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Abstract

Causal discovery aims at revealing causal relations from observational data, which is
a fundamental task in science and engineering. We describe causal-learn, an open-source
Python library for causal discovery. This library focuses on bringing a comprehensive
collection of causal discovery methods to both practitioners and researchers. It provides
easy-to-use APIs for non-specialists, modular building blocks for developers, detailed doc-
umentation for learners, and comprehensive methods for all. Different from previous pack-
ages in R or Java, causal-learn is fully developed in Python, which could be more in tune
with the recent preference shift in programming languages within related communities.
The library is available at https://github.com/py-why/causal-learn.

Keywords: Causal Discovery, Python, Conditional Independence, Independence, Ma-
chine Learning

1. Introduction

A traditional way to uncover causal relationships is to resort to interventions or randomized
experiments, which are often impractical due to their cost or logistical limitations. Hence,
the importance of causal discovery, i.e., the process of revealing causal information through
the analysis of purely observational data, has become increasingly apparent across diverse
disciplines, including genomics, ecology, neuroscience, and epidemiology, among others (Gly-
mour et al., 2019). For instance, in genomics, causal discovery has been instrumental in
understanding the relationships between certain genes and diseases. Researchers might not
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have the resources to manipulate gene expressions, but they can analyze observational data,
which are usually widely available, such as genomic databases, to uncover potential causal
relationships. This can lead to breakthroughs in disease treatment and prevention strategies
without the cost of traditional experimentation.

Current strategies for causal discovery can be broadly classified into constraint-based,
score-based, functional causal models-based, and methods that recover latent variables.
Constraint-based and score-based methods have been employed for causal discovery since
the 1990s, using conditional independence relationships in data to uncover information
about the underlying causal structure. Algorithms such as Peter-Clark (PC) (Spirtes et al.,
2000) and Fast Causal Inference (FCI) (Spirtes et al., 1995) are popular, with PC assuming
causal sufficiency and FCI handling latent confounders. In cases without latent confounders,
score-based algorithms like the Greedy Equivalence Search (GES) (Chickering, 2002) aim
to find the causal structure by optimizing a score function. These methods provide asymp-
totically correct results, accommodating various data distributions and functional relations
but do not necessarily provide complete causal information as they usually output Markov
equivalence classes of causal structures (graphs within the same Markov equivalence class
have the same conditional independence relations among the variables).

On the other hand, algorithms based on Functional Causal Models (FCMs) have exhib-
ited the ability to distinguish between different Directed Acyclic Graphs (DAGs) within the
same equivalence class, thanks to additional assumptions on the data distribution beyond
conditional independence relations. An FCM represents the effect variable as a function of
the direct causes and a noise term; it renders causal direction identifiable due to the indepen-
dence condition between the noise and cause: one can show that under appropriate assump-
tions on the functional model class and distributions of the involved variables, the estimated
noise cannot be independent of the hypothetical cause in the reverse direction (Shimizu
et al., 2006; Hoyer et al., 2008; Zhang and Hyvärinen, 2009). More recently, the Generalized
Independent Noise condition (GIN) (Xie et al., 2020) has demonstrated its potential in learn-
ing hidden causal variables and their relations in the linear, non-Gaussian case. The identifi-
cation of hidden variables as well as the causal structure among them is also a focus of causal
representation learning (Schölkopf et al., 2021; Zheng and Zhang, 2024; Zhang et al., 2024).

To equip both practitioners and researchers with computational tools, several packages
have been developed for or can be adapted for causal discovery. The Java library TETRAD
(Glymour and Scheines, 1986; Scheines et al., 1998; Ramsey et al., 2018) contains a variety
of well-tested causal discovery algorithms and has been continuously developed and main-
tained for over 40 years; R packages pcalg (Kalisch et al., 2012) and bnlearn (Scutari, 2010)
also include some classical constraint-based and score-based methods such as PC and GES.
However, these tools are based on Java or R, which may not align with the recent trend
favoring Python in certain communities, particularly within machine learning. While there
are Python wrappers available for these packages (e.g., py-tetrad (Andrew and Ramsey,
2023)/py-causal (Wongchokprasitti et al., 2019) for TETRAD, and Causal Discovery Tool-
box (Kalainathan et al., 2020) for pcalg and bnlearn), they still rely on Java or R. This
dependency can complicate deployment and does not cater directly to Python users seeking
to develop their own methods based on an existing codebase. Thus, there is a pronounced
need for a Python package that covers representative causal discovery algorithms across
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all primary categories.1 Such a tool would significantly benefit a diverse range of users by
providing access to both classical methods and the latest advancements in causal discovery.

In this paper, we describe causal-learn, an open-source python library for causal discov-
ery. The library incorporates an extensive range of causal discovery algorithms, providing
accessible APIs and thorough documentation to cater to a diversity of practical require-
ments and data assumptions. Moreover, it provides independent modules for specific func-
tionalities, such as (conditional) independence tests, score functions, graph operations, and
evaluation metrics, thereby facilitating custom needs and fostering the development of user-
defined methods. An essential attribute of causal-learn is its full implementation in Python,
eliminating dependencies on any other programming languages. As such, users are not re-
quired to have expertise in Java or R, enhancing the ease of integration within the enormous
and growing Python ecosystem and promoting seamless utilization for a range of compu-
tational and scripting tasks. With causal-learn, modification and extensions based on the
existing implementation of causal discovery methods also become plausible for developers
and researchers who may not be familiar with Java or R. Additionally, it is convenient to
apply causal-learn together with packages for inference (e.g., DoWhy (Sharma and Kiciman,
2020) and Ananke (Lee et al., 2023)) to conduct end-to-end causal pipelines.

2. Design

The design philosophy of causal-learn is centered around building an open-source, modular,
easily extensible and embeddable Python platform for learning causality from data.

2.1 Methods

Causal-learn covers representative causal discovery methods across all major categories
with official implementation of most algorithms, In addition, causal-learn also provides a
variety of (conditional) independence tests and score functions as independent modules.
All methods (version 0.1.3.8) are summarized in Table 1. Through the collective efforts of
various teams and the contributions of the open-source community, causal-learn is always
under active development to incorporate the most recent advancements in causal discovery.

2.2 Utilities

Causal-learn further offers a suite of utilities designed to streamline the assembly of causal
analysis pipelines. The package features a comprehensive range of graph operations encom-
passing transformations among various graphical objects integral to causal discovery. These
include Directed Acyclic Graphs (DAGs), Completed Partially Directed Acyclic Graphs
(CPDAGs), Partially Directed Acyclic Graphs (PDAGs), and Partially Ancestral Graphs
(PAGs). Additionally, metrics including precision and recall for arrow directions or adja-
cency matrices, along with the Structural Hamming Distance (Acid and de Campos, 2003),
have also been included for ease of evaluation.

2.3 Demos, APIs, and benchmark datasets

The causal-learn package also contains extensive usage examples of all search methods, (con-
ditional) independence tests, score functions, and utilities (https://github.com/py-why/

1. LiNGAM (Ikeuchi et al., 2023) focuses on LiNGAM-based methods, of which many implementations are
included in causal-learn; gCastle (Zhang et al., 2021) focuses on gradient-based DAG structure learning.
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Table 1: Methods in causal-learn (version 0.1.3.8).

Categories Methods

Constraint-based
causal discovery

PC (Spirtes et al., 2000), MV-PC (Tu et al., 2019), FCI (Spirtes
et al., 1995), CD-NOD (Huang et al., 2020)

Score-based
causal discovery

GES (Chickering, 2002), A* (Yuan and Malone, 2013), Dynamic
Programming (Silander and Myllymäki, 2006), GRaSP (Lam
et al., 2022)

Function-based
causal discovery

ANM (Hoyer et al., 2008), PNL (Zhang and Hyvärinen, 2009),
LiNGAM (Shimizu et al., 2006), DirectLiNGAM (Shimizu et al.,
2011), VAR-LiNGAM (Hyvärinen et al., 2010), RCD (Maeda and
Shimizu, 2020), CAM-UV (Maeda and Shimizu, 2021)

Causal represen-
tation learning

GIN (Xie et al., 2020)

(Conditional) In-
dependence tests

Fisher-z test (Fisher et al., 1921), Missing-value Fisher-z test,
Chi-Square test, Kernel-based conditional independence (KCI)
test and independence test (Zhang et al., 2011), G-Square test
(Tsamardinos et al., 2006)

Score functions BIC (Schwarz, 1978), BDeu (Buntine, 1991), Generalized Score
(Huang et al., 2018)

causal-learn/tree/main/tests). For instance, causal discovery using PC is as simple as:

cg = pc(data) # apply PC with default parameters

Detailed documentation including all APIs and data structures is available at https://

causal-learn.readthedocs.io/en/latest. It also includes a collection of well-tested
benchmark datasets–since ground-truth causal relations are often unknown for real data,
evaluation of causal discovery methods has been notoriously known to be hard, and we
hope the availability of such benchmark datasets can help alleviate this issue and inspire
the collection of more real-world datasets with (at least partially) known causal relations.
Functions to import these datasets have also been included in the library.

3. Conclusion

The causal-learn library serves as a comprehensive toolset for causal discovery, significantly
advancing the field of causal analysis and its applications in domains such as machine learn-
ing. It provides a robust platform for not only applying causal analysis techniques but also
for facilitating the development of novel or enhanced algorithms. This is achieved by provid-
ing an infrastructure fully in Python that allows users to efficiently modify, extend, and tailor
existing implementations, contribute new ones, and maintain high-quality standards. Given
the current demand for causal learning and the rapid progress in this field, coupled with the
active development and contribution from our team and the community, the causal-learn li-
brary is poised to bring causality into an indispensable component across diverse disciplines.

4

https://github.com/py-why/causal-learn/tree/main/tests
https://github.com/py-why/causal-learn/tree/main/tests
https://causal-learn.readthedocs.io/en/latest
https://causal-learn.readthedocs.io/en/latest


Causal-learn: Causal Discovery in Python

Acknowledgments

We are grateful for the collective efforts of all open-source contributors who continue to foster
the growth of causal-learn. Especially, we would like to thank Yuequn Liu, Zhiyi Huang,
Feng Xie, Haoyue Dai, Erdun Gao, Aoqi Zuo, Takashi Nicholas Maeda, Takashi Ikeuchi,
Madelyn Glymour, Ruibo Tu, Wai-Yin Lam, Ignavier Ng, Bryan Andrews, Yewen Fan, and
Xiangchen Song. The work of WC is supported in part by the Natural Science Foundation of
China (62206064). The work of MG is supported in part by ARC DE210101624. The work
of RC is supported in part by the National Key R&D Program of China (2021ZD0111501)
and the National Science Fund for Excellent Young Scholars (62122022). The work of SS
is supported by ONR N00014-20-1-2501 and JST CREST JPMJCR22D2. This project is
partially supported by NSF Grant 2229881, the National Institutes of Health (NIH) under
Contract R01HL159805, and grants from Apple Inc., KDDI Research Inc., Quris AI, and
Infinite Brain Technology.

References

Silvia Acid and Luis M de Campos. Searching for bayesian network structures in the space
of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research,
18:445–490, 2003.

Bryan Andrew and Joseph Ramsey. py-tetrad, 2023. URL https://github.com/

cmu-phil/py-tetrad.

Wray Buntine. Theory refinement on bayesian networks. In Uncertainty proceedings 1991,
pages 52–60. Elsevier, 1991.

David Maxwell Chickering. Optimal structure identification with greedy search. Journal of
machine learning research, 3(Nov):507–554, 2002.

Ronald Aylmer Fisher et al. 014: On the” probable error” of a coefficient of correlation
deduced from a small sample. 1921.

Clark Glymour and Richard Scheines. Causal modeling with the tetrad program. Synthese,
68:37–63, 1986.

Clark Glymour, Kun Zhang, and Peter Spirtes. Review of causal discovery methods based
on graphical models. Frontiers in genetics, 10:524, 2019.

Patrik O Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, Bernhard Schölkopf, et al.
Nonlinear causal discovery with additive noise models. In NIPS, volume 21, pages 689–
696. Citeseer, 2008.

Biwei Huang, Kun Zhang, Yizhu Lin, Bernhard Schölkopf, and Clark Glymour. Gener-
alized score functions for causal discovery. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 1551–1560, 2018.

5

https://github.com/cmu-phil/py-tetrad
https://github.com/cmu-phil/py-tetrad


Zheng, Huang, Chen, Ramsey, Gong, Cai, Shimizu, Spirtes, Zhang

Biwei Huang, Kun Zhang, Jiji Zhang, Joseph D Ramsey, Ruben Sanchez-Romero, Clark
Glymour, and Bernhard Schölkopf. Causal discovery from heterogeneous/nonstationary
data. J. Mach. Learn. Res., 21(89):1–53, 2020.

Aapo Hyvärinen, Kun Zhang, Shohei Shimizu, and Patrik O Hoyer. Estimation of a struc-
tural vector autoregression model using non-gaussianity. Journal of Machine Learning
Research, 11(5), 2010.

Takashi Ikeuchi, Mayumi Ide, Yan Zeng, Takashi Nicholas Maeda, and Shohei Shimizu.
Python package for causal discovery based on lingam. vol, 24:1–8, 2023.

Diviyan Kalainathan, Olivier Goudet, and Ritik Dutta. Causal discovery toolbox: Uncov-
ering causal relationships in python. The Journal of Machine Learning Research, 21(1):
1406–1410, 2020.
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