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We initiate a study of supervised learning from many independent sequences (“tra-

jectories”) of non-independent covariates, reflecting tasks in sequence modeling, control,
and reinforcement learning. Conceptually, our multi-trajectory setup sits between two tra-
ditional settings in statistical learning theory: learning from independent examples and
learning from a single auto-correlated sequence. Our conditions for efficient learning gener-
alize the former setting—trajectories must be non-degenerate in ways that extend standard
requirements for independent examples. Notably, we do not require that trajectories be
ergodic, long, nor strictly stable.

For linear least-squares regression, given n-dimensional examples produced by m trajec-
tories, each of length T', we observe a notable change in statistical efficiency as the number
of trajectories increases from a few (namely m < n) to many (namely m 2 n). Specif-
ically, we establish that the worst-case error rate of this problem is ©(n/mT) whenever
m 2 n. Meanwhile, when m < n, we establish a (sharp) lower bound of Q(n?/m?T) on the
worst-case error rate, realized by a simple, marginally unstable linear dynamical system. A
key upshot is that, in domains where trajectories regularly reset, the error rate eventually
behaves as if all of the examples were independent, drawn from their marginals. As a
corollary of our analysis, we also improve guarantees for the linear system identification
problem.

Keywords: learning with dependent data, linear dynamical systems, system identification

1. Introduction

Statistical learning theory aims to characterize the worst-case efficiency of learning from
example data. Its most common setup assumes that examples are independently and iden-
tically distributed (7id) draws from an underlying data distribution, but various branches of
theory—mnot to mention deployed applications of machine learning—consume non-indepen-
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dent data as well. An especially fruitful setting, and the focus of this paper, is in learning
from sequential data, where examples are generated by some ordered stochastic process
that renders them possibly correlated. Naturally, sequential processes describe application
domains spanning engineering and the sciences, such as robotics (Nguyen-Tuong and Pe-
ters, 2011), data center cooling (e.g. Lazic et al. (2018)), language (e.g. Sutskever et al.
(2014); Belanger and Kakade (2015)), neuroscience (e.g. Linderman et al. (2017); Glaser
et al. (2020)), and economic forecasting (McDonald et al., 2017). Learning over sequen-
tial data can also capture some formulations of imitation learning (Osa et al., 2018) and
reinforcement learning (Chen et al., 2021; Janner et al., 2021).

In supervised learning, one learns to predict output labels from input covariates, given
example pairings of the two. Formal treatments of learning from sequential data typically
concern a single inter-dependent chain of covariates. Where these treatments vary is in their
assumptions about the underlying process that generates the covariate chain. For instance,
some assume that the process is auto-regressive (e.g. Lai and Wei (1983); Goldenshluger
and Zeevi (2001); Gonzalez and Rojas (2020)) or ergodic (e.g. Yu (1994); Duchi et al.
(2012)). Others assume that it is a linear dynamical system (e.g. Simchowitz et al. (2018);
Faradonbeh et al. (2018); Sarkar and Rakhlin (2019)).

In this paper, we examine what happens when we learn from many independent chains
rather than from one, as one does anyway in many applications (e.g. Pomerleau (1989);
Khansari-Zadeh and Billard (2011); Brants et al. (2007); Jézefowicz et al. (2016)). Figure 1
depicts the data dependence structure of our setup in comparison with its two natural
counterparts. Learning from a dataset of many short (constant length) chains ought to
be similar to independent learning, even if each chain is highly intra-dependent. On the
other hand, for any non-trivial chain length, intuition suggests that the error can degrade
relative to the total sample size in the worst case, since a greater proportion of the data
may contain correlations. Lower bounds even show that, when one sees only a single chain,
this degradation is outright necessary in the worst case (Bresler et al., 2020). Do we see
any such effect with many chains?

We study this question by sharply characterizing worst-case error rates of a fundamental
task—Ilinear regression—imposed over a general sequential data model. Our findings reveal
a remarkable phenomenon: after seeing sufficiently many chains (m) relative to the example
dimension n, no matter the chain length T, the error rate matches that of learning from
the same total number mT of independent examples, drawn from their respective marginal
distributions.

In our data model, each chain, called a trajectory, comprises a sequence of covariates
{z:} generated from a stochastic process. Each covariate is accompanied by a noisy linear
response y; as its label. A training set {(wy), yt(i))}?i’th:l comprises m independent chains,
each of length T'. From such a training set, an estimator produces a hypothesis that predicts
the label of any covariate. The resulting hypothesis is evaluated according to its mean-
squared prediction error over a fresh chain of length 7", possibly unequal to T—a notion of
risk defined naturally over a trajectory. All of our risk upper bounds are guarantees for the
ordinary least-squares estimator in particular.

A concrete, recurring example in this paper takes the covariate-generating process to be
a linear dynamical system (LDS). Specifically, fixing matrices A € R™*" B € R™*¢, and
W, € RP*™ a single trajectory {(z¢,y+)}i>1 is generated as follows. Let xp = 0, and for
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Figure 1: The covariate dependence structure induced by three data models on mT many training
examples. In (a): independent examples, typical of basic statistical learning. In (b): the data models
often considered in the sequential learning literature, comprising a long auto-correlated chain of
examples. Learning in this setting can be infeasible in general, so oftentimes ergodicity is assumed
in order to rule out strong long-range dependencies, essentially inducing an “independent resetting”
effect across time. The effective reset frequency then factors uniformly into error bounds, in a way
suggesting that one learns only one independent example’s worth within each effective reset window
(cf. Section 2). In (c): our multi-trajectory data model. Our accompanying assumptions allow for
non-ergodic chains, and for arbitrary chain lengths 7', while introducing ezplicit independent resets.
Decoupling the m resets from the sequential data model lets us vary the training set dimensions
(m,T) freely, without affecting other data assumptions, as we study their effect on error rates.
We find that with enough trajectories m, the worst-case error rate behaves the same as in the
independent setting depicted in (a); i.e., one learns as though every example were independently
drawn from its marginal distribution. Some recent work in system identification assumes a data
model related to ours (specifically linear dynamical data) and likewise avoids ergodicity; our bounds
improve these guarantees T-fold where applicable, and upgrade the regimes in which they apply (cf.
Section 2).

t > 1 consider the process:

x = Axy_q1 + Buwy, (linear dynamics)

yr = Wiy + &, (linear regression)

where the {w;};>1 are iid centered isotropic Gaussian draws and {{;};>1 is a sub-Gaussian
martingale difference sequence (with respect to past covariates {l‘k}zzl and noise variables
{fk}z_:ll). Incidentally, combining linear dynamical systems with linear regression captures
the basic problem of linear system identification (as in Simchowitz et al. (2018)) as a special
case.

In other instantiations of learning from trajectories, the covariates {x;} may be generated
by a different process; what remains common is the superimposed regression task set up
by the ground truth W, and the noise {§}. The key condition that we will introduce,
which renders a covariate process amenable to regression, is that it satisfies a trajectory
small-ball criterion (Definition 4.1). Section 4.1 shows that LDS-generated data conforms
to the trajectory small-ball condition in particular, as do many other distributions.

Our main results (Sections 5 and 6) sharply characterize worst-case rates of learning
from trajectory data as a function of the training trajectory count m, the training trajectory
length T, the evaluation length 7", the covariate and response dimensions n and p, and scale
parameters of noise in the data model (such as the variance of the noise {{}). Restricting
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only to terms of covariate dimension n, training set size m and 7', and evaluation length
T’, our bounds imply the following summary statement:

Theorem 1.1 (informal; error rate with many small-ball trajectories, 7" < T). If m 2 n,
T' < T, and covariate trajectories are drawn from a trajectory small-ball distribution, then
the worst-case excess prediction risk (over evaluation horizon T') for linear regression from
m many trajectories of n-dimensional covariates, each of length T, is O(n/(mT)).

In drawing comparisons to learning from independent examples, it makes sense to con-
sider training and evaluations lengths 7" and T” equal (cf. Section 3), rendering Theorem 1.1
applicable. The theorem thus echoes our main point above: the same rate of O(n/(mT))
describes regression on mT" independent examples (details on this point are expanded in
Section 3.3).

Further structural assumptions are needed (cf. Section 3.3) in order to cover the remain-
ing range of problem dimensions, namely few trajectories (m < n) or extended evaluations
(T" > T), and to that end we return to linear dynamical systems as a focus. Our remaining
risk upper bounds, targeting learning under linear dynamics, require that the dynamics
matrix A be marginally unstable (meaning that its spectral radius p(A) is at most one) and
diagonalizable. When trajectories are longer at test time than during training (i.e., 77 > T),
marginal instability is practically necessary, otherwise the risk can scale exponentially in
T’ — T. The assumption otherwise still allows for unstable—and therefore non-ergodic—
systems at p(A) = 1. For simplicity, we also require that the control matrix B have full row
rank. Our bounds then imply the following summary statement about regression when the
number of trajectories is limited:

Theorem 1.2 (informal; error rate with few LDS trajectories). If m < n, mT 2 n,
and covariate trajectories are drawn from a linear dynamical system whose dynamics A
are marginally unstable and diagonalizable, then the worst-case excess prediction risk (over
evaluation horizon T') for linear regression from m many trajectories of n-dimensional
covariates, each of length T, is ©(n/(mT) - max{nT’/(mT),1}).!

If the evaluation horizon 7" is a constant, the rate in Theorem 1.2 recovers that of Theo-
rem 1.1, up to log factors and extra assumptions. To compare the theorems further, consider
equal training and evaluation horizons (7" = T'). In this setting, the rate in Theorem 1.2 is
weaker than that of Theorem 1.1, by up to a factor of the covariate dimension n, so it may
seem that Theorem 1.2 establishes a separation between few and many trajectory learning.
However, the varying premises of many vs. few trajectories constrains the risk definitions
to differ: under a fixed data budget N := mT = mT", fewer trajectories m imply a longer
horizon T” over which the risk is evaluated. Intuitively, a longer evaluation horizon makes
for a different problem, and renders the rate comparison invalid.

A more sound comparison across regimes is possible by first normalizing the notion of
performance within a problem instance. To this end, we can consider the worst-case risk
of learning from trajectories relative to that of learning from independent examples in the

1. In proving the lower bound in Theorem 1.2, we construct a hard instance by decoupling the martingale
difference noise {&} from the covariate-generating process (cf. Definition 7.1). Technically, this excludes
the lower bound from applying directly to the linear system identification problem. Resolving this
discrepancy is a question that remains open for future work.
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same regime. Constructing the latter baseline is somewhat subtle (cf. Section 3.2). To
decorrelate the problem of learning from trajectories while maintaining its temporal struc-
ture otherwise, we can imagine drawing from its marginal distributions independently at
each time step. The resulting dataset is independent, but not identically distributed. Al-
though the rates for the sequential and decorrelated regression problems are—as already
highlighted—remarkably the same under many trajectories, the few-trajectory rate in The-
orem 1.2 is indeed weaker than the ©(n/(mT)) rate that we prove for its decorrelated
baseline (cf. Theorem 5.7).

Since the more general Theorem 1.1 already describes what happens under many trajec-
tories (m = n) and a strict evaluation horizon (7" < T'), what remains is a somewhat niche
regime: many trajectories and an extended evaluation horizon 7" > T. For completeness,
our bounds supply the following summary statement:

Theorem 1.3 (informal; error rate with many LDS trajectories). If m = n and covari-
ate trajectories are drawn from a linear dynamical system whose dynamics A are marginally
unstable and diagonalizable, then the worst-case excess prediction risk (over evaluation hori-
zon T") for linear regression from m many trajectories of n-dimensional covariates, each of

length T, is ©(n/(mT) - max{T"/T,1}).

Using the tools of our analysis, we also develop upper bounds for parameter error instead
of prediction risk, which inform recovery of the ground truth W, and (by reduction) of the
dynamics matrix A in LDS. The latter captures the linear system identification problem.
Our upper bounds improve on its worst-case guarantees by a factor of 1/7T where applicable,
and extend the parameter ranges in which guarantees hold at all.

2. Related work

Linear regression is a basic and well-studied problem. The two treatments most closely
related to our work are Hsu et al. (2014) and Mourtada (2022), who develop sharp finite-
sample characterizations of the risk of random design linear regression (i.e., from iid exam-
ples). Discussion and references therein cover the broader problem over its long history.

A common approach to studying dependent covariates is to assume that the data-
generating process is ergodic (see e.g. Yu (1994); Meir (2000); Mohri and Rostamizadeh
(2008); Steinwart and Christmann (2009); Mohri and Rostamizadeh (2010); Duchi et al.
(2012); Kuznetsov and Mohri (2017); McDonald et al. (2017); Shalizi (2021) and references
therein). The key phenomenon at play is that N correlated examples are statistically sim-
ilar to N/Tmix independent examples, where Tmix is the process mizing-time. Relying on
this idea, generalization bounds informing independent data can typically be ported to the
ergodic setting, where the effective sample size is simply “deflated” by a factor of Tmix.
Since mixing-based bounds become vacuous as Tmix — 00, they do not present an effective
strategy for studying dynamics that do not mix. A critical instance of this arises in linear
dynamical systems: in LDS, the ergodicity condition amounts to stability of the dynamics
matrix A (i.e., p(A) < 1), where Tmix — oo as p(A) — 1 (e.g. Meyn and Tweedie, 1993,
Thm. 17.6.2). Marginally unstable systems, in which p(A) = 1, are thus not captured.

A recent line of work uncovers ways to sharpen generalization bounds based on the
specific structure of realizable least-squares regression problems over an ergodic trajectory.
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For realizable linear regression with stationary covariates, results from Bresler et al. (2020)
imply that, after the trajectory length exceeds an initial burn-in time scaling as 7nixn, the
minimax (excess) risk coincides with the classic iid rates. Additionally, Ziemann and Tu
(2022) show that the empirical risk minimizer exhibits similar behavior in realizable non-
parametric regression problems, provided certain small-ball assumptions of the underlying
process hold. While these results sharpen our understanding of how the mixing time Ty af-
fects regression risk bounds, they ultimately rely on ergodicity. Since learning from a single
trajectory is generally impossible without ergodicity, we are led to study other sequential
learning configurations. The two, however, are not mutually exclusive: our results actually
apply when mixing, and in fact show that the empirical risk minimizer is minimax optimal
(after a burn-in time scaling with the mixing time). This eschews the need for algorithmic
modifications to learning from mixing trajectory data (Bresler et al., 2020). We give details
on this in Appendix B.7.

Non-temporal dependency structures. Covariates and responses can be inter-depen-
dent in many ways, not only via temporal structure. A recent resurgence of work investigates
learning under an Ising model structure over covariates (Bresler, 2015; Dagan et al., 2019;
Ghosal and Mukherjee, 2020; Dagan et al., 2021b), as well as over responses (Daskalakis
et al., 2019; Dagan et al., 2021a) (conditioned on the covariates). At a conceptual level, the
extension from a single temporally dependent trajectory to multiple trajectories is analo-
gous to the extension from single observations to Ising models with multiple independent
observations. Incidentally, in this area, investigations began by studying learning under mul-
tiple independent observations, and progressed towards guarantees on learning from a single
one. Relating these two data models—trajectories and Ising grids—under intercompatible
assumptions may reveal interesting connections between these results.

System identification. A special case of our LDS-specific data model captures linear
system identification with full state observation: the task of recovering the dynamical system
parameters A from observations of trajectories. While classic results are asymptotic in
nature (see e.g. Lai and Wei (1982, 1983); Ljung (1998)), recent work gives finite-sample
guarantees for recovery of linear systems with fully observed states (Simchowitz et al., 2018;
Dean et al., 2020; Jedra and Proutiere, 2020; Faradonbeh et al., 2018; Sarkar and Rakhlin,
2019; Jedra and Proutiere, 2019; Tsiamis and Pappas, 2021), and also partially observed
states (Oymak and Ozay, 2019; Simchowitz et al., 2019; Tsiamis and Pappas, 2019; Sarkar
et al., 2021; Zheng and Li, 2021). The proof of our upper bounds builds on the “small-
ball” arguments from Simchowitz et al. (2018) (that, in turn, extend Mendelson (2015);
Koltchinskii and Mendelson (2015)), which do not require ergodicity.

To the best of our knowledge, our results are the first to quantify the trade-offs be-
tween few long trajectories and many short trajectories. Nearly all finite-sample guarantees
for linear system identification consider a single trajectory, with a few notable exceptions.
First, Dean et al. (2020) allow for m > 1 trajectories with fully observed states and make
no assumptions on the dynamics matrix A. However, their analysis discards all but the
last state transition within a trajectory, reducing to iid learning over only m examples.
Second, Zheng and Li (2021); Xin et al. (2022) study the recovery of Markov parameters
from partially observed states over many trajectories. However, their error bounds do not
decrease with longer training horizons 7', since the number of Markov parameters one must
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recover scales with the trajectory length. Third, Xing et al. (2021) consider multiple trajec-
tories where the noise enters multiplicatively instead of additively. Their main finite-sample
parameter recovery result (Theorem 2) states that the operator norm of the parameter er-
ror scales as /7/m, with the additional restriction that 7" > n2. To achieve consistency,
this result fixes the trajectory length 7" and takes the trajectory count m — oco. By con-
trast, our analysis varies the two quantities 7' and m independently. Furthermore, a line
of work concurrent to ours investigates learning from multiple sources of linear dynamical
systems (Chen and Poor, 2022; Modi et al., 2022). This is a latent variable model, where
the underlying index of the LDS must be disambiguated from data. This model is more
general than the one studied in this paper, and specializing the corresponding results to
our setup yields sub-optimal bounds and unnecessary requirements. We discuss this in
Section 5.2, after presenting upper bounds in detail. Finally, to more clearly interpret the
effects of multiple trajectories on learning, a core part of our work studies linear dynamical
systems under an ideal setup with Gaussian controls and time-invariant dynamics. Recent
work extends beyond this ideal setup in the single trajectory setting, including learning in
piecewise-affine systems (Block et al., 2023), bilinear systems (Sattar et al., 2022), switched
linear systems (Massucci et al., 2022), and linear dynamical systems with non-linear con-
trol laws (Li et al., 2023). Extending our multi-trajectory analysis to these settings is an
interesting open direction for future work.

Our LDS setup (Section 3.4) decouples the covariate dynamics model A from the ob-
servation model W,, and our risk definition additionally allows for an arbitrary evaluation
horizon T”. The risk over an arbitrary evaluation horizon is harder to control than param-
eter error, which corresponds to an evaluation length of one. This is because the larger
signal-to-noise ratio accrued by a less stable system magnifies the prediction error over the
entire evaluation horizon. Although the observation model that we consider is mentioned
in Simchowitz et al. (2018), the general setup with matching upper and lower bounds are
all, to the best of our knowledge, new contributions.

A complementary line of work studies the problem of online sequence prediction in a
no-regret framework, where the baseline expert class comprises of trajectories generated
by a linear dynamical system (Hazan et al., 2017, 2018; Ghai et al., 2020). These results
also allow for marginally unstable dynamics but are otherwise not directly comparable.
Other efforts look beyond linear systems to identifying various non-linear classes, such as
exponentially stable non-linear systems (Sattar and Oymak, 2020; Foster et al., 2020) and
marginally unstable non-linear systems (Jain et al., 2021). These results again learn from
a single trajectory. We believe that elements of our analysis can be ported over to offer
many-trajectory bounds for these particular classes of non-linear systems.

3. Problem formulation

Notation. The real eigenvalues of a Hermitian matrix M € CF** are Ao (M) = A (M) >
o = M(M) = Mpin(M). For a square matrix M € CF** M* denotes its conjugate trans-
pose, and p(M) denotes its spectral radius: p(M) = max{|A| | A is an eigenvalue of M }.
The space of n x n real-valued symmetric positive semidefinite (resp. positive definite) ma-
trices is denoted SymZ, (resp. SymZ,). The non-negative (resp. positive) orthant in R" is
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denoted as RZ, (resp. RZ;), and S"~! denotes the unit sphere in R”. Finally, the set of
positive integers is denoted by N .

3.1 Linear regression from sequences

Regression model. A covariate sequence is an indexed set {x:};>1 C R™. Any distri-
bution P, over covariate sequences is assumed to have bounded second moments, i.e., that
E[z:x]] exists and is finite for all ¢ > 1. Also for such a distribution Py, let P¢[P,] be a dis-
tribution over observation noise sequences {&;}¢>1 C RP. Denoting by {F;}¢>0 the filtration
with F; = o({z} {&}_,), we assume that {&}i>1 is a og-sub-Gaussian martingale
difference sequence (MDS), i.e., for ¢ > 1:

E[(v,6) | Fia] =0, Elexp(Mo,&)) | Fi1] < exp(A2[|o|202/2) as. YA € R,v € R?

Given a ground truth model W, € RP*™ define the observations (a.k.a. “responses” or
“labels”):

Yy = Wiz + &, t=>1. (31)

Denote by P [PZ, P¢] the joint distribution over covariates and observations {(x¢, y¢) }e>1.

Regression task. Fix a ground truth model W, € RP*" a covariate distribution P, an

observation noise model Pg, a training horizon T, and a test horizon T'. Draw m inde-
pendent sequences { (wt ,yt )}Ze[m] +>1 from ny[Pm, P¢], and call their length-T" prefixes
{( (@, @

Y, )}Z 11 the training examples. From these examples, the regression task is to

find a hypothesis fm,T : R™ — RP that matches ground truth predictions fy, (z) := W,z in
expectation over unseen trajectories of length 7”. Specifically, the excess risk of a hypothesis

fis:
L(f;T'.P T,an ze) = fw. (@)|3 | - (3:2)

We say that the evaluation horizon T” is strict if T" < T and extended if T' > T. When
the hypothesis class is linear, meaning the hypotheses f are of the form f (z) = Wa with
W e RP*™ the risk expression (3.2) simplifies as follows. For a positive definite matrix
¥ € R™*", define the weighted square norm || M||% := tr(MXMT) for M € RP*"™. Denoting,
fort > 1:

S¢(Py) := Ep, [z:2]],  Ty(Pg):= %Z Sk (P2), (3.3)

we overload notation and write:
L(W;T',Py) = |W — Will2 e, (3.4)

The risk (3.2), being a notion of error averaged over time steps, relates to that of Ziemann
et al. (2022) in the study of learning dynamics (the difference lies in whether the error norm
is squared).
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By allowing unequal training and test horizons T' # T”, we cover two related scenar-
ios at once: system identification in linear dynamical systems (when 7 = 1) and pre-
dicting past the end of a sequence (when 7" > T). For the latter, the risk definition
(3.2) is closely related to a commonly studied notion of “final step” generalization (see
e.g. (Kuznetsov and Mohri, 2017, Eq. 5), (McDonald et al., 2017, Def. 10)) that mea-
sures the performance of a hypothesis at 7" — T time steps beyond the training hori-
zon: Lena(f;T',P) == Ep,[||f(zr) — fw, (z7)||3]. Linear hypotheses enjoy the identity
Lena(W;T',P,) = |W — W*H%T/(Px). In turn:

Lond(W;T',P,) > L(W;T',Py) 2 Lena(W; |T/2), Pa).

In other words, provided the scale of the covariances ¥;(P,) does not grow substantially
over time t, our risk definition L is comparable to the final-step risk Leng.

Minimax risk. To compare the hardness of learning across problem classes (i.e., families
of covariate distributions P, ), we measure the minimax rate of the risk L—i.e., the behavior
of the best estimator’s worst-case risk over valid problem instances—as a function of the
amount of training data m,T and other problem parameters such as n, p, o¢, and T7’. Recall
that P}'s denotes the distribution over labeled trajectories {(xt,y¢)}i>1. For a collection
of covariate sequence distributions P,, the minimax risk over problem instances consistent
with P, is:

P Oy, Py)]
ROmT.T'Po) 1= igf sup sup By oo, g (L (Mg({ el gyl i TP )

(3.5)

where the infimum ranges over estimators Alg : (R" x RP)™T — (R™ — RP) that map
training samples to hypotheses, the supremum over Wy is over all p X n ground truth
models, and the supremum over P¢ is over all o¢-sub-Gaussian MDS processes determining
the observation noise.

The ordinary least-squares estimator. Much like its classical role in iid learning, the
ordinary least-squares (OLS) estimator will be key to bounding the minimax risk (3.5) from
above. We define the OLS estimator to be the linear hypothesis W,,, 7 € RP*" that satisfies:

m T
Winz € argmin > > ||Waf” — 3. (3.6)
WERPX™ i1 =1

Fori=1,...,m, let Xq(;)T € RT*" be the data matrix for the i-th trajectory (i.e., the t-th

row of Xf:;)T is xgi) for t =1,...,T). Define erf)T € RT*P and E?T € RT*P analogously.
Put X,,r € R™T>" a5 the vertical concatenation of XT(nI)T, e ,Xr(nm%, and similarly for

Yinr € R™T*P and HEmT € R™TXP_ Whenever X, has full column rank, then we can
write W, 7 as:

Won = Yo 1 X (X5 7 X)) ™ (3.7)
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(a) The Seqg-LS problem (Problem 3.1): co- (b) The corresponding baseline Ind-Seq-LS problem

variates {z:} are drawn from a sequence dis- (Problem 3.2): independent covariate-observation pairs
tribution, and noisy observations {y:} are {(z+,y+)} are drawn, each from the marginal distribution
drawn conditioned on these covariates. of the corresponding ¢’th step in the Seq-LS problem.

Figure 2: Formulations of regression from sequential data, illustrated as graphical models. Specif-
ically, these graphs depict a simplified special case of our data model, in which the observations
{y.} across time are independent conditioned on the covariates {z;}. In our general definitions
(Problem 3.1 and Problem 3.2), the observations {y;} can be conditionally interdependent, via a
martingale difference sequence on the observation noise (Section 3.1).

OLS is not the only estimation method for least-squares problems. Often some regulariza-
tion penalty—such as that of the ridge or LASSO estimator—is added to the least-squares
loss (3.6), based on some structural understanding of the problem instance at hand. Study-
ing the interplay between multiple trajectories and, say, norm-based risk bounds (Zhang,
2002) or sparse recovery (Candes et al., 2006), is an exciting direction for future work.

3.2 Problem classes

We formalize linear regression from sequential data generally as follows:

Problem 3.1 (Seq-LS). Assume a covariate sequence distribution P, in the linear regression
model (3.1). Fix an evaluation horizon T'. On input m labeled trajectories of length T' drawn

from this model, in the form of examples {(l’gi), yt(i))}zi’ript:l, output a hypothesis fAm,T that

. . . . N . /
minimizes excess risk L(fmr; T, Py).

Our topmost goal is to study the effect of learning from sequentially dependent covariates
in comparison with learning in the classical iid setup. Linear regression is well under-
stood in the latter setting. Focusing on well-specified linear regression further simplifies
our presentation, allowing us to isolate the effects of what interests us most—dependent
covariates. Generalizing the supervision aspect of Seg-LS (say, to unrealizable and non-
parametric regression, or to classification) is left to future work. We return to discuss this
in Section 9. Separately, our assumption that the learner accesses m trajectories each with
common length T is also intended for simplicity. Generalizing our results to x(la)rying tlzaj)ec—
gcl P m

tory lengths T, ...,T,,, and even varying covariate sequence distributions Py ’,... Py "/ is

conceptually straightforward, but notationally more burdensome.

10
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To study how dependent data affects learning, we need to establish an “independent
data” baseline. The natural comparison point for Seq-LS is to remove all correlations across
time. Namely, instead of drawing covariates sequentially from the distribution P,, consider
learning separately from the marginals of P, at each time step. The resulting decorrelated
distribution generates independent examples, but typically not iid ones. We formalize linear
regression from independent data generally as follows:

Problem 3.2 (Ind-Seq-LS). Fiz a sequence of distributions {Py+}t>1. Consider their prod-
uct over time ®;>1P ¢ as the covariate sequence distribution in the linear regression model
(3.1). Fiz an evaluation horizon T'. On input m labeled trajectories of length T drawn

from this model, in the form of examples {(aﬁgi), yﬁi))}ﬁftzl, output a hypothesis fm,T that

minimizes L(fm,T; T, @11Pat).

This Ind-Seq-LS problem generalizes the canonical iid learning setup slightly. Existing theory
can still characterize its minimax risk, provided the covariances of the distributions {P,}
are roughly equal in scale across time ¢. However, this equal-scale requirement rules out
the marginals of interesting applications, such as dynamical systems that are not stable or
ergodic. We therefore extend, in later sections, characterizations of the regression risk to
handle covariances that can scale polynomially across time instead.

3.3 Problem separations

To set up a baseline for a Seg-LS problem, we will specifically instantiate Ind-Seq-LS over its
marginals. Namely, for a sequence distribution P, over {x¢};>1, let u¢[P,] be the marginal
distribution of x; at time ¢ > 1, and consider Ind-Seqg-LS with covariates drawn from the
sequence {p¢[Py]}i>1. Figure 2 illustrates such a Seg-LS problem and the corresponding
Ind-Seq-LS instance over its marginals.

This decorrelated baseline is a hypothetical benchmark: in a practical context, collecting
independent marginal data, when nature only supplies its dependent form, can be expensive
or infeasible. However, we can expect that having such data on hand would make learning
easier, with risk rates that resemble iid learning. In what follows, we outline scenarios where
a sequential learning problem and its decorrelated baseline coincide in difficulty, and others
in which they diverge. We then outline the possible assumptions that would allow us to
always relate the two.

The iid special case. When T'= T’ = 1, the example trajectories {xgl) i, are trivially

a set of iid covariates. The problems Seq-LS and Ind-Seqg-LS thus coincide, and reduce to the
well-specified random design linear regression problem over m iid covariates. It is well-known
that under iid data, and mild regularity conditions, the minimax risk scales as o*gpn /m, and
is achieved by the OLS estimator (Hsu et al., 2014; Mourtada, 2022; Wainwright, 2019).

Extending the horizon. Considering nontrivial horizons T' = 7" > 1, both Seq-LS and
its corresponding Ind-Seq-LS baseline become more involved, but for different reasons.
The Ind-Seg-LS problem, as we show in Section 6, is not generally learnable with poly-
nomially many examples. Specifically, the minimax rate scales exponentially in the di-
mension n provided the trajectory count m is constant. To address this, we will require
that the covariances of its constituent distributions {P,;} grow at most polynomially with

11
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time ¢. Under this constraint, the problem’s minimax risk again scales as the iid-like rate
agpn/ (mT') times, at most, a factor determined exponentially by the covariance growth.

The Seq-LS problem inherits the same growth limitation. Even then, it is still not
generally learnable without further assumptions on the dependence structure of covariates:
the minimax risk is otherwise bounded away from zero as the horizon T tends to infinity,
provided the trajectory count m is constant. To realize this, consider z; ~ N(0,1,) and
x; = 131 for t > 2, a sequence of identical covariates whose marginals are all independent
Gaussians. The resulting dataset presents an underdetermined regression problem if m < n.
In essence, its covariates lack sufficient “excitation” across time. To rein Seq-LS back in to
the realm of learnability, one must:

(a) make further modeling assumptions about covariates, or
(b) introduce excitation via independent resets.

For (a), as detailed in Section 2, the most common modeling assumption considers
sequences that mix rapidly to a stationary distribution. Another avenue—recently active in
the literature, and sometimes overlapping with the mixing approach—considers sequences
generated by linear dynamical systems. Among these two, mixing implies risk bounds
that tend to zero with T', but only hold in the worst case after a burn-in time that scales
proportionally to the mixing time (Bresler et al., 2020). This prevents a characterization
of minimax risk uniformly across the full range of problem instances P, that mix, unless
one caps the mixing time to a fixed constant. Narrowing instead to LDS models in the
sequel, we manage to succinctly carve out a basic problem family, with unbounded mixing
time, and to characterize its minimax risk uniformly. One still pays a price for sequential
dependency, as this minimax risk turns out to be larger than its Ind-Seq-LS counterpart by
a factor of the dimension n.

Turning in addition to (b), by introducing (sufficiently many) resets, we can expand
our data model substantially: we manage to lift most of our LDS assumptions and ex-
tend to other dynamical systems. Remarkably, we even show that for any controllable
LDS—including ones that are unstable and hence grow exponentially in time—having suf-
ficiently many resets guarantees that the risk exhibits, once again, the iid-like behavior of
agpn/ (mT'), up to mere constants.

3.4 Linear dynamical trajectories

Fix a dynamics matriz A € R™™ and a control matriz B € R™ 9. Consider the n-
dimensional trajectory {z;};>1 defined by the linear dynamical system:

xy = Azy_1 + Bwy, where wy ~ N(0,1y), for ¢t > 1, (3.8)

taking xop = 0 by convention. We assume that the noise process {w;}¢>1 is independent
across time, i.e., that wy L wy whenever ¢ # t'. Overloading notation, let the matrix

S4(A, B) == Y1 A¥BBT(A*)T denote the covariance of z¢, and let the matrix T';(A, B) :=
% 22:1 Y (A, B) denote the average covariance. Denote by P2+P the distribution over the

trajectory {z;};>1, and let {xii)}@l for 7 > 1 denote independent draws from Pf’B. When
B = I,,, we use the respective shorthand notation £;(A), T't(A), and PA.

12



LEARNING FROM MANY TRAJECTORIES

Modeling regression covariates as linear dynamical trajectories gives us the LDS-LS
problem, a specialization of Seq-LS (Problem 3.1):

Problem 3.3 (LDS-LS). Assume a dynamics matriz A € R"*", a control matriz B € R"*?,
. . . . o AB . . .

and a corresponding linear dynamical covariate distribution Pz’” in the linear regression

model (3.1). Fiz an evaluation horizon T'. On input m labeled trajectories of length T,

drawn from this model, in the form of erxamples {(xf)7yt(i))}?l’ft:1, output a hypothesis

fm,T that minimizes L(fm;r; T, Pf’B).

Let Pﬁ’tB be the marginal distribution of x; under Pf’B at each ¢ > 1. The natural decor-
related baseline for LDS-LS is a corresponding specialization of Ind-Seq-LS (Problem 3.2) to
LDS trajectories:

Problem 3.4 (Ind-LDS-LS). Assume a dynamics matric A € R™", a control matriz
B € R4 and a corresponding trajectory distribution Pf’B. Consider covariates drawn
independently from its marginals, i.e., assume the linear regression model (3.1) under the
covariate sequence distribution ®t>1P£}B- Fix an evaluation horizon T'. On input m labeled

trajectories of length T', drawn from this model, in the form of examples {(Cﬂgi), Y ") 5i=1e=1-

output a hypothesis fm,T that minimizes L(fm,T;T’, ®t=1 Pﬁ’tB).

Learning dynamical systems. LDS-LS generalizes linear system identification, the prob-
lem of recovering the dynamics A from data. The reduction follows by setting W, = A and
5,@ = ngl, so that yil) = :L'gle Note that when B has full row rank, the squared pa-
rameter error in the weighted BBT norm ||-||gpr is simply the risk L(A;T", Pf’B) when
T’ = 1. Recent related work typically assumes that B indeed has full row rank, but in later
sections we touch on the more general case where this is not required, so long as the pair
(A, B) is controllable. Bounds in operator norm are also easily obtainable from our proof
techniques. However, our lower bounds will not inform the system identification problem
specifically; our hardness results rely on decoupling W, from A and §t(l) from wgl, whereas
this reduction naturally ties them.

4. Trajectory small-ball definition and examples

We establish risk upper bounds by studying the behavior of the ordinary least-squares
estimator. The key technical definition that drives the analysis is a “small-ball” condition
on covariate sequences:

Definition 4.1 (Trajectory small-ball (TrajSB)). Fiz a trajectory length T € N, a param-
eter k € {1,...,T}, positive definite matrices {\I/j}JLz/lkJ C Sym%,, and constants csp > 1,

a € (0,1]. The distribution P, satisfies the (T,k:,{\Iij}jg/lkj,csb,a)—trajectory—small—ball
(TrajSB) condition if:

T/k
() 1 L5 w5 < Tr(Py),

(b) {xt}i>1 is adapted to a filtration {Fi}i=1, and

13
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(¢) for allve R"\ {0}, j€{l,...,|T/k|} and € > O:

ik
1 J
Pleg~pe | 1 Z (v,20)" <e-vTWju | Fyonp o < (cpe)® as. (4.1)
t=(j—1)k+1

Above, Fy is understood to be the minimal o-algebra. Additionally, the distribution P,
satisfies the (T, k, ¥, csp, 0)-TrajSB condition if it satisfies (T, k, {\Ilj}]Lz/lkj,ch,a)—ijSB

with ¥; = V. Finally, we call the parameter k the excitation window.

We will soon show in Lemma 5.1 how the various quantities parameterizing the trajec-
tory small-ball condition closely govern the final risk bound of the ordinary least-squares
estimator. For the remainder of this section, however, we focus on developing intuition
for Definition 4.1, by working through diverse examples. In the definition, we typically
consider the matrices ¥; to be the sharpest almost-sure lower bound that we can specify
(in the Loewner order) on the quantity E[; Zii(j_l)kﬂ zer] | Fj—1)k]- Section 4.1 lists
examples of covariate sequence distributions P, that satisfy the TrajSB condition.

Definition 4.1 draws inspiration from the block martingale small-ball condition from
Simchowitz et al. (2018, Definition 2.1). There are, however, two main differences: (a) we
consider the small-ball probability of the entire block 1 Zii G-1)kt1 (v, z4)? at once, instead
of the average of small-ball probabilities:

1 = 2 T
Z Z P {(v,mt> <e-v Yo | ]:(j—l)k} , (4.2)
t=(—1)k+1

and (b) equation (4.1) is required to hold at all scales ¢ > 0, instead of at a single reso-
lution. We need the first modification (a) to prove optimal rates under many trajectories
without assuming stability or ergodicity; we expand on this point in Section 4.1. Further-
more, condition (4.1) is implied by a bound on the average of small-ball probabilities (4.2)
(cf. Proposition 4.2), rendering it a more general condition. We need the second modifi-
cation (b) in order to bound the expected value of the OLS risk. The need to modify (b)
in order to bound the expected OLS risk is present even in the iid setting, as discussed in
Mourtada (2022, Remark 4). It is this modification that prevents Definition 4.1 from fully
subsuming Simchowitz et al. (2018, Definition 2.1). The following remark discusses a small
change to Definition 4.1 that addresses this issue, by exchanging expected OLS risk bounds
to high probability bounds:

Remark 4.1. In Appendix B.7, we consider the following modification to Definition 4.1,
where we instead suppose that (4.1) holds for some fixed ¢ (such that the inequality’s
right-hand side is strictly less than one), rather than for all ; we refer to this modification
as weak trajectory small-ball (Definition B.1). As described above, a consequence of the
weak trajectory small-ball condition is that the main OLS risk bounds now hold with high
probability (i.e., polylogarithmic in 1/§) rather than in expectation (Lemma B.23).2 A
key upshot (Proposition B.24), however, is that this change allows for an ergodic covariate

2. Such a high probability bound does not, in turn, imply a bound on the expected risk via integration over
the tail. The reason is that the high probability bound (Lemma B.23) requires that the number of data
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sequence with ¢-mixing time bounded by Tmix to be considered (weak) trajectory small-
ball (with excitation window k < Tmix), provided the stationary distribution p satisfies a
standard (weak) small-ball condition (Mendelson, 2015; Koltchinskii and Mendelson, 2015;
Oliveira, 2016):
sup P, {(v,2)? <e-E,[(v,2)?]} <1 for some & > 0.
veSn—1
This in turn yields upper bounds for Seq-LS in the few trajectories (m < n) regime of the
following form: if mT > Q(7mixn), then
. ~ n
LWazi T,P2) < O (oF 2],
with high probability. This statement generalizes the risk bound for a single ergodic tra-
jectory from Bresler et al. (2020) to the ordinary least-squares estimator (3.6). We can
interpret the condition on mT as a “burn-in time” requirement. Meanwhile, at least in the
single-trajectory (m = 1) setting, Bresler et al. (2020, Theorem 1) tells us that that such a
burn-in assumption (7' 2 Tmixn) is necessary for a non-trivial risk guarantee.

4.1 Examples of trajectory small-ball distributions

We now turn to specific examples of distributions P, which satisfy the trajectory small-
ball condition. First is the example introduced in Section 3.3, where z1 is drawn from a
multivariate Gaussian and subsequently copied as xz; = z;_1 for all £ > 2:

Example 4.1 (Copies of a Gaussian draw). Let ¥ € Sym%, and let P, denote the process
x1 ~ N(0,%) and xy = x4—1 fort > 2. Fix anyT € Ny. Then P, satisfies the (T, T,3, e, %)—
TrajSB condition.

Note that this process only satisfies the trajectory small-ball condition with excitation
window k = T. In other words, the conditional distribution sy | z; for £ > 1 (a Dirac
distribution on x;) contains no excitation as needed for learning. This example can actually
be generalized to arbitrary Gaussian processes indexed by time:

Example 4.2 (Gaussian processes). Let P, be a Gaussian process indezxed by time, i.e., for
every finite index set I C N4, the collection of random variables (x¢)icy is jointly Gaussian.
Let Tpg = inf{t € Ny | det(E[z;z[]) # 0}, and suppose Thy is finite. Fiz a T € Ny
satisfying T > Tnq. Then P, satisfies the (T,T,T'p(P,), 2e, %)—ijSB condition.

This example illustrates the insufficiency of the average small-ball probabilities condition
(4.2). Suppose that x,...,xp is a jointly Gaussian process. Then Example 4.2 states
(cf. Equation (4.1)) that for all v # 0, € > 0:

T
1
P {T Z(v,xt>2 <e- UTFT(P;E)U} < (2e-6)12,

t=1

points mT' grows proportional to log(1/d), where § is the failure probability. If one attempts to bound
E[||Win.z — Wi|?/] = I P(||Won. 1w — Wi ||2, > t) dt using Lemma B.23 to control the tail probability on
the RHS, then for any fixed m, T, there exists a scale to (corresponding to setting ¢ sufficiently small)
such that, for any t > to, the bound on P(||[W;, 7 — W, |2/ > t) from Lemma B.23 is no longer valid. The
same issue occurs in, e.g., Simchowitz et al. (2018, Theorem 2.4), and for the same reason: the need for
a small-ball assumption that holds at all resolutions, as underscored in Mourtada (2022, Remark 4).
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If instead we use the average small-ball condition (4.2), the corresponding bound would be,
for all v #£0, € > 0:

1 T 9 1/2
e

= IP’{(U )2 <e-v' Tp(P )U} < - — € .

T ; ’ ‘ - mie{1,..,7} )\min(FTl(Px)Zt)

The extra 1/ mineqy . 7y )\min(F;l(Px)Et) factor would then enter the resulting rates for

least-squares regression, in turn requiring assumptions that limit the growth of T'p(P,)

relative to ¥;. Fortunately, the trajectory small-ball condition (4.1) avoids these issues.
Our next example involves independent, but not identically distributed, covariates:

Example 4.3 (Independent Gaussians). Let {3;};>1 C SymZ, and let P, = @1 N (0,%;).
Fiz a T € Ny. Then P, satisfies the (T,1,{%;}1_;, e, %)—ijSB condition.

Example 4.3 allows us to select k = 1, reflecting the independence of the covariates across
time.

We can also craft an example around a process that does not mix, but that still exhibits
an excitation window of k = 2:

Example 4.4 (Alternating halfspaces). Suppose that n > 4 is even, and let uy, ..., u, be a
fized orthonormal basis of R". Put Uy = span(u1, ..., Uy, 2) and Uy = span(u, jo41;---,Un)-
Let iy ~ Bern(3), ii41 = (i + 1) mod 2 for t € Ny, and let P, denote the process with
conditional distribution x; | i; uniform over the spherical measure on U;, NS"~L. For any
T > 2, the process P, satisfies the (T,2,1,/(2n),e, %)—ijSB condition.

To see that the covariate distribution {z;} does not mix, observe that the marginal distri-
bution for all ¢ is uniform on S !, whereas the conditional distribution Tyt | ¢ for any
k € Ny is either uniform on Uy N'S™™! or uniform on U; N S™~!. Although it does not mix
at all, the trajectory supplies ample excitation for learning in any mere two steps.

Even for a process that does mix, it may exhibit an excitation window far smaller than
its mixing time. The following sets up such an example, where again sufficient excitation is
provided with k = 2 steps:

Example 4.5 (Normal subspaces). Suppose that n > 3. Let uy,...,u, be a fired orthonor-
mal basis in R", and let U-; := span({u;};x) for i € {1,...,n}. Consider the Markov
chain {it}t>1 defined by i1 ~ Unif({1,...,n}), and i411 | ¢ ~ Unif({1,...,n} \ {it}). Let
P, denote the process with conditional distribution x; | i; uniform over the spherical measure
on U-;, NS""L. For any T > 2, the process P, satisfies the (T,2,1,/(4n — 4), e, 1)-TrajSB
condition.

In this example, a straightforward computation (detailed in Proposition B.11) shows that
the mixing time 7mix(¢) of the Markov chain {i;};>1 scales as log,(1/¢).? In most analyses
which rely on mixing time arguments, one requires that the mixing time resolution ¢ tends

3. For concreteness, given a discrete-time Markov chain over a finite state-space S with transition matrix
P and stationary distribution 7, we define the mixing time as: Tmix(¢) := inf{k € N | supuep(&”qu -
7|lev < €}. Here, P(S) denotes the set of all probability distributions over S, and ||-||tv denotes the total
variation norm over distributions.
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to zero as either the amount of data and/or probability of success increases; as a concrete
example, Duchi et al. (2012, Eq. 3.2) suggests to set ¢ = 1/v/T, where T is the number
of samples drawn from the underlying distribution. On the other hand, the trajectory
small-ball condition in Example 4.5 holds with a short excitation window of length k = 2,
independently of T

Next we consider linear dynamical systems. As setup, we first define the notion of
controllability for a pair of dynamics matrices (A, B):

Definition 4.2 (Controllability). Let (A, B) be a pair of matrices with A € R" " and
B € R™ 4, Forkec{l,...,n}, we say that (A, B) is k-step controllable if the matriz:

(B AB A?B ... AF1B] e R™M
has full row rank.

The classical definition of controllability in linear systems (cf. Rugh, 1996, Chapter 25)
is equivalent to n-step controllability. Definition 4.2 allows the system to be controllable
in fewer than n steps. Also note that k is restricted to {1,...,n}, since if a system is
not n-step controllable, it will not be n/-step controllable for any n’ > n (by the Cayley-
Hamilton theorem). A few special cases of interest to note are as follows. If B has rank n,
then (A, B) is trivially one-step controllable for any A. On the other hand, if (A, B) are in
canonical controllable form (i.e., A is the companion matrix associated with the polynomial
p(2) =ag+aiz+---+ap 12" +2" and B is the n-th standard basis vector), then (A, B)
is n-step controllable. The latter corresponds directly to the state-space representation of
autoregressive processes of order n, e.g. AR(n).

Example 4.6 (Linear dynamical systems). Let (A, B) with A € R™" and B € R™*% be k-
step-controllable (Definition 4.2). Let PAB be the linear dynamical system defined in (3.8).
Fix any T,k € Ny satisfying T > k > ke. Then, paB satisfies the (T, k,Tr(A, B),e,%)—
TrajSB condition.

We next consider LDS controlled by linear feedback policies. Let K € R4*" parameterize
a linear feedback policy u; = Kx¢, and consider the closed-loop linear dynamical system
described by the recurrence:

Tt = ACIEt_l, AC = A + BK. (43)

When z; ~ N(0,X), we have the following small-ball condition with excitation window
k=T.

Example 4.7 (Closed-loop linear dynamical systems). Let P4< denote the closed-loop linear
dynamical system defined in (4.3). Suppose that the initial condition x1 ~ N(0,%) where X
is positive definite. For any T € N, PAe satisfies the (T,T, Y7 (Ac, 2Y2) /T, e, %)—ijSB
condition.

Example 4.7 follows directly from the Gaussian process example (Example 4.2). Proving
small-ball conditions under an excitation window k& < T for close-loop linear dynamical
systems is not possible under our current framework, because there is only one source of
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randomness within a trajectory: at its beginning. Hence the conditional distributions in
(4.1) become Dirac measures. This is to be expected, as few-trajectory learning in (4.3) can
be impossible without noise injection. For example, if A is rank-deficient, then the iterates
T9, ...,z all lie in the same lower-dimensional subspace of R™, precluding learning.

In all of the examples so far, the time-t marginal distribution of covariates x; has either
been a multivariate Gaussian or a spherical measure. To underscore the generality of the
small-ball method, we can create additional examples where this is not the case. In what
follows, we consider Volterra series (Mathews and Sicuranza, 2000), which generalize the
classical Taylor series to causal sequences. Analogous to how polynomials can approximate
continuous functions arbitrarily well on a compact set, Volterra series can approximate sig-
nals that depend continuously (and solely) on their history over a bounded set of inputs (cf.
Rugh, 1981, Section 1.5).

Example 4.8 (Degree-D Volterra series). Fir a D € Ny. Let {Cgf:,ti),,id}i1,---,id6N for d €

{1,...,D} and ¢ € {1,...,n} denote arbitrary rank-d arrays. Let {wt(e)}go be iid N(0,1)
random variables for £ € {1,...,n}. Consider the process P, where for t > 1, the {-th
coordinate of xy, denoted (x4¢)p, is:

D t—1 d
e ¢
@e=>. > & T[w?, . (4.4)

d=141,...,iq=0 d'=1

Let Thg = inf{t € N1 | det(I'+(P,)) # 0}, and suppose Tnq is finite. There is a constant
cp > 0, depending only on D, such that for any T > T,q, the process P, satisfies the
(T, T,I'r(P3),cp,1/(2D))-TrajSB condition.

The main idea behind Example 4.8 is that, while x; is certainly not Gaussian, the
quadratic form 377 (v, z)? is a degree at most 2D polynomial in {wy)}fz_ol. It will hence
exhibit anti-concentration, according to a landmark result from Carbery and Wright (2001).
The same result actually provides an immediate extension of this example—as well as the
previous examples—to noise distributions with log-concave densities, such as Laplace or
uniform noise.

We next present a special case of the Volterra series, where we can choose the excitation
window k in the small-ball definition strictly between the endpoints 1 and T'. To set up, a
few more definitions are needed:

Definition 4.3. Fiz an integer d € Ny. A rank-d array of coefficients {c;i, . i, }ii....izeN S
called:

(a) symmetric if ciy iy = Cx(iy,...iy) fOr any permutation 7 of indices iy, ..., iq € N,
(b) traceless if ¢; i =0 for alli € N, and

(c) non-degenerate if there exists an kng € Ny such that the following set is non-empty:
{(il, - ,id> ’ Ciq,....ig 7& 0,%1,...,24 € {0, ceoy kng — 1}}

The smallest kng such that {c;,, . i,} is the non-degeneracy index.
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Example 4.9 (Degree-2 Volterra series). Consider the following process P,. Let {cg? }igo
for £ € {1,...,n} be symmetric, traceless, non-degenerate arrays (Definition 4.3). Let
{wgz)}@o be iid N(0,1) random variables for ¢ € {1,...,n}. Fort > 1, the {-th coordinate
of xy, denoted (x4)g, is:

t—1 t—1

—— (O (¢ ¢
ZZC,}“’g )z 1w §)j—1‘ (4.5)

=0 j=1

Let kng € N4 denote the smallest non-degeneracy index for all n arrays. There is a universal
positive constant ¢ such that for any T and k satisfying T > k > knq, Pz satisfies the
(T, k,Tk(Py),c, 3)-TrajSB condition.

The assumptions pulled in from Definition 4.3 help snnphfy the construction of an
almost sure lower bound for conditional covariances E[+ Zt (- 1)kt1 zix] | Fj—1y), to
establish that Example 4.9 satisfies the trajectory small-ball condition. We believe that
generalizations to higher degree Volterra series with k strictly between 1 and T are possible
by more involved calculations.

Of course, many other examples are possible. To help in recognizing them, the following
statement shows that condition (4.1) in the trajectory small-ball definition can be verified
by separately establishing small-ball probabilities for the conditional distributions:

Proposition 4.2 (Average small-ball implies trajectory small-ball). Fiz T € N4, k €
{1,...,T}, {Y; }LT/M C Sym%, and a, 5 € (0,1). Let P, be a covariate distribution, with
{xt}t>1 adapted to a filtration {Fi}1=1. Suppose for allv € R*"\{0} and j € {1,...,|T/k]}:

ik
1 ¢ .
%t ('Z1)k+1 e {<U’$t>2 Sa-v v ‘ ‘F(jfl)k} < g a.s., (4.6)
= j—

where Fy is the minimal o-algebra. Then, for all v € R™\ {0}, 7 € {1,...,|T/k]}, and
€ (0,q)

jk
1 J
]P){zt}NPI T E <U,xt>2 <e- UT\IJ]'U F(jfl)k < 1 p a.s. (4.7)
: —¢/a
t=(j—1)k+1

An immediate corollary of Proposition 4.2 is the following: suppose that for all v € R™\ {0},
je{l,...,|T/k]}, and € > 0,
1 L 2 T @
=Y Paen, {@, o) <e v W ‘ f(j_l)k} < (cpe)® ass. (4.8)
t=(j—1)k+1

Then, the (T} k, {\Iij}]Lz/lkJ,21+1/acsb,a)—TrajSB condition holds. Equation (4.8) can be
easier to verify than (4.1), since the former allows one to reason about each conditional
distribution individually, whereas the latter requires reasoning about the entire excitation
window altogether.

The following two sections present upper and lower bounds for learning from trajectories,
involving various instances of the trajectory small-ball assumption where applicable. All
main results are summarized in Table 1.
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5. Risk upper bounds

The trajectory small-ball definition allows us to carve out conditions for learnability. A key
quantity for what follows is the minimum eigenvalue of the ratio of two positive definite
matrices:

AMA, B) := Amin(B™Y24B7Y/%), A, B € Sym?”,,. (5.1)
Our various upper bounds statements build on the following general lemma:

Lemma 5.1 (General OLS upper bound). There are universal positive constants co and c;
such that the following holds. Suppose that P, satisfies the (T k, {‘lij}]g/lkj,csb, a)-TrajSB
condition (Definition 4.1). Put S := |T/k] and FT = I'r(P;). Fiz any I' € Sym%,
satisfying ézjs 1Y S LT, and let p({¥; }j 1,I) denote the geometric mean of the

minimum eigenvalues {)\(\IIJ,F)}] 1, G.e.,
5 1/8
p({35,0) = [ A, D) | . (5.2)
j=1
Suppose that:
mT _ ¢ max{e, csp }
nz2 ——>—log . 5.3
b~ <wmmwwm;m 3

Then, for any I'" € SymZ:

E[||Win,r — Wil[f] < crea0? -

pn Tog < max{e, csp } ) '
TN ) ({05, ) CMLM)WLP

Lemma 5.1 is a general statement that highlights the interplay between the various
trajectory small-ball parameters, and how they directly influence the resulting OLS risk.
To develop some intuition for the lemma, consider I" = I'y. We see that the closer the
quantities A(I',T'r) € (0,1] and p({¥; }] 1,I) € (0,1] are to one, the sharper the OLS
risk (5.4). To satisfy this straightforwardly, we can set ¥; = I' = I'p, in which case
AL, Tp) = H({\Ilj}jszl,z) = 1, and the resulting OLS risk (5.4) simplifies (up to constant
factors) to the iid rate Ug -pn/(mT), treating «, csp as constants. However, in light of the
trajectory small-ball condition (4.1), this is only generally possible at either end of the
following spectrum:

e when P, encodes iid covariates (cf. Example 4.3), in which case we can take k = 1,
and our data requirement (5.3) becomes mT 2= n; or

e in the many trajectories setting (cf. Example 4.2) by setting k¥ = T, in which our data
requirement becomes m 2 n.
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When P, falls within these two ends, the excitation window k needs to be selected carefully
to balance the data requirement (5.3) with the OLS risk (5.4). The optimal selection of k is
heavily influenced by the growth rate of the covariance proxies {¥;}. As a general rule, as
k — T, the covariance proxies {¥;} tend to I'r, but the rate at which this occurs is heavily
dependent on P,. Furthermore, when the covariance proxies {¥;} and the bound I" are not
equal to I'r, the quantities (I, I'r), E({\I/j}]szl,ﬁ) are driven away from one, which adds
extra factors in the OLS risk (5.4) over the iid rate. All the upper bounds we prove in this
section are derived by carefully selecting the excitation window & based on the process P,
and quantifying the resulting overhead.

The proof of Lemma 5.1 blends ideas from the analysis of random design linear regres-
sion (Hsu et al., 2014; Oliveira, 2016; Mourtada, 2022) with techniques from linear system
identification with full state observation (Simchowitz et al., 2018; Sarkar and Rakhlin, 2019;
Faradonbeh et al., 2018; Dean et al., 2020). Note that Lemma 5.1 makes no explicit as-
sumptions on the ergodicity of the process P,. The role of P, is instead succinctly captured
by the trajectory small-ball condition, together with the minimum eigenvalue quantities
that appear in the bound. The proof of Lemma 5.1 also yields, with some straightfor-
ward modifications, bounds on the risk that hold with high probability; we only present
bounds in expectation for simplicity. Finally, if the square norm || X||3, is defined to be
Amax (XM XT) instead of tr(XMXT), then (5.4) holds with the expression p + n replacing
pn in the numerator.

As long as the process P, satisfies the trajectory small-ball condition with excitation
window k = T', Lemma 5.1 (with ¥; =T = I'p(P,)) immediately yields the following result
for learning from many trajectories in the Seq-LS problem:

Theorem 5.2 (Upper bound for Seq-LS, many trajectories). There are univeral positive

constants ¢y and c1 such that the following holds. Suppose that P, satisfies the trajectory
small-ball condition (Definition 4.1) with parameters (T,T,T'r(Py), csh, ). If:

con max{e, ¢
n> 2, m2010g<{a’5b}>,

then, for any I'" € SymZ:

B[ W1 — Wal|2] < creao? - P og ((maxtecw) ) .
[H MA *HF ] C1€ b0'£ mTaA(FT(Px), F/) 0og o (5 5)

This result provides the upper bound for the summary statement Theorem 1.1. To inter-
pret the bound (5.5), suppose that cg, and « are universal constants. Then, the requirement
on m simplifies to m = n. Under any strict evaluation horizon 7" < T, taking IV = T'pv(Py),
the risk E[L(W,1; T', P,)] scales as agpn/ (mT). The lower bound for Theorem 1.1 follows
from the fact that iid linear regression is a special case of Seqg-LS.

Meanwhile, to obtain guarantees for parameter recovery, consider taking I = I,,. Then
Theorem 5.2 implies that the parameter error E[|[W;, 7 — W,|/%] scales as ngn/ [mT -
Amin(I'7(P2))]. Note that operator norm bounds on parameters also hold, with the expres-
sion p + n replacing pn in the bound.
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H Problem Many? Upper Lower Assumptions H
Seq-LS Y 20, v TrajSB®
Seq-LS N 2% e~ T/ (rmn) 4 1 Ergodicity of covariates(®)
LDS-LS Y 0, v ke-step controllability(®)
LDS-LS N ’y:ﬁ; gg; Marginal stability, etc.(d)
Ind-Seq-LS N e v Small-ball, poly variance growth(®)
Ind-LDS-LS N o 2 Diagonalizable()
LDS-SysiD Y R Tt - Same as LDS-LS (Y)®
2 2
LDS-SysID N VT T s Same as LDS-LS (N)®

Table 1: Summary of main results presented in Section 5 and Section 6. All upper/lower bounds shown
suppress constant and polylogarithmic factors. The Many? column indicates whether the bounds apply
in the many trajectories regime (Y) where m 2 n, or the few trajectories regime (N) where m < n. A
checkmark (v') in the Lower column indicates that the lower bound matches the upper bound, up to
polylogarithmic factors. The LDS-SysID problem is classic linear system identification: recover the unknown
dynamics matrix A from linear dynamical trajectories, with error measured in squared Frobenius norm (see
Equation (3.8) and the discussion at the end of Section 3.4). Elaborations on assumptions:

(a)
(b)

(©)
(d)

(e)

()
(g)

(h)

Upper bound follows from Theorem 5.2, treating as O(1) all constants related to trajectory small-ball
(Definition 4.1). Lower bound follows from iid linear regression being a special case.

Upper bound follows from combining (i) Lemma B.23, a general OLS high probability upper bound
that utilizes a simple modification (Definition B.1) to our trajectory small-ball definition, with (ii)
Proposition B.24, which shows that a ¢-mixing (Definition B.2) covariate process (where the marginal
distributions also fulfill a weak small-ball condition (B.29)) satisfies our modified trajectory small-
ball condition. The upper bound holds in high probability instead of in expectation, and requires
a burn-in time that satisfies T' 2 Tmixnlog(1/d), where § denotes the failure probability. The lower
bound is from Bresler et al. (2020, Theorems 1 and 3), and holds for the single trajectory (m = 1).

Upper bound follows from Theorem 5.5; see Definition 4.2 for definition of kc-step controllability.
Lower bound follows again from iid linear regression being a special case.

Upper bound follows from Theorem 5.6, under Assumption 5.1 (marginal stability), Assumption 5.2
(diagonalizability), and Assumption 5.3 (one-step controllability). The condition number of the di-
agonalizing factor is denoted by 7 (Definition 5.1). Lower bound follows from Theorem 6.3, and is
realized by a decoupled noise sequence (Definition 7.1).

Upper bound follows from Theorem 5.3, treating as O(1) constants relating to small-ball (Equa-
tion (5.7)) and variance growth (Equation (5.8)). The necessity of the variance growth condition is
shown in Theorem 6.2. Note that in the many trajectories regime, the Seq-LS upper bound applies.
Lower bound again follows from iid linear regression.

Upper bound follows from Theorem 5.7; v is the condition number of the diagonalizing factor (Defi-
nition 5.1). Lower bound again follows from iid linear regression.

Upper bound follows from Theorem 5.4; I'r is the T-step average covariance matrix (Equation (3.3)).
Lower bound is marked with a dash indicating that Theorem 5.6 does not directly apply to LDS-SysID
(cf. the discussion following Definition 7.1)

Upper bound follows from Theorem 5.8; 7 is the condition number of the diagonalizing factor (Def-
inition 5.1), and 'y, 1/, is the mT'/n-step average covariance matrix (Equation (3.3)). Lower bound
applies to the single trajectory (m = 1) setting and follows from Simchowitz et al. (2018, Theorem
2.3). (Technically, their bound applies to the operator, instead of Frobenius norm, but the proof can
be adjusted to apply.) Specializing the upper bound to one trajectory (m = 1), drawn from the lower
bound’s hard instance, implies a gap of n®/T? (upper) versus n?/T? (lower) as noted in Simchowitz
et al. (2018, Section 2.2).
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Lemma 5.1 also yields a bound for Ind-Seq-LS, assuming polynomial growth of the time-¢
covariances X (3.3). To state the result, let ¢ : [1,00) x [0,00) — [1,00) be defined as:

d(a,z) == {1 i<l (5.6)

ar otherwise.
Note that 1 < ¢(a,z) < max{ax,1}.

Theorem 5.3 (Upper bound for Ind-Seq-LS). There are universal positive constants cg
and ¢ such that the following holds. Fix any sequence of distributions {Py}i>1, and let
St = Eq,op,, [wiz]] for t € Ny. Suppose there exists csp > 0 and o € (0,1] such that for
allve R\ {0}, e >0 andt € Np:

]P)$tNP:r,t {<’U,$t>2 <e- 'UTEt'U} < (Csbg)a’ (57)

Furthermore, suppose there exists a cg = 1 and B = 0 such that for all s,t € Ny satisfying
s < t:

1

SYONGN) < cp(t)s)P. (5.8)

1If:

n>2, mT}COn<5+1Og<HMX{€’CSb}Cﬁ>)’
o Q

then, for Py = ®@4>1Pyy:

E[L(Wm,T;T', P.)] < clcsbogclgeﬁ . % ¢ (Cﬁ(ﬁ +1), (T'/T)’B) {,3 + log <nmx{eo,[csb}05>] .
(5.9)

Consider specializing Theorem 5.3 to the case when ¥; = X for all ¢ € N;. Doing so
yields random design linear regression from mT" covariates drawn iid from P ;. The growth
condition (5.8) is trivially satisfied with cg = 1 and 8 = 0. The small-ball assumption
(5.7) simplifies to Py, ~p, ,{|(v,21)| < €ljv[|s} < (\/Cbe)? for all v # 0 and € > 0, which
matches Mourtada (2022, Assumption 1) up to a minor redefinition of the constants cgp, c.
Treating csp, and « as constants, the conclusion of Theorem 5.3 in this setting is that
E[|[ Wyt — Will2] < agpn/(mT) as long as n > 2 and mT 2 n, which recovers Mourtada
(2022, Proposition 2).

On the other hand, Theorem 5.3 does not require that the covariates are drawn iid
from the same distribution, allowing the time-t covariances ¥; to grow polynomially. As an
example, suppose that ¥; = t7 - I,, for some 8 > 0. In this case, 1/A(Zs, %) = (t/5)?, so
we can take ¢g = 1 in (5.8). Again treating cs, and « as constants and taking 7" < T, we
have E[L(Wy,1;T',P2)] < a?ﬁeﬂ -pn/(mT) as long as mT" 2 fn. If § is also considered

a constant, then we further have the risk bound E[L(ngp; T P,)] < ngn/ (mT). This
matches the minimax rate for iid linear regression.
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It is natural to ask if the covariance growth condition (5.8) is needed under strict evalu-
ation horizons 7" < T.* In Section 6, we show that if the covariances are set to ¥; = 2¢- I,
and Py, = N(0,%;) (satisfying (5.7)), then the minimax risk R(m,T,T; {®¢>1P4+}) must
scale at least 2%/ ™ /T whenever m < n, for some positive constant c¢. Sub-exponential
growth rates are therefore necessary for polynomial sample complexity. Determining the
optimal dependence of § in (5.9) is left to future work.

Note that Theorem 5.3 is most interesting either when trajectories are few (m < n)
or evaluations are extended (77 > T'). When m = n and 77 < T, one can usually apply
Theorem 5.2 with IV = 'y (P,) instead, and avoid placing any requirements on the growth
of covariances.

Considering any of the small-ball examples in Section 4.1, recall that when the excitation
window k and the horizon T are equal, Theorem 5.2 provides an upper bound on the risk
of OLS estimation for the corresponding Seq-LS problem. Specifically, for Example 4.1 and
Example 4.6 with & = T, if T/ = T and trajectories are abundant (m = n), then the OLS
estimator’s rate ngn/ (mT') matches its behavior in iid linear regression. Meanwhile, for
the degree-D Volterra series (Example 4.8), we require that m 2 ¢p - n, and the OLS risk
bound scales as O’?C/D -pn/(mT), for constants ¢p and ¢, that only depend on D.

In order to cover scenarios in which trajectories may be relatively scarce, namely m < n,
we need additional structure. More technically, when the small-ball condition is satisfied
with £ < T, one needs to further control the various eigenvalues that appear in Lemma 5.1
in order to bound the risk of OLS. Specifically for Ind-Seg-LS, a covariate growth assumption
suffices: Example 4.3 combined with Theorem 5.3 yields an OLS risk bound. Furthermore,
both Example 4.4 and Example 4.5 can be immediately combined with Lemma 5.1, since
the matrices ¥; in these examples are bounded above and below by I'r(P;) up to universal
constant factors. But arbitrarily large risk can still be realized in the general Seqg-LS prob-
lem, even when the trajectory small-ball condition is satisfied. To study the behavior of
OLS across all regimes of trajectory count m, example dimensions p and n, and trajectory
lengths T and T”, we focus specifically on linear dynamical systems and the LDS-LS problem
for our remaining upper bounds.

5.1 Upper bounds for linear dynamical system

In this section, we focus exclusively on dynamics Pf’B described by a linear dynamical
system (3.8). As discussed previously, in order to apply Lemma 5.1 in the few trajectories
regime when m < n (or when m 2 n and 77 > T'), we must (a) show that the process pa
satisfies the trajectory small-ball condition, and (b) bound the various eigenvalues which
appear in Lemma 5.1. Example 4.6 establishes that P28 satisfies the (T, k, Tk (A, B),e, %)—
TrajSB condition, as long as (A, B) is kc-step controllable and k > k., thus taking care of
(a). To handle (b), we introduce additional assumptions on the dynamics matrices (A, B):

Assumption 5.1 (Marginal instability). The dynamics matriz A in LDS-LS is marginally
unstable. That is, p(A) < 1, where p(A) denotes the spectral radius of A.

4. Some regularity is needed when under extended evaluations T” > T, otherwise the risk could be arbitrarily
large.
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Assumption 5.2 (Diagonalizability). The dynamics matriz A in LDS-LS is complex di-
agonalizable as A = SDS™!, where S € C™" is invertible and D € C™" is a diagonal
matriz comprising the eigenvalues of A.

Assumption 5.3 (One-step controllability). The control matriz B in LDS-LS has full row
rank, i.e., rank(B) = n. FEquivalently, the pair (A, B) is one-step controllable (Defini-
tion 4.2).

Assumption 5.1 is fairly standard in the literature. Going beyond the regime p(A) =
1+ ¢, where € < 1/T, requires additional technical assumptions on the dynamics matrix A
that we choose to avoid in the interest of simplicity; the OLS estimator is in general not a
consistent estimator when p(A) > 1 and m =1 (cf. Phillips and Magdalinos (2013); Sarkar
and Rakhlin (2019)). The condition p(A) < 1 is often referred to as marginal stability in
other work. We choose to call it marginally unstable instead, to emphasize the fact that such
systems, namely at p(A) = 1, may not be ergodic and that the state can grow unbounded
(e.g. have magnitude roughly ¢" at time t).

Diagonalizability (Assumption 5.2) is less standard in the literature. We use it together
with Assumption 5.1 and Assumption 5.3 to establish that

A(lﬁt; A7B) = A(Fk(A? B)7Ft(A7 B)) 2 C: k/tv

whenever k < t, where ¢ is a constant that depends only on A and B (and not k and ¢). In
previous work on linear system identification, the term A(k,t; A, B) only appears under a
logarithm, and so coarser analyses in the general case can still establish polynomial rates (cf.
Simchowitz et al. (2018, Proposition A.1) and Sarkar and Rakhlin (2019, Proposition 7.6)).°
However, by allowing for evaluation lengths 77 > 1, the dependence on \(k,t; A, B) is no
longer entirely confined under a logarithm (cf. Lemma 5.1). A sharp characterization is
hence critical for deriving optimal rates. In Appendix A, we conjecture the correct scaling
of A(k,t; A, B) as a function of the ratio k/t and the largest Jordan block size of A, based
on numerical simulation.

One-step controllability (Assumption 5.3) is also an assumption commonly made in lin-
ear system identification. It is clear that some form of controllability is needed, otherwise
learning may be impossible (e.g. consider the extreme case of B = 0). General multi-step
controllability does not suffice either: Tsiamis and Pappas (2021, Theorem 2) show that
under a single trajectory (m = 1), n-step controllability (where n remains the state dimen-
sion) does not ensure finite risk, and even a more robust controllability definition (Tsiamis
and Pappas, 2021, Definition 3) cannot ensure risk bounds better than exponential in the
dimension n. Considering these barriers, we simply choose to rely on one-step controllability
in the few-trajectory setting (m < n).

Finally, we introduce a condition number quantity that will feature commonly in our
bounds:

Definition 5.1. For dynamics matrices (A, B) in LDS-LS satisfying Assumption 5.2 and
Assumption 5.3, the condition number (A, B) is defined as: v(A, B) := iﬁ?:ég:gg;g::))
Here, the matrix S diagonalizes A, as defined in Assumption 5.2.

5. Note, however, that without diagonalizability, Simchowitz et al. (2018, Corollary A.2) can only guarantee
a y/n?/T rate for the operator norm of the parameter error in general, and this is likely not optimal.
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5.1.1 MANY TRAJECTORIES

Our first result instantiates Theorem 5.2 in the special case of IV = I, which yields a sharp
bound for parameter recovery without requiring stability of the dynamics matrix A:

Theorem 5.4 (Parameter recovery upper bound for LDS-LS, many trajectories). There
are universal positive constants cy and c1 such that the following holds for any instance of
LDS-LS. Suppose that (A, B) is kc-step controllable, If n > 2, m > con, and T > ke, then:

pn
mT - Amin(T7(A, B))’

E[| Wi — Wel7] < 102 -

Theorem 5.4 improves on existing linear system identification results in the following
way: it replaces stability assumptions on the dynamics matrix A with a simpler assumption
of relatively many trajectories (m 2 n), and it guarantees a rate that is inversely propor-
tional to the total number of examples mT instead of only one example per trajectory. In
other words, our analysis does not need to “discard” the data within a trajectory, which
is the case in Dean et al. (2020, Proposition 1.1). Additionally, although OLS is generally
not a consistent estimator from one trajectory (m = 1) if the dynamics A are unstable, the
results of Dean et al. (2020) imply consistency as m — oo, i.e., that WWT converges in
probability to W, as m — oo. Theorem 5.4 adds that, provided m = n, OLS is consistent
under unstable systems as T' — oo as well, even if the trajectory count m remains finite. We
will return to parameter recovery from relatively few trajectories (m < n) by this section’s
end.

We now look beyond an evaluation horizon of length one, and consider the setting with
many trajectories (m 2 n). As noted previously, in order to handle an arbitrary evaluation
horizon T (in particular those that extend past the training horizon T'), some constraint
on the admissible dynamics matrices is needed to ensure that the minimax risk remains
finite. Without assumptions, the quantity A\(I'r(A4, B),T'1(A, B)), whose inverse inevitably
bounds the risk (3.2) from below, can be arbitrarily small whenever 77 > T, resulting in
arbitrarily large risk. We will use our stated assumptions from the beginning of this section.
The following specializes Theorem 5.2 to LDS-LS:

Theorem 5.5 (Risk upper bound for LDS-LS, many trajectories). There are universal pos-
itive constants co and c1 such that the following holds for any instance of LDS-LS. Suppose
that (A, B) is kc-step controllable. If n > 2, m > con, T > ke, and the evaluation horizon
is strict (T" < T), then:

Y A
E[L(Wpr; T', PP < clag g
On the other hand, suppose that (A, B) satisfies Assumption 5.1, Assumption 5.2, and
Assumption 5.3, with v := (A, B) (Definition 5.1). If n > 2, m > con, and the evaluation
horizon is extended (T' > T'), then:

3 A pn T’

E[L(Wm’T,T/, P$7B)] S ClO’g . W . ’y?
Setting T" = T, Theorem 5.5 states that the risk of LDS-LS in the many trajectories
regime satisfies E[L(Wy, 17; T, Pf’B)] N agpn/ (mT'). This rate matches the corresponding
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independent baseline Ind-LDS-LS in the many trajectories regime. To see this, first observe
that the marginal distribution PigB at time ¢ € Ny is N(0,%:(A, B)). Hence, the covariate
distribution for Ind-LDS-LS corresponds to the product distribution ®;>1N(0,%:(A, B)),
which is an instance of a Gaussian process. Therefore, Example 4.2 combined with Theo-
rem 5.2 yields that the Ind-LDS-LS problem also has a risk bound that scales as agpn/ (mT)

whenever m 2 n. Put differently, the dependent structure of the covariate distribution Pf’B
in LDS-LS does not add any statistical overhead to the learning problem (compared to the
independent learning problem Ind-LDS-LS), as long as m 2 n.

5.1.2 FEW TRAJECTORIES

We now cover the regime in which relatively few training trajectories are available (m < n).
Our first result bounds the OLS risk for the LDS-LS problem:

Theorem 5.6 (Risk upper bound for LDS-LS, few trajectories). There are universal pos-
itive comstants cg, c1, and co such that the following holds for any instance of LDS-LS.
Suppose that (A, B) satisfies Assumption 5.1, Assumption 5.2, and Assumption 5.3, with
v :=7(A, B) (Definition 5.1). If n > 2, m < con, and mT > cinlog(max{yn/m,e}), then:

mT .

j nlog(max{yn/m,e cinlog(max{yn/m,e}) T’
E(L(Wyz: T/, PAB)] < epo? - L io8lmaxtom/ }>.¢<% wnloglumx{ye/m, ¢} T).

To interpret Theorem 5.6, consider v a constant and suppose that 77 = T. Then
Theorem 5.6 states that E[L(WWT; T, Pf’B)] < O'g -pn/(mT) -nlog?(n/m)/m. We now see
that this LDS-LS risk is an extra nlog?(n/m)/m factor larger than the risk of the baseline
problem Ind-LDS-LS:

Theorem 5.7 (Risk upper bound for Ind-LDS-LS). There are universal positive constants
co and ¢ such that the following holds for any instance of Ind-LDS-LS. Suppose that (A, B)
satisfies Assumption 5.1, Assumption 5.2, and Assumption 5.3, with v := (A, B) (Defini-
tion 5.1). If n > 2 and mT > conlog(max{y,e}), then:

7 nylog(max{y, e T’
E[L(Wm,T;T/,(@t;lP;i’tB)] < clag . by g(rnT {7 }) ¢ (77 T> )

Treating v as a constant and setting 7/ = T', Theorem 5.7 states that the Ind-LDS-LS risk
E[L(Wy7; T, 41 PQ%B)] scales as ngn/ (mT'), matching the risk of iid linear regression up
to constant factors. In Section 6, we will see that the result of Theorem 5.6 is sharp up to
constants and v, and therefore the LDS-LS problem is fundamentally more difficult than its
corresponding baseline problem Ind-LDS-LS when trajectories are relatively scarce. As an
aside: the dependence of both Theorem 5.6 and Theorem 5.7 on the condition number 7 is
likely not optimal, and we leave sharpening this dependence to future work.

We conclude with our final upper bound, using our assumptions to generalize Simchowitz
et al. (2018, Theorem 2.1) to the few-trajectory setting:

Theorem 5.8 (Parameter recovery upper bound for LDS-LS, few trajectories). There are
universal positive constants cg, c1, and co such that the following holds for any instance
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of LDS-LS. Suppose that (A, B) satisfies Assumption 5.1, Assumption 5.2, and Assump-
tion 5.3, with v := (A, B) (Definition 5.1). If n > 2, and mT > conlog(max{yn/m,e}),
then:

o pnlog(max{yn/m, e})

E Am . *2 < k*::
UWonir = WallFl < v - oS (A B))

{n/m : 10g(1"fcli{vn/m, e})J '

Theorem 5.8 complements Theorem 5.4; together they cover parameter recovery across all
problem regimes. Again, operator norm bounds also hold with p + n in place of pn.

5.2 Comparison to learning from trajectories of multiple unknown systems

As mentioned in Section 2, Chen and Poor (2022); Modi et al. (2022) both study the
setup where a learner observes multiple independent trajectories from K different unknown
linear dynamical systems. The task is to identify the parameters of the K underlying
systems. This is more general than the setting we consider, which is recovered by fixing K =
1. However, specializing these rates to our setting yield either unnecessary requirements,
suboptimal bounds, or both.

To see this, first, if we specialize Chen and Poor (2022, Theorem 1) to our setup, we
generate unnecessary assumptions. Specifically, Theorem 1 requires strict stability, one-
step controllability, and mT > max{n®,1/(1 — p)}, where p is the spectral radius of A. In
comparison, Theorem 5.4 only requires kc-step controllability, T > k., and m 2 n. However,
note that Theorem 1, like Theorem 5.4, does have the property that the parameter error
(in operator norm) scales as y/n/(mT), reflecting that all collected datapoints contribute
to reducing error.

Next, we specialize Modi et al. (2022, Theorem 2). Theorem 2 bounds the error of an
estimation procedure which outputs m different estimates {fli}?il, one for each observed
trajectory (cf. Eq. (3)). Specifically, it gives an upper bound on the quantity - S IIA —
AZ-||%, where A; is the dynamics matrix associated with the i-th trajectory. To specialize
this to our setting, we average the estimates and apply Jensen’s inequality followed by
Theorem 2. This yields the bound ||A — A||% < 1/T + n?/(mT), where A := Ly A; is
the averaged estimate. We see that, for a fixed T', as m — oo, the rate tends to 1/7" instead
of zero (compared with the n?/(mT) bound from Theorem 5.4). Additionally, Theorem 2
requires both that the dynamics are one-step controllable and that the spectral radius of A
is bounded by 1+ O(1/T).

6. Risk lower bounds

Our lower bounds rely on the following statement, that the expected trace inverse covariance—
a classic quantity in asymptotic statistics—bounds the minimax risk from below:

Lemma 6.1 (Expected trace of inverse covariance bounds risk from below). Fiz m,T € N,
and a set of covariate distributions P,. Suppose that for every P, € P,, the data matriz
X1 € RN drawn from @™ P, has full column rank almost surely. The minimaz risk
R(m,T,T';P,) satisfies:

R(m, T, T'; P,) >a§p-Psug Egr p, [tr (F;/,Q(Px)(X,E,TvaT)_lFlT/,Q(Px))}. (6.1)
Ie xT
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Lemma 6.1 is well known, possibly considered folklore; we state and prove it for complete-
ness. Our proof is inspired by a recent argument from Mourtada (2022). It smooths over
problem instances according to a Gaussian prior, and analytically characterizes the poste-
rior distribution of the parameter W, under a simple Gaussian observation model detailed
in Section 7.2. Note that the presence of the expected value outside the of trace inverse,
on the right-hand side of (6.1), is critical in proving our separation results. Using Jensen’s
inequality, one could move the expectation under the inverse, precisely recovering the clas-
sic Cramér-Rao lower bound (CRLB) for the variance of unbiased estimators. However, for
least-squares regression problems, the CRLB yields (when 7" = T') the familiar ag -pn/(mT)
rate for iid linear regression. This is not enough for our purposes, and so we must analyze
the more complex expected-trace-inverse quantity appearing in (6.1).

Our first lower bound underscores the need to make variance growth assumptions (5.8),
in Theorem 5.3, for Ind-Seq-LS in the few trajectories (m < n) regime:

Theorem 6.2 (Need for growth assumptions in Ind-Seq-LS when m < n). There ex-
ists universal constant cg, c¢1, and cs such that the following holds. Suppose that P, =
®1N (0,28 - 1), n = 6, mT > n, and m < con. Then:

p- ocan/m

R(m, T, T;{P,}) > clag : T

Theorem 6.2 states that if the variances ¥; are allowed to grow exponentially in ¢, then
the minimax risk of Ind-Seq-LS scales exponentially in n/m when m < n. Thus, some sub-
exponential growth assumption is necessary in order to have the risk scale polynomially in

We now turn to a lower bound for LDS-LS. We consider two particular hard instances for
LDS-LS dynamics matrices (A, B), where we set B = I,, and vary A. The first instance cor-
responds to iid covariates, i.e., A = 0,,x,. The second instance corresponds to an isotropic
Gaussian random walk, i.e., A = I,. These two hard instances satisfy Assumption 5.1,
Assumption 5.2, and Assumption 5.3. Together they show that our upper bounds are sharp
up to logarithmic factors, treating the condition number (A, B) from Definition 5.1 as a
constant:

Theorem 6.3 (Risk lower bound). There are universal positive constants cg, c1, and ¢y
such that the following holds. Recall that PIr (resp. Pg"x") denotes the covariate distribution
for a linear dynamical system with A = I,, and B = I, (resp. A = Opxn and B = 1,). If
T > cyg, n>=cy, and mT = n, then:

/ /
R(m, T, T"; {PVrxn PIny) > CQO’? . % - max {ij:, %, 1} .

We can interpret this lower bound by a breakdown of ¢ := max{nT’/(mT),T"/T,1}
across various regimes. When trajectories are limited (m < n), ¢ < max{nT’/(mT),1}, and
therefore the minimax risk is bounded below by ag -pn/(mT)-max{nT’/(mT),1}. Thisis the
same rate prescribed by the OLS upper bound of Theorem 5.6, up to the condition number
~v(A, B) and logarithmic factors in n/m. We have thus justified the summary statement
Theorem 1.2. On the other hand, under many trajectories (m 2 n), ¢ < max{7’/T, 1} and
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the minimax risk is bounded below by ag -pn/(mT) - max{T'/T,1}. By Theorem 5.5, the
OLS risk is bounded above by the same quantity times (A, B), justifying the summary
statement Theorem 1.3.

7. Key proof ideas

In this section, we highlight some of the key ideas behind our results. Proofs of the upper
bounds are in Appendix B, and proofs of the lower bounds are in Appendix C.

Additional notation. Forr € N, and M € R™™", let J, € R™*" denote the Jordan block
of size r with ones along its diagonal, let BDiag(M,r) € R™*™" denote the block diagonal
matrix with diagonal blocks M, and let BToep(M,r) € R™*™ denote the block Toeplitz
matrix with first column (I,,, MT,... (M"~1H)T)T.

7.1 Upper bounds

The proof of Lemma 5.1 decomposes the risk using a standard basic inequality, which we now
describe. While Lemma 5.1 is stated quite generally, for simplicity of exposition we restrict
ourselves in this section to the case when the matrix parameters {¥; } _, in Definition 4.1
are all set to . Under this simplification, we have that pu({¥;}? L) =1

Equation (3.1) yields the identity Yy, 7 = X;n1rW,! + Zp, 7. Plugging this relationship
into the formula (3.6) for Wm,T gives WmT W, = mTXmT(Xm 7 Xm, 1)~ 1 Define the

1/2

whitened version of X, r as Xm,T = X, 77 /%. From these definitions and after some

basic manipulations, for any I € SymZ:

||(X7T1,TXm7 ) V2xy TEmTHop

Amin(X] 7 Xm.1) - AL, TY)

HWm,T W*HF, min{n, p} (7.1)

This decomposes the analysis into two parts: (a) upper-bounding the self-normalized mar-
tingale H(X;';TXMT) 1251 = and (b) lower-bounding the term )\min(X;l’TXm,T).
The analysis for the martlngale term is fairly standard (cf. Abbasi-Yadkori et al., 2011,
Corollary 1), so for the remainder of this section we focus on the minimum eigenvalue
bound, which contains much of what is novel in our analysis.

We first demonstrate how the trajectory small-ball definition (Definition 4.1) can be
~ (1)

)?

used to establish pointwise convergence of the quadratic form x(v) := Y /", Zt (v, 2y
for v € S*1, where icgz) =1V Q:U]EZ) is a whitened state vector. Specifically, we show that
for a fixed v € S"~!, the probability of the event {y(v) < 1 - €} is small, for 1,& to be

specified.

The key idea is that for any non-negative random variable X satisfying P{X < e} <
(ce)® for all € > 0, the moment generating function satisfies E[exp(—nX)] < (¢/n)® for all
1 > 0 (cf. Proposition B.4). Hence, by condition (4.1) from Definition 4.1, for any n > 0:

ik

Elep (-1 > (03" ‘f(j_l)k <<CS*’> as., i=1,..m, j=1,...5
t=(—1)k+1 N
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By a Chernoff bound, the tower property of conditional expectation, and the independence
of the trajectories {igl)}@l and {i“gz )}t>1 when i # 4/, for any ¢ > 0:

(iiz ><mfen<Eexp< Ziivxt >

=1 t=1 =0 i=1 t=1
Ceb mSa
< inf ens [ =2
n=0 n

el o (252) )

Now with a change of variables t := log (msa) — 1, we obtain:

CsbC

mT«
(ZZ v xt <—e (t+1)> < exp(—mSat) Vt > 0. (7.2)
2cqp

The key upshot of (7.2) is that it controls tail probability at all scales. This control is
needed in order to bound the expected value of (7.1) by integration. At this point, it
remains to upgrade (7.2) from pointwise to uniform over S"~!. A natural approach is to
use standard covering and union bound arguments, as is done in Simchowitz et al. (2018).
However, straightforward covering argument yields un-necessary logarithmic factors in the
covariate dimension n. In order to circumvent this issue, we utilize the PAC-Bayes argument
from Mourtada (2022) (which itself is an extension of Oliveira (2016)) to establish uniform
concentration. The details are given in Appendix B.4.

7.2 Lower bounds
7.2.1 OBSERVATION NOISE BEHIND LEMMA 6.1

Our definition of minimax risk R(m,T,T"; P,) in (3.5) involves a supremum over the worst
case og-sub-Gaussian MDS distribution that models the observation noise. The proof of
Lemma 6.1 bounds this supremum from below by considering a noise model that decouples
the observation noise {& };>1 from the randomness that drives the trajectory {z;}¢>1:

Definition 7.1 (Gaussian observation noise). The Gaussian observation noise model holds
when & ~ N(O,Jgfp), & L & oif t £t and the process {&}i>1 is independent from the
process {xi}i>1.

Decoupling the noise processes orthogonalizes the two problems simultaneously present
in Seq-LS: learning the dynamics of covariates and learning the responses from covariates.
Definition 7.1 draws attention to the latter. It will unfortunately exclude us from addressing
linear system identification specifically with our lower bound, but it allows a sharp and
simple characterization of the minimax risk in general. The proof of Lemma 6.1 is given in
Appendix C.2.
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7.2.2 AN ANALYSIS OF NON-ISOTROPIC GRAMIAN MATRICES

A key technical challenge for our analysis lies in constructing a sharp lower bound on the
expected trace inverse of a gramian matrix formed by random non-isotropic Gaussian ran-
dom vectors. Specifically, for integers ¢, n € N4 with ¢ > n, and for a fixed positive definite
matrix ¥ € Sym? ), we are interested in a lower bound on the quantity E tr((WTSW)™1),
where W € R?*" has iid N(0,1) entries. The matrix WTXW is equal in distribution to the
gramian matrix Y € R™*" of the vectors g1, ..., g, € RY, which are drawn iid from N (0, X),
i.e., Y;j = <giygj>-

The main tool we use to analyze Etr((WTXW)™1) is the convex Gaussian min-max
theorem (CGMT) from Thrampoulidis et al. (2014), which allows us to bound from below
the expected trace inverse by studying a two dimensional min-max game that is more
amenable to analysis. The key idea is to cast the expected trace inverse as a least-norm
optimization problem, and apply CGMT to the value of the optimization problem. We
believe the following result to be of independent interest.

Lemma 7.1. Let g,n be positive integers with ¢ = n and n > 2. Let W € R?*"™ have iid
N(0,1) entries, and let ¥ € R?*? be positive definite. Let g ~ N(0,1;) and h ~ N(0,I,—1),
with g and h independent. Also, let {e;}!_, be the standard basis vectors in R1. We have:

n

Etr(WTESW)™1) > (7.3)

. h
>4 Emingso max;>g [_w + 189 — ei|]%z,1+ﬁ”h”2ﬂq),l

The proof of Lemma 7.1 appears in Appendix C.4. We now discuss how to analyze the
two-dimensional min-max game appearing in Lemma 7.1. We first start by heuristically
replacing it with a stylized problem, where the random quantities which appear in (7.3) are
replaced by their expected scaling:

q
SP(X,n):= ) minmax [—M
1 B=0 720 T

(54 ) )+ (5 ).

1=

=: Z?(r,é’,f)
(7.4)

While (7.4) is not a valid upper bound on the value of the min-max game appearing in
(7.3), analyzing (7.4) is simpler and gives the correct intuition; we give a rigorous upper
bound in Lemma C.9.

We start by observing that if 5 = 0, then regardless of the choice of 7, £;(0,7) = Xy,
and therefore Y7, £;(0,7;) = tr(X) for any {r;}{_; C RZ,. On the other hand, if 5 > 0,
then /£;(3,7) tends to —oo as 7 — 0T and to 0 as 7 — oo. Therefore, if we can show that
there exists a v € (0,tr(X)), such that every set of points {(3;,7:)}_, C R%, satisfying:®

0t

?; ov; )
93 (Bis i) = 5(51‘,77) =0, i=1,...,q, (7.5)

6. The conditions given in (7.5) are not in general necessary first-order optimality conditions for a noncon-
vex/nonconcave game (see e.g. Jin et al., 2020, Proposition 21). However, since for every S > 0, the
function 7 — £; (83, 7) has only strictly concave stationary points (Proposition C.10), these conditions are
necessary for this particular problem.
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also satisfies v = Y7, ;(B;,7i), then SP(X,n) = v
To uncover the critical points, we define the functions f and ¢;, fori =1,...,¢, as:

flz) = —avn+ 22 (S +avnl) ™), q(@) = (57" + 2yl

With these definitions, we can write:
1
6(8,7) = = F(57) + (7).
gﬁj (8,7) = 0 yields, for 7 # 0:

(ﬁ? )_

= % (5,7 = 2/ (37)8 - 2 £(87) + (375, (76)
= S35 =72 (B + (6 (1)

The second condition (7.7) implies that ¢}(87) = —7~2f'(87). Plugging this condition into
(7.6) implies that f(57) = 0, and hence ¢;(3,7) = ¢;(87) for the critical point (3,7). We
now study the positive roots of the equation f(z) = 0, or equivalently:

zv/n =2 tr((X7H 4+ 2y/nl,) ).
Using the variable substitution y := zy/n, we have, when y > 0, the equivalent problem:

Yy X)) =ytr(E +yl) ™) =n.

Observe that ¢(0;X) = 0 and limy_,c ¥(y; X) = ¢. Furthermore, ¢ (y;X) is continuous
and monotonically increasing with y. Therefore, as long as ¢ > n, there is exactly one
g € (0,00) such that ¥(g;X) = n, or equivalently there is exactly one T € (0,00) such
that ¢ (z/n;X) = n. Such a quantity Z supplies the curve of critical points Crit(z) :=
{(B,7) € R2,, | Br = z}. Note that Crit(z) is the set of critical points for every ¢;(8,7),
i = 1,...,q. Furthermore, for any (S,,7«) € Crit(z) and i € {1,...,q}, we have that
6By 7x) = ¢i(Bae) = (571 + Zy/nl,)5; . Therefore:

{(B;, 7)YL, € Crit(z :>Z€ (Bi, ) = tr((B7Y + 2v/nI,) ™) € (0,tr(X)),

and thus:
N . _
SP(3,n) = TR with Z the solution to ¥(Zv/n;¥) = n. (7.8)
In light of (7.8), Lemma 7.1 then suggests that:
Et s — = .
{(WTSW) ™) 2 g = v (79)

where the Z notation indicates the heuristic nature of replacing the expected min-max game
appearing in the bound (7.3) with the approximation (7.4).
If we briefly check (7.9) in the simple case when ¥ = I, we see that:

= vVl = v o = S A >

Hence, (7.9) yields that Etr((WTW)~!) Z n/q, which is the correct scaling; the exact result
is Etr(WTW)™ ") =n/(g—n—1) for g =n+2.
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7.2.3 IDEAS BEHIND THEOREM 6.2

We let X, 7 denote the data matrix associated with m iid copies of {xt}thl, with x; ~
N(0,2' - I,) and z; L ay for t # t'. We also define T'p := L7 2¢. 1, = 2(2T —
1) - I, and observe that I'p = % - I,. By Lemma 7.1, it suffices to lower bound the
quantity IEtr(FlT/2(X;,TXWT)_lF;l/Q). Since each column of X,, 7 is independent, the
matrix X, 7277/2 has the same distribution as BDiag(©'/2, m)W, where © € RT*T is
diagonal, ©;; = 2¢-T for i € {1,...,T}, and W € R™T*" has iid N(0,1) entries. In other
words, we have:

Etr(TY2(XT X 7) T Y2) > %Etr((WTBDiag(@,m)W)’l).

By the arguments in Section 7.2.2, we have:

T . —1 > n
E tr((W'BDiag(©,m)W)™") £ SP(BDiag(©,m),n)’

where the notation g indicates the heuristic nature of the inequality as explained previously.
From (7.8), we want to find z such that:

T-1

n = 1(zy/n; BDiag(©,m)) = z/n-m Z !
=0

27 +Zy/n’

While solving this equation exactly for Z1/n is not tractable, we can estimate a lower bound
on Zy/n quite easily. For any integer T, € {0,...,T}, we have the following estimate:

T-1 1

no_ _ T,
mm\/ﬁ;o2j+$\/ﬁ<7’c+2x\/ﬁ 2T,

Let us first assume that 7/n € [1,217Y, so that [logy(Z/n)] € {0,...,T}. Setting T, =
[log,(Z+/n)] then yields the lower bound Z\/n > 2"/™=3. On the other hand, if Z\/n > 271,
then since we assume mT > ¢in, we also have Ty/n > 26%/™=1  Finally, if Z/n < 1, we
have:

T—1 T—1
n 1 1
A N <2—=m>n/2
m x\/ﬁ;mﬂc\/ﬁ j§2ﬂ+x\/ﬁ m > n/

This yields a contradiction, since by assumption m < con, if co < 1/2, so we must have
Ty/n > 207" =3 with ¢ = min{1,¢;}. Now by (7.8) and (7.9):

20’n/m

SP(BDiag(©,m),n) 7

< n2 Sy BT (XT3 X 7)1 T )

Qv

_on
NG
We make this argument rigorous in Appendix C.5.
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7.2.4 IDEAS BEHIND THEOREM 6.3

We focus here on the hard instance when A = I,, and m < n, since the cases when A = 0,1,
or A = I, and m 2 n are straightforward applications of Jensen’s inequality and some basic
manipulations (see Lemma C.7).

The proof used by Theorem 6.3 when A = I,, and m < n is actually a special case of a
general proof indexed by the largest Jordan block size of the hard instance. For a maximum
Jordan block size r, the hard instances are A = BDiag(J,,n/r), where we assume for
simplicity that r divides n; this reduces to A = I, when r = 1. We associate two important
matrices with these hard instances. To define them, let Z, := {1,1+r,...,1+ (T — 1)r},
and let Bz, € RT*T" denote the linear operator that extracts the coordinates in Z,. The
following matrices then play a key role in our analysis:

U, 7.7 := BDiag(Ty./*(J,), T)BToep(J, T), Opr1r := Er,Uomp¥lrmEL.  (7.10)

The next step is to use a simple decoupling argument (see Lemma C.11) to argue that, for
A = BDiag(J,, d):

Etr(T3) (X 7 Xomr) "' TH%) = Etr((W T BDiag(©, 1.0, m)W) ™),

where W € R™T%? has iid N(0,1) entries. This positions us to use the arguments in

Section 7.2.2 again. We first focus on the r = 1 case. We reduce the problem to assuming

T" =T, by observing that since I'y(I,) = %-In for any ¢t € N, then ©1 777 = % O177.

Therefore,

T +1
Bt (W BDiag(@1rr,m)W)Y)  (7.11)

T+1 P

T +1 n

T+1 SP(BDiag(@LT,T, m), n) ’

E tr((W T BDiag (61 1.7/, m)W) 1) =

Qv

where again the Z notation highlights the heuristic nature of the bound, used to build
intuition.

To proceed, let Ly € RT*T be the lower triangular matrix of all ones and define Sp :=
(LTL}:)_I. A computation yields that @1 T = Tgl St. Note that we can write St as
a rank-one perturbation to a tri-diagonal matrix. Specifically, Sy = Tri(2,—1;7T) — eTe:TF,
where Tri(a, b; T') denotes the symmetric T' x T tri-diagonal matrix with a on the diagonal
and b on the lower and upper off-diagonals. By the standard formula for the eigenvalues
of a tri-diagonal matrix, we have that Ap_p11(Tri(2,—1;7T)) = 2 (1 cos (71“:1» = k%/T>.
In Appendix C.7, we apply the work of Kulkarni et al. (1999) to show that the rank-one
perturbation is negligible: Ar_x,1(St) =< k?/T? as well. Therefore )\Tkarl(@l_’%w,T) = k%/T.
With this bound, we have:

T
1
n = ¢ (Z+/n; BDiag(©1 1,7, m)) = Zv/n-m — —
T

s Z;ﬂ/ﬂxf\xf m/ w2/T+x\F “F VT
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Figure 3: Plot of Z¢(SP)~! versus n in (a) and versus m in (b), both on a log-log scale. For (a),
m and p are fixed to one, d is fixed to n/r, and T is fixed to 2n. For (b), n is fixed to 150, p is fixed
to one, and T is fixed to 2n. In the legends, the slope of the line (in log-log space) computed via
linear regression is shown. Based on these plots, we conjecture that 2%(SP)~! > ¢,.(d/m)*", where
¢, depends only on 7.

This implies that Zv/n > n?/(m?T), and therefore by (7.8) and (7.9):

- n m2T :
SP(BDiag(©1 171, m),n) = /n S

We make this argument rigorous in Appendix C.8.

— Etr(TY2(X] X)) 2

T nt
T m2T’

7.2.5 BEYOND DIAGONALIZABILITY

When r > 2, the analytic complexity of characterizing the solution to the equation n =
¥ (Z+/n; BDiag(©, 71/, m)) increases significantly. Nevertheless, we can still solve for z/n
by numerical root finding, to look at the scaling patterns for small values of » and T = T..
This computation leads us to conjecture a general bound of R(m, T, T} {P?Diag(‘]r’n/r)}) e

crn?" /(m?"T) when m < n, where ¢, is a constant depending only on r (see Figure 3). A
complete and precise statement is given in Appendix A.

8. Numerical simulation

We conduct a simple numerical simulation illustrating the benefits of multiple trajectories
on learning. We construct a family of LDS-LS problem instances, parameterized by a scalar
p € (0,00) as follows. The covariate distribution P, is the linear dynamical system x;11 =
Axy + w with:

A=Udiag( p,....,p ,—p,...,—p)UT, U ~Unif(O(n)), ws~ N(0,1/4).
N—_——

[n/2] times

Here, O(n) denotes the set of n x n orthonormal matrices. By construction, p is the spectral
radius of A. The labels y; are set as y; = w1, so that the ground truth W, € R™*" is
equal to A.
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We compare the risk of the OLS estimator (3.6) on the LDS-LS problem instance, com-
pared with its risk on the corresponding Ind-LDS-LS baseline. Specifically, we plot the ratio
between OLS excess risks E[L(+; T, P,)] on the two problem instances (P ), respectively. We
fix the covariate dimension n = 5 and the trajectory horizon length 7' = 10n, and vary the
number of trajectories m € {1,...,10}. Figure 4 shows the result of this experiment, where
we also vary p € {0.98,0.99,1.0,1.01,1.02}. The error bars are plotted over 1000 trials. All
computations are implemented using jax (Bradbury et al., 2018), and run with float64
precision on a single machine.

n=5,T=10n

Excess Risk Ratio
N wow
w o w

N
o
L

-
3]
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-
o
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]
]
1
]
1
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Figure 4: Plot of the ratio of excess risk for LDS-LS problem instances over its corresponding
Ind-LDS-LS baseline instance, as a function of the number of trajectories m, holding both covariate
dimension n and horizon length T' fixed. The vertical blue line marks the transition between few
trajectories (m < n) and many trajectories (m = n).

In Figure 4, we see that for the few trajectories regime (m < n) appearing to the left
of the vertical blue line, the instability of the covariate process plays an outstanding role
in determining the value of the ratio. On the other hand, for the many trajectories regime
(m > n) appearing to the right of the blue line, the ratios quickly converge to a constant
no greater than two (at m = 10). This behavior is consistent with Theorem 5.5. Finally,
Theorem 6.3 suggests that the scaling behavior of the p = 1 curve with respect to m is on
the order of 1/m.

9. Concluding remarks

Having sharply characterized the worst-case excess risk of Seq-LS and LDS-LS, we see more
precisely the trade-offs—or arguably the lack thereof—presented by resetting a system, or
by simply observing parallel runs from one, where possible. After sufficient resets, one learns
roughly as though examples were independent altogether (as reflected in the Ind-Seq-LS and
Ind-LDS-LS baselines).

In addition to the theoretical upshot that it presents, this phenomenon seems encour-
aging insofar as the setup may describe reality: one does not learn to ride a bicycle by
witnessing thousands of unrelated pedal strokes, nor by watching one cyclist endure the
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entire Tour de France, but rather by seeing and attempting many moderate rides and ma-
neuvers.

We see a number of future directions for research, primarily in further charting out the
reach of the iid-like phenomenon in learning from multiple sequences. Our work offers the
trajectory small-ball criterion (Definition 4.1) as a vehicle for proving that this phenomenon
occurs, or otherwise for bounding the minimax rate from above. What other notable se-
quential processes, outside of those covered in Section 4.1, can we capture as trajectory
small-ball instances? One might look to covariate sequences generated by, say, input-to-
state stable (ISS) non-linear systems, stochastic polynomial difference equations, or various
Markov decision processes.

On the flip side, when must we necessarily pay a price for dependent data? One answer
from our work is that a necessary gap between independent and sequentially dependent
learning appears when there are insufficiently many trajectories (m < n). As outlined
in Section 7.2.5 and Appendix A, we conjecture that this gap can be made much wider,
namely by considering non-diagonalizable linear dynamical systems. That said, other per-
tinent problems may exhibit gaps as well. Finding them would help inform where the limits
of learning from sequential data lie.

On the regression side, one might look to move beyond a well-specified linear regression
model, extend to other loss functions, analyze regularized least-squares estimators in place
of OLS, or consider a more adversarial analysis (e.g. measuring regret rather than risk, in
an online setting).
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Appendix A. Beyond diagonalizability: a conjecture for the general case

Recall that various results in Section 5.1 required a diagaonalizability assumption (Assump-
tion 5.2) on the dynamics matrix A, specifically in the many trajectories regime when 77 > T
(Theorem 5.5), or in the few trajectories regime (Section 5.1.2). In this section, we conjec-
ture how removing the diagonalizability assumption would affect the results. For simplicity,
we focus on the few trajectories regime, and further assume that 77 = T. Building on
potential extensions of this paper’s analysis, and numerical evidence detailed in Section 7,
we conjecture the following extensions of Theorem 5.6 and Theorem 6.3:

Conjecture A.1 (Risk for LDS-LS with few trajectories, general case). There are universal
positive constants cg, c1, c2, c3, and a universal mapping ¢ : Ny — Rsqg such that the
following holds for any instance of LDS-LS satisfying Assumption 5.1 (marginal stability)
and Assumption 5.3 (one-step controllability). Let A = SJS™1 denote the Jordan normal

-1 T o—x*
;\\m?x((g_lgng_*)), and let r be the size of the

largest Jordan block in J. If n > cg, m < cin, and mT > con, then:

form of the dynamics matriz A. Define v :=

pn2r

T . pA,B 2
E[L(Wynr; T, P27)] < 030590(7")7 ST

(A.1)
Additionally, there exist universal positive constants ¢, ¢, ¢, ¢, and ¢ such that the
following is true. Suppose A C R™*™ is any set containing all n X n matrices with Jordan
blocks of size at most r. Let T > ¢y, n > ¢, mT > cyn, and m < chn. Then:

pn2r

R(m, T, T;{P | A€ A}) > cjoip(r)y - sy

(A.2)

Lemma 5.1 provides a viable path towards proving the upper bound (A.1) from Con-
jecture A.1 up to logarithmic factors in the regime of constant Jordan block size r, by

44



LEARNING FROM MANY TRAJECTORIES

reducing the problem to understanding the scaling of A(k,t; A, B) = A(T'x(A, B),T'.(A, B))
when k& < ¢t. Our analysis uses diagonalizability (Assumption 5.2) of the dynamics ma-
trices to show that A(k,t; A,B) = 7! . k/t. Without such an assumption, analyzing
A(k,t; A, B) is substantially more involved. A numerical simulation (Figure 5) suggests

tlk=a«o, k=5
39 |
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Figure 5: A plot of the ratio o versus 1/A(k,t) with k fixed to 5 and ¢ fixed to ka. Here,
Ak, t) := Ak, t; Jp, I.). The slope of the line (in log-log space) computed via linear regression is
reported. We conjecture that in general, A(k,t; A, B) 2 ¢,y - (k/t)? L.

that A(k,t; A, B) 2 ¢,y 1+ (k/t)>~! is the general rate for dynamics matrices A with Jor-
dan blocks at most size r, where ¢, is a constant depending only on r. Assuming this
scaling to be correct and plugging the rate into Lemma 5.1 yields (A.1) up to logarithmic
factors. Partial progress towards analyzing A(k,t; A, B) was made in Sarkar and Rakhlin
(2019, Proposition 7.6), where it is shown that A(k, ¢; A, B) > ¢,y =1 - (k/t)™, with 1/¢, de-
pending exponentially on 7. We do not conjecture a form for the mapping ¢(r); A(k, t; A, B)
becomes numerically ill-conditioned when r is large, hindering simulation with large blocks.

On the other hand, the analytic arguments in Section 7.2.4 combined with the numerical
evidence in Figure 3 suggest that the bound (A.2) holds (up to the condition number factor
7). The one caveat is that, even if we were to analytically characterize the eigenvalues of
O, 7 for all r, our proof strategy would most likely not be able to give a sharp characteri-
zation of the leading constant ¢(r) in the lower bound. This is because our proof inherently
exploits the independence between decoupled subsystems, and does not tackle the harder
challenge of understanding the coupling effects within a Jordan block.

We conclude this section by noting that Conjecture A.1 does not include any logarithmic
factors in the upper bound rate (A.1), and includes the condition number factor ~y in the
lower bound (A.2). In other words, Conjecture A.1 applied to the special case of r = 1
conjectures that Theorem 5.6 is loose by log?(yn/m), and that Theorem 6.3 is loose by a
factor of ~.
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Appendix B. Analysis for upper bounds
B.1 Preliminaries

We collect various technical results which we will use in the proof of the upper bounds. The
first result gives us a bound on the functional inverse of T'+— T'/log T

Proposition B.1 (Simchowitz et al. (2018, Lemma A.4)). For a > 1, T > 2alog(4w)
implies that T > alogT.

The next two results study various properties of functions involving A.

Proposition B.2. For A € Sym%,, the map X — A(X,A) is concave over symmetric
matrices.

Proof Observe that A(X, A) = Amin(A™Y2XA71/2) = inf{(X, A"V 200T A=1/2) | v € S*1}
is the pointwise infimum over a set of linear functions in X, and is therefore concave. N

Proposition B.3. Fiz T € N, {U;}], c Sym%,, and T € SymZ,. Suppose that
1T
FEL T Then [[TL Aw,D)] 7 <1

Proof We have that:

1T T
1
< = g AP, 1) using the AM-GM inequality
I

T
1
<A (T Z Wy, F) using Proposition B.2 and Jensen’s inequality
t=1

T
1
< A\I,T) since - U <T
t=1
=1
|

The next result relates the anti-concentration properties of a non-negative random vari-
able to its moment generating function on (—o0,0).

Proposition B.4 (Mourtada (2022, Lemma 7)). Let X be a non-negative random variable.
Suppose there exists an o € (0,1] and positive constant ¢ such that:

P(X <t) < (ct)* Vt>0.
Then:
Elexp(—nX)] < (¢/n)*  ¥n > 0.

The next few results involve various properties of Gaussian and spherical distributions.
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Proposition B.5 (Magnus (1978, Lemma 6.2)). For w ~ N(0,I) and symmetric matrices
A, B:

Elw' Aww’ Bw] = 2(A, B) + tr(A) tr(B).

Proposition B.6 (Dasgupta and Gupta (2003, Lemma 2.2)). Let n > 2 and v € R™\ {0}
be fized. Suppose that v is drawn uniformly at random from the uniform measure over S*1.
We have that for all € > 0:

P{(v,0)2 < w3} < (e)2,

Next, we state a classic result which gives us anti-concentration of arbitrary Gaussian
(more generally any log-concave distribution) polynomials of bounded degree.

Theorem B.7 (Carbery and Wright (2001, Theorem 8)). Fiz an integer d € Ny. There
exists a universal positive constant ¢ such that the following is true. Let p : R® — R be a
degree d polynomial, and let € > 0. We have:

B{lp(x)| < - Elp(a)]} < c-de'?, @~ N(0,1,).

For the case when d =2 and p is non-negative, we can take c = \/e/2.

Theorem B.7 can be further specialized as follows. Suppose w ~ N(0,1), z is fixed, and

[Q#l Qu] is positive semidefinite. Then:
12 Q22
T
P{ Lﬂ [gi glj B] S g'““(Q?Z)} < (ee)'? Ve > 0. (B.1)

Both (B.1) and the explicit constant in Theorem B.7 for d = 2 and p non-negative can be
derived by bounding the MGF of various Gaussian quadratic forms; see e.g. Tu and Boczar
(2023).

Next, we state a well-known result from Abbasi-Yadkori et al. (2011), which yields an
anytime bound for the size of a self-normalized martingale difference sequence (MDS).

Lemma B.8 (Abbasi-Yadkori et al. (2011, Theorem 3)). Fiz a 6 € (0,1) and positive
definite matriz V € R, Let {x;}1>1 C RY be a stochastic process adapted to the filtration
{Fiti=1. Let {n:}1>1 C R be a martingale difference sequence adapted to {Fi}i=2. Suppose
there exists R > 0 such that E[exp(\n) | Ft] < exp(\2R?/2) a.s. for all N € R and t > 1.
Define V; .= 22:1 xkacg fort = 1. With probability at least 1 — 9,

t

det(V; + V)1/2 det(V)—1/2
> ek <\/2R210g<e(t+ )72 det(V) ) V> 1.
k=1 (Ve V)=

J

Lemma B.8 is generalized to vector-valued self-normalized MDS via a covering argument:
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Proposition B.9 (Sarkar and Rakhlin (2019, Proposition 8.2)). Fiz a 6 € (0,1) and
positive definite matriz V€ R¥™4, Let {x;}4>1 C R? be a stochastic process adapted to the
filtration {Fi}i>1. Let {ni}i=1 C RP be a stochastic process adapted to {Fi}i>2. Suppose
that for every fived v € SP~1, for every t > 1:

(a) E[{v,n) | Ft] =0 a.s.
(b) Elexp(A(v,m)) | Fi] < exp(A2R?/2) a.s. for every A € R.

Define Vi := 22:1 xkacg fort > 1. With probability at least 1 — 9§, for allt > 1:

p 1/2 ~1/2
<2\/2321(% <5 det(V; + V)12 det (V) >

t
>l (Vi + V)72
k=1

J

op
The next result assumes V; is invertible in order to simplify Proposition B.9.

Proposition B.10. Under the same hypothesis of Proposition B.9, we have with probability
at least 1 — 0, for allt > 1:

t

—1/2
S ety Y
k=1

1{Vi = V)

D 1/2 —1/2
<4\/}%210g (5 det(Vt+V)5 det(V) >

op

Proof Observe that when V; = V', we have:
Wer Vit V=V"'32Vi+ V)"

For two positive definite matrices M; and My satisfying My < Mo, and any matrix N,

IVl =\ Aanax (VMLNT) <\ M (NMNT) = [N D2 o,

Therefore,
t 1/2 t
Ve VI mead v <2 S maf (Vi + V)72
k=1 op k=1 op
D 1/2 —1/2
<4\/R210g (5 det(VtJrV)(S det(V) >

where the last inequality holds for every ¢t with probability at least 1 —4d by Proposition B.9.
|

B.2 Examples of trajectory small-ball

In this section, we prove that the examples listed in Section 4.1 satisfying the trajectory
small-ball condition (Definition 4.1).
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Example 4.1 (Copies of a Gaussian draw). Let ¥ € Sym%, and let P, denote the process
x1 ~ N(0,%) and xy = x4—1 fort > 2. Fix anyT € Ny. Then P, satisfies the (T, T, 3%, e, %)—
TrajSB condition.

Proof When k =T and I' = I,,, the condition (4.1) simplifies to:

T
1
sup P {T Z(v,xt)2 < 5} < (espe)® Ve > 0.

vesn—1 t=1
Since x1 = x9 = - - - = a7, this further simplifies to:

sup P {(v,21)? <e} < (espe)® Ve > 0.
vesSn—1

Since (v, z1) ~ N(0,1), Equation (B.1) yields that Pxn(o{X? < e} < (eg)'/?, s0 we can
take csp = € and a = 1/2. [ |

Example 4.2 (Gaussian processes). Let P, be a Gaussian process indezxed by time, i.e., for
every finite index set I C Ny, the collection of random variables (x)ier is jointly Gaussian.
Let Tpg := inf{t € Ny | det(E[zz[]) # 0}, and suppose Thy is finite. Fiz a T € Ny
satisfying T > Thq. Then P, satisfies the (T, T,T'r(P,), 2e, 2) TrajSB condition.

Proof Since the covariates (z1,...,x7) are jointly Gaussian, we can write,
1 H1 My
I I R
zp HT Mrp

where p1,...,ur € R® and My, ..., My € R™"T are fixed, and w ~ N(0,I,7). For any
v R,

T T

1 1
T Z(v, )2 = 7 Z(v, e + Myw)?.

t=1 t=1

This is a degree 2 non-negative polynomial in w, and therefore by Theorem B.7, for all
e>0:

1 I
P{T;@,xt <

t

1 I
vat ]}é(Zea)l/Q.
=

Example 4.4 (Alternating halfspaces). Suppose that n > 4 is even, and let uy, ..., u, be a
fized orthonormal basis of R"™. Put Uy = span(u1, ..., Uy, 2) and Uy = span(u, oq1,---,Un)-
Let i1 ~ Bern(%), iry1 = (it + 1) mod 2 for t € Ny, and let P, denote the process with
conditional distribution x; | i; uniform over the spherical measure on U;, NS"~1. For any
T > 2, the process P, satisfies the (T,2,1,/(2n),e, %)—ijSB condition.
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Proof For i € {0,1}, let 1; be uniform on the uniform measure over U; N S*~1, let Py,
denote the orthogonal projector onto U;, and let v; = Py,v.

Fix any v € R™\{0}. We observe that for any t € Ny, (v, z441)2+(v, 2442)? | i¢ is equal in
distribution to (v, )%+ (v, 11 )2, which itself is equal in distribution to (vg, 1)+ (v1,v1)2.
Suppose first that |Jvg|l2 = |lv1|l2. Then, since ||v||3 = ||vol|3 + ||v1]|3 < 2|vol|3:

{fon vl + (o, 0017 < S01B} € ton 0 + ton, 0 < Zunl)

2e
c {<U07¢0>2 < n||voH§} :
Writing g = ((u1,v),. .., (Uup2,v)) € R™2, by a change of coordinates we have that
laol|3 = [|voll3, and that (vg, o) is equal in distribution to (ag, (o), where (p is uniform on
™21 Since we assumed ||vg||2 > ||v1]|2, we must have that oy # 0. Hence by Proposi-
tion B.6,

P{ (w0, v0)? + (v1,91)2 < — o3} < P{<ao,<o>2 < ffuaon%} < (e)”.

Note that if [|v1]|l2 > ||vo]|2, an identical argument yields the same bound. Hence, letting

Fi=o(xy,...,x¢), we have shown that for all ¢ > 0:
1< 1
P {2 ;<v,xt+g>2 <e-vl (%In> v .7-}} < (ee)'/?,

from which the claim follows. [ |

Example 4.5 (Normal subspaces). Suppose that n > 3. Let uy,...,u, be a fized orthonor-
mal basis in R", and let U-; := span({u;};x) for i € {1,...,n}. Consider the Markov
chain {i;}1>1 defined by i1 ~ Unif({1,...,n}), and iz41 | 3¢ ~ Unif({1,...,n} \ {it}). Let
P. denote the process with conditional distribution xy | iy uniform over the spherical measure
on U-;, NS"L. For any T > 2, the process P, satisfies the (T,2,1,/(4n — 4), e, %)-ijSB
condition.

Proof Fix any v € R"\ {0}, and for ¢ € {1,...,n}, let v; = Py_,v, where Py_, is the
orthogonal projector onto U-; Let {¢;}" ; be independent random variables, where each 1;
is uniform on the uniform measure over U-; N S*~1.

Let indices j,k € {1,...,n} with j # k. We first observe that since j # k, we have that
Ui‘j = span(u;j) C U-;. Therefore:

0113 = llvglI3 + 1P ;0513 < llosl3 + lokl13-
Hence, assuming that |lvj||2 > ||vg||2, we have:

3

{tos s+ o in)? < 5B € {3 + (om0 < sl
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€
<t < 1B

Writing aj = ({(u;,0))iz; € R, by a change of coordinates we have that |a;]|3 = ||vj]|3,
and that (v;,1);) is equal in distribution to («j, (), where (; is uniform on S"~2. Since we
assumed ||vj||2 > ||vg||2, we must have that a; # 0. Hence by Proposition B.6,

2 2 € 2 2 € 2 1/2
P{tus, 050+ O < 5l < Bl < S ol | < e,
On the other hand if ||vg||2 > ||vj|l2, an identical argument yields the same bound.
Now, for any i € {1,...,n} and ¢t € N,:
i = Z}

€
2(n—1)

P {(v,a}t+1>2 + (v, T442)% < v]l3

€ L .
= Z P30, 2e41)® + (v, 2e42)? < 5 (0113 [ it = i ie41 = Gyiesn = K
A 2(n—1)
JFLEA]
X P{it—i-l = j, it+2 =k ‘ it = Z}
€ . .. . .
- Z P {<”ja¢j>2 + (vg, ¥r)* < MHUH%} Plivs1 = jrivpe = k [ 4p = 4}
JF#LkF]
<(e)? Y7 Pliver = jrirpa = k| i = i}
JF#LkF]
= (ee)"/2.

Note we also have that P {(U,x1)2 + (v, 29)? < ﬁ“v”%} < (e€)'/? by a nearly identical

argument. Hence, letting F; = o(z1,...,x¢), we have shown that for all ¢ > 0:
1< 1
F {2 ;@,ww? <e-v' <4(n_1)1n> v ft} < (e2)'?,
from which the claim follows. |

For the next claim, recall that the mixing time of a Markov chain over state-space S
with transition matrix P and stationary distribution 7 is defined as:

Tmix(€) = inf {k: €N

sup [[1uP* — 7oy < }
REP(S)

Here, P(S) denotes the set of distributions over S, and ||-||tv is the total-variation norm
over distributions.

Proposition B.11. Letn > 2. Consider the Markov chain {i;}¢>1 where iy ~ Unif({1,...,n})
and ig4q | i ~ Unif({1,...,n} \ {it}). We have that:

_ 2e
(=17 < 1—1/n}'

Tmix(€) = inf {k eN
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Proof Let 1 € R™ denote the all ones vector. The transition matrix for this Markov chain
is:
1 T
P=—(11" - I,),
n—1
and its stationary distribution is uniform over {1,...,n}. Note that for j > 1, (117)/ =
nd111T. Since 117 and I,, commute, by the binomial theorem we have that:

=0\
) = . ]
= (n_ll)k % ((” 1k —( 1)k) 117 + (-1)*1 ]
— %11T + (r(z_—l)llzk’ [In - ;111 .

Now, let u € RY satisfy 171 =1. We have:
1

‘“ . (n—1F

It is straightforward to check that SUDeRn  uT1=1 Hu — %1“1 =1- %, from which the claim

1

1
Tpk— —17 pw——1
n n

1

follows, since the TV distance between two distributions p, v is |p — v|w = 3llp — /1. ®

Example 4.6 (Linear dynamical systems). Let (A, B) with A € R™" and B € R™*% be k-
step-controllable (Definition 4.2). Let PP be the linear dynamical system defined in (3.8).
Fiz any T,k € Ny satisfying T > k > kc. Then, pB satisfies the (T, k,Tx(A, B),e, %)—
TrajSB condition.

Proof Let 'y, = I't(P,) and X = ¥ (P,) be shorthand notation. Let w = (w1,...,wg) €
R™ denote the vertical concatenation of the process noise variables. Let M; := [At @t] e

R™*k+1) denote the matrix such that z; = M, [z] . With this notation, for any v € R™:

itf;(u,xg? _ mT (2 Zk:MtTUUTMt> [Z] .

t=1

By Equation (B.1), for any ¢ > 0,

{M (’Ifi o M’*) { ] = “"( 2 dive @)}\(5)1/2_
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On the other hand:
1 1< 1o
tr (k ; <I>tTva<I>t> = <k ;@@I) v=0' (k: ; 2t> v=v"Tv.

Because we assumed that k£ > k., then I'y is invertible. Thus, we can take cg, = e and
a=1/2. |

Proposition B.12. Consider the scalar stochastic process {xi}i>1 defined by:

t—1 t—1

fUt:E E CijWt—i—1Wt—j5—-1,

i=0 j=0

where {c; j }i j>0 are the coefficients which describe the dynamics, and {w;}i>0 are i9d N(0,1)
random variables. Let {F;}i>1 denote the filtration defined as F; := o(wo, ..., wi—1), so that
xy is Fy-measurable. Suppose that {c; ;}i j>0 is symmetric and traceless. For everyt > 1
and k > 0, almost surely we have:

Elz},y | Fil > El27] + (Elwerr | Fil)*.

Proof For t € Ny, define the symmetric matrices M; € R with (M;);; = 0 and (M;);; =
C(i—1),(j—1)- With this notation and with w; ~ N(0, I;), we can write z; as:

Ty = thMtu_)t.
Therefore, by Proposition B.5 and the assumption that tr(M;) = 0:
El7] = B(w] Mywr)? = 2||M¢||F + tr(My)? = 2|| My|3.
Now, partition My, as:

| My Dy
M = [ng Et,k] '

Let vy = (wg—1,...,wp). Given Fj, we can write Ty as:
_qT _
z _ wy M Dt,k Wy
t+k Vg DZ’%‘ Et,k Uk '
With this notation:
1T M D 1\ 2
_ _ w k| (W
Elaeyr | Fil = 0f Bopr,  Ela7y | Fi) = Eg, ([—t] [DTt B } [‘tD '
t.k t,k

Expanding the square:

1TTM D N2
Wy t ik | | W T - . .,
([Uk] [DtTk Et,k] [wj) = (@ Mywy + 2w¢ Dy g0y, + 0 Eip 1. 0x)
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= (@] Mywy)? + 4w Mywyw] Dy 0y, + 210 Myw,op By j, 0y,
+ 4(1DtTDt7k77k)2 + 4@2—Dt’kf)kf};€rE@kT)k + (@]IEt,k@k)2-

Using Proposition B.5 again:

T 2
2 o || My Dyy| [wy
Flecee | 7l = Ba, ([@k] [DtT k Et,k] [@kD
= Eg, (0] Myy)? + 2tr(My) 0] By j 0y + 4| Dy son |3 + (0 By xor)?
= 2| M| % + 4] Dy pvr |13 + (0F Eexve)? = 2| Mel|3 + (0 By x)’.

To complete the proof, we recall that E[x7] = 2||M||% and Elzyy, | Fi] = 0] Bt 0. [ |

Example 4.9 (Degree-2 Volterra series). Consider the following process Py. Let {Cg}}id)()
for £ € {1,...,n} be symmetric, traceless, non-degenerate arrays (Definition 4.3). Let
{wg)}@o be itd N(0,1) random variables for ¢ € {1,...,n}. Fort > 1, the {-th coordinate
of x¢, denoted (xt)g, is:

t—1 t—1

— (¢ ¢ £)
ZZC,])wlg)l 1w Igj 1 (45)

=0 j=1

Let kng € N denote the smallest non-degeneracy index for all n arrays. There is a universal
positive constant ¢ such that for any T and k satisfying T > k > knq, P, satisfies the
(T, k,Tk(Py), ¢, 1)-TrajSB condition.

Proof Fix a v € R™. The relation (4.5) shows that (v, 7;)? is a degree four polynomial in
{wy)}z;é’zzl. Let Fy = a({wy)}z;é’?zl), so that x; is Fi-measurable. By Theorem B.7,
there exists a univeral positive constant ¢ > 0 such that for any s > 0,

k k
1 1
{k g (v, 2116)> < eE Z g (v,xt+s>2’]—"5] ‘]—"8} < (05)1/4 a.s.
t=1 t=1

To conclude the proof, we need to lower bound E [,16 Zle(v, Tiis)? ‘ ]-"8] . For any ¢t > 1,

Fs

E [<Ua$t+s>2 ’Fs:| =E <Zn: vy - (ﬂft+s)z>2

(=1

@ ZU% 'E[(xt-&-S)? | Fs] + Z Ve, Ve, E[(Ters)ey | Fs] - E[(T4s)e,] | Tl
= l1#Lo

) &
> vp-E[( +Zve [(@ers)e | Fo))?
=1
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+ > vnve, El@es)a | Fl - Bl(@ers)e] | Fil

l1#Lo
=> v} -E[(z)7] + (Z ve - Bl(@e4s)e | ]:s]>
(=1 =1

3

B3] 2 0TS (P,

WV
S
<ho

14

I
—

Above, (a) follows since each coordinate of z; is independent by definition, (b) follows from
Proposition B.12, and (c) follows since E[z;] = 0 and each coordinate is independent, so
E[(zt)e, (xt)e,] = El(xt) e, JE[(x4)e,] = 0 for £1 # f2. Hence, we have shown:

1 Zk 2 r1g T
E % <U7 xtJrs) Fs| = % g Zt(Px) V=" Fk(Pz)U'
t=1

t=1

Note that because we assume that k > knq, the covariances ¥;(P,) are all invertible (and
hence so is T'y(P;)). The claim now follows. [ |

Example 4.8 (Degree-D Volterra series). Fir a D € Ny. Let {cz(-i’.ti)',id}ih_,,ideN for d €

{1,...,D} and ¢ € {1,...,n} denote arbitrary rank-d arrays. Let {wt(e)}@o be iid N(0,1)
random variables for £ € {1,...,n}. Consider the process P, where for t > 1, the (-th
coordinate of xy, denoted (x4)y, is:

D t—1 d
.l ¢
@e=>. > & T[w?, (4.4)

d=11i1,...,iq=0 d'=1

Let Thg = inf{t € N1 | det(T'4y(P,)) # 0}, and suppose Tnq is finite. There is a constant
cp > 0, depending only on D, such that for any T > T,.q, the process P, satisfies the
(T, T,T'r(Ps),cp,1/(2D))-TrajSB condition.

Proof Fix a v € R™. The definition (4.4) expresses (v, z¢) as a degree at most D polynomial

in the noise variables {fwy)}. By Theorem B.7, there exists a positive constant cp, only
depending on D, such that:

T
1
P {T Z(v, 21)? < eE

T
t=1 =

Z(U,xt>2] } < (cpe)/ D),

t=1

1
T

Since T' > Tpq, the matrix I'r(P,) is invertible. The claim now follows. [ ]

B.3 Proof of Proposition 4.2

Proposition 4.2 (Average small-ball implies trajectory small-ball). Fiz T € Ny, k €
{1,...,T%}, {\Ifj}]E/IkJ C Sym%,, and a, 5 € (0,1). Let P, be a covariate distribution, with
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{z+}1>1 adapted to a filtration {F;}i=1. Suppose for allv € R"\{0} and j € {1,...,|T/k]}:

ik
1 J
E Z ]P)CEtNPm {(vat>2 <o UT\I}jU ‘F] l)k} ﬁ a.s., (46)
t=(j—1)k+1

where Fy is the minimal o-algebra. Then, for all v € R™\ {0}, 7 € {1,...,|T/k]}, and
€ (0,a)

ik
1Y 8
Pizy~p, % g (w,z)? <e-vT W Fli—1)k ¢ S —c/a a.s. (4.7)
t=(j—1)k+1

Proof The following proof builds on the argument given in Simchowitz et al. (2018, Sec-
tion E.1). We note that a similar style of proof is used in Bartlett et al. (2020, Lemma 15).

Define the shorthand notation Pi{-} := P{- | 7}, and similarly E;[-] := E[- | F;]. Now
fixaveR"\ {0}, j€{1,...,|T/k]}. Markov’s inequality yields that:

ik ik
13 1
z Z (w,2)* = av W0 - z Z 1{(v,2)? > av ¥ v},
t=(j—1)k+1 t=(j—1)k+1
and therefore for all ¢ > 0:
1 &
Pii—1yk Z Z (v, 2)? <e-v W
t=(—1)k+1
1 &
< Pi-1)k z Z 1{(v,2)* > aw"Vju} < e/a
t=(j—1)k+1

Define Z; := %Z]k

1= (- 1)k 41 1{(v,2)> > awTW,v}, and observe that Z; € [0,1]. By (4.6),

we have:
Eg-nklZ;] =21 -8
On the other hand:
<Py 1k{Z >€/oz}+6/a IP’J 1k{Z 5/(1} since Z; < 1
1 (1- e/a)Py_ {2 < efal.
Combining both these inequalities, and further restricting e € (0, o), we obtain,

s
1—¢/a’

y l)k{Z €/a} X

which implies (4.7). [ |
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B.4 General ordinary least-squares estimator upper bound

In this section, we supply the proof of Lemma 5.1. We first start with a result which bounds
the minimum eigenvalue of the empirical covariance matrix.

Lemma B.13 (Minimum eigenvalue bound via trajectory small-ball). Suppose that P,
satisfies the (T, k, {\I/j}]LZ/lkJ,csb,a)—tmjectory—small—ball condition (Definition 4.1). Put
S = |T/k], and I'r := I'r(P,). Fiz any ' € Sym%, satisfying %Zle U, x T < TI'p.
Define X'm,T = ijE_l/Q, and:

1/

S
p({¥;}52,,0) = [[J A, D)| . (B.2)
j=1
Suppose that:
T 2 2
nxo, M52, 320ecs - . (B.3)
kn o OCA(E, FT)H({\IIj}j:pE)

For any t > 0, with probability at least 1 — 2e™t, the following statements simultaneously
hold:

~ ~ mTnet
tr(X;z,TXm,T) < AT.T7)

mTaH({\I/j}]S:l,D exp ( 16knt>

)\min (X;7TXm,T) 2 Sec b
S

" mTa
(B.4)

Proof The proof uses the PAC-Bayes argument for uniform convergence from Mourtada
(2022). The first step is to construct a family of random variables, indexed by both v € S*~!
and a scale parameter n > 0, such that its moment generating function is pointwise bounded
by one. For notational brevity, let:

A= AL, D7), o= p({P;}5,,1).

Since ' < T'p by assumption, we have A € (0,1]. Similarly, since %Zle U, < I, we also
have p € (0, 1] by Proposition B.3.

The trajectory small-ball condition (4.1) implies for any v € S*~1, j € {1,...,S}, and
e > 0, by substituting v < I Y2y and lower bounding UT£71/2\P]’£71/2U > AV, 1)

ik
1 _
P 5 E (v,I 1/2$t>2 <eA(V,,T)
t=(j—1)k+1

f(j—l)k < (Csb€)a.

Using a change of variables € < ¢/A(V;, ),

1 &
P % Z (v, 07 Y22)? < e
t=(j—1)k+1

Fii—1k ¢ < (csp/A(Y5,1) - ).
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By Proposition B.4, for any n > 0,

jk
AP, T
E exp —% Z <U,£_1/2xt>2 4 OélOg <77(J’)) |f(]—1)k <1 a.s. (B5)
t=(j—1)k+1 Csb

Forie {l,...,m}and j € {1,...,S}, define the random variables Z;i)(v;n), Z@(v;7), and
Z(v;n):

jk

Z](i)(v;n) = —% Z <v,£_1/2x§i)>2 + alog (W) ,
t=(j—1)k+1 Csb
20 (vin) ==Y 2 (vim),
j=1
ACHEDDEAUCT)
i=1

We first claim that E[exp(Z(v;n))] < 1 for every v € S*! and 5 > 0. Since Z®)(v;n) is
independent of Z (i/)(v; n) whenever i # i/, we have that:

Elexp(Z(v;n))] = E [exp (Z AL (wn))] = [ [ Elexp(Z2 (v; )]
=1

=1

Furthermore, by repeated applications of the tower property and (B.5), for every i €
{1,...,m},

i S
Elexp(Z?(v;)] =E [exp [ S 27 (v;n)

L ‘7:1
i 5-1 A

=E |exp | Y 2 (v;0) | Elexp(Z (vs)) | Fis—1yl
L=
i 5-1

<E |exp | Y 28 (wsm)
L=

< 1.

Hence E[exp(Z(v;n))] < 1 for every v € S*~ ! and 1 > 0.

Let us now import some notation from Mourtada (2022, Section 4). First, let = denote
the spherical measure on S*!, and let pu,y denote the uniform measure over the spherical
cap

Cv,7) = {weS" ™ | o —wl2 <7}
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Next, let F, ( fc (w, Xw) dpy for any symmetric matrix 3.
Fix any p0s1t1ve t,n. For two measures p and v with p absolutely continuous w.r.t. v,

let KL(p,v) :=E, log ( ) denote the KL-divergence between p and v. By the PAC-Bayes

deviation bound (cf. Mourtada, 2022, Lemma 4), there exists an event & with probability
at least 1 — e™%, such that on & 1, we have for every v € S*"! and v > 0,

m kS
(@ Yo
anv < 1/222 20 )= 1/2) + mSalog (C

) < KL(pyy,m) +t.  (B.6)
i=1 t=1 sb

Next, by Mourtada (2022, Section 4.3), we can write F, , in terms of a scalar function ¢
such that:

Fun() = (1= 600, 50) + o) 2 (), o) € oo (B)

Furthermore, for every v € S*~! and v > 0, the KL-divergence term can be upper bounded
by (Mourtada, 2022, Section 4.4):

2
KL(py,m) < nlog (1 + ) . (B.8)
Y

Therefore on & 1, plugging (B.7) and (B.8) into (B.6),

ST o k np 2
)\min <Xm7TXm,T) 2 m |:mSOé log (Csb> — nlog (1 + 7) — t:|
60 1 (et s
— mﬁ tr <Xm7TXm,T) .

Restricting v € [0,1/2], we have from (B.7) that 0 < ¢(7) < -%57* < 27 < 1/2. Hence,
1 — ¢(y) € [1/2,1]. Furthermore, 1+ 2/ < 5/(4+?). Therefore,

S k 5 4~? S

Define the non-negative random variables v; := Z;FZIHE_:L/%?)H%, fori=1,...,m. It is
straightforward to verify that tr(X ij) = > ", ¢i. By Markov’s inequality, for any
8> 0:

P (tr(Xm rXmr) > ﬁ) <Z Wi > 5) B> ¢l

B
_ mTt(C'Tr) _ mTmhnax(C"L'T®)  mTm
B b B AB
Therefore, setting 8 = ‘gt"‘%, there exists an event & o such that P( tcz) <e ! and on &2,
t
~ ~ T
(X, 7 Xomr) € 5
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Therefore on & 1 N & 2, which we assume holds for the remainder of the proof, we have:

o k 5 AmTet
win (K50 Ximir) 2 [msa oc (25 ) ~mios (72) 1] - 5
S

Next, we further restrict -= o, = € so that log(np/csy) = 1. Now consider, for positive
constants A, B, C, the function z — Alog(B/z)+ Cz on the domain (0, 00). The derivative
vanishes at © = A/C, and the function attains a minimum value of A(1+log(BC/A)) with
this choice of z. Let us set:

k 5 4mTet
A B2 o0 L2
n 4 A
Then by choosing 72 = 417]::%&7 we have that:

kn 5 4mTet kn 5mTeln
— 1o 2 1+1o :
" (42>+ P 77[+ <km>}

Note that this choice of v satisfies v € [0,1/2], since:

k
Agliﬂgl sincet >0and A <1
dnymTet ~ 4 nmT

knﬁ

since n > ecyp
eceomT s /H

ny mT
= == < —
€Csh k
n mT
< —

< since pu < 1,
€Csh k =

and the last condition holds by (B.3). With this choice of v, we have:

>~

min (X;Ir; TXm T)

¢
> kT mSalog <77M> —t—n (1 + log <5mT6 77))]
n L Csb k"I’LA
kT SespmTe!
=2 |(mSa —n)log s —t—n{1l4log OCspMmL €
n | Csb kn&ﬁ
kT Te'
> mSO‘ log ('LL) <1 + log <5CSbm6>>] since mS > 2n/a by (B.3)
7| b knAp
- T
S ()1 ()
7l . knAu
- T
P k LSQ log <M> —2nt —n (1 + log <5CSbm >}
7l b knAp
(a)
n 4 Csh
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_ kmSa
desh/ 1

8n
N/ Csb

To justify inequality (a), we first note that "}1‘2 ¢ >1+log (M) holds from (B.3), since:

mSa > 1+ log (5csme>

4n knAB

ml « 5cgpmT’ .

8 + 0g< knp ) since /(2k)
8

WV

<:>m—T §lo DeCsh +
kn o & A

mT 16 Decsp 16 mT
= — > max{ — log ,—log | —
kn o Al o kn

T 16 5 32 64
— me > max ¢ — log cCsh ,— log | — using Proposition B.1
kn o Al « o
mT _ 32 320ecsp
— — > —log .
kn o Ao

The inequality ™ msa >1+log <5CSme) then implies (a) by observing:

S mS 5 T
moa log nE = moa log JE +n|{1-+log CsbM log NE
2 Csb 4 Csb kEnAp Csh

S ) T
> Mo, og = +n {1+ log CsbM since nu/csp = €
4 Csb knAp =

It remains to optimize over n € [ecsp/p, 00). For any G € R, the function 7' — logz#

n (0,00) attains a maximum of exp(—1 — G) at ’ = exp(l + G). Hence, setting n =
= exp(1 + 8nt/(mSa)), which satisfies n > ecqp/p, we have:

- - kmSau 8nt
)\rnin (X»,-;I—LTXm,T> > — €Xp (_>

decqp Sa
ml«a 16k
> 86655 exp < TZt) since S > T'/(2k).

The claim now follows by gathering the requirements on the quantity - L and simplifying
as in (B.3). [ |

Corollary B.14. Assume the hypothesis of Lemma B.13 hold. Then, )N(;L,TXWT is invert-
ible almost surely.

Proof For any ¢t > 0, define the event &; as:

- - mTau 16kn
E = {)\min (XT—I;L7TXm,T) < 8€CS|: exp <_mTat> } .
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The event {)\min()?;j)?mj) = 0} is the intersection (1,2, &. By Lemma B.13, we have
that P(&;) < 2e™t. Since the events & C & whenever ¢ > t, by continuity of measure from
above,

P(Amin (X 7 X, 1) = 0) <tﬂl 5t) = lim P(&) < lim 2¢7t = 0.

We are now ready to restate and prove Lemma 5.1.

Lemma 5.1 (General OLS upper bound). There are universal positive constants co and c;

such that the following holds. Suppose that P, satisfies the (T, k, {¥; } T/kj , Csby 0)-TrajSB
condition (Definition 4.1). Put S := |T/k] and FT = I'p(Py). Fm any I' € Sym¥,
satisfying ézjs U5 < D < Tp, and let pu({¥;}7

=1, L ) denote the geometric mean of the

minimum eigenvalues {)\(\IIJ,F)}] 1, G.e.,
5 1/5
p({¥;}52,,0) = [[J A, D)| . (5.2)
j=1
Suppose that:
nz2 ML, max{e’ch}S . (5.3)
kn = a aA(L, ) p({ V351, L)

Then, for any I'" € SymZ:

R pn max{e Csb}
E[||Wy.r — Wi S -1 .

4
Proof For notational brevity, let:
A=A Tr),  p=p({¥5)7, D),

We choose ¢y > 64 such that (5.3) implies (B.3). By Corollary B.14, X,, r has full
column rank almost surely, hence:

Wi = W = B8 p X 12 (X3y 7 X 1) ™
Put ij = Xm,TL_l/Q. With this decomposition, we have:

W2 = Willpr = 1125, 7 Xm0 (X3 2 Xom, ) I
= ”E;—’L TXm T(XT TX )_121/2”;—1/211/2—1/2

< Mnax(LPILT V2 IES, 7 X1 (X, 0 Ximyr) T LV

62



LEARNING FROM MANY TRAJECTORIES

:Amax( TR X ) T X 1B, Tl
min{n, p}Amax (LT 2) (X, - X)) ™' X 2B
(X, Ximr) "2 X, TEmT
)\min(XmTXm,T)
H(X;,TXWT) VXY TEm THOp

A(Ea F,) . )\min (Xm’TXm,T)

< min{n, p Amax (L7210~ 1/2) HOP

= min{n, p}

Fix any ¢ > 0. By Lemma B.13, there exists an event & ; with probability at least
1 — 2e7t, such that on &1 we have:

tr(X'rTz,TXm,T) < \ ; )\min(X;,r—L7TXm,T) P mTo

mnTet ~T = mTop 16kn ;
xp | — .
8ecsp

By our choice of ¢y, we have mT/k > 64n/a. Hence, on & 1,

~ ~ mTap
Amin(Aer—zx_'[‘)('rrL,T) = Ct =

t/4).
Soc: exp(—t/4)

We now apply Proposition B.10 with V <« M, := (;I,, and:

Llye oo s BTy TTH15 -+ -5 L2T 5 -+ o5 T(m=1)T+15 -+ - » TmT <
£_1/2x51), .. ,£_1/2x(Tl),£_1/2x§2), ... ,£_1/2x¥), .. ,£_1/2x§m), . ,£_1/2x(Tm),

to conclude that there exists an event & o with probability at least 1 — et such that on
5,*,722

1{XmTXmT Mt}ll( X Xmr) VX 7Bl
< 1605 plog5 + = logdet ( + ¢ 1Xm TXm T) th]

< 3202 p—|— log det < +¢ 1Xm 7 Xom T) + t}

< 3203 p +nlog(1+ ¢t tr(X;,Tf(m’T)/n) + t} .

Above, the last inequality holds since logdet(X) < nlog(tr(X)/n) for any X € Sym%,
by the AM-GM inequality. By Proposition B.1, whenever ¢ > 8log 16, we have t < e'/%.
Furthermore, for any ¢ > 0 we have 1 < e'/4. Therefore for t > 8log 16, on &1 N & 2t
||(X7—|7—1,TXm,T) 1/2XT TEmTHop
)\min(X ’TXm,T)

) % e [p+nlog< N 86)?23 (1+1/4)t> —|—t}

mT '«
< 256€CSb et/4 2

16ecsp,
o¢ [p—l—nlog( o ) +n(l+ 1/4)t+t}

m1 '«
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< 256665b e'lo? [p + nlog (16665b> + 3nt}
QaApL

“mTa
< 256ecsp 2 p + nlog L6ecsy +3n| e/2.
mT o QAL

Define the random variable Z as:

v T % 1/2vT = —1
&R Xnr) PXT 1l <256665b 2 [ 4 nlog (16€Csb> +3nD '
Amin(Xm’TXm,T) mT O[AH

We have shown that:
P(Z > €'/?) < 3™ Vit > 8log16 <= P(Z > s) < 3572 Vs > 16,
Hence,
o oo
E[Z] = / P(Z > s)ds < 16% + 3/ s 2ds = 16% + 3/16%.
0 64
That is, for some universal positive cq,

p+ nlog (71113}({6’05"’})

A QA
Bl — W) < cxofmingn, pless | — 7ot (B.10)
Now, if p < n, (B.10) is upper bounded by:
On the other hand, if p > n, (B.10) is upper bounded by:
max{e,cqp } max{e Csb}
C10£NC p+n10g< 2 ) < 2c10%ne plog( 2 )
TS T aA (T, T T T A (T, T
|

B.5 Proof of Theorem 5.3

Theorem 5.3 (Upper bound for Ind-Seq-LS). There are universal positive constants cg
and ¢ such that the following holds. Fix any sequence of distributions {Pz}i>1, and let
¥y = Eztwp“[xtxt] for t € Ny. Suppose there exists csp > 0 and o € (0, 1] such that for
allveR"\ {0}, e >0 andt e N;:

thNPm,z {<’U>$t>2 <e- UTZL‘U} (Csbf) (57)
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Furthermore, suppose there exists a cg = 1 and B = 0 such that for all s,t € Ny satisfying
s <t

1
m ca(t/s)’. (5.8)

1f:
con max{e, csp }C3
nz2 ml>2—|(8+log| ———| |,
o' «

then, for Py = ®¢>1Pg4:

E[L(Win1s T, P2)] < cresofese’ - 22 6 (ea(8+1), (T'/T)°) [ﬂ +log (

(e, oo
mTa o '

(5.9)

Proof Equation (5.7) shows that P, satisfies the (T, 1, {3}/, csb, @)-TrajSB condition.
Let Ty := %22:1 Y for t € No. For any s,t € Ny with s <,

AT, Ty) > Mg, %) since I'; < ¥4

> — Z Ak, X¢) using Proposition B.2 and Jensen’s inequality
s

> (k/t)? Si 5.8
oy Z /t) using (5.8)

> 1 (s/ t) . L 2B i .

> s since x +— x” is increasing.
cs(B+1)

Next, the growth condition (5.8) implies that:

p({Ze ), Tr) = HA(Zt,FT)]

[t=1

> HA DI ] since 't < &
[t=1
T 1T

> H —(t/T)? using (5.8)
li=1 8

= 1 (Tu)ﬂ/T
cgTh

1
> P since T! > (T'/e)?.

We now apply Lemma 5.1 with I’ = I'p. In doing so, the requirement (5.3) simplifies to:

mT _ ¢ max{e, csb}05eﬂ>

n =2, >log<

n « (07
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We first assume that 77 < 7', in which case (5.4) yields:

L 0566 - log
«

E[L(WmT,T P.)] < Clcst'g

<max{e, csb}%eﬁ)
- .

On the other hand, when 77 > T', we have A(I'p, ') > (,8+1) (T/T")8, and (5.4) yields:

A n ™\" max{e, cp rcge?
E[L(W,1; T, Py)] < clcsbag- nfTa -0586 ~cg(B+1) <T) -log < { aSb} 8 > .

B.6 Proofs for linear dynamical systems
B.6.1 CONTROL OF RATIOS OF COVARIANCE MATRICES

Proposition B.15. Let (A, B) be the dynamics matrices for an LDS-LS instance, and
suppose (A, B) satisfy Assumption 5.1, Assumption 5.2, and Assumption 5.3. Put ¥y :=
Y(A, B) fort € Ny and v :=v(A, B). For any integers Th, T satisfying 1 < Ty < 11,
_ _ 1T
Anin(E7,2S, 25%) > 'yTi'

Proof Observe that for any t > 1,

ZA’“BB* ARy Zsp’f S~1BB*S~*(D*)*s*.
k=0 k=0

By Assumption 5.3, we have that BB* is invertible, and hence S~!BB*S~* is also invertible.
Therefore we have the following lower and upper bound on ¥;:

Amin (S™'BB*S™* (ZD’“ (DF) ) <% < Amax(S'BB*S T (Z D*(DF) )S*.
(B.11)

Now recall that for two square matrices X,Y, the eigenvalues of XY coincide with the
eigenvalues of Y X. Letting Q; := 2_:10 D¥(DF)*, we have:

Amin (7, 1/22T22 1/2) > Amin(S BB*S™) Amin (5 1/25QT25* 1/2)
= )\mjn(s_lBB*S_*) ((SQTQS*)l/QE (SQ S*)1/2)
Amin(S_lB-B*S )
>
Amax(S~IBB*S~*)
(S'BB*S™) .
(5-1BB5—) i (@ndn);

Amin (SQ1, S Y(ST* Q7 5*)(SQT, S™)V?)

. Amin
A

max
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Let A € C be an eigenvalue of A. We have

LR ) < 1

t—1
Z |)\|2k — 1—[\? )
= ! if [N = 1.

Therefore, (QTQQil)M is:

1*|>\¢\2T2 N 1,(‘)\i|2T1)T2/T1 . '
(Qr,Qpl)i = ¢ L-INPT — 1= IPh if [\] <1,
' /T if |\ = 1.

Note that inf ¢ (1) 11 a; = ¢ for ¢ € [0, 1]. Therefore, we can lower bound:

_ T3
)\min (QTQ QTll) 2 ?1 .

The claim now follows. [ |

Proposition B.16. Let (A, B) be the dynamics matrices for an LDS-LS instance, and
suppose (A, B) satisfy Assumption 5.1, Assumption 5.2, and Assumption 5.3. Put Ty :=
I'\(A, B) fort € Ny and v := (A, B). For any integers k,t € N satisfying k < t, we have:

1k

ATy, Ty) > St

Proof Let ¥; := 3;(A, B) for t € Ny. We first consider the case when k£ > 2. Observe that
I'; < 3. Furthermore, for any k > 2, we have:

k k
1 1 k—1k/2]+1 1
Te=+ > Sy = Z > Sk = Lk/JEU@/zJ 7 551k/2)
k=1 k'=|k/2]

Therefore,
ATk, Ty) = Ain(T; /2141, %) > 2Amm(z Y28 s P 2

Above, (a) follows from Proposition B.15. When k = 1, we have I'y = X1, and therefore by
Proposition B.15:

_ _ 11
AL T = AT 2 A0 %) = a5 205 = 5

The claim now follows. [ |

Fact B.17. Let (A, B) be the dynamics matrices for an LDS-LS instance. For any s,t € Ny
with s < t:

T.(A, B) < (A, B).
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Proposition B.18. Let (A, B) be the dynamics matrices for an LDS-LS instance, and
suppose (A, B) satisfy Assumption 5.1, Assumption 5.2, and Assumption 5.3. Put I'y :=
(A, B) fort € Ny, ¥ :=3(A, B) fort € Ny, and v := (A, B). For any T, we have:

T

1T .
[[XEeTr)| = —
Pl 8ey

Proof By Proposition B.16, we have that \(T'y,T'p) > %% forallt € {1,...,T}. Therefore,
since A(Z¢, I'r) = A(I't, I'r), and since n! > (n/e)” for all n € N4,

T 1/T
(THYT 1
¥, T > >

B.6.2 MANY TRAJECTORY RESULTS

Lemma B.19. There are universal positive constants co and ci1 such that the following
holds for any instance of LDS-LS. Suppose that (A, B) is kc-step controllable. If n > 2 and
m = con, then for any I'" € SymZ:

pn
mT - A(FT(Aa B)v F/) '

Bl W — Wl < 102 (B.12)
Proof Let I'p := I'p(A, B). By Example 4.6, LDS-LS satisfies the (7,7, I'r, e, 1/2)-TrajSB
condition. We therefore invoke Lemma 5.1 with £k = T and I’ = I'p. In this case, 14 from
(5.2) simplifies to 4 = A(I'r,I'r) = 1, and the requirement (5.3) simplifies to n > 2 and
m = con. Finally, the rate (5.4) simplifies to (B.12). [ ]

Theorem 5.4 (Parameter recovery upper bound for LDS-LS, many trajectories). There
are universal positive constants cy and c1 such that the following holds for any instance of
LDS-LS. Suppose that (A, B) is kc-step controllable, If n > 2, m > con, and T > k¢, then:

pn
mT - Amin(T7(A, B))’

E(|[Won,r — WillF] < 102 -

Proof Follows by invoking Lemma B.19 with I = I,,. [ |

Theorem 5.5 (Risk upper bound for LDS-LS, many trajectories). There are universal pos-
itive constants cg and ¢y such that the following holds for any instance of LDS-LS. Suppose
that (A, B) is kc-step controllable. If n > 2, m > con, T > k¢, and the evaluation horizon
is strict (T" < T), then:

n

~ A P
E[L(Wp; T, P2P)] < c10% - T
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On the other hand, suppose that (A, B) satisfies Assumption 5.1, Assumption 5.2, and
Assumption 5.3, with v := (A, B) (Definition 5.1). If n > 2, m > con, and the evaluation
horizon is extended (T' > T ), then:

< pn T

E[L(Wip,r; T',P2P)] < c10% - Y

Proof Let I'; := T4 (A, B) for t € N;. Invoking Lemma B.19 with IV = I';v yields the
bound:

pn

E[L(Wynr; T, PAB)] < cr02 - :
[ ( m, T y Ty )] 010'5 mT‘A(FTaFT/)

If 7" < T, then A(T'r,T'7v) > 1 since I'p 3= T by Fact B.17. On the other hand, if 7" > T,
by Proposition B.16, A(I'p, T'pv) > %% The claim now follows. |

B.6.3 FEW TRAJECTORY RESULTS

Theorem 5.6 (Risk upper bound for LDS-LS, few trajectories). There are universal pos-
itive constants cg, c1, and co such that the following holds for any instance of LDS-LS.
Suppose that (A, B) satisfies Assumption 5.1, Assumption 5.2, and Assumption 5.3, with
v :=~(A, B) (Definition 5.1). If n = 2, m < con, and mT > cinlog(max{yn/m,e}), then:

. 1 1 T
BLL(in 13 T, PP < oo - OB/ C)) (% cunlop(meriyn/m,eh) ) .

mT m T

Proof Let I'; :=T'4(A, B) for all t € N;. By Example 4.6, for any k € {1,...,T}, LDS-LS
satisfies the (T, k, 'y, e,1/2)-TrajSB condition. We will apply Lemma 5.1 with I" = I'y. The
quantity p from (5.2) simplifies to u = A(I'x,I'y) = 1. By Proposition B.16, we have that
ATy, ') > %% Hence the requirement (5.3) simplifies to n > 2 and

T T
TZ—H > clog <fy’k> , 7 = max{e, v} (B.13)

for some universal positive constant ¢. Thus, for (B.13) to hold, it suffices to require:

T > max Zen log+/, Zen log T : (B.14)
k m m k

As long as 2cn/m > 1, then by Proposition B.1,

T _ 4en 8cn
—2—log|— | =
k m m

Hence, for (B.14) to hold, it suffices to require

T 4 /
S L P (Sw ”) . (B.15)
m m
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Based on (B.15), we choose k as:

b= | e Togse | (B.16)

To ensure that k& > 1, we need to ensure that:
mT > 4enlog(8cy'n/m). (B.17)

On the other hand, since 2cn/m > 1, we have that:
4 8¢y
cnlog( C’Y”) >1,
m m

which ensures that £ < T. Thus, our choice of k from (B.16) ensures that (B.13) holds. We
now ready to invoke Lemma 5.1 with IV = I'v, and conclude for a universal ¢’

R log(e/A(T, 7))
E[L(W,, p: T'.PAB) < do? . 22 ’ . B.1

First, we assume that 77 < k. By Fact B.17 we have I'y = T'yv, and therefore
ATk, T'pr) > 1. Equation (B.18) yields:

N I I, T
BIL(W, i 7', PA)] < o - 221080/ A0 Tr) (B.19)
m

By Proposition B.16,

11 T m
AT Ty > 1 > ) B.20
ATy, I'p) & T Llcn/m ] log(SC’Y'n/m)J 64cyn log(8cy'n/m) ( )

Plugging (B.20) into (B.19), and using the inequalities logz < x for > 0 and ¢(a,z) > 1
for all @ > 1 yields, for another universal ¢:

E[L(Wy,1; T', P2B)) < clag : p—T} -log(e - 64cyn/m - log(8cy'n/m))
m
. / 2
< c’ag ~pnlog(512e - (¢y'n/m)*)
mT
2 pnlog(max{yn/m,e})
¢ mT
< gz rlostmax{n/m.c)) <% ., log(max{yn/m, e} T > |
mT m T

<c

On the other hand, if 77 > k, then by Proposition B.16,

11 T m I
ATy, Tpr) > — — > L B.21
Ml Tr) 2 g {4an/m-log(8c’y’n/m)J 64cynlog(8cy'n/m) T' (B2

Plugging (B.20) and (B.21) into (B.18) and using again the inequality logz < x for x > 0

yields, for a universal ¢

E[L(Wnr:T',PP)]
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T/
< c’ag . p—T; -log(e - 64cyn/m - log(8cy'n/m)) - 64cyn/m - log(8cy'n/m) - T
m

<c

2 prlog(mastin/m,c}) _nlog(maxian/m,e}) T
§ mT m T

Furthermore, when 7" > k, by choosing c¢; sufficiently large:

8Cnlog(Sny’n/m) 1

>1
m T
1 /
Cln og(max{yn/m,e}) 1" -1

m T

nlog(max{yn/m,e}) T" nlog(max{yn/m,e}) T"

e g(max{yn/ })7:(? e g(maxiyn/m,e}) T"Y
m T m T
The claim now follows. u

Theorem 5.7 (Risk upper bound for Ind-LDS-LS). There are universal positive constants
co and ¢y such that the following holds for any instance of Ind-LDS-LS. Suppose that (A, B)
satisfies Assumption 5.1, Assumption 5.2, and Assumption 5.3, with v := (A, B) (Defini-
tion 5.1). If n > 2 and mT > conlog(max{y,e}), then:

R nylog(max{y, e T
E[L(Wm,T;T'7®t>1P£},B)] < 610'2 . Py log {.¢}) ¢ <% ) .

mT T

Proof Let I'; :=T'4(A, B) and X; := ¥4(A, B) for t € N1. From Example 4.3, we have that
Ind-LDS-LS satisfies the (7,1, {%;}X, e, 1/2)-TrajSB condition. We will apply Lemma 5.1
with I =T'r, k = 1, and IV = I';v. By Proposition B.18, we have that:

1

LA ) > —.
B({ tht=1,17) Sery

The requirement (5.3) simplifies ton > 2 and mTT > clog(max{~, e}) for a universal constant
c. By Lemma 5.1, for a universal ¢

X log(max{y, e})
E[L(Wyr: T, P2P)] < do - 2 e
[ ( ,T? b €T )] C 0-5 T . A(FT7FT/) 867

If 7" < T, then A\(T'7,T'7v) > 1 since I'y 3= I'y» by Fact B.17. On the other hand, if T/ > T,
then by Proposition B.16, A(T'r, T'p) > %% The claim now follows. |

Theorem 5.8 (Parameter recovery upper bound for LDS-LS, few trajectories). There are
universal positive constants cg, c1, and co such that the following holds for any instance
of LDS-LS. Suppose that (A, B) satisfies Assumption 5.1, Assumption 5.2, and Assump-
tion 5.3, with v := (A, B) (Definition 5.1). If n > 2, and mT > conlog(max{yn/m,e}),
then:

. log(max{yn/m,e}) T
E[|[W,, o — W.||%] < 2 pn ) k. — )
Wiz +I7] < crog mT - Amin(Tk, (4, B)) 7 " n/m - log(max{yn/m,e})
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Proof The proof is identical to that of Theorem 5.6 until (B.18), after which we set 7" =1
from which the result follows. u

B.7 High probability upper bounds
B.7.1 WEAK TRAJECTORY SMALL BALL

We first present a modified definition of trajectory small-ball (cf. Definition 4.1) which we
will use to establish high probability bounds.

Definition B.1 (Weak trajectory small-ball (wTrajSB)). Fiz a trajectory length T € Ny,

T/k|

a parameter k € {1,...,T}, positive definite matrices {\I/j}JLzl C Sym%,, and constants

a, € (0,1). The distribution P, satisfies the (T, k, {‘I/j}]{/lkj,a,ﬁ)—weak—trajectory—small—
ball (wTrajSB) condition if:

T/k
(o) 77 ZJL=/1 hw; 5 Tr(Py),
(b) {zi}i>1 is adapted to a filtration {Fi}i>1, and

(c) for allve R*"\ {0}, j € {1,...,|T/k]}:

ik
1 j
Pizi~p, z Z (U,xt>2<a-vT\I/jv Fli—k ¢ S B as. (B.22)
t=(j—1)k+1

The main difference between Definition B.1 vs. Definition 4.1 is the third condition
(B.22), which only needs to hold for a fized resolution « and failure probability 3. By
contrast, in Definition 4.1, the condition must hold of for all resolutions—there denoted by
e—with failure probabilities that tend to zero as the resolution ¢ — 0 (cf. (4.1)).

B.7.2 ORDINARY LEAST SQUARES BOUNDS

Lemma B.20 (Minimum eigenvalue bound via weak trajectory small-ball). Suppose that
P, satisfies the (T, k, {\Iij}]Lz/lkJ,a,ﬁ)—mejSB condition (Definition B.1). Put S = |T/k]

and I'y := T'y(Py) for t € Ni. Fiz any I' € SymZ satisfying %Z?;l U, L <xT7, and
define the constants:

FYANwLD?
5 &= fi=g > A, L. (B.23)

Cg := ,
U (s =

(Note that 1 < Cs < S always). Fiz § € (0,1), and suppose that:

n =2,

m7T S 64Cg o 1280C'g
kn = 1-5 2 \a(l— BAL. T )
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With probability at least 1 — 9, the following events simulatenously hold:

mm( 1/222 DyTp- 1/2) > “‘?mTﬂ (B.24)

i=1 t=1

2mTn
~1/2 i 12 <
< B >\A<F,FT>-6‘

=1 t=1

Proof The proof proceeds quite similarly to the proof of Lemma B.13. Thus, we focus
mostly on the parts that differ. For notational brevity, let:

Bi=1-8, A:=ALTr), A;j:=A¥;0).

Since I < I'p by assumption, we have A € (0, 1].

The first step, in preparation for applying the PAC-Bayes deviation inequality, is to
construct a family of random variables with moment generating function upper bounded by
one. To do this, we utilize the weak trajectory small-ball condition (B.22), which implies
for any v € St and j € {1,..., S}

1 & _
P z 5 (0,D722)% < aA(T;,T) | Fij_iy
t:(J—l)k+1

N

B.

Let z; := L_l/ 22 be the whitened vector. Define the random indicator variables for i =
1,...,mand j=1,...,S:

ik
i 1 . (i
B\ =1 : S (0,52 > ey, D)
t=—-1)k+1
By Markov’s inequality:
T S
S (v, 2)? Z A1{BY =
t=1 j=1

T s
E exp (—77 Z(v,:ﬁil)f) < Eexp —nkazgjl{B](’) =1}

=1
Now observe:

E[GXP(—UkaAjl{B](-i) =1} | Fi-nkl = 6777]{@]'1[”(3]@ = 1| Fi-1r) +P(Bj(i) =0 F-1r)
= (e7™% — 1P(BY = 1| Fy_pp) + 1

< (e7hd — )8 41
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(a) 1
<1+ (—nkoeAj + 2n2k2a2A§> g

(b) 1
< exp <(nk‘a)\j + 27721520[2)\]2-) ﬁ’) )

Above, we used the facts (a) for z > 0, we have e™® — 1 < —z + %2, and (b) for x € R, we
have 1 4+ x < e”. Hence by the tower property:

T S
(i 1
E exp (—77 > (v, 3 )>2> <exp [ (—nka% + 2772k‘2a2A?> B
t=1

J=1

S S
1
<exp [ —nkaB D A+ SR > N
s =1

S 2
k 1 AS
Z] 1 J

Jj=1

Now, let us set

3
k
Q

M

-l
>/
DN
3
Q
=i~
o

T TS =P T S
2 2 A 2 %Z] 1)‘32

s 2 s 2
Eexp (—ni@,f@ﬂ)gmp g (Chn) ) sp(3XLA)
t=1

By independence across the m trajectories:

Eexp (—nZZv@(t) mgf) <1

As desired, we have constructed a family of random variables indexed by v € S*~!, with
MGF bounded by one.

Using the PAC-Bayes arguments from Lemma B.13 followed by Markov’s inequality,
with probability at least 1 — 2e~*, for all v € S*~! and ~ € [0,1/2]:

2 t
S a0 2 s L[S g (2) 4] - emT B .95
it [0 o () -]
Choosing % = 477:17&%“ we have that:

n ) 4mTet n 5mTeln
—1 — 2= 141 — . B.26
n o <472> TTx T [ i Og( nA ﬂ (3:20)
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Note that this choice of v satisfies v € [0,1/2], since:

L<1<:L<1 since t > 0 and \ < 1.
dnmTet ~ 4 nmT’

The RHS above is ensured by:

S 2
T > i1 T
m—}aﬂ:acsguim—}CS since o, i < 1.
k s k
n Zj:lAj "

If we further enforce that:

1oy 2+ [t +log <57Zf”>] : (B.27)

then combining (B.25) with (B.26):

() 2 1 [mSp b n—nl 5mTe'n
;(:Q ) 5 20y n —nlog A
r /
-1 n;gﬁ —(n+1)t—n—nlog <5m>7:77>]
nL S nA
1 [mSp 5mTn
> _ _ il
Z 0 1 acs (n+1)t (n+1)log< o )]

For (B.27), it suffices that the following conditions hold:
mT _ 32Cgt
- > ,
kn o

mT _ 16Cs 5 50N mT\ 160 5 16Cs . (mT
— log|l —=¢ 57| = log — + log{ — | .
kn 5 Ao ijl A? kn ol AauCyg 5 kn

By Proposition B.1 it suffices that:

mT S 32C% max J 1o ) 0 mT S 64Cg o 128C5
k‘n = /81 g AQ‘L_LCS Y I kn = B/ g B/ N

Note that zlog(1/x) < 1/e for all z > 0, and therefore:

) ) 1
Cglog ()\aﬂ05> = Cyglog (W) + Cglog <Cs>

< Cglog i_ +1 < 2Cglog i_ .
QA QN[

Hence it suffices that:

m—T > 64Cs max < lo i lo 128Cs
k’I’L = IB/ g CEAIEL 9y g B, *
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The claim now follows by simplifying all the required inequalities for the quantity mT /kn. B

To contrast the effects of the wTrajSB assumption from those of the TrajSB assumption,
let us compare Lemma B.20 to its counterpart Lemma B.13. The minimum eigenvalue
bound (B.24) from Lemma B.20 differs from the corresponding TrajSB bound (B.4) in the
role of the eigenvalues of the matrices {\I/j}jg/lkJ from the small-ball definition. However,
due to the differing requirements on the amount of data mT', neither result is necessarily
sharper than the other, as detailed in the following remark:

Remark B.21. When the matrices {¥; }]E/lkJ from the trajectory small-ball definition vary
across j, both Lemma B.13 and Lemma B.20 yield different dependencies on the eigenvalues
{A(w;,T) }JLZ/lk‘J In particular, Lemma B.13 yields a minimum eigenvalue bound scaling as
mT p, where p is the geometric mean of the eigenvalues {A(¥;,I')}, whereas Lemma B.20
yields a bound scaling as mT [, where [ is the arithmetic mean of the eigenvalues. By the
AM-GM inequality, we have that i > pu, so the latter bound is stronger than the former.
However, Lemma B.20 has a stronger requirement on the amount of data, requiring that
mT 2 knCg, where Cg € [1, 5] is defined in (B.23), whereas Lemma B.13 has the weaker
requirement that mT 2 kn. In the worst case when Cg = S, then the mT 2 knCyg
requirement simplifies to the many trajectories assumption m 2 n. Thus, the qualitative
behavior of these two bounds are not necessarily comparable.

Meanwhile, although neither bound is strictly sharper than the other, if we assume
polynomial growth of the {W;} matrices, then the two bounds are roughly on par:

Remark B.22. When the matrices {¥;} exhibit low degree polynomial growth, both
Lemma B.13 and Lemma B.20 yield similar qualitative behavior. Concretely, let us suppose
that k =1, U; =4 - I for j € [T], and I = %Zle ;. Then, fi = 1, whereas p > 1@?’.
Thus, if we consider p as constant, then g =< pu.

We now state our general OLS upper bound under the weak trajectory small-ball con-
dition.

Lemma B.23 (General OLS upper bound, high probability). There are universal pos-

itive constants cy and ¢y such that the following holds. Suppose that P, satisfies the
(T,k,{\Ilj}jLz/lkj,a,ﬂ)—mejSB condition (Definition B.1). Put S := |T/k] and Iy =
I'v(Py) for t € Ny. Fiz any I' € Sym% satisfying %Zle U, < I' < I'r, and the con-

stants:
S
D51 A(¥;,L)? 1
S 2 '
> i1 A(\I@-,E)) j=1
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Then, for any I € SymZ,, with probability at least 1 — 4

. p”k’g(—(l BACTT) 6)
2 T )
W = Wellr S 298 | 3 Tai - g

Proof Put 8 := 1 — 3 and ij = m7T£_1/2. By the arguments in the proof of
Lemma 5.1,
||(X;7TXm,T) 1/2XT TEm THop

A(Ey IV) . Amin(AX}n’T)(Tn,T)

[Wonz = Wil < min{n, p}

Put M := (af'mTp/8) - I :=(-I. By Proposition B.10, with probability at least 1 — §/2:
l{Xm TXmT M}H( mTXm,T)_l/QX’IL,TEm,Tng
1
< 1606 plogh + = log det ( +¢IxT TXm T) + 10g(2/6)]

< 320? p—i—logdet( +¢ 1XmTXmT) —|—log(2/(5)}

<3202 [p+nlog(1 + ¢ (X 7 Xpn7)/m) + log(2 /5)} .

Now, by Lemma B.20, with probability at least 1 — §/2, we also have:

- - ~ 4mTn
)\mln(Xm TXm T) P C tr(XrTz,TXm,T) < Ao

On both events:

o 32
L ) 2K 1 Zmrl, < 3202 | mios (14022 ) 4 1og(2/)

33

Combining the inequalities:

A p+nlog <a6§§\_6) pnlog <aﬁ’)\ 5)
Wit — Wi|% < 51202 mi 71 < 102402 a
(W2 = Willfs < 5120¢ min{n. p} | e o o AT o mT

By a union bound, both events hold with probability at least 1 — §, which concludes the
proof.
|
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B.7.3 MIXING IMPLIES WEAK TRAJECTORY SMALL-BALL

One advantage of Definition B.1 is that it is implied by the standard notions of ¢-mixing
in the literature (see e.g. Mohri and Rostamizadeh (2008); Duchi et al. (2012); Kuznetsov
and Mohri (2017)). In this section, we prove this reduction. First, we state the definition
of ¢-mixing.

Definition B.2 (¢-mixing covariate sequence). Let {x;};>1 be a covariate sequence which
is adapted to a filtration {F;}1>1. Define the function ¢(k) as:

¢(k) ‘= Sup sup ||P93t+k(' | B) - P$t+kHtV' (B'28)
teNy BeF;

The process {wt}i>1 is called ¢-mixing if limy—00 ¢(k) = 0. We also let o(k) denote the
upper envelope of ¢(k), i.e., (k) := supg~ o(k).

The following result shows that a ¢-mixing covariate sequence where each marginal
distribution is weakly small-ball satisfies the weak trajectory small-ball condition.

Proposition B.24. Fiz o € (0,1) and g € (0,1/4). Suppose that the covariate sequence
{z1}1=1 1s o-mizing, and that for every t € Ny and v € R™ \ {0} we have:

Pe{(v,2:)2 < av' B} < B, ¢ := Elzz/]. (B.29)
Let kuix := inf{k € Ny | ¢(k) < B} and assume that T > 2kpix. Put S := |T/(2kmix)] and
suppose that {\I/j}le satisfies:

1 . . .
\I/j < 12,5 Vj S [S], te [kmix(2] — 1) + 172]kmix]‘
Then, P, satisfies the (T, 2kmixa{\1’j}?:/(12kmix),a’ % (% +B))-mejSB condition (cf. Defi-
nition B.1).
Proof Fix j € [S]. Since ¥; < iZt for all t € [kmix(27 — 1) + 1, 2jkmnix|, we have:
1 2jkmix

L3RS DI
! 4kmix —k Z !
- mix(2]_1)+1

Hence,
1 1 S 2jkmix 1 T
— |\ PR i < Tp.
S Z I 4Skmix Z Z ! 4Skmix Z ! 4
j=1 J=1 t=kmix (2j—1)+1 t=1

Above, the last inequality holds since |T'/(2kmix)| > T'/(4kmix). By definition of ¢-mixing
(cf. Definition B.2) and the upper envelope ¢, for any j € [S] and ¢ > knix(27 — 1) + 1:

Po { (0,202 <o 00 | Fyipanyy, | < Pa {202 <da- T} 46

< P, {(v,mt>2 <a- UTEt’U} + 5
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< 26.
Therefore:
1 ijmix
o Z th {<U, $t>2 <o - UT\I/]'U ‘ F(j_1)2krnix}
mix t=(j—1 )
J )ka1x+1
1 1
< %[kmix + 2Bk:mix] — 5 + B
The claim now follows from Proposition 4.2. |

We conclude by noting that ¢-mixing is a stronger notion of mixing than S-mixing,
where (B.28) is only required to hold in expectation. We leave to future work an analysis
that only relies on the weaker S-mixing.

Appendix C. Analysis for lower bounds
C.1 Preliminaries

Here, we collect the necessary auxiliary results we will use to prove the lower bound. The
first result is an instance of the well-known fact that the conditional mean is the estimator
which minimizes the mean squared error.

Proposition C.1. Let T € Ny and {P,:}1; be a sequence of distributions over R™ with
finite second moments ¥ 1= Emwpz,t[xtxz]. Let Py be any arbitrary distribution on RP*™.

Put T'p = % Zthl Y. We have:
1 & X
ia}/f Ew~ry |7 > Eaop, W () = Waill3| = Ewery [Ewiepy (W] = WIE,,
t=1

where the infimum ranges over measurable functions W : R™ — RP.

Proof Let ur := % Ethl P, denote the uniform mixture distribution, so that

T
1 P P -
7 2 Eap, [IW (@) = Warll3 = Egp [ W(7) — Wall3.
t=1

By repeated applications of Fubini’s theorem,

iII/‘}/f]EWNPWEEN/‘THW(f) —Wz|3 = i‘;}/fEfN#TEWNPWHW(E) - Wz|3
: N 2
= Ezpr glenﬂgp Ew~py |9 — W23
= Eiopr Ewery | Ewrmpy, W'z — W23
= Ew~ry Bz | Ewrmpy, [WZ — W23
= Ew~py [Ewwpy W] — W,
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The next result is a simple fact which states that if a function is strictly increasing and
concave on an interval, then any root of the function is lower bounded by the root of the
linear approximation at any point in the interval.

Proposition C.2. Let f : I — R be a CY(I) function that is strictly increasing and concave
on an interval I C R. Suppose that f has a (unique) root o € I. For any x € I, we have
that:

f()
iy ST

Proof Because f is concave on I, we have that:
0= f(zo) < f(z) + f'(z)(z0 — 2).

Next, because f is strictly increasing on I, we have that f/(x) > 0. The claim now follows
by re-arranging the previous inequality. |

The next result states that the trace inverse of any positive definite matrix is lower
bounded by the trace inverse of any priciple submatrix. The claim is immediate from
Cauchy’s eigenvalue interlacing theorem, but we give a more direct proof.

Proposition C.3. Let M € R?*"™ have full column rank. Let I C {1,...,n} be any index
set, and let E; : R™ — RII denote any linear map which extracts the coordinates associated
to I. We have:

tr(MTM)™Y) > tr(E;MTMET)™Y).

Proof Fix a z € R". Since M has full column rank, we have that (MT)T = M(MTM)~L.
Therefore,

: T T T v —
min  [lcf3 = [[(MT) 2|5 = 2T (MTM) 2.
cERI:MTc=z

Taking expectation with z ~ N(0, I,,),

tr((MTM)™Y = E.. min 2} .
r(( )) N(0,1n) LGR(I:A}TC_ZHCM
On the other hand, we have that:

min e[5> min lell3-
c€ERI:MTc=z cERV:E;MTc=Erz

This is clear because for any ¢ € RY satisfying M "¢ = z, the equality E;M Tc = E;z trivially
holds. This means we have the following set inclusion:

{ceRI|MTc=2} C{ceRY| E;M c= Erz}.
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Therefore, minimizing any function over the first set will be lower bounded by minimizing
the same function over the second set. From this inclusion, we conclude for any index set

I:

tr((MTM)! =K, . min cl2l > E._ min cll?
(M) = Beoiony | _min 18] > Buxony |, min el

=E. N(0.17)) [CGRquAf}TC:Z||CH§] = tr((E;MTME])™).

Next, we state well-known upper and lower tail bounds for chi-squared random variables.

Lemma C.4 (Laurent and Massart (2000, Lemma 1)). Let g1, ..., gp be d N(0,1) random

variables, and let aq,...,ap be non-negative scalars. For any t > 0, we have:
D D
P Zai(ggfl) > 2Vt Za?+2t‘nl1axDai <e™!,
i=1,...,
i=1 i=1

Finally, we conclude with a convex extension of Gordon’s min-max theorem.

Theorem C.5 (Thrampoulidis et al. (2014, Theorem II.1)). Let A € R™*", g € R™, and
h € R™ have iid N(0,1) entires and be independent of each other. Suppose that S; C R"
and Sy C R™ are non-empty compact convex sets, and let ¢ : S1 X So — R be a continuous,
convex-concave function. For every t € R, we have:

P {min max [yTAx + Y(z, y)} > t} < 2P {min max [HnggTy + ||lyll2h "z + w(w,y)] > t} :
TES| YES? TES| YES?

C.2 Proof of Lemma 6.1

We first prove the following intermediate result, which holds under the Gaussian observation
noise model (Definition 7.1).

Lemma C.6. Let T € Ni, {P,+}, be a sequence of distributions over R"™ with finite
second moments Xy := Egop,, [xi2]], and o¢ > 0. Let Px be a distribution on RT™
with ¢ > n such that for X ~ Px, X'X is invertible almost surely. For W & RPX™,
let Py be the distribution over RY*™ x RI*P with (X,Y) ~ Py satisfying X ~ Px and
Y | X = XWT + Z, where = € RY*P has iid N(O,ag) entries (and is independent of
everything else). Put I'p := %Z::F:l >t. We have that:

T
. 1 -
inf sup Exyyry |75 ) Baope WX, Y 20) = W3
W WeRpxn =1
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> o2p - Exnpy tr(Ty 2 (XTX) 7177,

where the infimum ranges over all measurable functions W RI*™ x RIXP x R™ — RP.

Proof The proof extends the Bayesian argument from Mourtada (2022, Theorem 1). Let
py be any prior distribution over RP*™. Let up := % Zthl P, denote the uniform mixture.

Bounding the minimax risk from below by the Bayes risk:

inf sup  Exy)epy Bonpr |[W(X, Y, 2) — Wa|f3
W WeRpxn
2 inf By, ~p, E(x vy~ Py, Banpir [W(X, Y, Z) — Wazl3
= inf E(va)EWAKX’y)E@NuT||W(X, Y, ) — Whz||3 using Fubini’s theorem
w
= E(X,Y) Ainf EWA\(X,Y)EEN,U,T”WX,Y(E) — W)j‘”% where W)@y maps R" — R?

XY
=Exyv)Ew,x ) IE[Wx | X, Y] — W/\HIQ“T using Proposition C.1.

Now let W)y ~ py have iid N(0,1/)) entries for A > 0. Noting that
vee(Y) = (I, ® X)vec(Wy) 4 vec(ZE),
vec(W\)] . . . . L
we see that the vector A’ is jointly Gaussian conditioned on X:
vec(Y)
1 (@ XT) D'

vec(WY) x1pn
X ~N AP
{ vec(Y) | 0,174 T, ® XXT) + U?qu

Therefore, the distribution of vec(WY) | X,V is:

vec(WY) | X,Y ~ N(ux, Xy),

1 1 -1
[y = X(Ip QX" [A(Ip ®XXT) + aglqp] vec(Y),

1 1 1 -1
(%®XUB@@XXU+ﬁ%}(%®X)

E)\ = XIpn - )\2
A generalization of the identity XT(%XXT + ngq)_l = (%XTX + a?[n)_lXT yields

1 -1
(I, ® XTX) + agfnp} (I, XT").

1 —1
(I, XT) [A(Ip ®XXT)+ agfqp] = [A

Therefore,
E[vec(Wy) | X, Y] — vec(W,)
= pix — vec(WY)
T -1 T T
= (I, ® X" X) 4+ 0\ Ly | (I, ® XT)vec(Y) — vec(Wy )
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-1
= H(Ip ®XTX)+ ag)\fnp} (I, ® XTX) — I, | vec(WY)

T 2 -1 T
n [(Ip @ XTX) + o an} (I, ® X T)vec(=).
Observing that
[E[Wx | X, Y] = Walf, = [Efvec(WY) | X, Y] = vec(W)|IF oro

and defining Mx(\) := (I, ® XTX) + agx\lnp, we have the following bias-variance decom-
position:

Exzw, |[E[Wy | X, Y] - Wy%,

[M;(A)(Ip © XTX) - Inp} vee(W )|
I,®0r

+02Ex tr ((I @ TY) M) (I, @ XTX)MF (A1, ® 1“1/2))

=Exzw,

> o2Ex tr ((I O THHM NI, ® XTX) MG (M1, ® rl/Q))

Since A +— tr ((I ® F1/2)M NI, @ XTX)MI (M) (I, ® F%Fm)) is non-negative and de-
creasing in A for A > 0, by the monotone convergence theorem:

lim L Exzw, [EWx | X, Y]~ WillE,
> 0f lim Ex tr (L, ® T7*)Mx' (N (L, © X X)My' V) (1, @ T4/
— o3Ex tr ((1 ® TYA) M (0)(I, ® XTX) My (0)(I, ® r1/2))
= o2Ex tr((L, ® I}/ (XTX) 7T
= o2p-Ex tr(Dy 2 (XTX)~'T5%).

Since the first expression above lower bounds the minimax risk, this concludes the proof. B

We now restate and prove Lemma 6.1.

Lemma 6.1 (Expected trace of inverse covariance bounds risk from below). Fizm,T € N
and a set of covariate distributions P,. Suppose that for every P, € P, the data matrix
Xm,T € R™TX7 drawn from @it 1Pz has full column rank almost surely. The minimaz risk

R(m,T,T';P,) satisfies:

R(m,T,T';P,) > op - S0 Bop i, [tr (F;/,Q(Px)(X;L’TXm,T)*lflT/,Q(PI))}. (6.1)
$€ x

Proof Fix a P, € P,, and let {Px,t}£1 denote its marginal distributions up to time

T'. Let P% denote the o¢-MDS corresponding to the Gaussian observation noise model

(Definition 7.1). Note that for any hypothesis f : R — RP, we have from (3.2):

1 e, ; )

5 SN () — W3

t=1

T/
~ 1 ~
L(f;T',Ps) = Ep, = 77 D Erp, [If () = Waa .
t=1
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By the definition of R(m,T,T"; P,) from (3.5) and Lemma C.6:

R(m, T,T'; Pa) > lArIlgf SvlépE@az’;lP% [P P] [L (Alg({@y)’y'gl))}ng,tﬂ)?T/’ Pz”

> o2p- B b, [or (T2 (P) (X - Xo2) T2 (P)) |

Since the bound above holds for any P, € P,, we can take the supremum over P, € P,
from the which the claim follows. |

C.3 A general risk lower bound

We now state a lower bound which applies with an arbitrary number of trajectories.
Lemma C.7. Suppose that Py is any set containing Pg’”" and PIn. Let mT > n. Then:

2 /
, O¢ pn |
. > = . . J— .
R(m,T,T";Py) > 5 max{ , 1

Proof Define ((4) :=Egn pa [tr (FlT/,2(A)(X;7TXm7T)_1I‘;/,2(A)>} . By Lemma 6.1:
R(m,T, T/;P:c) > ng -max{((Onxn),((In)}- (C.1)

Next, for any M € SymZ,, the function X tr(MY2X~1M'?) is convex on the
domain Sym”,. To see this, we define f(X;v) := v’ X lv for X € Sym”,. We can write
f(X;v) as f(X;v) = sup {—2TXz+ 20Tz | 2 € R"}; therefore X — f(X;v) is convex on
SymY¥,, since it is the pointwise supremum of an affine function in X. Now we see that
X = tr(MY2X 1 M/2) is convex, since tr(MY2X1MY2) = S | f(X; M'/2e;), which
is the sum of convex functions. Therefore by Jensen’s inequality, whenever XJL,TXm,T is
invertible almost surely,

C(A) = Bgpn pa |tr (TEHA) (X 2 Xomr) T (4) )|
> tr (TP (A) B pa [XT, 7 Xon 1)) ' T15(4))
— tr (D}/P(A)(m:r - FT(A))—lrlT/?(A))

(P (AT (A)
mT ’

We first consider the case when A = 0,,x,. Under these dynamics, it is a standard fact
that when mT > n, then XJ%TXm,T is invertible almost surely. Furthermore, I'y(0,xy) = I,
for all ¢, Hence, ((0nxn) = -

Next, we consider the case when A = I,. We first argue that as long as mT > n,
the matrix X;,TXm,T is invertible almost surely. We write xgi) = 22:1 w,(f), where
{wt(i)}?i{tzl are all iid N(0, I,,) vectors. Let p : R™T™ — R be the polynomial p({wt(i)}) =
det(X;';yTXm’T). The zero-set of p is either all of R™I™ or Lebesgue measure zero. We
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will select {w,gl)} so that p({wgi)}) # 0, which shows that the zeros of this polynomial
are not all of R™T™ and hence Lebesgue measure zero. Since the Gaussian measure on
R™T™ is absolutely continuous w.r.t. the Lebesgue measure on R™T" this implies that
det(X;';,TXmT) # 0 almost surely.

To select {wgi)}, we introduce some notation. Let e; € R" denote the i-th standard basis
vector. For any positive integer k, let U(k) € R¥** be the upper triangular matrix with
ones for all its non-zero entries. Let S(k) = U(k)U(k)T. By construction, S(k) is invertible

since U (k) is invertible. We put wt(i) =e(—1)r+t - (i —1)T +t < n}. We now claim that
with this choice of {wgi)}, the matrix X;L,TmeT is invertible.
Suppose first that ' > n. Then we have that X;7TXm,T = S(n), and therefore

det(X,] 7 Xm 1) # 0. On the other hand, suppose that T < n. Because mT > n, then
we have that:

m,

X, X1 = BDiag(S(T),...,S(T),S(n —T|n/T))),
In/T) times
where BDiag(Mi, ..., M) denotes the block diagonal matrices with block diagonals M,
, My. Since S(T') and S(n—T'|n/T|) are both invertible, so is X;L,TXm?T and therefore
det(X;,Tij) # 0. Thus, X;';,TXm,T is invertible almost surely.
Next, we note that ¥ (I,) =t - I and I'y(I,) = ( Zk 1 ) I, = %1 - I,,. Hence we
have T'p (I,) T (I,,) = T+l 1, 1= - I, and therefore ((I,,) > 52 r

T+1 Z OmT T "
Combining our bounds on ((0,,x,) and ((I,), we have the desired claim:

T\ _ o T’
R(m,T,T";P,) > agp max{n n}>£-pn-max{,l}.

mT’ 2mT T

C.4 Non-isotropic random gramian matrices

The goal of this subsection is to prove Lemma 7.1, which gives a bound on the expected
trace inverse of a non-isotropic random gramian matrix. We first prove an auxiliary lemma,
which will be used as a building block in the proof.

Lemma C.8. Fiz any x € RY. Let g € R? and h € R™ be random vectors with iid N(0,1)
entries, and let W € R?*™ be a random matriz with iid N(0,1) entries. Let ¥ € R9*9 be
positive definite. We have that:

B H 2

E mln HEl/ Wa — z||3 < Eminmax

—1/2,_.112
R + 189 = =221 gyngarr)

Proof The proof invokes the convex Gaussian min-max lemma (Theorem C.5) via a lim-
iting argument. In what follows, let {a}r>1 and {vi}r>1 be any two positive, increasing
sequences of scalars tending to +oo. It is clear that for every W,

lim min [|SY2Wa — 2|2 = mln HZl/QWa —z||3
k—oo ||aH2<Oék
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Since @ = 0 is always a feasible solution to min||a||2<akHEl/2Wa — |3, we have for every
kE>1:

0< min [|SY2Wa —z|3 < |3

llafl2<ar
Therefore, by the dominated convergence theorem,

E m1n||21/2Wa—a:H2 =E hm min ||2V2Wa —z|3 = hm E min |[|[2Y2Wa —z|2.

o0 [lall2<a llell2< o
(C.2)
We next state two variational forms which we will use:
Lo T vl
—||z||5 = max<v'z — —= C.3
Sl = { oo - 1121, (©3)
Szl 1
Tllo = min<{ —=— + — 5. C4
ol = mig { 1227+ o ()
Using the first variational form (C.3), we have for every W and k; > 1,
1
min  =||2Y?Wa -2z = min max [UT(El/QWa —z)— ]
lloll2<ok, 2 llall2<ay, vERY
VTN~
— min max |[v Wa—o'0 V2 - —— ©
llall2<euy, vERY 2
Ty-1
VYT
= min max |:UTW04 EDTED S s P —
lall2<any (0|2 <IEW flopore, +I1/ 222 2

T T v'E!
= lim min max [v Wa —o'n /2 - } .
k2 =00 [laf|2<ak, [[v]j2<vk, 2

Observe that for every ko > 1

0< min max [UTWa T2y
lallz<ag, llvll2<vr,

Ty—1

VYT

< max |:—UT21/2$—:|
lvllz<vi, 2

Ty 1y
2

Tyt 1
< max [—UTE_l/Qx - 1]20] = §||$||%

Therefore, by (C.2) and another application of the dominated convergence theorem:

E min |[SY2Wa -2 = lim E min [|EY?Wa — 2|3

acR™? k1—00 llerll2< ok,

Tzfl
= lim E lim min max [UTWa Ty Y2 1)21)]

k1—oo  ke—oo[lalla<o, [[v]l2<vg,

-

. . . _ v

= lim lim E min max |v Wa—v '8 Ve =2 ©
k1—00 ka—00 ||aH2<ak1 H”H2<Uk2
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We now apply Theorem C.5 to the expectation on the RHS of (C.5):

Tz—l
max [UTWa T2y 021)}

min
lella<an, [lv]lz<vk,

00 'UTE_I'U
= / P min max [UTWa Ty 2, ] >tpdt
0 lerllo<ary [vll2<vk, 2

(a) o) Tz—l
< 2/ IP{ min  max {HaHggTv—i— v][2hTor — TR 25 — H} >t}dt
0

lalle<ak, [[v]2<v,

. T T Teo1j2, V'E M
—=92F min max |[algTv+ |v]2hTa -0 T8V 2 - =~

llolla<ay [[vll2<vry 2
T Tt V'S M
<2E min max |[allag"v + [v]ohTa — 0TSV 2 — . (C.6)
llellz< v, vERY 2

Above, inequality (a) is an application of Theorem C.5. Now for every ki, g, and h, define

TEfl
Y, (g,h) == min max [Halgg v+ |[o)lshTa — o TR T2 — ?}20] .

||o¢||2§oz;Cl veERY

For every k1, g, and h, we have

< Ui, (9, h) < max

[ TS —1/2, UTElU} _ HxH%
veERY

2 2

Furthermore, since {ay} is an increasing sequence, the sequence {1 (g, h)}r>1 is montoni-
cally decreasing. Therefore, by the monotone convergence theorem,

JHm Yi(g, h) = inf{t(g, h) [ k € Ny}

Ty-1
= min max [Haﬂgg v+ |Jvljgh o — TR 28 — H] :
aeR” veR!

Therefore by another application of the dominated convergence theorem, we have that:

T Ttz V' E v
m E min max |[|alag v+ |[o)ohTa— 0TS V2 - — = —
k1—>oo lall2<ay, vERY 2

TE—l
=FE lim min max [||a||29 v+ ||vH2hT T2, 1}21}]

k1—o0 [|afl2<ay, vER?

T Teo12, V'S v
= E min max [Ha”gg v+ o]k T — TR 2 — ] . (C.7)
a€R" veR 2

Chaining together inequalities (C.5), (C.6), (C.7), we have:

Tz—l
E mln ||21/2Wa —z||2 < 2E m]an max [Hoz\gg v+ |[o)|]ohTa — TR T2 — UU] .
E n

(C.8)
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We now proceed to study the RHS of (C.8), which we denote by (AO) (the auziliary opti-
mization problem):
vTE

AO) = : T hT _ Tz—l/Q o~ v
(A0) i= min s [lallag "o + ol — o520 -

i mi 84Tv + Bllalbllf — 0TS - L
= min min max v v -V T =
>0 0€[—1,1) vERY g 2
Ty—1
@ . - Teo1/2 v X
winmax |87~ Alolalbll — o2

O T
Y i mapena | 8970 - Blhlalo13 -

Bllhll2 TS 1/2, _ UTE_lU]

F>0 veRa 730 27 2
. - o7 Blhllz rei1p, v'E T
win o | 99" ~ Blalafol3g - TH2 - 0TS

= min max
B=0 720

[_B| hll2

| 1 —1/2, 12
5 T 5189 =X wlto- s ynarr,y - | -

Above, (b) holds by the variational form (C.4). The proof is now finished after justifying
(a). First, let hg(6,v) denote the term in the bracket, so that

AO) = mi i hg(0,v).
(AO) =min min maxhs(d,v)

Fix a 8 > 0. By weak duality,

i hg(0,v) > in hg(0,v) = ha(—1,v).
pSin, maxhs(6,0) > max min hs(0,v) = maxhs(-1,0)

On the other hand,

min maxhg(f,v) < min maxhg(f,v) = max min hg(f,v) = maxhg(—1,v).
fe[—1,1] veRa 6( ) 0e[—1,0] veRe 6( ) veER? §e[—1,0] 6( ) vERY B( )

The first equality above is Sion’s minimax theorem, since the function 6 — hg(6,v) is affine
for every v and the function v — hg(6,v) is concave for § € [—1,0]. Therefore,

i hs(6 = hg(—1,v).
pdpin maxhs(9,v) = maxhg(=1,v)

With Lemma C.8 in hand, we can now restate and prove Lemma 7.1.

Lemma 7.1. Let g,n be positive integers with ¢ = n and n > 2. Let W € R?*"™ have iid
N(0,1) entries, and let ¥ € R9*? be positive definite. Let g ~ N(0,1;) and h ~ N(0,I,—1),
with g and h independent. Also, let {e;}!_, be the standard basis vectors in R1. We have:

n

Etr(WTEW)™1) > (7.3)

q : BliAll2 2
i—1 Eming>o max->o [* N 189 — 6i”(271+ﬁ||h||27'1q)71
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Proof We rewrite Etr((WTXW)~!) in a way that is amenable to Lemma C.8. Let w; € R?
denote the first column of W, so that W = [wl Wg} with Wy € R7*("=1)  We write:

Ty — | ey wlEws
WoEw = Wl Sw, WIEWs|”

Using the block matrix inversion formula to compute the (1,1) entry of (W TXW)~!

(WTEW) D = (w{ (Z = SW5 (W3 SWa) Wy S)uwy) ™
= ( Tzl/z(I — le/QW )21/2w1)71

— (w TZI/QP o, El/le)_l.

Since the columns of W are all independent and identically distributed, this calculation
shows that the law of (WTXW)™1);; is the same as the law of (WTXW)~1)y; for all
i =1,...,n. Therefore:

Etr(WTsWw) ! ZE (WTsW)™ ) = n - E(w! 2Y2P4

1/2 1
212W2/w1)
=1

n

> .
Etr(zl/QP;/QWQzl/?)

The last inequality follows from Jensen’s inequality combined with the independence of
w; and Wy. By decomposing tr(X1/2PL »/2) = »/2¢]|3 and observing

1/2W 1“ 21/2W
that

[P o, ol3 = min B2 Waa — 2§ Vo € RY,

we have the following identity:

q

sV =N"E nﬁgluzl/?Wza — 21 2¢3.
i—1 o; €

Etr(S'2 P oy,

Invoking Lemma C.8 with z = X1/2¢; for i = 1,..., ¢ yields

q
: BllAll2
Etr(zlﬂP 1/2W 21/2) E%’l}llg?}gg{ |: + ||,8_g ei”?z_l‘i’ﬁ“h“?‘rlq)_l y
=1
where g ~ N(0,1;) and h ~ N(0,I,,—1). The claim now follows. ]

We conclude this section with the following technical result which we will use in the
sequel.

Lemma C.9. Letq,n € Ny withq > n andn > 6, and let ¥ € Sym? ;. Let g ~ N(0, 1) and
h ~ N(0,I,—1) with g and h independent. Define the random vamables Z; forie{l,...,q}
as:

o BH H2 2 - 1
Z; »= minmax | — + 829l Fs-1 4 pngarry-1 T (E7+ BlAlaTI)E | - (C.9)
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Let {\;}L_, denote the eigenvalues of Y~ listed in decreasing order. Define ny and the
random function p(y) as:

q
ny = — Z nl. (C.10)
i=1

There exists an event € (over the probability of g and h) such that the following statements
hold:

(a) P(E°) < e ™/128 4 e~9/16,
(b) On &, there exists a unique root y* € (0,00) such that p(y*) = 0.
(¢) The following bounds hold for i € {1,...,q}:
Zi <Xy, UEYZ < UENE ' +y L)t (C.11)
Proof First, we observe that we can trivially upper bound the value of Z; by setting 5 =0

and obtaining the bound Z; < X;;. Furthermore, by the rotational invariance of g and the
fact that g and h are independent, we have that Z; is equal in distribution to:

. 5”“‘2 2 -1 —1
Z; = min max + 5 g X7+ B hlleTly); | -

B=0 10

Define the following events:

£, = {1l > vii/s}. Sg::{293>q/2},
=1

and put £ := &, NE;. Since n > 6, by a standard computation we have that E| Al >
v/n/4. Therefore, by Gaussian concentration of Lipschitz functions (cf. Wainwright, 2019,
Chapter 2), P(£F) < e™™/128. Furthermore, Lemma C.4 yields that P(&) < e~4/16, By a
union bound, P(£¢) < e /128 4 ¢~ /16,

We now focus on upper bounding the quantity:

£=0 =0 167

1{€}Z; < 1{€} min max —'B\F —1—622 y +5\f /8 (Eil —l—ﬂ\/ﬁT/SIq)i_il] .

=:4; (5,7)

Let us bracket the value of the game ming>o max,>o ¢;(5, 7). We previously noted that
4;(0,7) = Xy for all 7 € [0,00). Next, for any 8 > 0, lim,_,~ ¢;(3,7) = 0. Hence,

i max £ (8,7) €10, Zqi].

Recalling from (C.10) that n; = n/64 (so that /n1 = y/n/8) and defining f, ¢; as:

fa) == 2ZA +x\ﬁ
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gi(w) = (57" + ay/n); '

we have that ¢;(3,7) = T%f(BT) + q:i(B7).
In order to sharpen our estimate for the value of the game, we will study the positive crit-
ical points (3, 7) € R2 of the game ming max, ¢;(3,7), i.e., the points (8, 7) € R2, satisfy-

ing g%’ (B8,7) =0and %E;' (8,7) = 0. Note that in general for a nonconvex/nonconcave game,
this is not a necessary first order optimality condition for the global min/max value (see
e.g. Jin et al., 2020, Proposition 21). However, for every fixed § > 0, stationary points of
the function 7 — £;(3,7) on Rsq are strictly concave by Proposition C.10. Hence, by the
implicit function theorem (or alternatively Jin et al. (2020, Theorem 23)), the first order
stationarity conditions g% (B,7) = 0 and ‘?f; (B8,7) = 0 are necessary for global min/max
optimality. For 7 # 0, this yields:

0=7"2f(Br)8 — 27> f(BT) + ¢;(B7)B,
0=71"2f(B1)T + d.(BT)T.
Together, these conditions imply that f(87) = 0, and that the value of the game at such

a critical point is ¢;(57). Thus, we are interested in the positive roots of f(x) = 0. To
proceed, recall the definition of p(y) from (C.10):

Y ni
py) = o ¥
=1

Note that y* is a positive root of p iff y*/\/ny is a positive root of f. Since ¢ > n by
assumption, observe that on &:

q
lim p(y) = > g7 —n1/2>q/2—n1/2 >n/2—n/64> 0.

Y—+00
=1

On the other hand, p(0) = —n1/2 < 0. Since p(y) is continuous and strictly increasing, on
& there exists a unique y* € (0, 00) such that p(y*) = 0. Thus,

1{EYZ; S V{ENE +y )7t

Proposition C.10. Let M, A be n x n positive definite matrices, and let «, 3 be positive
numbers. Consider the function:

f(r) = =2+ {(A+ BrD) ™, M),

Suppose there exists a T € (0,00) satisfying f'(1) =0. Then, f"(7) < 0.

Proof A straightforward computation yields the following expressions for f'(7) and f”(7):

() =ar 2 = B{(A + prI)"% M),
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f'(r) = =2077% + 26%((A+ BrI) 7%, M).
The assumed condition f’(7) = 0 implies that:
ar 2 = B(A+ BrD) 2, M) = —2a173 = =287 Y(A + Br1)"%, M).

Next, let A = QAQT be the eigendecomposition of A, with A = diag({\;}?,). For any
integer k:

ko kAT _ T kN~ (Q@MQT)y
((A+BrI)™, M) = tr(MQ(A + BrD)™*QT) = (QMQT, (A + BrI) ™) = 3 5=k

i=1

Now, since M is positive definite, (QMQT);; > 0 for all i € [n]. Furthermore, since A is
positive definite, A; > 0 for all 7 € [n]. Hence plugging these expressions into the expression

of f"(7):

n Ty.. Ty ..
f”(T) _ _262 Z ((QMQ )u +9 /32 Z ( (QMQ )zz

\i + BT)2BT i + B7)2(\; + BT)
2 (QMQT) 2 (QMQT)
= 252/\+67267 ﬂZA+57257
- 0.

C.5 Proof of Theorem 6.2

Theorem 6.2 (Need for growth assumptions in Ind-Seq-LS when m < n). There ez-
ists universal constant cy, c1, and co such that the following holds. Suppose that P, =
®¢>1N (0,28 - I,), n > 6, mT >n, and m < con. Then:

p- 9can/m

R(m, T, T;{P.}) > c10% - T

Proof Let I'r := I'r(P;). We have that I'r = 2(27 — 1)I,, = %In. By Lemma 6.1:
ROm 7.3 Po}) > ofp - B (X0 X))

2p ) o
> %-Eu(@ TRXT X2 T2,

Since each column of X, 7 is independent, the matrix Xm,TQ*T/ 2 has the same distribution

as BDiag(0©'/2,m)W, where © € RT*T is diagonal, ©; = 27 for i € {1,...,T}, and
W € R has iid N(0, 1) entries. Let A, = 27~ for t € {1,...,T}. With this notation:

Etr((2772X) 7 X2 7/?)7") = Etr((W BDiag(0, m)W)~").
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Let {gj};-"zl be independent isotropic Gaussian random vectors in R”, and let h ~
N(0,I,,—1) be independent from {g;}. Define the random variables {Z;}]_, as:

ﬁ||h||2 2 9 1
Z; = min max + ; + . C.12
i may g ZZ %t BT * Nt BlAlr e
By Lemma 7.1,
T -1
E tz((W T BDi 1> Y EZ
(W TBDiag(€,m)W) ™) > Z; 1]
Next, define
o ni
n]_ -— )\ g]t ?.

7j=11t=1

Since n > 6 and mT > n, we can invoke Lemma C.9 to conclude there exists an event &;
(over the probability of {g;} and h) such that:

(a) on &1, there exists a unique root y* € (0,00) such that p(y*) =0,

(b) the following inequalities holds:

1

1
gy (C.13)

(c) the following estimate holds:
P(glc) < 6—n/128 _’_e—mT/IG'

Now, let ¢ = 1/20, and assume that cnj/m > 4. We can check easily that [en;/m] < T.
Fix a 6 € (0,e72] to be chosen later. Define the integer T, := [cni/m] € {4,...,T}, and
the events (over the probability of {g;} and h):

m  Tc m t2 2
ngC — 2 g7+ Pp—

By Lemma C.4, P((&3 Teyey < emmTe. Next, Gaussian concentration for Lipschitz functions
(cf. Wainwright, 2019, Chapter 2) yields, for any n € (0,1):

max [P
t=1,...T

> 2, = Vm++/2log(1/n) p <.
j=1

Hence by a union bound, and the fact that 65/72 3./ t72 < 65/7% 5%, t=2 = §, we have
that P((£97)¢) < 4. Putting £ := & UEST* UEL™, we have:

]P)(EC) < efn/128 _{_efmT/lG _i_efmTC +5
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< e—n/128 + e—mT/lﬁ e 6. (014)
Next, noting that ¢/2 > log, log((t + 1)272/6) for all t > 4:
T-1
Z 27 og((t + 1)*7%/(69))
t=T.
T-1 T-1
_ Z 2—t+10g2 log((t+1)%72/6) + log(1/5) Z 2—t
t=T. t=T.
T-1 T-1
< Z 2742 4 1og(1/6) Z 27t since T, > 4
t=T. t=T.

=V2/(V2 - 1)(27 %/ — 27T/2) 4 210g(1/8) (27 — 277
< (4 + 2log(1/8))27 /2

< 4log(1/8)27Te/? since § € (0,e72).  (C.15)
Now, on &:
n m T y*
1 2 : *
. : =0
EE s
7j=1t=1
m Te m T-—1
Z g?,ﬁ—y 222 9Jt+1
7j=1t=1 j=1t=T.
m Te
WD S Zgjm
j=1t=1 t=T,
T-1
<5mT, +y* Z 27" [2m + 4log((t + 1)*7/(66))] using &
t=T.
< 5T, + 4my* 27T + 16y* log(1/6)27Te/? using (C.15)
< 5T, + 18my* log(1/6)2~ Te/? since & € (0,e72).

This inequality implies the following lower bound on y*:

* R
y m

20n1/(2m)

N
18log(1/9) L2m

ocn1/(2m) ny

181og(1/5) [7 a }
9cn1/(2m) ny

2 - 0 -
1441og(1/6) m

*

:g

since ¢ = 1/20

since cni/m >4 = n1/(8m) > 5

We now bound,

S

T
ZE[ = [EQ{E}Z] + E[1{&°} Z,]]

=1
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T
1 1 .
< z; (Eﬂ {1{5} FvE y} +P(E )A) using (C.13)
S S
S;)\i_i_y* +P(Ec)tzl)\i since y* > y" on €
-1
< 9 —n/128 —mT/16 —cny : 14
;2t+y*+ (e +e +e +5) using (C.14)
Tc

< — +2-27 T +2( n/128+€_mT/16—|—e_cn1 _|_5)
< 288 Clog(l/é)z—cnl/@m) +9. 2—cn1/m

Since cny /m > 4, we can choose § = e~1/(2™) ¢ (0, e7?] and obtain:

T

ZE[Zz] < 14462E2—cn1/(2m) +2. 2—cn1/m +2 (e—n/128 + e—mT/lG +e M 4 e—cnl/(Qm)) )
m

=1

Since 1 < eny/(4m), mT > n, and m > 1, this inequality implies there exists universal
positive constants ci, co such that:

T
Z]E[Zz] < 0177,2 czn/m'
m
=1
Hence:
T -1 2 2,9can/m
&P n 0eP n m con/m UgPQ

R T.T:{P —_ E|Z > = ——2% =
(m {Pa}) T 2m LZ; 2] T 2mcin 21T

C.6 Block decoupling

We now use a block decoupling argument to study lower bounds on the risk. The first step
is the following result, which bounds the risk from below by a particular random gramian
matrix.

Lemma C.11. Let n = dr with both d,r positive integers. Define I, := {1,14+r,...,1+
(T — 1)1}, and let Bz, € RT*T" denote the linear operator which extracts the coordinates
in I, so that (Ez,x); = T14i—1)r fori=1,...,T. Recall the following definitions from
Equation (7.10):

‘I/r,T,T/ = BDIag(F;}/Q(JT)’ T) BToep(Jr, T) e RTTXT’I"

T T TxT
GT,T,T’ = EZT \IJTvaT,\IIT,T,T’EIT eR .
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Then, for A = BDiag(J,,d) we have:

Egm pa [tr (rlT/?(A)(XTTXM,T)*IP;/?(A))] > E te((W T BDiag(O,.7.7, m)W) ™),

m

where W € R™T%4 s o matriz with independent N(0,1) entries.

Proof We apply Proposition C.3 with:

M= Xpolp 2 T={L,14r 142014 (d—1)r}, [I|=d.

Note that the block diagonal structure of A yields the same block diagonal structure on
I';» and its inverse square root, specifically I'r/(A) = BDiag(I'y(Jy),d) and F;}/Q(A) =
BDiag(F;,l/z(JT),d). Hence, it is not hard to see that the columns of ME] are not only
independent, but also identically distributed. Furthermore, the distribution of each column
obeys a multivariate Gaussian in R™?. Hence, M EIT is equal in distribution to Q%}QTW,

where W € R™T*4 ig g matrix of iid Gaussians and Qmr € Sym’;bOT is a positive definite
covariance matrix to be determined. Furthermore, because M EIT contains the vertical
concatenation of m independent trajectories, @,  itself is block diagonal:

Qm, = BDiag(Qr,m), Qr € SymZL,.
Let us now compute an expression for Q. Consider the dynamics:
ri g = Jx) +w), =0, w,~N(0,05l).
It is not hard to see that, with w}, ; = (wo,...,wr_1) € R™T,
F;’lﬂ(*]r)x?i

,
. = Vo Wy 1

T2 ()b,

From this, we see that every column of M E}— is equal in distribution to Ez, ¥, 7 mwg._q,
and therefore has distribution N (0, Ez, \I/nT’T/\I/;',-T T,E};). Therefore:

T T
Qr=Er,Y 711V, prEr =Or171.

The claim now follows. [ |

C.7 Eigenvalue analysis of a tridiagonal matrix

For any T' € Ny, recall that Ly denotes the T' x T' lower triangle matrix with ones in
the lower triangle, and Tri(a,b; T) denotes the symmetric 7' x T' tri-diagonal matrix with
a on the digonal and b on the lower and upper off-diagonals. In this section, we study the
eigenvalues of (Ly L)), which we denote by Sr:

S = (LpLE)™t = Tri(2, —=1;T) — erer. (C.16)

Understanding the eigenvalues of this matrix will be necessary in the proof of Lemma C.15.
The following result sharply characterizes the spectrum of S7 up to constant factors.

96



LEARNING FROM MANY TRAJECTORIES

Lemma C.12. SupposeT > 8. For allk =1,...,T, we have that:

k2 o k2
002@ § AT7k+1(ST) s ﬁ
Proof We prove the upper bound in Proposition C.13, and the lower bound in Proposi-
tion C.14. ]

The next result gives the necessary upper bounds on the eigenvalues of St.
Proposition C.13. We have that:

]{72
Mo (Sr) <7, k=1, T.
Proof By (C.16), we immediately produce a semidefinite upper bound on Sr:

Sr =Tri(2,—1;T) — erer < Tri(2, —1; 7).

Therefore by the Courant min-max theorem, followed by the closed-form expression for the
eigenvalues of Tri(2, —1;T), we have:

>\T—k+1(ST) < )\T_;c+1(Tri(2, *1;T)) =2 <1 — COS <kﬂ->) y k= 1, e ,T.
T+1
Next, we have the following elementary lower bounds for cos(x) on = € [0, 7]:

1—2%/2 if z € [0, 27/3],

cos(z) > {(w —7m)2/4—1 ifxe2n/3, 7]

Therefore, when k € {1, ey [@J }, we immediately have that:

k2
)\T—k—i-l(ST) < 7T2m-
For the case when k € {L%TTH)J +1,...,T}, we use the cosine lower bounds to bound:

v
Ar—k+1(ST) < —2< T+1>

“pter)]

,4;

1) <3k k) since k > 2(T + 1)/3
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2
L
(T+1)2

The claim now follows by taking the maximum over the upper bounds. |

We now move to the lower bound on Ap_j11(S7). At this point, it would be tempting
to use Weyl’s inequalities, which imply that A\;(S7) > X\i(Tri(2,—1;7)) — 1. However, this
bound becomes vacuous, since Ap(Tri(2,—1;7T)) < 1/T2. To get finer grained control, we
need to use the eigenvalue interlacing result of Kulkarni et al. (1999). This is done in the
following result:

Proposition C.14. Suppose that T > 8. We have that

k2
Ar_k11(ST) = O.OZE, k=1,...,T.
Proof The proof relies on the interlacing result from Kulkarni et al. (1999, Theorem 4.1).
However, the interlacing result does not cover the minimum eigenvalue of S, so we first

explicitly derive a lower bound for Ay, (S7). To do this, we note that:

1

Amin ST) = )\min( LTLT)_l - :
( (LrLr)™) = 1T

Letting I; € RT denote the i-th column of L7, by the variational form of the operator norm
followed by Cauchy-Schwarz,

T

T T
IL7llop = max [|Lyvlla < max Y [[Lllavil < 4| D _El3 =Y i=+T(T+1)/2.
lvll2=1 lvll2=1 i1 i1 1
Hence:
2 1

: > > —.
Amln(ST) = T(TJr 1) = T2

Now we may proceed with the remaining eigenvalues. We can write St as the following
block matrix, with er_; € RT~! denoting the (T'— 1)-th standard basis vector:

Tri(2,-1;T—1) —ep_q
St = —el 1
T-1

This matrix is of the form studied in Kulkarni et al. (1999, Theorem 4.1); for what follows
we will borrow their notation. Let Up(z) denote the T-th degree Chebyshev polynomial of
the 2nd kind. We know that the eigenvalues of St are given by A = 2(1 — z), where z are
the roots of the polynomial py(x) defined as:

pr(z) == (1 + 2z)Ur—_1(z) — Ur—2(z). (C.17)

Therefore, letting 11 < ... < ¢ denote the roots of (C.17) listed in increasing order, we
have:

N(ST)=2(1— ), i=1,...,T.
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Let m < --+ < nr—2 denote the T' — 2 roots of Ur_o(z) listed in increasing order. Put
—o00 and ny_; := +00. Because the roots of Up_s(x) are given by 2 = cos(£%),

o = T-1
k=1,...,T — 2, we have that:

T—-1—1
ni:COS<(1_Y1,L)7T>, Zzl,,T—2

Kulkarni et al. (1999, Theorem 4.1) states that there is exactly one root of pr(x) in each
of the intervals (n;,nj4+1) for j € {0,...,T — 2} \ {i,}, with i, satisfying:

e {1252 if 2(T—1) mod 3 # 0,
ix E B
{%7 % + 1} otherwise,

and furthermore (n;,,7;,+1) contains exactly two roots of pr(x). Therefore, for i € {i, +
3,..., T —1}:

Y <nie1 = Ni(S1) = 2(1 —mimq) =2 (1 — cos <(1;__?7T>> .

For i € {i, +3,...,T — 1}, we have:
T—i T-i,—3 T-(3TA_1)-3 1 1 1
< = < -
T-1 T-1 T-1 3 T-1 "3
It is elementary to check that:

332

2(1 — cos(z)) > 5 Vo € [0, 7/3].

Therefore for i € {ix +3,...,T — 1},

w2 (T —i\?
AlS) > 3 <T—1>

Furthermore, for i € {1,... i, + 2}, ¥; < 1;,+1 implies that

Xi(S7) = 2(1 = mir) = 2 (1 — cos <(T — IT_—Z.*l_ 1)”>> > 2(1 — cos(w/21)).

The last inequality holds by:

cos <(T — 1T__Z*1_ 1)7r) < cos <(T —D- (1%<_T; D/3+ 2)7T> since 7, < 2(T3_ D) +1
1 2
— cos <<3 - T_l) W>
< cos(m/21) since T' > 8.

Summarizing, we have shown that:
ifk=1,
2
Aok (S1) > 1 5 (44) ifkef{2,....T—i, 2},
2(1 —cos(m/21)) itke{T —i,—1,...,T}.

:‘m ’é‘,_.
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Since £=L > & when k > 2, and since 2(1 — cos(w/21)) > 2(1 — cos(7r/21))§i—22 trivially, we

have shown the desired conclusion:

w2 k2 k?
Ar—k41(ST) = mln{l 5 —,2(1 cos(7r/21))} 72 2 002T2, E=1,...,T.

C.8 A risk lower bound in the few trajectories regime

Lemma C.15. There exist universal positive constants cy, c1, co, and c3 such that the
following is true. Suppose A C R™ "™ is any set containing I,. Let T > ¢y, n = ¢,
mT >n, and m < con. We have that:

/ A n2 T
Proof Let {g;}]., be independent N(0,I7) random vectors, and let h ~ N(0,I,—1) be
independent from {g;}. Let {\;}/_; denote the eigenvalues of ©] 1. listed in decreasing

order. Define the random variables {Z;}1, as:

5”hH2 2 gjt _1 1
Z; = min max + E E + (O + Bllhllor )| . C.18
350 720 B v £ )\t _"BHhHQ ( 1,77 6” ||2 T)m ( )

We now lower bound the minimax risk as follows:

R(m, T, T"; {P;"})
> 02 By pio [tr(FT/( L)Y2(XT o X)) To(1 )1/2)} by Lemma 6.1
> 2 -Etr((WTBDiag(01 77/, m)W)™ ") by Lemma C.11
T +1
= gp + - E tr((W "BDiag(©117,m)W)™1) using (7.11)
T+1 ”
T . _
> ng ‘9T E tr((W BDiag(©11.1, m)W)™ ')
s T n 4 o
>o2p.— . ISRz L 1. 1
TP oT o ; [Zi] by Lemma 7 (C.19)
Next, define:

m:i :ZZ)\ ?1

Jj=11t=1

Assuming that ¢; > 6 so that n > 6 and mT > n, we can invoke Lemma C.9 to conclude
there exists an event & (over the probability of {g;} and h) such that:
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(a) on &1, there exists a unique root y* € (0, 00) such that p(y*) =0,

(b) the following inequalities holds:

1

Z; < Our7r)i, HE}Z: < Hgl}W’

(C.20)

(c) the following estimate holds:
P(glc) < 6—n/128 _’_e—mT/IG'

The remainder of the proof is to estimate a lower bound on y*. Towards this goal, we
define an auxiliary function:

T
~ L —m Yy L
p(y) == Elp1(y)] = ;1 Nty 2

Let y* be the unique solution to p(y) = 0. A unique root exists because p(0) < 0,
limy oo p(y) = mT —n1/2 > n—n/64 > 0, and p is continuous and strictly increas-
ing. We derive a lower bound on y* through a lower bound on ¢*. For any fixed a > 0, the
function z — 7= is monotonically increasing and concave on R. Therefore, the function
p(y) is monotonically increasing and concave on Rsg. By Proposition C.2, the root of the

linear approximation to p(y) at y* is a lower bound to y*:

=k

ey > 1{&) [y* - p,(y*)] . (C.21)
P (y*)

Equation (C.21) is a crucial step for the proof, because it turns analyzing y*, which is the

root of a random function, into analyzing the pointwise evaluation of a random function on

a deterministic quantity. To lower bound the RHS, we need a upper bound on p(g*) and

lower bounds on both §* and p'(7*).

Upper and lower bounds on y*. We first derive a crude upper bound by Jensen’s
inequality. Observe that p(g*) = 0 implies that:

The function = + x/(z + 7*) is concave on Rsq. Let A := %Zthl A¢. Jensen’s inequality

A T .
states that TX+g* >3 ywer Therefore:

ni 5\
— < _
2mT ~ A+ y*

ni 1
2mT 1 —ny/(2mT)’

Recalling the definition of Sp from (C.16), we can immediately bound

T
< 1 1 _ 1 T+1
A= E At = Ttr(@L%T) = Ttr < 5 ST) < tr(Sy) < 27.
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Therefore, since m1" > n,

ni 1 2711

Sml—n/@2mT) > m "’

—x

Now for the lower bound on §*. Noting that Ar_ky1 = Ar_k41(O7 1) = T Ar_t1(S1),
Corollary C.12 implies (assuming that ¢y > 8 so T' > 8) that

. p— ~X pa— ~X 77 g0y . .

Therefore, p(y*) = 0 implies that:

1_omgs 1 _2mes ]
g SN+ m & 0.012/T + g
_2m T 1 20m\/Tt L[ VT _ 10mmyVT
X 5 A = ——tan — X - ==
ny Jo 0.0122/T + g* n1/7* 10/7* n1/7*

Solving for g* yields:

1 n?
> — )
10072 m2T

—%

<

Next, we use this lower bound on g* to bootstrap our upper bound y* < 2n;/m into
something stronger. Using the upper bounds on \; from (C.22),

1 2sz: 1 >2mT 1 om [T+ 1
At

- 2 - -
w22 /T +y* ~ oy )y w2a?/T + g

e () (i)

The function tan~!(z) is increasing. Using the * < 2n1/m upper bound and the assumption
that mT > n,

(T+ )7 \/ﬁ 1 ((T—I— 1)7r> =
>/ — 27V32 = tan" | ——— | > tan" (7V32).
VTy* 2n VTy* ( )

dx

2
On the other handing, using the bound y* > ﬁ% and the assumption that m <

v/2n,/320,

™ m 1 ™ 1
T < 107rn—1 < m/32/2 = tan (\/ﬁ> < tan~ ! (7v/32/2).
Combining these inequalities:
1 _ 2mVT . . 2-0.05 mVT 5 n?
— oy SV V32) — t \/322}2 L <791 .
T A RVATE an~"(r ) — tan™(r /2) T Y vys 2T
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Therefore we have the following upper and lower bounds on 7*:

i

1 ’I?,% —% 2
< y* <min< 7917 AT 2% (C.23)

10072 m2T

For the remainder of the proof, in order to avoid precisely tracking constants, we let
o, C1, C2, c3 be any positive universal constants such that:

k.2 ]{72
CO? < )\T—k-i-l < Cl?, k=1,....T, (024)
nf _ . ni
02 mQT < y < C3 mQT' (025)

Equations (C.22) and (C.23) give one valid setting of these constants.

Upper bound on p(y*). To upper bound p(y*), we note that:

m T
- Z 3 At?ig* (92, - 1) since p(7*) = 0.

Therefore, by Lemma C.4,

T _ 2 —x
Y —t
< . .
P | p(7*) > 2Vt m;:l <)‘t y> + 2t m,a}fT)\t 7 <e vt >0 (C.26)

We upper bound:
T 7 T 7 2
i .24
w3 (55%) < (et wing (024

t=1
2
d
m/ <609€2/T+y> !

_ m(g*)*T \/Ty 0! coT
2¢0Ty* + 2(7*)? 2\/> u*
< my* n 7w/ Ty*
2¢o 4,/co
2
C3 7”L1 s C3 N .
€ ——=—4—-,/—— C.25
2co mT + 4\ cgm using ( )

|: C3 ™ C3

1780 1 a ny since mT > n and m > 1
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=i C4N1.

Next, we immediately have:

Thus, combining (C.26), (C.27), and (C.28), we have:
P (p(y*) > 2/tuy/cany + 2t,) <

Lower bound on p'(g*). Differentiating p(y) yields:
m T

j=1t=1

et vt, > 0.

(At +y2g”

Applying Lemma C.4 yields,

T 2
<e bt VWE>0.

Our first goal is to lower bound mZ?:1 (/\ti#)z
increasing when z € [0, §*] and decreasing when z € (7*,
that ¢1t?/T < g* for t € {1,...

c1/T > y*). We write:

o0). Let t* € {0,...,
) and ot?/T > y* for t € {t* +1,...

T}

(C.27)

(C.28)

(C.29)

(C.30)

The function = — z/(z + 7*)?

be such

T (¢ =0 if

T
)\t Co Clt2/T .
m 5 2 M) using (C.24
; M+ )27 o ; (c1t?)T + *)? g ( )
Co _i 01t2/T Z Clt2/T
=—m Y Y T o T =0
a o (c1t?2/T + 5*)? Ml (c1t? )T + g*)?
[t 2/ T+1 2/
> L / —02190/ — 2dl’+/ —02190/ —— dx
ca o (az?/T+7") vy1 (a2?/T +y*)
[ rT+1 2/ t* 41 2/
_ 9, / _ar T / _ar /T g,
c | Jo (c122/T + y*) - (c122/T + y*)
The function z +— € +y I is upper bounded by 4 +. Therefore,
/t*“ c2%/T 1 1 m?T
———————de < — < — .
(@) T + g*)? 4y* " 4ey n?
Next,
T+ 2)T 1 T+1 T+1
/ %dx =al' | —5 tan™" <( : )_:/E) T 52 l— =
0 (c12?/T + y*) 1/ VTT VT 2¢1(T+1)2 +2¢:Ty




LEARNING FROM MANY TRAJECTORIES

T+1 1
> T 3/2Ltan_1 <( + )lﬁ> -3
2¢, " \/eana Ty 2¢iT

1

2¢ %\ Jesma c3 2cT

The last inequality holds because:
TEDVE 5 (g, [D2 s [AIT gy [
VI'y* c3 M1 €3 N1 3

Above, the first inequality holds using (C.25) and the last inequality holds since mT > n
. c3 1
Therefore, assuming that mT > 2,/ A e GaTe T m)nl,

/T“ c12?/T Az > tan~1(64+/c1/c3) mT
o

cx?/T +g%)2 "~ ~ 4./cic3 ny

Combining these inequalities, assuming that m < 2\/002173 tan~!(64+/c1/c3)n1, we have:

- 0 tan=1(64+/c1/c3) m2T
= =:Ch .

803/2\/> ni
(C.31)

sz: S @, tan*1(64\/cl/C3)m7T_ m?T
P >\t+y

61 41/6163 ni 4621”&%

2
Next, we turn to upper bounding m Z?:l x5 AL Again the function z — 22 /(z +7*)*

atg)?
is increasing when z € [0, 7*] and decreasing when x € (7*, 00), and therefore 22 /(z+7*)* <
16( Ty for all z > 0. Let t* € {0,..., T} be such that cot?/T < y* for t € {1,...,t*} and

cot?/T > g* for t € {t* +1,...,T}. In the case when co/T > §*, we set t* = 0. We have:

T v
m; v+ 57)"
2 T 2 /)2
c (cot*/T) )
< C(Ql)m; (of2/T 1 578 using (C.24)
2 Tl 2 /)2 T 2 /2
_a. (cot*/T) (cot”/T)
= C% |: £ (Cot2/T—|— g*)4 + t§r2 (Cot2/T + g*)4
10 o M f
(co(t)?/T +y*)*  (cot* +1)2/T +y*)*
ﬁ U (cox?/T)? T (cow?/T)?
s c%m{/l e/ T+7 " Joa 1 cOm2/T+y i
L (eo(t) ?/T)? (co(t* +1)*/T)? ]
(colt?/T+ 53" (eolt" + 2/T + )}
<4 { T /T (eo(t)/T)? (eo(t" + 1)°/T)*
S Lo (cox?/T + )t (co(t*)?/T +5*)* * (co(t* +1)%/T +5*)*
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< ij [/T M dx + L } since max z” < 1
S Lo (cox?/T +y%)1 8(y*)? x>0 (x4 5%t~ 16(y*)?2
2 T 2 /12 42
T 1 T
\%m [/ —(ng/ )_* 4dx+—2m 1 }
cd o (cox?/T +7*) 8¢z nj

We now bound:

I ok sk -1 al
T (coa?/T)? do — 272 (3coT + y*)(coT — 3y™) tan <\/ v )
o ( e

0r2/T 17 BTG (coT +7°) 16/ 213/2(7)3/2
. . -
< AT? - e T
0 _16coy*(COT +7%)? 3203/2T3/2(y*)3/2]
o -
< AT? +
U163 39623/ ()3 2]
[ 1 m? ™ m®
< 2T I m- using (C.25)
_160%02 n3T 32c8/203/2 n ]
< L + 7T T ‘ T2
< since mi = n.
10246002 326(1)/203/2 n?

Combining these inequalities, assuming that m < nq:

T

2 c 1 ™ mAT? 1 mPT?
mzi—wgﬁ T 12 R h—
— (A +7") cg | | 1024coca 3202 n; 8c; nj
< c% 1 n T n 1 | mAT2 . <
<= — | —— since m < n
2 | 1024coco 326(1)/262/2 83| n$ !
mAT?
=!Cp . (C32)
i
Combining (C.30), (C.31), and (C.32) yields
ok m2T m2T 4
P p(y") <ecs p—— 2\/5\/?63—/2 <e "Vt > 0. (C.33)
1 ny

Lower bounds on y*. We now combine (C.29) with (C.33) to established a lower bound
on y*. Equations (C.21) and (C.25) imply that:

s PO coni  p(y*)

p/(g*) = m2T p/(g*) :

We first set t;, = %m, so that by (C.33),
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We next set t,, = fny for a § > 0 to be specified. By (C.29),
P (p(g*) > 2(y/caf + 5)n1) <e P,

Let & denote the event:

&= {0 > ST 0 (o) < 2/erB + )}

2
__%
By a union bound, P(E$) < e %" + ¢7A"1. Furthermore,

con? y* c n?
1{&)} [sz:; - ;’,((Z*))] > 1{&)} {CQ - 4(*/?5”)} e

2.2
Setting 8 = ¢7 := min {?25, 166220054 }, we have that ¢y — AVeab+h) W > c9/2, and therefore from
(C.21),

(&) TL%
2 m2T"

2 —%
ey > {6 N E) {” Py W > 1aNE

m2T P (7) (C.34)

2
Finishing the proof. Define £ := £ N&; and define y* := % 3=, By a union bound,
62
P(&) < e—n/128 + e—mT/16 + e*ﬁnl 4 e—erm
2

_ _ __%5 4 _cr .
e 12 4 /16 | o TToricg " 4 o6 since mT > n

1 1 c2 cy
Sdexp [ —mind =, —, —5 T L) . gemesn, .
eXp( mm{ms 167 1024cq 64}”) ¢ (C.35)

From (C.20), since y* > y* on & by (C.34),

1 1
1{€}Z; < 1{& < . C.36
(€12 < U < (30
Next, by Proposition B.1, if n > 2max{1, cg' }log(4 max{1,cz'}), then we have
n = cgl logn < ne” " L 1.
We now bound,
T T
> Elzi] =) [EN{}Z] + E[1{€} 2]
i=1 i=1
T
<y [ L PEY O ) using (C.36) and Z; < (©1.1.7)s
— Aty Y Y
1
= Nty +P(EOT since tr(©177) =T
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T

1 —C8MNn .
) t; Wiy O using (C.24) and (C.35)

r 1
< —————do +4Te 3"
/0 cox? /T + y*
< Ly +4Te 3" = van mT 4+ AT e C8"
2 COy* 2./coca nq
T T
[ Vo == Bmi since ne” " < 1 and m > 1.
2\/0072 ni
Plugging this upper bound into (C.19):
" n 1mn 1 5, pn? T

R(m,T,T"; {PI — . L
(m. T.7 {P'}) > o¢p- OT 2m camT  256cs ¢ m2T T

The claim now follows. [ |

C.9 Proof of Theorem 6.3

Theorem 6.3 (Risk lower bound). There are universal positive constants cy, c1, and cy
such that the following holds. Recall that Plr (resp. PQ"X") denotes the covariate distribution
for a linear dynamical system with A = I,, and B = I, (resp. A = Opxn and B = 1,,). If
T > co, n > c1, and mT = n, then:

y 3 pn nT' T’
R(m, T, T {Py", Py }) > ca0f - 'max{mT’T’l

Proof Let P, := {Pg"xn, Pln}. We let ¢, ¢}, 5, and ¢ denote the universal positive
constants in the statement of Lemma C.15. We first invoke Lemma C.7 to conclude that:

!
R(m,T,T";P,) > — - — - max {, 1} . (C.37)

The proof now proceeds in three cases:

Case nT’/(mT) < 1. In this case, we trivially have max{%’, 1} = max{%, TT/, 1}.
Therefore, (C.37) yields:

2 / !
, O¢  pn nT" T
. > & 2 & L )
Rim,T,T";P,) > 5 T max mT’T’l

Case nT"/(mT) > 1 and m < ¢hn. In this case, we can invoke Lemma C.15 to conclude
that:

pn nT’ n nT’
R(m, T, T';Py) > cgag ol cgag © o max {mT’ 1. (C.38)
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Since n/m > 1/c,, we have that nT’/(mT) > T /(c,T). Therefore:

T T T T T
max{;T, 1} = max{?nT, CIQ—T, 1} > min{1, l/cé}max{?nT, T 1} .

Hence, from (C.38),

Tl T/
R(m,T,T";P,) > min{cg,cg/c'g}ag . % - max {ZLT’ T }

Case nT"/(mT) > 1 and m > c¢hn. In this case, we have T"/T > cynT’/(mT). Therefore,

we have:
Tl T/ T/ T, T,
max {T’ 1} = max {Clz;lﬂﬂ T 1} > min{1, ¢} max {:LnT? T 1} :

Hence, from (C.37),
Tl T/
R(m, T, T'; Py) > min{1/2,¢;/2}o? - L2 max {:ﬁ z 1} |

The claim now follows taking ¢y = ¢, c1 = ¢, and c2 = min{1/2, ¢}, c4/ch, ¢4 /2}. ]
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