
Journal of Machine Learning Research 25 (2024) 1-9 Submitted 7/23; Revised 2/24; Published 5/24

PyGOD: A Python Library for Graph Outlier Detection

Kay Liu1∗ zliu234@uic.edu

Yingtong Dou1,2∗ yidou@visa.com

Xueying Ding3 xding2@andrew.cmu.edu

Xiyang Hu4 xiyanghu@asu.edu

Ruitong Zhang5 zhangruitong.zrt@alibaba-inc.com

Hao Peng6,7 penghcs@gmail.com

Lichao Sun8 lis221@lehigh.edu

Philip S. Yu1 psyu@uic.edu
1University of Illinois Chicago, 2Visa Research, 3Carnegie Mellon University, 4Arizona State Uni-

versity, 5Alibaba Group, 6Kunming University of Science and Technology, 7Shantou University,
8Lehigh University

Editor: Sebastian Schelter

Abstract

PyGOD is an open-source Python library for detecting outliers in graph data. As the
first comprehensive library of its kind, PyGOD supports a wide array of leading graph-
based methods for outlier detection under an easy-to-use, well-documented API designed
for use by both researchers and practitioners. PyGOD provides modularized components
of the different detectors implemented so that users can easily customize each detector for
their purposes. To ease the construction of detection workflows, PyGOD offers numerous
commonly used utility functions. To scale computation to large graphs, PyGOD supports
functionalities for deep models such as sampling and mini-batch processing. PyGOD uses
best practices in fostering code reliability and maintainability, including unit testing, con-
tinuous integration, and code coverage. To facilitate accessibility, PyGOD is released under
a BSD 2-Clause license at https://pygod.org and at the Python Package Index (PyPI).

Keywords: outlier detection, anomaly detection, graph learning, graph neural networks

1. Introduction

Outlier detection (OD), also known as anomaly detection, is a key machine learning task to
identify deviant samples from the general data distribution (Aggarwal, 2017; Li et al., 2022).
With the increasing importance of graph data in both research and real-world applications
(Ding et al., 2021b; Huang et al., 2021; Fu et al., 2021; Zhou et al., 2021; Xu et al., 2022),
detecting outliers with graph-based methods, particularly graph neural networks (GNNs),
has recently garnered considerable attention (Ma et al., 2021; Ding et al., 2019b, 2021a;
Liu et al., 2022) with many applications such as detecting suspicious activities in social
networks (Sun et al., 2022; Dou et al., 2020) and security systems (Cai et al., 2021).

Although there is a long list of libraries for detecting outliers in tabular and time-series
data in multiple programming languages (e.g., PyOD (Zhao et al., 2019), SUOD (Zhao

∗. Equal contribution. The work was done when Yingtong Dou was at UIC.

c©2024 Kay Liu, Yingtong Dou, Xueying Ding, Xiyang Hu, Ruitong Zhang, Hao Peng, Lichao Sun, Philip S. Yu.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-0963.html.

https://pygod.org
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-0963.html

Liu, Dou, Ding, Hu, Zhang, Peng, Sun, and Yu

Algorithm Backbone GPU Sampling Inductive Reference

SCAN Clustering No No No (Xu et al., 2007)
GAE GNN+AE Yes Yes Yes (Kipf and Welling, 2016)
Radar MF Yes No No (Li et al., 2017)
ANOMALOUS MF Yes No No (Peng et al., 2018)
ONE MF Yes No No (Bandyopadhyay et al., 2019)
DOMINANT GNN+AE Yes Yes Yes (Ding et al., 2019a)
DONE GNN+AE Yes Yes No (Bandyopadhyay et al., 2020b)
AdONE GNN+AE Yes Yes No (Bandyopadhyay et al., 2020b)
AnomalyDAE GNN+AE Yes Yes Yes (Fan et al., 2020)
GAAN GAN Yes Yes Yes (Chen et al., 2020)
DMGD GNN+AE Yes Yes No (Bandyopadhyay et al., 2020a)
OCGNN GNN Yes Yes Yes (Wang et al., 2021)
CoLA GNN+AE+SSL Yes Yes Yes (Liu et al., 2021)
GUIDE GNN+AE Yes Yes Yes (Yuan et al., 2021)
CONAD GNN+AE+SSL Yes Yes Yes (Xu et al., 2022)
GAD-NR GNN+AE Yes Yes Yes (Roy et al., 2024)

Table 1: Implemented graph outlier detectors in PyGOD v1.1.0.

et al., 2021a), PyODDS (Li et al., 2020), ELKI (Achtert et al., 2010), OutlierDetection.jl
(Muhr et al., 2022), PyTOD (Zhao et al., 2022), TODS (Lai et al., 2021), Telemanom
(Hundman et al., 2018)), there is no specialized library for graph outlier detection.

To bridge this gap, we design the first comprehensive Python Graph Outlier Detection
library called PyGOD, with a couple of key technical advancements and contributions. First,
it covers a wide array of algorithms with various backbones, including clustering, matrix fac-
torization (MF), generative adversarial networks (GANs), autoencoders (AEs), GNNs, and
self-supervised learning (SSL). PyGOD already supports more than fifteen representative
algorithms as shown in Table 1. Second, PyGOD implements these detection models with a
unified API so that the user only needs to prepare the data in a predefined graph format, at
which point all outlier detectors in PyGOD can process the data. Third, PyGOD offers flex-
ible and modularized components of the different outlier detectors implemented, enabling
users to customize these detectors according to individual needs. Morover, PyGOD provides
many commonly used utility functions to ease the construction of graph outlier detection
workflows. Fourth, PyGOD can scale outlier detection to large graphs using sampling and
mini-batch processing. With a focus on code clarity and quality, we provide comprehensive
API documentation and examples. Additionally, we provide unit tests with cross-platform
continuous integration along with code coverage and maintainability checks.

2. Library Design and Implementation

Dependency. PyGOD builds for Python 3.8+ and depends on the popular PyTorch

(Paszke et al., 2019) and PyTorch Geometric (PyG) (Fey and Lenssen, 2019) packages
for graph learning on both CPUs and GPUs. Additionally, PyGOD uses NumPy (Harris
et al., 2020), SciPy (Virtanen et al., 2020), and scikit-learn (Pedregosa et al., 2011), and
NetworkX (Hagberg et al., 2008) for data manipulation.

API Design. As shown in Figure 1, inspired by the API design of scikit-learn (Buitinck
et al., 2013) and PyOD (Zhao et al., 2019), all detection algorithms in PyGOD inherit from

2

PyGOD: A Python Library for Graph Outlier Detection

Train data fit:
train the detector

Test data
(inductive only)

predict：
predict on test data

Model training

Scoring and prediction

pred: binary outlier label prob: outlier probability
score: raw outlier score conf: confidence score

decision_score_: raw outlier score
label_: binary outlier label
threshold_: determined threshold for outlier or not

Figure 1: Demonstration of PyGOD’s unified API design.

a base class with the same API interface: (i) fit trains the detector, gets the outlier
scores (higher means more outlying) and outlier prediction on the input data, and generates
necessary statistics for prediction (in the inductive setting); (ii) predict leverages the
trained model to predict on the input data in the inductive setting (no input data are
required in the transductive setting). predict returns a binary prediction (0 for normal
samples and 1 for outliers), a raw outlier score, a probability of a sample being an outlier
(using the method by Kriegel et al. (2011)), and a confidence score (Perini et al., 2020)
based on users’ needs. The usage of the above APIs is demonstrated in Code Demo 1.

1 from pygod.utils import load_data # import data function

2 data = load_data("inj_cora") # load built-in dataset

3

4 from pygod.detector import DOMINANT # import the detector

5 model = DOMINANT(num_layers=4) # initialize the detector

6 model.fit(data) # train with data

7

8 pred, score = model.predict(data, # predict labels by default

9 return_score=True) # and raw outlier scores

10

11 from pygod.metric import eval_roc_auc, eval_f1 # import the metric

12 eval_f1(data.y.bool(), pred) # evaluate by F1

13 eval_roc_auc(data.y.bool(), score) # evaluate by AUC

Code Demo 1: Using DOMINANT (Ding et al., 2019a) on Cora (Morris et al., 2020).

Streamlined Graph Learning with PyG. We choose to develop PyGOD on top of the
popular PyG library for multiple reasons. First, this reduces the complexity of processing
graph data for users. That is, PyGOD only requires the input data to be in the standard
graph data format in PyG1. Second, most of the detectors use GNNs (Kipf and Welling,
2017) as their backbone (see Table 1), where PyG already provides an optimized implemen-
tation. Third, PyG is the most popular GNN library with advanced functions like graph
sampling and distributed training. Under the PyG framework, we implement mini-batch

1. PyG data object: https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html

3

https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html

Liu, Dou, Ding, Hu, Zhang, Peng, Sun, and Yu

processing and/or sampling for selected models to accommodate learning with large graphs
as shown in Table 1.
Modularized components and helpful utility functions. To minimize code redun-
dancy and improve reusability, PyGOD employs modularization in the implementation of
deep detectors, dividing different components into nn.conv, nn.encoder, nn.decoder, and
nn.functional. Additionally, a set of helpful utility functions is designed to facilitate
graph outlier detection. In terms of tasks, PyGOD includes utils.to edge score and
utils.to graph score to enable the adaptation of any node level model to edge level and
(sub)graph level outlier detection. In terms of evaluation, PyGOD offers common met-
rics for graph outlier detection in the metric module. In terms of data, PyGOD provides
built-in example data sets through utils.load data. Moreover, it offers outlier genera-
tor methods in the generator module for injecting both contextual and structural outliers
(Ding et al., 2019a). This serves as a solution for model evaluation and benchmarking. For
more details, please refer to PyGOD documentation2.

3. Library Robustness and Accessibility

Robustness and Quality. While building PyGOD, we follow the best practices of system
design and software development. First, we leverage the continuous integration by GitHub
Actions3 to automate the testing process under various Python versions and operating
systems. In addition to the scheduled daily test, both commits and pull requests trigger
the unit testing. Notably, we enforce all code to have over 99% coverage4. By following the
PEP8 standard, we enforce a consistent coding style and naming convention, which facilitates
community collaboration and code readability.
Accessibility and Community. PyGOD comes with detailed API documentation ren-
dered by Read the Docs. The documentation includes an installation guide as well as
interactive examples in Jupyter notebooks. To facilitate community contribution, the
project is hosted on GitHub with a friendly contribution guide and issue reporting mech-
anism. At the time of publishing, PyGOD has been widely used in numerous real-world
applications including Twitter bot detection (Feng et al., 2022) and financial fraud detection
(Huang et al., 2022), with more than 1,200 GitHub stars and 20,000 PyPI downloads.

4. Conclusion and Future Plans

In this paper, we present the first comprehensive library for graph outlier detection, called
PyGOD. PyGOD supports a wide range of detection algorithms with a unified API, rich
documentation, and robust code design. These features make it valuable for both academic
research and industry applications. The development plan of PyGOD will focus on multiple
aspects: (i) enabling detectors to acquire domain knowledge by incorporating different
amounts of supervision signals; (ii) optimizing its scalability with the latest advancement
in graphs (Jia et al., 2020); and (iii) incorporating automated machine learning to enable
intelligent model selection and hyperparameter tuning (Zhao et al., 2021b).

2. Documentation: https://docs.pygod.org/
3. Continuous integration by GitHub Actions: https://github.com/pygod-team/pygod/actions
4. Code coverage by Coveralls: https://coveralls.io/github/pygod-team/pygod

4

https://docs.pygod.org/
https://github.com/pygod-team/pygod/actions
https://coveralls.io/github/pygod-team/pygod

PyGOD: A Python Library for Graph Outlier Detection

Acknowledgments

The authors who are affiliated with the University of Illinois Chicago are supported in part
by NSF under grant III-2106758 and POSE-2346158. Philip S. Yu and Hao Peng are the
corresponding authors.

References

E. Achtert, H.-P. Kriegel, L. Reichert, E. Schubert, R. Wojdanowski, and A. Zimek. Visual
evaluation of outlier detection models. In Database Systems for Advanced Applications
(DASFAA), pages 396–399. Springer, 2010.

C. C. Aggarwal. An introduction to outlier analysis. In Outlier Analysis, pages 1–34.
Springer, 2017.

S. Bandyopadhyay, N. Lokesh, and M. N. Murty. Outlier aware network embedding for
attributed networks. In Annual AAAI Conference on Artificial Intelligence (AAAI),
volume 33, pages 12–19, 2019.

S. Bandyopadhyay, S. Vishal Vivek, and M. Murty. Integrating network embedding and
community outlier detection via multiclass graph description. Frontiers in Artificial In-
telligence and Applications (FAIA), 325:976–983, 2020a.

S. Bandyopadhyay, S. V. Vivek, and M. Murty. Outlier resistant unsupervised deep archi-
tectures for attributed network embedding. In ACM International Conference on Web
Search and Data Mining (WSDM), pages 25–33, 2020b.

L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and
G. Varoquaux. API design for machine learning software: experiences from the scikit-
learn project. In ECML-PKDD Workshop: Languages for Data Mining and Machine
Learning, pages 108–122, 2013.

L. Cai, Z. Chen, C. Luo, J. Gui, J. Ni, D. Li, and H. Chen. Structural temporal graph neural
networks for anomaly detection in dynamic graphs. In ACM International Conference
on Information & Knowledge Management (CIKM), pages 3747–3756, 2021.

Z. Chen, B. Liu, M. Wang, P. Dai, J. Lv, and L. Bo. Generative adversarial attributed net-
work anomaly detection. In ACM International Conference on Information & Knowledge
Management (CIKM), pages 1989–1992, 2020.

K. Ding, J. Li, R. Bhanushali, and H. Liu. Deep anomaly detection on attributed networks.
In SIAM International Conference on Data Mining (SDM), pages 594–602. SIAM, 2019a.

K. Ding, J. Li, and H. Liu. Interactive anomaly detection on attributed networks. In ACM
International Conference on Web Search and Data Mining (WSDM), pages 357–365,
2019b.

5

Liu, Dou, Ding, Hu, Zhang, Peng, Sun, and Yu

K. Ding, J. Li, N. Agarwal, and H. Liu. Inductive anomaly detection on attributed networks.
In International Conference on International Joint Conferences on Artificial Intelligence
(IJCAI), pages 1288–1294, 2021a.

K. Ding, Q. Zhou, H. Tong, and H. Liu. Few-shot network anomaly detection via cross-
network meta-learning. In The Web Conference (WWW), pages 2448–2456, 2021b.

Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu. Enhancing graph neural network-
based fraud detectors against camouflaged fraudsters. In ACM International Conference
on Information & Knowledge Management (CIKM), pages 315–324, 2020.

H. Fan, F. Zhang, and Z. Li. AnomalyDAE: dual autoencoder for anomaly detection on
attributed networks. In IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 5685–5689, 2020.

S. Feng, Z. Tan, H. Wan, N. Wang, Z. Chen, B. Zhang, Q. Zheng, W. Zhang, Z. Lei, S. Yang,
et al. TwiBot-22: towards graph-based Twitter bot detection. In Annual Conference on
Neural Information Processing Systems (NeurIPS), volume 35, pages 35254–35269, 2022.

M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

T. Fu, C. Xiao, X. Li, L. M. Glass, and J. Sun. MIMOSA: multi-constraint molecule
sampling for molecule optimization. In Annual AAAI Conference on Artificial Intelligence
(AAAI), volume 35, pages 125–133, 2021.

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and
function using networkx. In G. Varoquaux, T. Vaught, and J. Millman, editors, Python
in Science Conference, pages 11 – 15, Pasadena, CA USA, 2008.

C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, et al. Array programming with NumPy. Nature,
585(7825):357–362, 2020.

K. Huang, T. Fu, W. Gao, Y. Zhao, Y. H. Roohani, J. Leskovec, C. W. Coley, C. Xiao,
J. Sun, and M. Zitnik. Therapeutics data commons: machine learning datasets and
tasks for drug discovery and development. In Annual Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (NeurIPS), 2021.

X. Huang, Y. Yang, Y. Wang, C. Wang, Z. Zhang, J. Xu, L. Chen, and M. Vazirgiannis.
DGraph: a large-scale financial dataset for graph anomaly detection. In Annual Con-
ference on Neural Information Processing Systems (NeurIPS), volume 35, pages 22765–
22777, 2022.

K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom. Detecting
spacecraft anomalies using lstms and nonparametric dynamic thresholding. In ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pages 387–395, 2018.

6

PyGOD: A Python Library for Graph Outlier Detection

Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken. Improving the accuracy, scalability, and
performance of graph neural networks with ROC. In Annual Conference on Machine
Learning and Systems (MLSys), volume 2, pages 187–198, 2020.

T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

H.-P. Kriegel, P. Kroger, E. Schubert, and A. Zimek. Interpreting and unifying outlier
scores. In SIAM International Conference on Data Mining (SDM), pages 13–24. SIAM,
2011.

K.-H. Lai, D. Zha, G. Wang, J. Xu, Y. Zhao, D. Kumar, Y. Chen, P. Zumkhawaka, M. Wan,
D. Martinez, and X. Hu. TODS: an automated time series outlier detection system. In
Annual AAAI Conference on Artificial Intelligence (AAAI), pages 16060–16062, 2021.

J. Li, H. Dani, X. Hu, and H. Liu. Radar: residual analysis for anomaly detection in
attributed networks. In International Conference on International Joint Conferences on
Artificial Intelligence (IJCAI), volume 17, pages 2152–2158, 2017.

Y. Li, D. Zha, P. Venugopal, N. Zou, and X. Hu. PyODDS: an end-to-end outlier detec-
tion system with automated machine learning. In Companion Proceedings of the Web
Conference (WWW), pages 153–157, 2020.

Z. Li, Y. Zhao, X. Hu, N. Botta, C. Ionescu, and G. Chen. ECOD: unsupervised outlier de-
tection using empirical cumulative distribution functions. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), pages 1–1, 2022. doi: 10.1109/TKDE.2022.3159580.

K. Liu, Y. Dou, Y. Zhao, X. Ding, X. Hu, R. Zhang, K. Ding, C. Chen, H. Peng, K. Shu,
et al. BOND: benchmarking unsupervised outlier node detection on static attributed
graphs. In Annual Conference on Neural Information Processing Systems (NeurIPS),
volume 35, pages 27021–27035, 2022.

Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis. Anomaly detection on attributed
networks via contrastive self-supervised learning. IEEE Transactions on Neural Networks
and Learning Systems (TNNLS), 2021.

X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu. A
comprehensive survey on graph anomaly detection with deep learning. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 2021.

C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. TUDataset: a
collection of benchmark datasets for learning with graphs. In ICML Workshop on Graph
Representation Learning and Beyond, pages 1–11, 2020.

D. Muhr, M. Affenzeller, and A. D. Blaom. OutlierDetection.jl: a modular outlier detection
ecosystem for the julia programming language. arXiv preprint arXiv:2211.04550, 2022.

7

Liu, Dou, Ding, Hu, Zhang, Peng, Sun, and Yu

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. PyTorch: an imperative style, high-performance
deep learning library. In Annual Conference on Neural Information Processing Systems
(NeurIPS), volume 32, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: machine learning in Python.
Journal of Machine Learning Research (JMLR), 12:2825–2830, 2011.

Z. Peng, M. Luo, J. Li, H. Liu, Q. Zheng, et al. ANOMALOUS: a joint modeling approach
for anomaly detection on attributed networks. In International Conference on Interna-
tional Joint Conferences on Artificial Intelligence (IJCAI), pages 3513–3519, 2018.

L. Perini, V. Vercruyssen, and J. Davis. Quantifying the confidence of anomaly detectors
in their example-wise predictions. In European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), pages
227–243. Springer, 2020.

A. Roy, J. Shu, J. Li, C. Yang, O. Elshocht, J. Smeets, and P. Li. GAD-NR: graph anomaly
detection via neighborhood reconstruction. In ACM International Conference on Web
Search and Data Mining (WSDM), 2024.

L. Sun, Y. Dou, C. Yang, K. Zhang, J. Wang, S. Y. Philip, L. He, and B. Li. Adversarial
attack and defense on graph data: a survey. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 2022.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al. SciPy 1.0: fundamental al-
gorithms for scientific computing in Python. Nature Methods, 17(3):261–272, 2020.

X. Wang, B. Jin, Y. Du, P. Cui, Y. Tan, and Y. Yang. One-class graph neural networks for
anomaly detection in attributed networks. Neural Computing and Applications, 33(18):
12073–12085, 2021.

X. Xu, N. Yuruk, Z. Feng, and T. A. Schweiger. SCAN: a structural clustering algorithm
for networks. In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 824–833, 2007.

Z. Xu, X. Huang, Y. Zhao, Y. Dong, and J. Li. Contrastive attributed network anomaly
detection with data augmentation. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD), 2022.

X. Yuan, N. Zhou, S. Yu, H. Huang, Z. Chen, and F. Xia. Higher-order structure based
anomaly detection on attributed networks. In IEEE Big Data Conference, pages 2691–
2700, 2021.

Y. Zhao, Z. Nasrullah, and Z. Li. PyOD: a Python toolbox for scalable outlier detection.
Journal of Machine Learning Research (JMLR), 20(96):1–7, 2019.

8

PyGOD: A Python Library for Graph Outlier Detection

Y. Zhao, X. Hu, C. Cheng, C. Wang, C. Wan, W. Wang, J. Yang, H. Bai, Z. Li, C. Xiao,
et al. SUOD: accelerating large-scale unsupervised heterogeneous outlier detection. In
Annual Conference on Machine Learning and Systems (MLSys), pages 463–478, 2021a.

Y. Zhao, R. Rossi, and L. Akoglu. Automatic unsupervised outlier model selection. In
Annual Conference on Neural Information Processing Systems (NeurIPS), volume 34,
pages 4489–4502, 2021b.

Y. Zhao, G. H. Chen, and Z. Jia. TOD: GPU-accelerated outlier detection via tensor
operations. In International Conference on Very Large Data Bases (VLDB), volume 16,
2022.

S. Zhou, Q. Tan, Z. Xu, X. Huang, and F.-l. Chung. Subtractive aggregation for attributed
network anomaly detection. In ACM International Conference on Information & Knowl-
edge Management (CIKM), pages 3672–3676, 2021.

9

	Introduction
	Library Design and Implementation
	Library Robustness and Accessibility
	Conclusion and Future Plans

