (2022)):

Definition 3 (Demographic Parity) A classifier satisfies demographic parity if the value
of the sensitive attribute s cannot influence assigning a positive label, that is,

P(ŷ = 1 | s = 1) = P(ŷ = 1 | s = 2).

Definition 4 (Equalized Odds) A classifier satisfies equalized odds if the value of the
sensitive attribute s cannot influence assigning a positive label given y, that is,

P(ŷ = 1 | y, s = 1) = P(ŷ = 1 | y, s = 2), y ∈ {−1, 1}.

We measure demographic parity, with Statistical Parity Difference (SPD):

SPD = | P(ŷ = 1 | s = 1)− P(ŷ = 1 | s = 2) |,

and equalized odds with Difference in Equalized Odds (DEO):

DEO = | P(ŷ = 1, | y = y, s = 1)− P(ŷ = 1 | y = y, s = 2) |, y ∈ {−1, 1}.

For each class s of the sensitive attribute, the True Positive Rate (TPR) / False Positive
Rate (FPR), is defined as the probability of predicting a positive label when the true label
within s is positive / negative, that is,

TPRs = P(ŷ = 1 | y = 1, s = s), s ∈ {1, 2},
FPRs = P(ŷ = 1 | y = −1, s = s), s ∈ {1, 2}.

We also report the Equal Opportunity Difference (EOD), which measures the difference in
TPR among the classes of the sensitive attribute and it is defined as follows:

EOD = | TPR1 − TPR2 | .

Finally, for structured data {xi, yi}mi=1 and predicted labels (ŷi)
m
i=1, we define the merit

metric for attribute k, denoted as Merit(k), as the distributional distance of attribute k
among positive observations between the dataset with the true labels and that with the
predicted labels. We use the Wasserstrein distance with the `1 norm to measure distri-
butional distance. More precisely, let (α1, . . . , αm1) be the samples of covariate k among

14



Interpretable algorithmic fairness in structured and unstructured data

positive observations in the dataset with the true labels and (β1, . . . , βm2) be those in the
dataset with the predicted labels. Then, Merit(k) is defined as the distributional distance
between the two samples and can be obtained from the solution of a linear program:

Merit(k) = min
γ

m1∑
i=1

m2∑
j=1

γij |αi − βj |

s.t.

m2∑
j=1

γij = 1/m1, i ∈ [m1],

m1∑
i=1

γij = 1/m2, j ∈ [m2],

γij ≥ 0, i ∈ [m1], j ∈ [m2].

In the numerical experiments the merit attributes are chosen based on the intuition that
their value is indicative for the target label, which is further supported with a statistical
hypothesis test showing that the difference of the average value among positive and negative
observations in the training set is statistically significant.

4. Numerical experiments

Training Details. For tabular data classification, we use LR as the base architecture
and for image classification we use the ResNet-18 He et al. (2016) as the base architecture.
Throughout we use the the soft margin loss, along with the Adam optimizer Kingma and
Ba (2015) and a batch size of 64. We tune the learning rate and the number of epochs for
both our approach, the nominal model and the benchmarks (if applicable) on a validation
set based on the SPD metric. Throughout we fix ε = 1e-2 for our method. We initialize
Algorithm 1 with a random feasible solution z0 obtained as z0 = ProjZτ1,τ2 (0). All ex-

periments are conducted in Python using Pytorch Paszke et al. (2017) for model training
and Gurobi Optimization, Inc. (2017) (Gurobi) for solving Problem (5). We utilize the
train/validation/test splits from the Python package ethicML (2022) (EthicML) for struc-
tured data and those from Pytorch for unstructured data. All results are averaged over 10
different random seeds.

4.1 Structured data classification

Experiments setting We benchmark our method with the nominal model, that is, a
classification model without taking fairness into account, as well as state-of-the art methods
for improving fairness in classification. Those include the pre-processing label massaging
method from Calders et al. (2009), the Reweighting method from Kamiran and Calders
(2012), the in-processing methods from Zafar et al. (2017) and Agarwal et al. (2018) and
the more recently developed DRO-based method by Hashimoto et al. (2018). For our
approach, we try the values α, β ∈ {1e-3, 1e-2, 1e-1} and T ∈ {20, 50, 100}. Further, for
the benchmarks that include parameters, we tune them on a validation set. We apply the
method from Zafar et al. (2017) with fairness objective and accuracy constraints and vice
versa and report the best results in terms of out of sample SPD. For the parameter γ,
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which corresponds to the maximum amount allowed for loss reduction when optimizing for
fairness, we try the values {0.01, 0.1, 0.5, 1.0, 10}. For Hashimoto et al. (2018) we utilize
the same values for the learning rate and number of epochs as in our method. We utilize
EthicML for all benchmark implementations and the Python package scipy for computing
the Wasserstrein distance, that defines the merit metric. We evaluate all methods in terms
of accuracy, fairness and meritocracy on a held out test set. We refer to Appendix A for
the standard deviations. A value of 0.000 in the standard deviation indicates that it was
less than 10−4. Algorithm 1 is applied with meritocracy tolerance δ ∈ {0.1, 0.5}, as well
as without the meritocracy constraints (No Merit). The value δ = 0.1 indicates a strong
meritocracy requirement in the optimization, while the value δ = 0.5 indicates a moderate
meritocracy requirement.

We remark that the major contribution of our method is improving demographic parity,
while the other fairness measures used in the evaluations are for referential comparisons.
The methods by Calders et al. (2009) and Kamiran and Calders (2012) also optimize for
demographic parity. Further, Hashimoto et al. (2018) aims to improve the accuracy of the
classifier in the minority class of the sensitive attribute, while Zafar et al. (2017) aims to
improve the ratio of positive predictions among the classes of the sensitive attribute and as
a result optimizes demographic parity. Finally, the method by Agarwal et al. (2018) can
improve demographic parity and equalized odds.

4.1.1 LSAC dataset

The first dataset that we consider is the LSAC dataset. This dataset originates from a lon-
gitudinal bar passage study by Wightman (1998) from 1991-1997 investigating whether the
bar exam taken by law students in the US is biased against ethnic minorities. The dataset
contains anonymized historical information about the law students who participated in this
study resulting in total 20, 798 observations and 11 features including age, LSAT score
(lsat), first year law school GPA (zfygpa), cumulative law school GPA and undergraduate
GPA(ugpa). The target is acceptance, indicating the bar exam decision, the sensitive at-
tribute is race and the merit attributes are lsat and ugpa. From Table 1 we observe that
the differences in the average values of the merit attributes among positive and negative
observations in the training set are statistically significant.

Table 1: Average values of the merit attributes for the LSAC dataset, among posi-
tive/negative observations in the training set and the p-value of the T-test with null hy-
pothesis of equal average values.

Avg Pos Avg Neg p-value

lsat 37.31 32.18 < 10−5

ugpa 3.25 3.01 < 10−5

The dataset is biased more towards the white subpopulation which has ratio p1/n1 =
0.921, while the non-white subpopulation has ratio p2/n2 = 0.718. We utilize 14, 569
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observations for training, 1, 868 for validation and 4, 361 for testing. Moreover, we have∣∣∣∣ pTRAIN1

nTRAIN1

− pTRAIN2

nTRAIN2

∣∣∣∣ = 0.203,

∣∣∣∣ pTEST1

nTEST1

− pTEST2

nTEST2

∣∣∣∣ = 0.185.

The benchmark results are illustrated in Table 2.

Table 2: Out of sample accuracy, fairness and meritocracy for the LSAC dataset, with race
as the sensitive attribute.

Acc ↑ SPD ↓ EOD ↓ DEO ↓ Merit(lsat) ↓ Merit(ugpa) ↓

Nominal 0.886 0.299 0.207 0.282 0.239 0.263

Calders 0.884 0.019 0.019 0.084 0.229 0.248

Kamiran 0.899 0.013 0.004 0.003 0.239 0.259

Zafar 0.889 0.015 0.004 0.022 0.205 0.223

Agarwal 0.903 0.109 0.045 0.137 0.183 0.199

Hashimoto 0.903 0.151 0.072 0.206 0.181 0.197

Ours(δ = 0.1) 0.893 0.072 0.022 0.037 0.089 0.107

Ours(δ = 0.5) 0.892 0.026 0.017 0.056 0.156 0.166

Ours(No Merit) 0.890 0.011 0.018 0.068 0.181 0.191

From Table 2, we observe that our approach, when applied without the meritocracy
constraints, achieves the best out of sample SPD. Further, when applied with the meritoc-
racy constraints for δ = 0.1, it ranks first in terms of Merit(lsat) and Merit(ugpa), while for
δ = 0.5 it achieves a good trade-off between fairness and meritocracy. We notice an overall
improvement in out of sample accuracy from the nominal model, which follows from the
fact that the test data are slightly less biased than the training data.

4.1.2 Crime dataset

The second dataset that we consider is the Communities and Crime dataset from the UCI
ML Repository Dua and Graff (2017). It contains 1, 993 observations corresponding to
communities in the United States described by 136 features, and the per capita crime rate
for each community. The communities with a crime rate above the 70-th percentile are
labeled as ‘high crime’ and the others as ‘low crime’. The dataset contains many attributes,
including the percent of the population under poverty (pct-under-pov), the percent of the
population that is unemployed (pct-unemp), the median income and the number of illegal
immigrants. The target is highCrime, indicating whether the crime rate in the community
is high, the sensitive attribute is race and the merit attributes are pct-under-pov and pct-
unemployed. From Table 3 we observe that the differences in the average values of the merit
attributes among positive and negative observations in the training set are statistically
significant.
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Table 3: Average values of the merit attributes for the Crime dataset, among posi-
tive/negative observations in the training set and the p-value of the T-test with null hy-
pothesis of equal average values.

Avg Pos Avg Neg p-value

pct-under-pov 0.459 0.224 < 10−5

pct-unemp 0.501 0.294 < 10−5

The dataset is biased more towards the non-white subpopulation which has ratio p1/n1 =
0.527, while the white subpopulation has ratio p2/n2 = 0.125. We utilize 1, 594 observations
for training, 119 for validation and 280 for testing. Moreover, we have∣∣∣∣ pTRAIN1

nTRAIN1

− pTRAIN2

nTRAIN2

∣∣∣∣ = 0.402,

∣∣∣∣ pTEST1

nTEST1

− pTEST2

nTEST2

∣∣∣∣ = 0.424.

The benchmark results are illustrated in Table 4.

Table 4: Out of sample accuracy, fairness and merit metrics for the Crime dataset, with
race as the sensitive attribute.

Acc ↑ SPD ↓ EOD ↓ DEO ↓ Merit(pct-under-pov) ↓ Merit(pct-unemp) ↓

Nominal 0.779 0.296 0.249 0.164 0.026 0.011

Calders 0.732 0.121 0.269 0.213 0.039 0.011

Kamiran 0.775 0.195 0.027 0.009 0.037 0.007

Zafar 0.757 0.232 0.026 0.043 0.026 0.012

Agarwal 0.771 0.221 0.043 0.039 0.029 0.006

Hashimoto 0.767 0.398 0.255 0.219 0.045 0.006

Ours(δ = 0.1) 0.728 0.213 0.191 0.136 0.023 0.003

Ours(δ = 0.5) 0.689 0.107 0.019 0.041 0.029 0.005

Ours(No Merit) 0.678 0.093 0.017 0.038 0.037 0.007

From Table 4, we observe that our method, when applied without the meritocracy
constraints, achieves the best out of sample SPD and EOD, while it ranks second in terms
of DEO. Further, when applied with the meritocracy constraints for δ = 0.1, it ranks first
in terms of Merit(pct-under-pov) and Merit(pct-unemp), while for δ = 0.5 it achieves a
good trade-off between fairness and meritocracy. More precisely, we note that for δ = 0.5,
our approach outperforms the state-of-the-art methods in terms of SPD and EOD, while
only worsening Merit(pct-under-pov) by 0.006 compared to δ = 0.1. Finally, we observe
that the improvement in fairness in this case comes with a loss in accuracy, which is more
pronounced for our method. Observe that in this case, the test data are slightly more biased
that the training data.
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4.1.3 COMPAS dataset

The third dataset that we consider is the ProPublica’s COMPAS dataset Angwin et al.
(2016). In this dataset, the task is recidivism classification (high/low), based on criminal
history, prison time and demographics. The dataset contains 6, 167 observations with 400
attributes including the defendants’ age, race, sex, number of prior convictions (priors) and
COMPAS assigned risk scores. The target is highCrime, indicating whether the risk score
for recidivism is high, the sensitive attribute is race and the merit attribute is priors. From
Table 5 we observe that the differences in the average values of the merit attribute among
positive and negative observations in the training set are statistically significant.

Table 5: Average value of the merit attribute for the COMPAS dataset, among posi-
tive/negative observations in the training set and the p-value of the T-test with null hy-
pothesis of equal average values.

Avg Pos Avg Neg p-value

priors 4.71 1.98 < 10−5

The dataset is biased towards the non-white subpopulation which has ratio p1/n1 = 0.48,
while the white subpopulation has ratio p2/n2 = 0.35. We utilize 4, 933 observations for
training, 370 for validation and 864 for testing. Moreover, we have∣∣∣∣ pTRAIN1

nTRAIN1

− pTRAIN2

nTRAIN2

∣∣∣∣ = 0.129,

∣∣∣∣ pTEST1

nTEST1

− pTEST2

nTEST2

∣∣∣∣ = 0.106.

The benchmark results are illustrated in Table 6.

Table 6: Out of sample accuracy, fairness and merit metrics for the COMPAS dataset, with
race as the sensitive attribute.

Acc ↑ SPD ↓ EOD ↓ DEO ↓ Merit(priors) ↓

Nominal 0.652 0.141 0.195 0.129 0.048

Calders 0.544 0.074 0.128 0.069 0.112

Kamiran 0.679 0.118 0.192 0.106 0.073

Zafar 0.554 0.097 0.139 0.095 0.091

Agarwal 0.669 0.159 0.256 0.151 0.075

Hashimoto 0.658 0.115 0.213 0.119 0.086

Ours(δ = 0.1) 0.643 0.106 0.158 0.098 0.034

Ours(δ = 0.5) 0.653 0.101 0.138 0.090 0.059

Ours(No Merit) 0.659 0.098 0.122 0.088 0.076
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From Table 6, we observe that the label massaging approach from Calders achieves
the best performance in terms of SPD and DEO, however it incurs a significant decrease
in accuracy. On the other hand, our approach achieves the best performance in terms of
EOD, when applied without the meritocracy constraints. Further, when applied with the
meritocracy constraints with δ = 0.1, our approach achieves the best performance in terms
of Merit(priors). We also observe that our method, when applied without the meritocracy
constraints, ranks third in terms of SPD and second in terms of DEO. Further, we notice
that when applied with the meritocracy constraints for δ = 0.5, our approach ranks second
in terms of EOD and at the same time it outperforms all methods apart from the nominal
model in terms of Merit(priors).

4.1.4 German credit dataset

The final dataset that we consider is the German credit dataset from the UCI ML Repository
Dua and Graff (2017). This dataset classifies people as good or bad credit risks. It contains
in total 1, 000 observations and 58 features including age, credit history, employment and
the current amount of credit (credit). The target is credit-label, indicating the classification
of the person as good or bad credit risk, the sensitive attribute is gender and the merit
attribute is credit. From Table 7 we observe that the difference in the average values of the
merit attribute among positive and negative observations in the training set is statistically
significant.

Table 7: Average value of the merit attribute for the German credit dataset, among pos-
itive/negative observations in the training set and the p-value of the T-test with null hy-
pothesis of equal average values.

Avg Pos Avg Neg p-value

credit 0.28 -0.12 < 10−5

The dataset is biased more towards the male subpopulation which has ratio p1/n1 =
0.331, while the female subpopulation has ratio p2/n2 = 0.291. We utilize 800 observations
for training, 60 for validation and 140 for testing. Moreover, we have

∣∣∣∣ pTRAIN1

nTRAIN1

− pTRAIN2

nTRAIN2

∣∣∣∣ = 0.040,

∣∣∣∣ pTEST1

nTEST1

− pTEST2

nTEST2

∣∣∣∣ = 0.043.

The benchmark results are illustrated in Table 8.

From Table 8, we observe that our approach, when applied without the meritocracy
constraints, achieves the best performance in terms of SPD and EOD. Moreover, we notice
that for δ = 0.1, our method ranks first in terms of Merit(credit), while for δ = 0.5 it
achieves a good trade-off between fairness and meritocracy. More precisely, it ranks third
in terms of Merit(credit) and first in terms of EOD. In this dataset, we observe a decrease
in accuracy from the nominal model, which follows from the fact that the test data are
slightly more biased that the training data.
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Table 8: Out of sample accuracy, fairness and merit metrics for the German credit dataset,
with gender as the sensitive attribute.

Acc ↑ SPD ↓ EOD ↓ DEO ↓ Merit(credit) ↓

Nominal 0.732 0.035 0.036 0.027 0.016

Calders 0.716 0.018 0.051 0.037 0.145

Kamiran 0.714 0.012 0.044 0.027 0.128

Zafar 0.664 0.041 0.027 0.030 0.033

Agarwal 0.728 0.028 0.076 0.055 0.019

Hashimoto 0.671 0.067 0.087 0.055 0.038

Ours(δ = 0.1) 0.729 0.018 0.049 0.037 0.015

Ours(δ = 0.5) 0.720 0.007 0.026 0.036 0.017

Ours(No Merit) 0.721 0.006 0.026 0.033 0.019

4.1.5 The price of fairness

In this section, we compare the average values of the merit covariates when predicting a
positive label in our method in comparison with the nominal model. From Table 9, we
observe that the average values of the merit attributes among positive labels do not differ
significantly between our method and the nominal model, signifying that the price of fair-
ness is small. More specifically, in the LSAC dataset we observe that the average values of
the merit covariates for students with positive outcome labels in the white subpopulation do
not change significantly after employing Algorithm 1. Moreover, we notice that the average
values of lsat for the positively labeled students in the non-white subpopulation decrease,
signifying a lowering of thresholds for passing the bar exam for non-white students. Fur-
ther, in the Crime dataset, we observe that in the non-white subpopulation the threshold
for predicting a positive label increases in both merit attributes, while in the white sub-
population it increases for δ = 0.1 but decreases for δ = 0.5. Finally, we notice that as we
increase δ, the average values of the merit covariates in both groups decrease, since in this
case Algorithm 1 prioritizes fairness over meritocracy.

4.1.6 The effect of δ on fairness and meritocracy

In this section, we illustrate the trade-offs between out of sample fairness and meritocracy.
First, we show the behavior of the out of sample merit metric with the meritocracy tolerance
δ. For each dataset, we vary δ ∈ [0, 1] and report the merit metric on the test set for the
merit attributes considered in Section 4.1. From Figure 1, we observe that, as expected, the
out of sample merit metric follows a monotonic behavior with δ. It takes the smallest value
for δ = 0.1 and then increases as δ also increases. Moreover, we notice that when δ increases
from 0.6 to 1, the out of sample merit metric does not change significantly, especially in the
Crime and German credit datasets.
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Figure 1: Out of sample merit metric with δ. The y axis represents the merit metric and
the x axis the meritocracy tolerance δ.
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Table 9: Average values of the merit attributes among positive outcomes, for each class of
the sensitive attribute, for the actual test data (Data), the nominal model (Nominal) and
Algorithm 1 with meritocracy tolerance δ (Ours(δ)). The majority group corresponds to
the white subpopulation in LSAC, to the non-white subpopulation in Crime and COMPAS
and to the male subpopulation in German.

Dataset
Majority group Minority group

Attribute Data Nominal Ours(δ = 0.5) Ours(δ = 0.1) Data Nominal Ours(δ = 0.5) Ours(δ = 0.1)

LSAC
lsat 37.701 37.689 37.611 37.656 34.588 35.135 35.077 35.106

ugpa 3.271 3.264 3.266 3.268 3.094 3.115 3.121 3.125

Crime
pct-under-pov 0.390 0.726 0.775 0.787 0.502 0.577 0.529 0.646

pct-unemployed 0.476 0.821 0.875 0.888 0.512 0.595 0.592 0.643

COMPAS priors 2.655 8.07 7.552 7.145 5.258 11.097 10.109 9.628

German credit 0.316 2.787 1.989 2.102 -0.165 1.565 1.598 1.601

Next, in Figure 2, we illustrate the trade-off between the out of sample merit metric
and SPD. The experimental setup is the same as in Figure 1. We observe that the best
performing SPD corresponds to the worst performing merit metric and vice versa. Moreover,
we notice that in the LSAC and COMPAS datasets the relationship is almost linear.
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Figure 2: Out of sample merit metric and SPD. The y axis represents the out of sample
merit metric and the x axis the out of sample SPD, for various δ ∈ [0, 1].
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4.2 Unstructured data classification

Experiments setup We compare Algorithm 1 with the nominal model, that is, a classi-
fication model without taking fairness into account, FAAP Wang et al. (2022), a recently
proposed adversarial training method for achieving fairness in image classification, that has
showed promising results and the DRO-based method by Hashimoto et al. (2018). In all
cases we use ResNet-18 as the deployed model architecture. Further, we note that FAAP
follows the training of a GAN, in which both the discriminator and generator losses are
updated every time. The loss of the generator contains a weighted sum of a fairness loss,
which includes an entropy regularization term, and a target prediction loss. When applying
Algorithm 1, we try the values α, β ∈ {1e-3, 1e-2, 1e-1} and T ∈ {20, 50}. Further, for FAAP
we try the values {1e-3, 1e-2, 1e-1} for the learning rate, the values {20, 50} for the number
of epochs, as well as the values {0.1, 0.5, 1} for the weight of the target prediction loss in
the objective. For the DRO-based method we try the same values with our approach for
both the learning rate and the number of epochs. Finally, we remark that FAAP optimizes
for demographic parity, which is also the main goal of our approach.

CelebA

The first dataset that we consider is the CelebA dataset Liu et al. (2015), consisting of
202, 599 images with 40 attributes per image. We utilize 150k images for training, 10k
images for validation and 20k images for testing. The sensitive attribute that we consider
is gender and the targets that we consider are Brown Hair, Blond Hair, Wavy Hair, and
Smiling. The ratios p1/n1, p2/n2 for each subpopulation of the sensitive attribute, for each
target, are illustrated in Table 10 and their difference for the training and test sets is
illustrated in Table 11. The results are illustrated in Table 12. We refer to Appendix A for
the standard deviations.

Table 10: Ratios p1/n1, p2/n2 on each target, for each subpopulation of gender on the
CelebA dataset.

Target Gender Class
Male Female

Brown Hair 0.15 0.24

Blond Hair 0.02 0.24

Wavy Hair 0.14 0.45

Smiling 0.40 0.54

From Table 12, we observe that our approach outperforms the state-of-the-art methods
in terms of SPD and EOD. More precisely, it is the best performing method in terms of
both SPD and EOD on Brown Hair, Wavy Hair, and Smiling. Further, in terms of DEO it
outperforms the other methods on Brown Hair and Wavy Hair. Moreover, we notice that
our method improves accuracy over the nominal model on Blond Hair, however it worsens
it on the remaining targets. In total the average reduction in accuracy from employing our
method over the nominal model is 0.71%.
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Table 11: Ratios difference
∣∣∣ p1n1
− p2

n2

∣∣∣ for train data (Train) and test data (Test), for gender

and race on the CelebA dataset.

Target Gender
Train Test

Brown Hair 0.088 0.103

Blond Hair 0.222 0.209

Wavy Hair 0.304 0.312

Smiling 0.139 0.142

Table 12: Numerical results on the CelebA dataset with gender as the sensitive attribute.

(a) Brown Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.855 0.035 0.032 0.028

FAAP 0.853 0.028 0.009 0.024

DRO 0.850 0.022 0.006 0.009

Ours 0.851 0.011 0.006 0.005

(b) Blond Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.917 0.059 0.055 0.033

FAAP 0.908 0.035 0.059 0.025

DRO 0.895 0.032 0.045 0.029

Ours 0.919 0.041 0.051 0.029

(c) Wavy Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.775 0.081 0.065 0.045

FAAP 0.771 0.101 0.091 0.055

DRO 0.761 0.076 0.059 0.048

Ours 0.772 0.055 0.041 0.025

(d) Smiling

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.825 0.057 0.046 0.025

FAAP 0.794 0.039 0.021 0.010

DRO 0.798 0.045 0.024 0.012

Ours 0.806 0.031 0.016 0.015

LFW

The second dataset that we consider is the LFW dataset Huang et al. (2007), consisting of
13, 244 images with 73 attributes per image. We utilize 9, 5k images for training, 1k images
for validation and 2, 5k images for testing. The sensitive attributes that we consider are
gender and race. The targets that we consider are Brown Hair, Attractive, Wavy Hair,
and Smiling. The ratios p1/n1, p2/n2 for each subpopulation of the sensitive attributes, for
each target, are illustrated in Table 13 and their difference for the training and test sets is
illustrated in Table 14. The results for gender and race are illustrated in Tables 15 and 16,
respectively. We refer to Appendix A for the standard deviations.

From Table 15, we observe that our method outperforms the other approaches in terms
of the out of sample fairness metrics across the board. More precisely, our method achieves
the best performance in terms of SPD, on Brown Hair, Wavy Hair and Smiling and in
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Table 13: Ratios p1/n1, p2/n2 on each target, for each subpopulation of gender and race on
the LFW dataset.

Target Gender Class Race Class
Male Female White Non-White

Brown Hair 0.317 0.489 0.364 0.330

Attractive 0.290 0.659 0.408 0.267

Wavy Hair 0.400 0.549 0.513 0.201

Smiling 0.339 0.683 0.393 0.479

Table 14: Ratios difference
∣∣∣ p1n1
− p2

n2

∣∣∣ for train data (Train) and test data (Test), for gender

and race on the LFW dataset.

Target Gender Race
Train Test Train Test

Brown Hair 0.172 0.175 0.033 0.021

Attractive 0.369 0.371 0.141 0.117

Wavy Hair 0.149 0.203 0.312 0.277

Smiling 0.344 0.345 0.087 0.066

Table 15: Numerical results on the LFW Dataset with gender as the sensitive attribute.

(a) Brown Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.775 0.151 0.113 0.069

FAAP 0.752 0.136 0.107 0.071

DRO 0.745 0.129 0.102 0.068

Ours 0.765 0.112 0.074 0.041

(b) Attractive

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.747 0.301 0.211 0.162

FAAP 0.715 0.119 0.133 0.082

DRO 0.669 0.126 0.145 0.088

Ours 0.728 0.164 0.037 0.038

(c) Wavy Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.779 0.141 0.055 0.036

FAAP 0.767 0.162 0.121 0.067

DRO 0.712 0.122 0.101 0.057

Ours 0.779 0.087 0.010 0.033

(d) Smiling

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.898 0.236 0.052 0.042

FAAP 0.878 0.231 0.051 0.033

DRO 0.835 0.134 0.092 0.049

Ours 0.852 0.074 0.086 0.089
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Table 16: Numerical results on the LFW dataset with race as the sensitive attribute.

(a) Brown Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.791 0.027 0.035 0.024

FAAP 0.766 0.022 0.042 0.027

DRO 0.711 0.022 0.039 0.021

Ours 0.791 0.025 0.055 0.032

(b) Attractive

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.748 0.096 0.067 0.051

FAAP 0.773 0.090 0.096 0.057

DRO 0.676 0.033 0.029 0.026

Ours 0.762 0.064 0.027 0.024

(c) Wavy Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.767 0.207 0.128 0.089

FAAP 0.759 0.198 0.181 0.107

DRO 0.645 0.093 0.096 0.063

Ours 0.772 0.192 0.079 0.060

(d) Smiling

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.877 0.032 0.064 0.042

FAAP 0.899 0.018 0.081 0.045

DRO 0.868 0.011 0.086 0.045

Ours 0.893 0.008 0.109 0.058

terms of EOD as well as DEO, on Brown Hair, Attractive and Wavy Hair. Further, we
notice that our method achieves same accuracy as the nominal model on Wavy Hair, while
it is less accurate on Brown Hair, Attractive and Smiling. In total the average reduction in
accuracy from employing our method over the nominal model is 2.34%.

From Table 16, we observe that our method achieves the best performance in terms
of SPD on Attractive, Wavy Hair and Smiling and in terms of EOD as well as DEO, on
Attractive and Wavy Hair. Moreover, our method improves accuracy over the nominal
model on Attractive, Wavy Hair and Smiling. In total the average increase in accuracy
from employing our method over the nominal model is 1.10%.

4.3 Multiple sensitive attributes

In this section, we apply Algorithm 1 to simultaneously alleviate bias in the case of multiple
sensitive attributes. We consider the LSAC dataset for structured data and the LFW
dataset with the target Brown Hair for unstructured data. In both cases we consider race
and gender as the sensitive attributes. We compare the results of Algorithm 1 when applied
to simultaneously alleviate bias for both sensitive attributes, as outlined in Section 2.4, with
what we obtain when we apply it separately for each sensitive attribute. We evaluate in
terms of SPD for each possible combination of race and gender. We note that race takes the
values black (B), white (W) and gender takes the values male (M), female (F). From Table
17, we observe that SPD with respect to the different subgroups is better, when Algorithm
1 is applied to alleviate bias for the two sensitive attributes jointly. This happens because in
this case we only flip labels in the intersection of the two privileged/non-privileged groups,
whereas when we apply Algorithm 1 to alleviate bias separately it is possible that a label
is flipped negatively for an observation which is privileged for one sensitive attribute but
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not for the other and as a result make less fair predictions for this subpopulation. When
we apply our method to alleviate bias jointly, we only flip labels in the intersection of
the privileged/non-privileged groups, which makes the classifier fairer with respect to the
remaining groups whose ratio of positive observations is in between.

Table 17: Out of sample accuracy and SPD comparison for our approach on the LSAC
(without meritocracy constraints) and LFW datasets, with race and gender as the sensitive
attributes, imposed either jointly or separately. SPD(a,b) denotes SPD with respect to
subgroups a,b.

Dataset Acc ↑ SPD(WM, WF) ↓ SPD(WM, BM) ↓ SPD(WM, BF) ↓ SPD(WF, BM) ↓ SPD(WF, BF) ↓ SPD(BM, BF) ↓

LSAC
Joint 0.884 0.001 0.007 0.003 0.008 0.003 0.005

Separate 0.890 0.007 0.198 0.281 0.205 0.289 0.083

LFW
Joint 0.779 0.016 0.127 0.145 0.185 0.161 0.033

Separate 0.790 0.024 0.174 0.152 0.199 0.175 0.058

4.4 Summary of findings

From the numerical experiments on structured data we have the following key findings:
First, we observe that our method outperforms the state-of-the-art approaches in terms
of out of sample SPD, in 3 out of 4 datasets. Moreover, we observe that when applied
with the meritocracy constraints with meritocracy tolerance δ = 0.1, it achieves the best
performance in terms of meritocracy, while for δ = 0.5 it achieves a good trade-off between
fairness and meritocracy. We also observe that in our method the resulting average values
of the merit covariates among positive outcomes are close to those from the nominal model,
as can be seen in Table 9, indicating that the price of fairness is low, that is, we do not need
to sacrifice much in meritocracy in order to improve fairness. Further, we observe that our
method can also improve accuracy if the test data are less biased than the training data
and worsen it otherwise. In total the average reduction in accuracy from employing our
method over the nominal model, across all structured datasets, is 3.31%. Finally, we note
that there does not exist a method that performs uniformly the best in terms of accuracy,
fairness, and meritocracy.

From the numerical experiments on unstructured data we have the following key findings:
First, we observe that our method outperforms the state-of-the-art approaches in terms of
out of sample fairness. Moreover, it improves accuracy over the nominal model if the
test data are less biased than the training data and worsens it otherwise. In total the
average reduction in accuracy from employing our method over the nominal model, across
all different targets and unstructured datasets, is 0.65%. We observe that there does not
exist a method that performs uniformly the best in terms of accuracy and fairness, while
our method achieves good performance in both objectives across the board.

Finally, we note that, in both structured and unstructured data, the benefit of our
method over state-of-the-art approaches is mostly evident in terms of the SPD metric. This
observation aligns with the main concept of our method, which is equalizing the rate of
positive observations among the classes of the sensitive attribute.
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5. Interpreting the flipping decisions

5.1 OCT

In this section, we use OCTs developed by Bertsimas and Dunn (2017), which are highly
interpretable and achieve state-of-the-art performance on classification problems to identify
and differentiate individuals for whom the outcome label is changed to either a positive or
negative label from individuals with no change to the outcome labels. Further, we provide
a comparison among the flipping decision from our method and those from the the method
by Calders et al. (2009).

In order to train an OCT for this purpose, we first construct a dataset based on the indi-
viduals for which we do/do not flip outcome labels using Algorithm 1. We apply Algorithm
1 for the same values of the hyper-parameters as in Section 4.1, with moderate meritocracy
tolerance δ = 0.5 in case of structured data, and obtain the best performing ones on a
validation set, for which we then obtain the final flipping decisions. Similarly, we obtain the
flipping decisions from the method by Calders et al. (2009). Then, each observation in the
training dataset is labeled as one of the following: (a) flip positive (outcome label changed
to a positive label), (b) flip negative (outcome label changed to a negative label), or (c)
no flip (outcome label unchanged) based on Algorithm 1 or the method by Calders et al.
(2009). Using this dataset, we train a three-class OCT model with tree-depth chosen using
cross-validation with depth one through five for the ease of interpretability and select the
model with the highest cross-validation accuracy among them.

In the case of structured data, we present an OCT for interpreting the flipping decisions
of the LSAC dataset for both our method as well as the method by Calders et al. (2009) in
Figures 3 and 4, respectively. The features that we consider in the OCT are those from the
LSAC dataset, see Section 4.1.1. The OCT approximates characteristics of law students
for whom the outcome label was changed to either a positive (passing the bar exam) or a
negative (failing the bar exam) label. Further, it identifies and differentiates characteristics
of non-white students that should be positively labeled, and characteristics of white students
whose outcomes should be flipped.

From Figure 3, we observe that our method identifies individuals in the non-white sub-
population with the highest UGPA and LSAT scores and flips their labels positively. Ex-
amples of such individuals include the following characteristics: {lsat ≥ 46.5,ugpa ≥ 3.25}.
On the other hand, it identifies the least meritorious students in the white subpopulation,
for example individuals with low UGPA and LSAT score, and flips their labels negatively.
Examples of such individuals include the following characteristics: {ugpa < 3.25, lsat <
38.25, zgpa < −0.24}.

From Figure 4, we observe that the method by Calders et al. (2009) follows in general a
less meritocratic procedure for label flipping than our approach. More precisely, we observe
that individuals in the non-white subpopulation with labels flipped positively have the
following characteristics: {lsat < 33.25, zgpa ≥ 0.095}. Further, individuals in the white
subpopulation with labels flipped negatively have the following characteristics: {lsat ≥
33.25, zgpa < −0.615}. We observe that the LSAT score in this case can be higher for
individuals with labels flipped negatively than those with labels flipped positively. On the
other hand, we note that our approach identifies the strongest individuals in the non-white
subpopulation, in terms of LSAT score, and flips their label. More precisely, we observe that
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Figure 3: OCT for interpreting the flipping decisions of our method for the acceptance target
on the LSAC dataset. We note that Flip Positive indicates individuals in the non-white
subpopulation with label flipped positively, Flip Negative indicates individuals in the white
subpopulation with label flipped negatively and No Flip indicates no label flipping. The
value of p corresponds to the percentage of observations in the node corresponding to the
predicted class, that is, the class with the highest percentage. The out of sample accuracy
of the OCT is 0.937.

Figure 4: OCT for interpreting the flipping decisions of the method by Calders et al. (2009)
for the acceptance target on the LSAC dataset. We note that Flip Positive indicates indi-
viduals in the non-white subpopulation with label flipped positively, Flip Negative indicates
individuals in the white subpopulation with label flipped negatively and No Flip indicates
no label flipping. The value of p corresponds to the percentage of observations in the node
corresponding to the predicted class, that is, the class with the highest percentage. The
out of sample accuracy of the OCT is 0.935.
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the highest LSAT threshold for flipping a label positively is 35.15 for the method by Calders
et al. (2009), while for our approach it is 46.50. We also observe that our method identifies
individuals in the white subpopulation with very low LSAT scores, that is, lsat < 28.15,
and flips their labels negatively. Finally, we observe that, unlike our approach, the method
from Calders does not leverage UGPA for deciding which labels to flip.

In the case of unstructured data, we present an OCT for interpreting the flipping deci-
sions on the LFW dataset, for the target Smiling, in Figure 5. The features that we con-
sider in the OCT are auxiliary tabular data, that are available as other targets of the LFW
dataset, including Strong Nose-Mouth Lines, Teeth Not Visible and Mouth Closed. The
OCT approximates characteristics of individuals for whom the outcome label was changed
to either a positive (smiling) or a negative (non-smiling) label using Algorithm 1. Further,
it identifies and differentiates characteristics of males that should be positively labeled, and
characteristics of females whose outcomes should be flipped.

Figure 5: OCT for interpreting the flipping decisions of our method for the Smiling target
on the LFW dataset. We note that Flip Positive indicates individuals in the male sub-
population with label flipped positively, Flip Negative indicates individuals in the female
subpopulation with label flipped negatively and No Flip indicates no label flipping. The
value of p corresponds to the percentage of observations in the node corresponding to the
predicted class, that is, the class with the highest percentage. The out of sample accuracy
of the OCT is 0.885.

As Figure 5 illustrates, our approach identifies males that have characteristics that are
likely to correspond to a smiling person and flips their labels positively. More specifically,
we observe that males with labels flipped positively have characteristics such as High Cheek-
bones and Mouth Wide Open or Mouth Not Closed. Further, we observe that our method
identifies females with characteristics that are not very likely to correspond to a smiling
person, such as Teeth Not Visible and Mouth Closed, and flips their labels negatively. In
either case we notice that Algorithm 1 identifies those individuals that are least likely to be
smiling/non-smiling and flips their labels.
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Figure 6: Images of males with labels flipped from non-smiling to smiling. The first row
includes the original image and the second row includes the activations from Grad-CAM.

5.2 Grad-CAM

In this section, we utilize the visual explanation method Grad-CAM Selvaraju et al. (2017)
in order to further understand the flipping decisions from our method on unstructured data.
Grad-CAM is a model explanation method by visualizing the regions of input data that are
important for predictions, see Selvaraju et al. (2017) for more details. We focus on the
flipping decisions for the target Smiling, on the LFW dataset, where we recall that the
privileged group is the female subpopulation. We run Algorithm 1 for the same values of
the hyper-parameters as in Section 4.2 and obtain the best performing ones on a validation
set, for which we then obtain the flipping decisions. Afterwards, we train a new image
classification model, with the ResNet-18 architecture, for predicting whether we flip the
label of each image or not. We then apply Grad-CAM to see which parts of the input image
activate when flipping a label. From Figure 6, we observe that for males with labels flipped
from no-smiling to smiling the region of the image that activates includes features such as
Mouth Open, Visible Teeth and Strong Noise Mouth Lines. On the other hand, as Figure
7 illustrates, for females with labels flipped from smiling to no-smiling, the region of the
image that activates includes features such as Mouth Closed or Mouth Slightly Open and
Teeth Not Visible. We observe that the results are in agreement with the observations in
Section 5.1.

6. Discussion

Our method applies to structured and unstructured data that are biased in terms of a
sensitive attribute. In the case of structured data, both our approach as well as constraint-
based approaches for fairness learning are applicable, in which case our approach often
performs better in terms of out sample demographic parity, see for example LSAC and
Crime datasets. Moreover, our approach can be incorporated in the training of deep neural
networks and therefore it also applies to unstructured data, while other constraint-based
approaches for fairness learning, such as Zafar et al. (2017), do not apply in this case.
Further, note that methods that learn fair representations from training data may not
generalize well to unseen data. The average improvement in out of sample accuracy of our
method over FAAP is 0.66% in the CelebA dataset and 0.52% in the LFW dataset. In
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Figure 7: Images of females with labels flipped from smiling to non-smiling. The first row
includes the original image and the second row includes the activations from Grad-CAM.
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Figure 8: Computational time of Problem (5) with number of training data (n).

addition, with fair data representations there is a loss in the data interpretability, which
can complicate the understanding of decisions made in the classification process. On the
other hand, our approach, while working with the original features, achieves fairness in an
interpretable way, as demonstrated in Section 5.

An important aspect of our approach is the computational time of the projection prob-
lem, that is, Problem (5). In Figure 8, we summarize the computational time of the projec-
tion problem across all datasets in the numerical experiments. We observe that in all cases
the projection problem could be solved in less than a minute. For datasets of dimension
up to 104 it was solved in less than 10 seconds, while for the largest dataset of dimension
1.5×105 it was solved in 45 seconds. We would not expect Problem (5) to scale to datasets
of dimension 106 or higher, in which case an alternative approach could be used, such as
solving the linear relaxation and rounding the optimal solution to the closest integer.

7. Conclusions

To summarize, in this paper we developed a unified method for improving fairness in both
structured and unstructured data classification, utilizing a novel optimization approach to
train classification models. In the case of structured data, we showed that we can modify the
selection processes so as to enhance fairness, resulting in better performance than existing
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methods. Moreover, our method also improves accuracy over the nominal model in case
the test data are less biased than the training data and worsens it otherwise. The average
reduction in accuracy is 3.31% on structured data and 0.65% on unstructured data. Further,
our approach, when applied to structured data, takes meritocracy into account by placing
additional constraints on the moments of selected merit covariates. As a result, our approach
outperforms state-of-the-art methods in terms of meritocracy, when applied with a small
meritocracy tolerance, while achieving a good trade-off between fairness and meritocracy
when applied with a moderate tolerance. We observe that after employing our method,
the merit attributes among the positive outcomes do not change significantly from the
nominal model, indicating a small price of fairness. In practice, one has the freedom of
selecting how much emphasis should be placed on meritocracy, when applying our method
to structured data, by adjusting the meritocracy tolerance δ. Finally, by utilizing OCTs and
Grad-CAM, we were able to interpret the flipping decisions made by our method. In the
case of structured data, we observed that our method makes intuitive changes to the current
selection processes in a way that is understandable by human decision makers. Further,
in the case of unstructured data, we noticed that the label flips from our method are also
intuitive. We believe that the methodology proposed in this paper contributes to alleviating
bias in an interpretable and equitable way.

Code availability

A code implementation of our method, including structured and unstructured data examples
can be found in the following github repository: https://github.com/ThKoukouv/Fair_

Classification.
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Appendix A

In this section of the Appendix we include the standard deviations for the numerical ex-
periments. Tables 18, 19, 20 and 21 include the standard deviations for the LSAC, Crime,
COMPAS and German credit datasets, respectively. Further, Table 22 includes those for
CelebA and Tables 23, 24 include those for LFW with gender and race as the sensitive
attribute, respectively.

Appendix B

Mixed integer formulations for LR and SVM In this section we provide the exact
mixed integer formulations of Problem (4), when the classification model is either LR or
SVM. For LR, we linearize ziβ = γi, ziβ0 = γ0i. Leveraging the fact that zi ∈ {0, 1}, for
a large M the constraints ziβ = γi are equivalent to −ziM ≤ γij ≤ ziM, −(1 − zi)M ≤
γij − βj ≤ (1 − zi)M . In a similar way we linearize ziβ0 = γ0i and obtain the following
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Table 18: Standard deviations for the results in Table 2.

Acc ↑ SPD ↓ EOD ↓ DEO ↓ Merit(lsat) ↓ Merit(ugpa) ↓

Nominal 0.886± 0.023 0.299± 0.059 0.207± 0.062 0.282± 0.045 0.239± 0.143 0.263± 0.152

Calders 0.884± 0.000 0.019± 0.000 0.019± 0.000 0.084± 0.000 0.229± 0.000 0.248± 0.000

Kamiran 0.899± 0.000 0.013± 0.000 0.004 ± 0.000 0.003 ± 0.000 0.239± 0.000 0.259± 0.000

Zafar 0.889± 0.000 0.015± 0.000 0.004 ± 0.000 0.022± 0.000 0.205± 0.000 0.223± 0.000

Agarwal 0.903 ± 0.002 0.109± 0.002 0.045± 0.002 0.137± 0.003 0.183± 0.002 0.199± 0.002

Hashimoto 0.903 ± 0.001 0.151± 0.009 0.072± 0.009 0.206± 0.011 0.181± 0.010 0.197± 0.011

Ours(δ = 0.1) 0.893± 0.006 0.072± 0.022 0.022± 0.011 0.037± 0.021 0.089 ± 0.016 0.107 ± 0.015

Ours(δ = 0.5) 0.892± 0.007 0.026± 0.006 0.017± 0.007 0.056± 0.021 0.156± 0.061 0.166± 0.072

Ours(No Merit) 0.890± 0.007 0.011 ± 0.002 0.018± 0.004 0.068± 0.022 0.181± 0.047 0.191± 0.033

Table 19: Standard deviations for the results in Table 4.

Acc ↑ SPD ↓ EOD ↓ DEO ↓ Merit(pct-under-pov) ↓ Merit(pct-unemp) ↓

Nominal 0.779 ± 0.005 0.296± 0.015 0.249± 0.020 0.164± 0.014 0.026± 0.001 0.011± 0.001

Calders 0.732± 0.000 0.121± 0.000 0.269± 0.000 0.213± 0.000 0.039± 0.000 0.011± 0.001

Kamiran 0.775± 0.000 0.195± 0.000 0.027± 0.000 0.009 ± 0.000 0.037± 0.000 0.007± 0.000

Zafar 0.757± 0.000 0.232± 0.000 0.026± 0.000 0.043± 0.000 0.026± 0.000 0.012± 0.001

Agarwal 0.771± 0.003 0.221± 0.007 0.043± 0.009 0.039± 0.005 0.029± 0.001 0.006± 0.001

Hashimoto 0.767± 0.003 0.398± 0.005 0.255± 0.009 0.219± 0.006 0.045± 0.011 0.006± 0.000

Ours(δ = 0.1) 0.728± 0.039 0.213± 0.078 0.191± 0.080 0.136± 0.053 0.023 ± 0.003 0.003 ± 0.000

Ours(δ = 0.5) 0.689± 0.017 0.107± 0.008 0.019± 0.005 0.041± 0.005 0.029± 0.001 0.005± 0.001

Ours(No Merit) 0.678± 0.004 0.093 ± 0.003 0.017 ± 0.003 0.038± 0.006 0.037± 0.001 0.007± 0.001

Table 20: Standard deviations for the results in Table 6.

Acc ↑ SPD ↓ EOD ↓ DEO ↓ Merit(priors) ↓

Nominal 0.652± 0.007 0.141± 0.029 0.195± 0.032 0.129± 0.027 0.048± 0.038

Calders 0.544± 0.000 0.074 ± 0.000 0.128± 0.000 0.069 ± 0.000 0.112± 0.000

Kamiran 0.679 ± 0.000 0.118± 0.000 0.192± 0.000 0.106± 0.000 0.073± 0.000

Zafar 0.554± 0.000 0.097± 0.000 0.139± 0.000 0.095± 0.000 0.091± 0.000

Agarwal 0.669± 0.006 0.159± 0.009 0.256± 0.016 0.151± 0.009 0.075± 0.004

Hashimoto 0.658± 0.014 0.115± 0.018 0.213± 0.030 0.119± 0.008 0.086± 0.022

Ours(δ = 0.1) 0.643± 0.016 0.106± 0.034 0.158± 0.036 0.098± 0.031 0.034 ± 0.022

Ours(δ = 0.5) 0.653± 0.044 0.101± 0.042 0.138± 0.065 0.090± 0.033 0.059± 0.031

Ours(No Merit) 0.659± 0.011 0.098± 0.013 0.122 ± 0.007 0.088± 0.011 0.076± 0.035

formulation:

min
β,β0,z,γ,γ0

n∑
i=1

log
(
1 + exp

(
−yi(βTxi + β0) + 2yi(γ

T
i xi + γ0i)

))
s.t

∑
i∈S1

zi = dτ1 · n1e,∑
i∈S2

zi = dτ2 · n2e,

− ziM ≤ γij ≤ ziM, i ∈ [n], j ∈ [p],

− ziM ≤ γ0i ≤ ziM, i ∈ [n], j ∈ [p],

− (1− zi)M ≤ γij − βj ≤ (1− zi)M, i ∈ [n], j ∈ [p],

− (1− zi)M ≤ γ0i − β0 ≤ (1− zi)M, i ∈ [n],

(1− δ)µj ≤
∑n

i=1 xij (yi(1− 2zi) + 1)∑n
i=1 (yi(1− 2zi) + 1)

≤ (1 + δ)µj , j ∈M,

(1− δ)µ2
j ≤

∑n
i=1 x

2
ij (yi(1− 2zi) + 1)∑n

i=1 (yi(1− 2zi) + 1)
≤ (1 + δ)µ2

j , j ∈M,

zi ∈ {0, 1}, i ∈ [n],
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Table 21: Standard deviations for the results in Table 8.

Acc ↑ SPD ↓ EOD ↓ DEO ↓ Merit(credit) ↓

Nominal 0.732 ± 0.010 0.035± 0.007 0.036± 0.011 0.027 ± 0.009 0.016± 0.005

Calders 0.716± 0.000 0.018± 0.000 0.051± 0.000 0.037± 0.000 0.145± 0.000

Kamiran 0.714± 0.000 0.012± 0.000 0.044± 0.000 0.027 ± 0.000 0.128± 0.000

Zafar 0.664± 0.000 0.041± 0.000 0.027± 0.000 0.030± 0.000 0.033± 0.000

Agarwal 0.728± 0.002 0.028± 0.007 0.076± 0.006 0.055± 0.005 0.019± 0.007

Hashimoto 0.671± 0.015 0.067± 0.033 0.087± 0.069 0.055± 0.047 0.038± 0.012

Ours(δ = 0.1) 0.729± 0.010 0.018± 0.009 0.049± 0.025 0.037± 0.012 0.015 ± 0.007

Ours(δ = 0.5) 0.720± 0.008 0.007± 0.004 0.026 ± 0.009 0.036± 0.004 0.017± 0.005

Ours(No Merit) 0.721± 0.008 0.006 ± 0.003 0.026 ± 0.007 0.033± 0.003 0.019± 0.005

Table 22: Standard deviations for the results in Table 12.

(a) Brown Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.855± 0.021 0.035± 0.007 0.032± 0.006 0.028± 0.007

FAAP 0.853± 0.024 0.028± 0.004 0.009± 0.002 0.024± 0.008

DRO 0.850± 0.026 0.022± 0.005 0.006± 0.001 0.009± 0.001

Ours 0.851± 0.024 0.012± 0.004 0.006± 0.001 0.005± 0.001

(b) Blond Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.917± 0.015 0.059 0.055 0.033

FAAP 0.908± 0.012 0.035± 0.003 0.059± 0.006 0.025± 0.004

DRO 0.895± 0.013 0.032± 0.002 0.062± 0.006 0.029± 0.004

Ours 0.919± 0.012 0.041± 0.009 0.051± 0.011 0.029± 0.007

(c) Wavy Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.775± 0.022 0.081± 0.012 0.065± 0.006 0.045± 0.009

FAAP 0.771± 0.028 0.101± 0.015 0.091± 0.012 0.055± 0.007

DRO 0.761± 0.028 0.076± 0.009 0.059± 0.008 0.048± 0.003

Ours 0.772± 0.024 0.055± 0.005 0.041± 0.003 0.025± 0.003

(d) Smiling

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.825± 0.029 0.057± 0.009 0.046± 0.007 0.025± 0.007

FAAP 0.794± 0.028 0.039± 0.008 0.021± 0.003 0.010± 0.003

DRO 0.798± 0.029 0.045± 0.008 0.024± 0.005 0.012± 0.004

Ours 0.806± 0.026 0.031± 0.008 0.016± 0.003 0.015± 0.003

where p denotes the number of features. For SVM, we linearize ziw = vi, zib = di.
Leveraging the fact that zi ∈ {0, 1}, for a large M the constraints ziw = vi are equivalent
to −ziM ≤ vij ≤ ziM, −ziM ≤ vij ≤ ziM . In a similar way we linearize zib = di and
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Table 23: Standard deviations for the results in Table 15.

(a) Brown Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.775± 0.011 0.151± 0.010 0.113± 0.005 0.069± 0.006

FAAP 0.752± 0.021 0.136± 0.004 0.107± 0.015 0.071± 0.012

DRO 0.745± 0.026 0.129± 0.008 0.102± 0.009 0.068± 0.003

Ours 0.765± 0.023 0.112± 0.005 0.074± 0.015 0.041± 0.008

(b) Attractive

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.747± 0.031 0.301± 0.011 0.211± 0.041 0.162± 0.014

FAAP 0.715± 0.009 0.119± 0.008 0.133± 0.013 0.082± 0.006

DRO 0.669± 0.030 0.126± 0.032 0.145± 0.055 0.088± 0.038

Ours 0.728± 0.031 0.164± 0.023 0.037± 0.007 0.038± 0.012

(c) Wavy Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.779± 0.012 0.141± 0.019 0.055± 0.031 0.036± 0.017

FAAP 0.0767± 0.012 0.162± 0.020 0.121± 0.033 0.067± 0.017

DRO 0.712± 0.048 0.122± 0.039 0.101± 0.027 0.057± 0.010

Ours 0.779± 0.007 0.087± 0.012 0.010± 0.006 0.033± 0.013

(d) Smiling

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.898± 0.012 0.236± 0.009 0.052± 0.023 0.042± 0.008

FAAP 0.878± 0.006 0.231± 0.009 0.051± 0.015 0.033± 0.009

DRO 0.835± 0.059 0.134± 0.047 0.092± 0.029 0.049± 0.015

Ours 0.852± 0.009 0.074± 0.021 0.086± 0.023 0.089± 0.011

Table 24: Standard deviations for the results in Table 16.

(a) Brown Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.791± 0.014 0.027± 0.015 0.035± 0.028 0.024± 0.014

FAAP 0.766± 0.022 0.022± 0.008 0.042± 0.012 0.027± 0.006

DRO 0.711± 0.044 0.022± 0.004 0.039± 0.012 0.021± 0.014

Ours 0.791± 0.010 0.030± 0.013 0.055± 0.024 0.032± 0.011

(b) Attractive

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.748± 0.033 0.096± 0.019 0.067± 0.037 0.051± 0.014

FAAP 0.773± 0.019 0.090± 0.014 0.096± 0.011 0.057± 0.009

DRO 0.676± 0.012 0.033± 0.008 0.029± 0.006 0.026± 0.006

Ours 0.762± 0.015 0.064± 0.015 0.027± 0.009 0.024± 0.006

(c) Wavy Hair

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.767± 0.021 0.207± 0.032 0.128± 0.051 0.089± 0.028

FAAP 0.759± 0.006 0.198± 0.009 0.181± 0.029 0.107± 0.013

DRO 0.645± 0.041 0.093± 0.022 0.096± 0.031 0.063± 0.021

Ours 0.772± 0.019 0.192± 0.013 0.079± 0.009 0.060± 0.011

(d) Smiling

Acc ↑ SPD ↓ EOD ↓ DEO ↓

Nominal 0.877± 0.031 0.032± 0.014 0.064± 0.024 0.042± 0.012

FAAP 0.899± 0.004 0.018± 0.006 0.081± 0.026 0.045± 0.011

DRO 0.868± 0.047 0.011± 0.005 0.086± 0.012 0.045± 0.008

Ours 0.893± 0.005 0.008± 0.002 0.109± 0.015 0.058± 0.007

obtain the following formulation:

min
w,b,z,v,d

1

2
‖w‖22 + C

n∑
i=1

ξi

s.t
∑
i∈S1

zi = dτ1 · n1e,∑
i∈S2

zi = dτ2 · n2e,

yi(w
Txi − b)− 2yi(v

T
i xi − di) ≥ 1− ξi, i ∈ [n],

− ziM ≤ vij ≤ ziM, i ∈ [n], j ∈ [p],

− ziM ≤ di ≤ ziM, i ∈ [n],

− (1− zi)M ≤ vij − wj ≤ (1− zi)M, i ∈ [n], j ∈ [p],

− (1− zi)M ≤ di − b ≤ (1− zi)M, i ∈ [n],

(1− δ)µj ≤
∑n

i=1 xij (yi(1− 2zi) + 1)∑n
i=1 (yi(1− 2zi) + 1)

≤ (1 + δ)µj , j ∈M,

(1− δ)µ2
j ≤

∑n
i=1 x

2
ij (yi(1− 2zi) + 1)∑n

i=1 (yi(1− 2zi) + 1)
≤ (1 + δ)µ2

j , j ∈M,

zi ∈ {0, 1}, i ∈ [n].
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Appendix C

Wasserstrein distance approach for meritocracy constraints The merit covariate
distribution among positive labels in the original and modified datasets is the following:

((x1j(y1 + 1)/2, . . . , (xnj(yn + 1)/2), ((x1j(y1(1− 2z1) + 1)/2, . . . , (xnj(yn(1− 2zn) + 1)/2), j ∈M.

Let P,Q denote the covariate distribution on positive labels in the original and modified
datasets, respectively. We then have the constraintW1(P,Q) ≤ δ, which can be formulated
as follows:

min
γ∈Γ

∑
k,l

γkl |xkj(yi + 1)/2− xlj(yl(1− 2zl) + 1)/2|

 ≤ δ,
where

Γ =

γ ∈ Rn×n+ :
∑
j

γij =
1

p1 + p2

yi + 1

2
,
∑
i

γij =
1

p1 + p2

yj(1− 2zj) + 1

2

 .

Linearizing the products γklzl with new variables ukl and introducing additional variables
θkl to model absolute values, the Wasserstrein distance requirement can be formulated with
the following linear constraints:∑

k,l

θkl ≤ δ,

xkj
2

(γklyk + γkl)−
xlj
2

(ylγkl − 2ylukl + γkl) ≤ θkl, ∀k, l,
xkj
2

(γklyk + γkl)−
xlj
2

(ylγkl − 2ylukl + γkl) ≥ −θkl, ∀k, l,∑
j

γij =
1

p1 + p2

yi + 1

2
,

∑
i

γij =
1

p1 + p2

yj(1− 2zj) + 1

2

−Mzl ≤ ukl ≤Mzl, ∀l,
ukl ≤ γkl +M(1− zl), ∀k, l,
ukl ≥ γkl −M(1− zl), ∀k, l,

where M is a large number.
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