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Abstract

qdax is an open-source library with a streamlined and modular API for Quality-Diversity
(QD) optimisation algorithms in jax. The library serves as a versatile tool for optimisation
purposes, ranging from black-box optimisation to continuous control. qdax offers imple-
mentations of popular QD, Neuroevolution, and Reinforcement Learning (RL) algorithms,
supported by various examples. All the implementations can be just-in-time compiled
with jax, facilitating efficient execution across multiple accelerators, including GPUs and
TPUs. These implementations effectively demonstrate the framework’s flexibility and
user-friendliness, easing experimentation for research purposes. Furthermore, the library is
thoroughly documented and has 93% test coverage.

Keywords: Quality Diversity, Population-Based Learning, Evolutionary Computation,
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1. Introduction

Quality Diversity (qd) has emerged as a rapidly expanding family of stochastic optimisation
algorithms that have demonstrated competitive performance across diverse applications,
including robotics (Cully et al., 2015), engineering design (Gaier et al., 2017), and video
games (Alvarez et al., 2019). Unlike traditional optimisation algorithms that seek a single
objective-maximizing solution, qd algorithms aim to identify a diverse set of such solutions.
Recently, the integration of modern deep reinforcement learning techniques with qd (Nilsson
and Cully, 2021; Pierrot et al., 2022a) has enabled the tackling of complex problems, such as
high-dimensional control and decision-making tasks. This convergence has drawn parallels
with other fields that maintain populations of policies and explore diverse behaviors (Eysen-
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Figure 1: A: Core components, used as building blocks to create optimisation experiments.
B: High-level software architecture of QDax. C: Various examples of QD algorithms used
for a variety of tasks and problem settings available in qdax.

bach et al., 2018; Sharma et al., 2020). Overall, these algorithmic developments have gained
popularity due to their simplicity, versatility, and ability to generate practical solutions for
various industrial applications.

To facilitate the unification of algorithms from these distinct research areas, we propose a
comprehensive framework embodied in a new open-source library, qdax. qdax encompasses
meticulously crafted implementations of 16 methods, prioritising both speed and flexibility.
In particular, qdax offers an extensive range of qd algorithm implementations, all within a
cohesive framework. Furthermore, qdax provides Reinforcement Learning (rl) algorithms
and skill-discovery rl algorithms, both built on the same foundational components. This
commonality ensures reliability in comparative analysis and facilitates seamless integration
of diverse approaches. Additionally, qdax offers a collection of utilities tailored for bench-
marking algorithms on standard tasks, including mathematical functions, robot control
scenarios, and industry-driven decision-making problems.

qdax is built on top of jax (Bradbury et al., 2018), a Python library for high-performance
numerical computing and machine learning, to fully exploit modern hardware accelerators
like GPUs and TPUs with minimal engineering overhead. jax enables to harness the
scalability advantages of qd methods, as demonstrated in recent studies (Lim et al., 2022),
and the parallelisation capabilities of fast parallel simulators, such as those developed in
brax (Freeman et al., 2021a) and Isaac gym (Makoviychuk et al., 2021). Because it provides
reliable implementations and faster benchmarking methods, qdax represents a significant
stride towards accelerating the development of QD and population-based methods.

2. QDax Features

Comprehensive baselines and SOTA methods qdax includes numerous baselines for
qd, Skill-Discovery rl, Population-Based Training, including state-of-the-art methods from
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those fields. The performance of implementations is validated through replications of results
from the literature. Methods can be run in only a few lines of codes thanks to a simple API.
Additionally, the flexibility of this API enables the extension of those methods for research
purposes. See Appendix A for examples of API usage.

Fast runtimes. Algorithms and tasks are implemented in jax and compatible with just-
in-time (jit) compilation to take advantage of XLA optimisation and to be able to seamlessly
leverage hardware accelerators (e.g. GPUs and TPUs). We compare our implementations
with existing ones or reported results. Our main observations are threefold: (i) on similar
hardware, we provide significant speed-ups (e.g. qd-pg, factor 5) (ii) ours enable practitioners
to run with same time performance algorithms that could only be run with large clusters
(e.g ME-ES, 1 GPU vs 1000 CPUs) (iii) one can leverage modern accelerators, resulting in
speed-ups of two orders of magnitude (e.g. MAP-Elites, A100). Refer to Appendix D for
details.

Optimisation problems. To enhance reproducibility, qdax offers jax implementations of
widely studied problems. qdax includes a collection of fundamental mathematical functions
that serves as elementary benchmarks in qd, such as rastrigin, sphere, planar arm, and
various others. To further expand the repertoire of tasks, qdax provides a range of utilities
for deriving tasks from robotics simulation environments implemented in brax. These
utilities incorporate robotics motion qd tasks, as inspired by Flageat et al. (2022), and
hard exploration tasks, as presented in Chalumeau et al. (2022b). Additionally, we provide
support for the RL industrial environments suite Jumanji, (Bonnet et al., 2024), facilitating
the evaluation on Combinatorial Optimisation problems. For a comprehensive analysis of
the performance of various qdax algorithms on selected tasks, refer to Appendix C.

Documentation, Examples and Code. qdax provides extensive documentation of the
entire library.1 All classes and functions are typed and described with docstrings. Most
functions are covered by unit tests (93% code coverage), with publicly available reports.2

Stability of the library is also ensured through continuous integration, which validates any
change through type checking, style checking, unit tests and documentation building. qdax
also includes tutorial-style interactive Colab notebooks3 which demonstrate example usage
of the library through the browser without any prior setup. These examples help users get
started with the library and also showcase advanced usage. Docker and Singularity container
functionalities are also provided to ease reproducibility and deployment on cloud servers.
Conda support is also provided and can be used as an alternative. Finally, qdax can be
installed via PyPI.4

3. Architecture and Design of QDax

qdax is built on Python and jax (Bradbury et al., 2018). It can seamlessly run on CPUs,
GPUs or TPUs on a single machine or in a distributed setting. qdax introduces a framework
(see Figure 1) that unifies all the recent state-of-the-art qd algorithms. In this framework, a

1. https://qdax.readthedocs.io/en/latest/
2. https://app.codecov.io/gh/adaptive-intelligent-robotics/QDax
3. https://github.com/adaptive-intelligent-robotics/QDax/tree/main/examples
4. https://pypi.org/project/qdax/
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Algorithm Container Emitter Common utilities

map-elites Grid GA Network
cma-me Grid CMA-ES Impr. Network, CMAES opt.
me-es Grid ES Network
pga-map-elites CVT GA, Q-PG Network, Buffer, Loss
qd-pg CVT GA, Q-PG, D-PG Network, Buffer, Loss
omg-mega Grid OMG-MEGA N/A
cma-mega Grid CMA-MEGA CMAES opt.
mome Multi Objective Grid GA Pareto front
nsga-ii, spea2 Pareto Grid GA Pareto front
diayn, dads, smerl, pbt N/A N/A Network, Buffer, Loss
me-pbt Grid GA, PBT Network, Buffer, Loss

Table 1: Comprehensive baselines implemented in qdax, including state-of-the-art
methods for qd, Skill-Discovery, and Multi-Objective Optimisation.

qd algorithm is defined by a container and an emitter. The container defines the way
the population is stored and updated at each evolution step. The emitter implements the
way solutions from the population are updated; this encompasses mutation-based updates,
sampling from a distribution (Evolution Strategies), policy-gradient updates, and more.
Neuroevolution methods – and more generally algorithms not rooted in QD – also fit in
the framework. See Table 1 that highlights components that are shared across algorithms
implemented in qdax.

qdax was also designed to compare and combine qd algorithms with other algorithms,
such as deep rl and other population-based approaches. Consequently, the architecture
ensures common use of many components, such as loss functions, networks and replay buffers.
This helps building fair performance comparisons between several classes of algorithms
and reduces the time it takes to implement hybrid approaches. The scoring function
abstraction gives the user flexibility to define the optimisation problem. It can range from
standard optimisation functions to complex rollouts in a simulated environment for rl.

4. Comparison to existing libraries

Multiple independent open-source packages are currently accessible for quality diversity (qd).
One such framework is Sferes (Mouret and Doncieux, 2010), which offers a selection of qd
algorithms implemented in the C++ language. However, it lacks support and integration for
deep learning frameworks. On the other hand, python libraries such as Pyribs (Tjanaka et al.,
2021) and qdpy (Cazenille, 2018) provide a more extensive range of qd algorithms compared
to Sferes. While these libraries are user-friendly, they lack GPU or TPU acceleration and
distribution capabilities. Furthermore, they are limited to standard optimisation problems
and do not support sequential decision-making problems. Additionally, recent developments
in the field of evolutionary algorithms have resulted in the creation of several packages. For
instance, Evojax (Tang et al., 2022) and evosax (Lange, 2022) are two jax packages that
offer efficient implementations of Evolution Strategies and Neuroevolution methods, as well
as the implementation of optimisation problems using jax. These libraries do not focus on
qd and hence have a very limited number of qd methods. Interestingly, these libraries can
be used in conjunction with qdax. Similarly, EvoTorch builds upon PyTorch (Paszke et al.,
2019) rather than jax to accelerate Evolutionary Algorithms.

4



QDax: A Library for Quality-Diversity and Population-based Algorithms

Overall, qdax presents a unified framework in jax, facilitating rapid development and
effortless benchmarking. It serves as a platform for evolutionary, population-based, and
diversity-seeking algorithms, while leveraging modern hardware accelerators.
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Appendix A. Code API and Usage

Figure 2 shows an example of the code usage demonstrating the simplicity and modularity
of the API. This code snippet shows the main steps to run map-elites with qdax, those
steps being (i) instantiating an object from the class map-elites (ii) computing the centroids
that will be used to define the grid that is to store the solutions produced by the algorithm
(iii) initializing the algorithm, which will initialize the repertoire as well as the state of the
emitter (iv) running iterations of the update function of map-elites, natively implemented
in the class. Interestingly, all it takes to run pga-map-elites or cma-me is to change the
type of emitter defined when instantiating the map-elites object on the first line of the code
snippet.

For additional illustrations of the API, we strongly encourage the reader to try the
examples proposed in qdax: we wrote example notebooks5 for most algorithms implemented.
This should help any user to get started with the library and should also illustrate how to
use the library to extend the implemented algorithms for research purpose.

Figure 2: Code snippet demonstrating the API of qdax on a simple example: map-elites
used to solve the arm task. User can get their first experiment running with only a few lines
of code. Additionally, it only takes a few updates to change the type of algorithm running
on the same task.

5. https://github.com/adaptive-intelligent-robotics/QDax/tree/main/examples
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Algorithm Categories References

map-elites qd Mouret and Clune (2015)
cvt map-elites qd Vassiliades et al. (2017)

cma-me qd, Evolution Strategies Fontaine et al. (2020)
me-es qd, Evolution Strategies Colas et al. (2020)

pga-map-elites qd, rl Nilsson and Cully (2021)
qd-pg qd, rl Pierrot et al. (2022a)

diayn Skill Discovery, rl Eysenbach et al. (2018)
dads Skill Discovery, rl Sharma et al. (2020)
smerl Skill Discovery, rl Kumar et al. (2020)

omg-mega Differentiable qd Fontaine and Nikolaidis (2021)
cma-mega Differentiable qd Fontaine and Nikolaidis (2021)

mome Multi Objective, qd Pierrot et al. (2022b)
nsga-ii Multi Objective Deb et al. (2002)
spea2 Multi Objective Zitzler et al. (2001)

pbt Population Based, RL Jaderberg et al. (2017)
me-pbt Population Based, QD, RL Pierrot and Flajolet (2023)

Table 2: Main algorithms implemented in qdax. This table also reports the general category
of algorithms each method belongs to, as well as the paper that introduced the algorithm.

Appendix B. Implemented algorithms

The main algorithms implemented in qdax are summarized in table 2. This table provides
the name of the algorithm, the broader categories of algorithms that the algorithm belongs
to and the reference of the algorithm.

qdax contains state-of-the-art qd algorithms and numerous methods related to Neu-
roevolution, Skill Discovery, Population-Based learning and Multi-Objective optimisation.
In particular, qdax provides the implementation of map-elites (Mouret and Clune, 2015),
cvt map-elites (Vassiliades et al., 2017) - corresponding to general qd methods -, cma-
me (Fontaine et al., 2020), me-es (Colas et al., 2020) - described as qd with Evolution
Strategies - , pga-map-elites (Nilsson and Cully, 2021; Flageat et al., 2023), qd-pg (Pierrot
et al., 2022a) - which are qd methods with policy gradients, often referred to as qd-rl- ,
diayn (Eysenbach et al., 2018), dads (Sharma et al., 2020), smerl (Kumar et al., 2020) -
popular methods in rl for Skill Discovery -, omg-mega, cma-mega (Fontaine and Nikolaidis,
2021) - Differentiable qd- , mome (Pierrot et al., 2022b), nsga-ii, spea2- the reference
approaches for Multi-Objective optimisation -. All those methods have similar API and can
be evaluated on popular tasks. Furthermore, they all take advantage from the speed-up
enabled by just-in-time compilation in Jax, making them extremely fast and scalable.
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Environment map-elites pga-map-elites smerl dads diayn

Ant Omni 1.7 × 109 1.85 × 108 1.01 × 107 8.9 × 106 1.01 × 107

Ant Uni 2.45 × 109 1.9 × 108 1.0 × 107 7.8 × 106 9.97 × 106

Ant Maze 1.05 × 109 1.7 × 108 7.09 × 106 8.62 × 106 9.70 × 106

Ant Trap 1.08 × 109 1.3 × 108 9.81 × 106 8.46 × 106 9.73 × 106

Halfcheetah Uni 9.83 × 108 1.39 × 108 1.08 × 107 8.43 × 106 1.07 × 107

Point Maze 2.41 × 109 3.01 × 108 1.09 × 107 9.70 × 106 1.07 × 107

Walker2d Uni 1.95 × 109 2.40 × 108 1.11 × 107 8.94 × 106 1.11 × 107

Average 1.66 × 109 1.93 × 108 9.97 × 106 8.70 × 106 1.03 × 107

Table 3: Number of training steps carried out during two hours of training by the various
methods under study on seven brax tasks of qdax. Averaged over 5 seeds.

Appendix C. Benchmark Results

This section provides numerous results from the algorithms present in qdax over several
benchmarks tasks available in the library. These results can give the reader an idea of the
metrics and time performance expected when using qdax. Note that metrics performance
are validated against the one reported along original implementations of the algorithms.
The reported experiments are taken from Chalumeau et al. (2022a) and were run with a
single Quadro RTX 4000 GPU.

The results presented relate to seven tasks from the braxrl tasks implemented in qdax.
These tasks are benchmark qd-rl tasks used to assess Neuroevolution algorithms (Chalumeau
et al., 2022b; Flageat et al., 2022). We refer to them as ant-uni, halfcheetah-uni, walker-
uni, ant-trap, ant-maze and point-maze. Those can be visualized on Figure 3. For
more details about the hyper-parameters used, please refer to (Chalumeau et al., 2022a).

For a representative comparison between qd algorithms and Deep rl methods such as
smerl, which do not actively have a population of policies or an archive, a passive archive
is used to compute metrics like qd score in those results. Given that there is only a single
latent conditioned policy, during training SMERL policy is evaluated by sampling latent
codes and recording their trajectories. Behavior descriptors can be extracted from these
trajectories, which can then be used for addition to the passive archive. This allows to use
similar metrics such as the coverage and qd score when comparing qd and Skill Discovery
rl methods.

To demonstrate the speed of our implementations, Table 3 reports the number of training
steps achieved in two hours by the implementation of qdax on a single GPU. Figure 5 reports
the evolution of fitness, QD score and coverage along time of the algorithms smerl, map-
elites and pga-map-elites on the seven tasks mentioned above. We also report the evolution
of those metrics along environments interactions on Figure 5. Finally, Figure 6 shows the
archives of resulting policies from the different algorithms where each cell corresponds to a
policy and different behaviors.
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Figure 3: Visualisation of the environments used to show the performances of our implemen-
tations of smerl, pga-map-elites and map-elites. Diagram is adapted from Chalumeau
et al. (2022a); Flageat et al. (2022); Chalumeau et al. (2022b)

Appendix D. Fast implementations

qdax is a package written in jax, hence all the implementations can be just-in-time compiled
(jit) and run on hardware accelerators like GPUs and TPUs with no code overhead. This
combines simplicity and efficiency, making qdax particularly suitable for practitioners that
do not have access to large compute resources. In this section, we put ourselves in the
situation of a practitioner that has a machine with an affordable GPU and wants to use
existing available open-source implementations by just installing and running them.

We consider a few open-source implementations of libraries and algorithms which runtime-
performance is reported in a paper, reported by its authors, or by simply running the
implementation to compare the runtime-performance to the one that someone can expect by
running qdax on an affordable GPU (Quadro RTX 4000).

For pga-map-elites, we compare qdax implementation with the only other available
open-source implementation which is the provided author implementation6. The author
implementation utilizes PyTorch as its deep learning framework. It also uses multiprocessing
over CPU devices to handle its environment evaluation and is not directly compatible
with GPUs even for training the networks via gradient descent. Hence, to exploit this
implementation effectively, a large number of CPUs is required, which is not an option
for most practitioners. The original implementation requires approximately 36 hours to
perform a run of 109 steps with 36 CPUs, which corresponds to 2.8 × 107 steps an hour.
Our implementation of pga-map-elites achieves 108 steps an hour. Hence, a practitioner
can perform runs of pga-map-elites in a few hours on his computer instead of several days.

For qd-pg, we compare the runtime performance of qdax’s implementation with results
reported by the authors of the algorithm. The author implementation is not open-source
but they report that with 1 GPU and a dozen CPUs, their implementation can do 108 steps

6. https://github.com/ollenilsson19/PGA-MAP-Elites
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Figure 4: Evolution over wall-clock time of maximum fitness, coverage and qd score during
a training phase. Reports algorithms smerl, pga-map-elites and map-elites on 2 hours of
training.
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Figure 5: Evolution over environment interactions of maximum fitness, coverage and qd
score during a training phase. Reports smerl on 107 timesteps and pga-map-elites and
map-elites on 108 timesteps.
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Figure 6: Final grids obtained on 6 brax environments with qdax implementations. For
ant-trap, ant-maze, point-maze and ant-omni, the behavior descriptor is the final x, y
position. For walker-uni and halfcheetah-uni, it is the proportion of contact time of
the feet on the ground. Reports smerl, pga-map-elites and map-elites after two hours of
training.
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in 15 hours on ant-trap. In qdax, qd-pg can do the same on 3 hours, hence a speed-up of
a factor 5.

For me-es, we compare our implementation with the original implementation7. This
implementation requires large computing clusters to be efficient: results reported in the
paper (Colas et al., 2020) use 1000 CPUs, which makes it completely unusable for most
practitioners. Our implementation can be run on a simple GPU with a few CPUs and still
match the runtime performance. The original implementation was reported to perform
6 × 108 environment steps an hour (3 × 1010 in two days for the ant-maze experiment).
Our implementation performs 4 × 108 steps an hour.

For map-elites, one can expect to reach up a 100 times speed up compared to alternative
open-source implementations. The reader should refer to Lim et al. (2022) for a thorough
analysis of the performance to be expected.

Appendix E. Package dependencies

qdax uses several popular packages from the community. In particular:

• brax (Freeman et al., 2021b) for fast and jittable physical simulations in Jax, enabling
to use continuous control environments.

• chex (DeepMind et al., 2020) for type checking.

• flax (Heek et al., 2023) as our main library for neural networks.

• dm-haiku (Hennigan et al., 2020) to define neural networks in some examples. Hence
both flax and haiku users can found examples in qdax.

• jax (Bradbury et al., 2018) as the core dependency of the project, enabling high-
performance numerical computing.

• jumanji (Bonnet et al., 2024) provides RL environments for games on combinatorial
optimisation, written in Jax. We provide examples of how to use Jumanji with qdax
algorithms.

• optax (DeepMind et al., 2020) for gradient descent algorithms and related utils.

7. https://github.com/uber-research/Map-Elites-Evolutionary
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