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Abstract

Node2vec is a graph embedding method that learns a vector representation for each node
of a weighted graph while seeking to preserve relative proximity and global structure.
Numerical experiments suggest Node2vec struggles to recreate the topology of the input
graph. To resolve this we introduce a topological loss term to be added to the training loss
of Node2vec which tries to align the persistence diagram (PD) of the resulting embedding
as closely as possible to that of the input graph. Following results in computational optimal
transport, we carefully adapt entropic regularization to PD metrics, allowing us to measure
the discrepancy between PDs in a differentiable way. Our modified loss function can then be
minimized through gradient descent to reconstruct both the geometry and the topology of
the input graph. We showcase the benefits of this approach using demonstrative synthetic
examples.

Keywords: graph representation learning, persistent homology, optimal transport

1 Introduction

Various data types, such as bodies of text or weighted graphs, do not come equipped with
a natural linear structure, complicating or outright preventing the use of most machine
learning techniques that typically require Euclidean data as input. A natural workaround
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for this is to find a way to represent such data as sets of points in some Euclidean space
Rm. Regarding bodies of text, any unique word appears throughout a text with its own
frequency and propensity for having certain neighbors or forming certain grammatical
structures. This information can be used to assign each word some m-dimensional point in
a way such that relative proximities of all these points maximally respect the neighborhood
and structural data of the text. This is precisely the point of the Word2vec model (Mikolov
et al., 2013).

Node2vec (Grover and Leskovec, 2016) and its predecessor Deepwalk (Perozzi et al.,
2014) learn representations of all the nodes in a weighted graph as Euclidean points in a
fixed dimension. These are essentially Word2vec models in which each node of the input
graph is given context in a ‘sentence’ by taking random walks starting from that node. This
random-walk-generated training data is then handled in precisely the same way Word2vec

would handle words surrounded by sentences. This construction is easy to alter and expand
upon, allowing it to appear in complex projects like the one to embed new multi-contact
(hypergraph) cell data, as seen in the general work (Zhang et al., 2020a) and then specialized
to biological purposes in the follow-up paper (Zhang and Ma, 2020).

While representation learning models prove useful for revitalizing existing analyses and
opening up new insights, it is important to understand the extent of the data loss under
such a transformation. In this paper, we identify an area of stark failure on the part
of Node2vec (or more generally, random-walk-based graph embeddings) to retain certain
graph properties and so reintroduce the ability to resolve such features via the inclusion of
a new loss function. This failure point and the loss function we introduce to compensate
for it are both topological in nature.

(a) (b) (c) (d) (e)

Figure 1: Illustration of Node2vec behavior with and without the incorporation of our topological loss
during training. (a) An initial point cloud and (b) its corresponding pairwise distance matrix. (c) The
weighted adjacency matrix obtained by inverting the pairwise distances. This is the graph used as input
for Node2vec in this experiment. (d) The embedding proposed by Node2vec after training using only the
standard reconstruction loss. It fails to properly retrieve the eight smaller cycles appearing in the input
graph, and the emergent central cycle is far too large. (e) The embedding proposed by Node2vec after
training while including our new topological loss term, in which the eight smaller cycles are recovered and
the central cycle has been kept to a proper size.

1.1 Related Works

Graph embeddings. We have already mentioned the existence and value of graph-representation
models which use as training data some node neighborhood information. This training data
can be prescribed via random walks (Perozzi et al., 2014; Grover and Leskovec, 2016) or
other criteria (Tang et al., 2015), after which it is fed into a ‘skip gram’ encoder framework
as in (Mikolov et al., 2013) to learn a representation.

There are many node-to-vector representation learning models with various emphases
or improvements on the general framework, for example: the work of (Bojchevski and
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(a) (b)

Figure 2: Illustration of Node2vec behavior on a torus with and without the incorporation of our topolog-
ical loss during training. (a) View of the final embedding proposed by Node2vec using only the standard
reconstruction loss, seen from ‘above’. The transparency of points represents the distance from the observer
in the z-axis. Drawn in black are the largest inscribable spheres constructed at discretized angle increments
around the center of the data set. The tubelike topology of the torus is all but erased. (b) View of the
final embedding proposed by Node2vec including our new topological loss term with the largest inscribable
spheres drawn inside. The tubelike topology of the torus is recovered.

Günnemann, 2018) which represents each node as a Gaussian distribution to capture un-
certainty; MDS (Torgerson, 1952) which has existed for the better part of a century and
presently refers to a category of matrix algorithms for representing an input distance ma-
trix (reciprocal of a graph’s adjacency matrix) as a set of Euclidean points; neighborhood
methods that eschew a skip-gram model for direct matrix factorization (Cao et al., 2015);
and (Ou et al., 2016) leveraging data-motivated symmetries in directed graphs. We refer
to (Cui et al., 2018; Xu, 2021) for comprehensive surveys of such methods.

Of particular interest may be that, despite Node2vec’s usefulness, it has drawbacks
(Schumacher et al., 2021; Hacker and Rieck, 2022) and presently underutilized routes for
improvement (Grohe, 2020). While we focus on Node2vec as an easily implemented, flex-
ible, and widely used baseline, our method can be applied in parallel with any graph
representation method from which a persistence diagram can be computed at every epoch.
This is trivially the case for any method learning an Euclidean representation, such as
node-to-vector representation models.

Topological optimization. In order to incorporate topological information into the train-
ing of Node2vec, we rely on Topological Data Analysis (TDA), a branch of algebraic topol-
ogy rooted in the works (Edelsbrunner et al., 2000; Zomorodian and Carlsson, 2005). Per-
sistent homology in particular provides topological descriptors called persistence diagrams
that summarize the topological information (connected components, loops, cavities, etc.)
of structured objects (point clouds, graphs, etc.). These diagrams are frequently compared
through partial matching metrics (Cohen-Steiner et al., 2005, 2010). The question of op-
timizing topology is introduced in (Gameiro et al., 2016). It has found different practical
applications such as shape matching (Poulenard et al., 2018), surface reconstruction (Brüel-
Gabrielsson et al., 2020), graph classification (Yim and Leygonie, 2021), and topological
regularization of machine learning models (Chen et al., 2019; Hu et al., 2019; Gabrielsson
et al., 2020).

While many applications see topology being applied to the abstract inner layers of
machine learning frameworks for normalization or noise reduction (Hensel et al., 2021), in
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our application, as in the setting of (Moor et al., 2020), every step of the learning process
proposes a constantly improving Euclidean data-set from which we can directly obtain (and
compare) topologies via persistent homology.

Important theoretical results related to our work are (Carriere et al., 2021), which
establishes the local convergence of stochastic gradient descents of loss functions that in-
corporate the comparison of topological descriptors, and (Leygonie et al., 2021) which
provides a chain rule that enables explicit computation of gradients of topological terms.

Topological optimization is an active research area and recent variants have been pro-
posed to mitigate some of its limitations: (Leygonie et al., 2023) shows that the non-
smoothness of the persistent homology map can be alleviated by leveraging its stratified
structure, and Nigmetov and Morozov (2022) propose a way to address the sparsity of
topological gradients. In this work, we propose another way of improving the behavior of
topological loss functions by adding a specially designed entropic regularization term, an
idea inspired by advancements in computational optimal transport.

Optimal transport for TDA. Optimal transport literature can be traced back to the
works of Monge (1781) and Kantorovich (1942). (We refer to the bibliography of (Villani,
2009) for a comprehensive overview of optimal transport history.) The optimal trans-
portation problem is a linear program whose goal is to optimize matchings, thus sharing
important similarities with the metrics used in TDA to compare persistence diagrams (Mi-
leyko et al., 2011; Turner et al., 2014). This connection has been made explicit in (Divol
and Lacombe, 2021b) and leveraged toward statistical applications in a series of works
(Divol and Lacombe, 2021a; Cao and Monod, 2022). During the last decade, the work of
Cuturi (2013) has popularized the use of an entropic regularization term (an idea that can
be traced back to the work of Schrödinger (1932)) which makes the resulting optimization
problem strictly convex and hence more efficient to solve, along with ensuring differentiable
solutions with respect to the input objects. This opened the door to a wide range of practi-
cal applications, see for instance (Solomon et al., 2015; Benamou et al., 2015). The entropic
optimal transport problem has been further refined through the introduction of so-called
Sinkhorn divergences, initially utilized on a heuristic basis (Ramdas et al., 2017; Genevay
et al., 2018) and then further studied in (Feydy et al., 2019; Séjourné et al., 2019). A direct
use of entropic optimal transport in TDA was first investigated in (Lacombe et al., 2018).
However, it has recently been observed in (Lacombe, 2023) that the problem introduced in
the former work suffers from inhomogeneity. The latter, more recent work introduces a new
regularized transportation problem that can be applied to TDA metrics while preserving
the important properties of Sinkhorn divergences (efficient computation, differentiability)
and which we further build upon in the present work.

1.2 Contributions and Outline

Section 2 discusses preliminary technicalities required to properly introduce the Node2vec

model. We describe the simplest implementation of the Node2vec model and carefully
derive the gradient of the training loss. Section 3 introduces the topological loss function
which will be used to incorporate topological information into the Node2vec model. In par-
ticular, we apply a recently introduced entropic regularization of metrics used to compare
topological descriptors based on ideas developed in the computational optimal transport
community and carefully derive the corresponding gradient. To the best of our knowledge,
this is the first use of entropic regularization in the context of topological optimization.
Gathering these results, Section 4 presents the modified algorithm we use to train this new
Topological Node2vec model. We provide numerical results in Section 5, elaborating on
the results in Figures 1 and 2 to demonstrate that the addition of topological information
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significantly improves the quality of embeddings. Our implementation is publicly available
at this repository1.

2 The Node2vec Model

Node2vec is a machine learning model that learns the representation of a graph’s nodes as a
set of Euclidean points in some specified dimension. We carefully explain the neighborhood
generation methodology characteristic to Node2vec (based on Word2vec and Deepwalk) and
the structure of Node2vec’s internal parameters, as well as derive the gradient of its loss
function.

We elaborate on the details of Node2vec in this section following the structure laid
out in Algorithm 1. Node2vec learns an embedding in Rm of a graph by minimizing a
loss function L0 that measures some distance between the currently proposed embedding
(initially random) and training data extracted from the input graph.

Algorithm 1 Node2vec algorithm

Input: a weighted graph G = (V,E,w), learning rate η > 0, embedding dimension m,
neighborhood parameters (l, r, p, q);

Output: P ⊂ Rm with |P| = |V |
Start:
• initialize the parameter matrices Θ(0) (Definition 1) with values uniformly sampled
from the interval (−1, 1); let k = 0;
while not converged do
• for each node v ∈ V , generate the current neighborhood vector Cv (Definition 2)

and the training neighborhood vector Tv (Eq. (3)); let C(k) = {Cv(k)}v∈V and T (k) :=
{Tv(k)}v∈V
• update Θ(k + 1) using the gradient result of Proposition 5:

Θ(k + 1) := Θ(k)− η∇Θ(k)L0(T (k), C(k))

• k += 1
end while

We consider in this work weighted, undirected graphs, referred to simply as graphs,
as represented by a tuple G = (V,E,w), where V = {v1, . . . , vn} is a set of vertices
with a total order, E = V × V , and w : E → R≥0 is a symmetric weight function (i.e.,
w(vi, vj) = w(vj , vi) for all 1 ≤ i < j ≤ n) into the set of non-negative real numbers.

Definition 1 (Node2vec structure) Let G = (V,E,w) be a graph, |V | = n denote the number
of nodes, and m ∈ N be the desired embedding dimension. Define Θ := {W1,W2} where W1 ∈
Mn×m(R) and W2 ∈ Mm×n(R) are matrices of size n ×m and m × n, respectively. Let W1(i, ·)
denote the ith row of the matrix W1 for 1 ≤ i ≤ n. The corresponding Node2vec embedding is defined
as

Emb(Θ) = {W1(i, ·)}1≤i≤n ⊂ Rm.

When necessary, we will write Θ(k),Emb(Θ(k)) to convey dependence on the epoch k during the
learning process.

1. https://github.com/killianfmeehan/topological_node2vec
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Definition 2 (Current neighborhood probability) For v = vi ∈ V , given some parameter ma-
trices Θ, the current predicted neighborhood probability of v is the vector Cv given by the following:
Let v̄ = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn be the row vector where v̄(i) = 1, and for all 1 ≤ j ≤ n with j 6= i,
v̄(j) = 0. Define

u(= uv) := v̄ ·W1 ·W2 ∈ Rn (1)

and subsequently let Cv be the softmax of u:

Cv =

(
eu(1)∑

1≤j≤n e
u(j)

, . . . ,
eu(n)∑

1≤j≤n e
u(j)

)
.

For a node v ∈ V , the training neighborhood probability vector Tv is generated through
the following process: Four parameters are needed to dictate how Tv is generated:

• r: the number of random walks to be generated starting from the node v,

• l: the length of each walk,

• p: a parameter that determines how often a walk will return to the previous vertex in the
walk,

• q: a parameter that determines how often a walk will move to a new vertex that is not a
neighbor of the previous vertex.

We generate r walks starting from v, each of length l, with probability transitions given
the parameters p, q and weight function w : E → R≥0. Specifically:

• For the first step of the walk, the probability of traveling to any node vnext is the normalized
edge weight

w(v, vnext)∑
v̂∈V w(v, v̂)

.

• Suppose the previous step in the walk was vprev → vcurr. For any node vnext ∈ V , define

ξ(vprev, vcurr, vnext) =


0 if w(vcurr, vnext) = 0
1/p if w(vcurr, vnext) 6= 0 and vprev = vnext

1 if w(vcurr, vnext) 6= 0, vprev 6= vnext, and w(vprev, vnext) > 0
1/q otherwise.

Then, the probability of choosing any vnext as the next node in the walk is

ξ(vprev, vcurr, vnext) · w(vcurr, vnext)∑
v̂∈V ξ(vprev, vcurr, v̂) · w(vcurr, v̂)

. (2)

Collect all the nodes traversed by the r random walks starting from v and save this
information in a multiplicity function tv : V → Z≥0. That is, for any node vj ∈ V , tv(vj)
is equal to the number of times this node was reached across all the random walks starting
from v.

Finally, represent the information of the multiplicity function t as a probability vector
indexed over all the nodes of V :

Tv =

(
tv(vj)

l · r

)
1≤j≤n

. (3)

When necessary, we will write this vector as Tv(k) to convey dependence on the epoch k
during the learning process.
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Remark 3 It is also possible to neglect this random walk process and simply take Tv to be the
normalization of the vector (w(v1, v), . . . , w(vn, v)). This is equivalent to the parameter choice of
l = 1 and r = ∞. The choice of p and q have no impact on walks of length l = 1. This captures
immediate neighborhood information and fails to see structures such as hubs and branches. However,
as showcased later in our experiments, there are situations in which this is a computationally superior
option.

Node2vec is trained by minimizing the following loss L0:

Θ 7→ L0(T,Θ) :=
∑
v∈V

H(Tv, Cv), (4)

where H denotes the cross-entropy between probability distributions, given by

H(A,B) = −
∑
y∈Y

A(y) logB(y)

with the convention that 0 log(0) = 0. A practical formula to express this loss is given by
the following lemma:

Lemma 4 ((Grover and Leskovec, 2016), Equation (2)) Let v ∈ V . Treating Cv and Tv as
probability distributions over V ,

H(Tv, Cv) = −
∑

1≤j≤n

Tv(j)uv(j) + log
∑

1≤j≤n

euv(j),

where uv is as defined in (1).

The minimization of (4) is performed through gradient descent, for which we provide
an explicit expression below. In the following proposition, we use M(·, ·) to denote matrix
coordinates in order to avoid excessive subscripting. We also make use of the Kronecker
delta notation where for comparable objects a, b, δa,b = 1 if a = b and 0 otherwise.

Proposition 5 Recall that Θ = (W1,W2). Then, the gradient of L0 with respect to W1 is

∇W1L0(T,Θ) =

 ∑
1≤i≤n

δvi,vl ·
∑

1≤a≤n

W2(j, a)(Cvi(a)− Tvi(a))


1≤l≤n
1≤j≤m

.

Also, the gradient of L0 with respect to W2 is

∇W2L0(T,Θ) =

 ∑
1≤i≤n

W1(i, j)(Cvi(l)− Tvi(l))


1≤l≤n
1≤j≤m

.

The proof of this result is deferred to the appendix.

3 A Topological Loss Function for Node2vec

This section presents the important background on topological data analysis required in
this work, including the computation of topological descriptors called persistence diagrams
(PD) and their comparison through entropy regularized metrics. Eventually, we derive
an explicit gradient for these metrics that we will use when training Node2vec with a
topological term in its reconstruction loss.

Essentially, we will include a topological loss term L1 when training Node2vec (see
Eq. (4)) which penalizes the difference between the PD of Node2vec’s output and the PD
of the input graph.
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Figure 3: Vietoris-Rips construction of the filtered simplicial complex on a 2D point cloud. The persistence
diagram represents topological features as points in the upper diagonal half-plane of R2. Points close to the
diagonal such as point 1 above (birth and death values are very close) are regarded as noise. Features far
from the diagonal, such as points 2 and 3, persist across a large range of scales and are considered significant.

3.1 From Point Clouds to Persistence Diagrams

Persistent homology identifies topological features in structured objects such as point clouds
and encodes them as discrete measures called persistence diagrams, supported on the open
half-plane Ω = {(b, d) ∈ R2, d > b}. Each point in these measures expresses the scales
within the original point cloud at which a given topological feature was created (born) and
destroyed (died). We refer to (Chazal et al., 2016; Edelsbrunner and Harer, 2010) for a
general introduction. Below, we provide a concise presentation of this theory specialized
to the context of our work.

Let P = {p1, . . . , pn} ⊂ Rm be a finite point cloud. The Vietoris-Rips complex of
parameter ρ, denoted VRρ, is the simplicial complex over P given by all simplices such that
the longest pairwise distance between the vertices of that simplex is at most ρ. Increasing
ρ from 0 to the diameter of the point cloud gives us the filtration of simplicial complexes
VR = {VRρ}. A topological feature is one that is enclosed at some ρbirth (a hollow space
enclosed by edges, a hollow void enclosed by triangles, etc.) and then eventually filled in
by higher dimensional simplices at some ρdeath > ρbirth. We call ρbirth and ρdeath the birth
and death values of the topological feature, respectively.

We say a point cloud is in Vietoris-Rips general position when all of the birth and death
values of all topological features are unique. The persistence diagram of P is the multiset
PD(P) = {xi = (bxi

, dxi
)}1≤i≤N ⊂ Ω collecting all the birth and death values of topological

features of P (See Figure 3). Equivalently, this information can be represented as the finite

counting measure α =
∑N
i=1 δxi

, where δxi
denotes the Dirac mass located at xi.

3.2 Metrics for PDs and Optimal Transport

We now elucidate the development of metrics in optimal transport (OT) regarding how
they can be applied to measuring the distance between persistence diagrams (PDs). In
the following, we adopt the representation of PDs as finite counting measures, a formalism
initially introduced in (Chazal et al., 2016) which is vital for discussing connections to OT
literature.

We denote the orthogonal projection of x ∈ Ω to the diagonal ∂Ω := {(b, b), b ∈ R} by
p∂Ω(x).
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Definition 6 The space D of persistence diagrams is the set of finite counting measures supported
on Ω, that is

D =

{
α =

N∑
i=1

δxi

∣∣ xi ∈ Ω, N ∈ N

}
.

We equip D with the metric (α, β) 7→ FG(α, β)
1
2 (Cohen-Steiner et al., 2010) expressed as the

square-root of

FG(α, β) = inf
ζ∈Ξ(α,β)

∑
x

‖x− ζ(x)‖2, (5)

where Ξ(α, β) denotes the set of bijections from supp(α)∪∂Ω to supp(β)∪∂Ω, and supp(µ) denotes
the support of a counting measure µ (i.e. the set of all x such that µ({x}) > 0). Such a ζ essentially
bijects a subset of α onto a subset of β while mapping all leftover points to the diagonal ∂Ω. We call
ζ a partial matching between α and β. Any ζ∗ ∈ Ξ(α, β) that achieves the infimum in (5) is said to
be an optimal partial matching between α and β.

Remark 7 In practice, persistence diagrams come with an essential component which consists of
points whose death coordinate is +∞. In the context of Vietoris-Rips filtrations built on top of
arbitrary point clouds, there is exactly one such point in the persistence diagram of the form (0,+∞).
We ignore this for the purposes of our analysis.

Remark 8 In the TDA literature, the metric FG(·, ·) 1
2 is often referred to as the Wasserstein dis-

tance between persistence diagrams (see, e.g., (Cohen-Steiner et al., 2010; Turner et al., 2014)),
using an analogy with the Wasserstein distance introduced in OT literature (Villani, 2009; Santam-
brogio, 2015; Peyré et al., 2019). A formal connection between these two concepts was established
in (Divol and Lacombe, 2021b), where it was shown that the metric used in TDA is equivalent to the
optimal transport problem with Dirichlet boundary condition introduced by Figalli and Gigli (2010).
We use the notation FG to stress that this metric is not equivalent to the Wasserstein distance used
in OT. Adapting tools from OT literature to PDs (entropic regularization, gradients) will require this
level of technical care.

The following reformulation of FG will be convenient going forward:

Proposition 9 ((Divol and Lacombe, 2021b; Lacombe, 2023)) Let α, β ∈ D be two persis-

tence diagrams with α =
∑N
i=1 δxi

and β =
∑M
j=1 δyj . The (squared) distance between α and β can

be rephrased as the following minimization problem:

FG(α, β) = inf
P∈Π

[ ∑
1≤i≤N,
1≤j≤M

‖xi − yj‖2Pij

+

N∑
i=1

‖xi − p∂Ω(xi)‖2
1−

M∑
j=1

Pij


+

M∑
j=1

‖yj − p∂Ω(yj)‖2
(

1−
N∑
i=1

Pij

)]
,

(6)

where

Π =

P ∈ RN×M≥0 , ∀i ∈ {1, . . . , N},∀j ∈ {1, . . . ,M},
N∑
i′=1

Pi′j ≤ 1,

M∑
j′=1

Pij′ ≤ 1

 . (7)

The main claim of Theorem 9 is that the infimum over bijections ζ in (5) can be relaxed
to a minimization over matrices P that satisfy sub-marginal constraints as a consequence
of Birkoff’s theorem. Such a P will be referred to as a partial transport plan.
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3.3 Entropic Regularization for PD Metrics

While theoretically appealing, the metric FG has drawbacks. It is computationally expen-
sive and, though the optimal matching ζ∗ is generically unique, it suffers from instability: a
small perturbation in α can significantly change ζ∗, which is a clearly undesirable behavior
when it comes to optimizing topological losses (as detailed in section 3.4).

In computational optimal transport, an alternative approach popularized by Cuturi
(2013) consists of introducing a regularization term based on entropy. An illustrative
translation of this idea into the context of PD metrics would be to consider the following
adjusted problem from Proposition 9:

minimize P 7→
[ ∑

1≤i≤N,
1≤j≤M

‖xi − yj‖2Pij

+

N∑
i=1

‖xi − p∂Ω(xi)‖2
1−

M∑
j=1

Pij


+

M∑
j=1

‖yj − p∂Ω(yj)‖2
(

1−
N∑
i=1

Pij

)

+ εKL(P |1NM )

]
,

(8)

where P ∈ Π, ε > 0 is the ‘regularization parameter’, 1NM denotes the matrix of size

N×M filled with 1s, and KL(A|B) =
∑

1≤i≤N,
1≤j≤M

Aij log

(
Aij
Bij

)
−Aij+Bij for any two matrices

A,B ∈ RN×M . In (Lacombe et al., 2018) it was shown that, just like its OT counterpart,
(8) can be solved by the Sinkhorn algorithm (Sinkhorn, 1964), a simple iterative algorithm
that is highly parallelizable and GPU-friendly.

However, an important observation made in (Lacombe, 2023) is that (8) is not 1-
homogeneous in (α, β) when ε > 0 (while the same equation with ε = 0 is). While this
is of no consequence to the typical OT practitioner (see (Lacombe, 2023, Section 3)), it
dramatically affects persistence diagrams, which may have highly disparate total masses.
Loosely speaking, when N,M are large, the entropic contribution tends to outweigh the
transport cost in (8), yielding transportation plans that concentrate near the diagonal.
To overcome this behavior, we propose the following version of entropic regularization for
PD metrics, building on Homogeneous Unbalanced Regularized OT (HUROT) (Lacombe,
2023):
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Definition 10 Let α =
∑N
i=1 δxi , β =

∑M
j=1 δyj ∈ D and ε > 0. The HUROT problem FGε between

α and β is defined as

FGε(α, β) := inf
P∈Π

[ ∑
1≤i≤N,
1≤j≤M

‖xi − yj‖2Pij

+

N∑
i=1

‖xi − p∂Ω(xi)‖2
1−

M∑
j=1

Pij


+

M∑
j=1

‖yj − p∂Ω(yj)‖2
(

1−
N∑
i=1

Pij

)

+ εR(P |abT )

]
,

(9)

where Π is defined in (7) and the vectors a = (‖xi − p∂Ω(xi)‖2)Ni=1 ∈ RN and b = (‖yj −
p∂Ω(yj)‖2)Mj=1 ∈ RM are both treated as column vectors, resulting in abT being a N ×M matrix.
The homogeneous entropic regularization term is given by

R(P |abT ) :=
1

2

(
KL

(
P

∣∣∣∣ abT

pers(α)

)
+ KL

(
P

∣∣∣∣ abT

pers(β)

))
(10)

where pers(α) =

N∑
i=1

‖xi − p∂Ω(xi)‖2 is called the total persistence of α (and similarly for β).

We additionally define the Sinkhorn divergence between persistence diagrams to be

SFGε(α, β) := FGε(α, β)− 1

2
FGε(α, α)− 1

2
FGε(β, β). (11)

The main benefit of working with FGε instead of FG is that the former is defined
through a strictly convex optimization problem (while being 1-homogeneous in (α, β), a
major improvement over (8) used in (Lacombe et al., 2018)). In addition to what we gain
in terms of computational efficiency, we ensure that the optimal partial transport plan P εα,β
between α and β for this regularized problem is unique and smooth in (α, β).

Although FGε approximates FG in a controlled way (in particular when ε → 0, see
(Altschuler et al., 2017; Dvurechensky et al., 2018; Pham et al., 2020)), it also introduces

an unavoidable bias: namely, while FG(·, ·) 1
2 is indeed a metric in D, in general we have

that FGε(β, β) > 0. It is even the case that minα FGε(α, β) < FGε(β, β) (Feydy et al.,
2019), meaning that if we minimize the map α 7→ FGε(α, β) through a gradient-descent-like
algorithm, α is not pushed “toward β”, but rather an inwardly shrunken version of it (see
for instance (Janati et al., 2020)).

Finally, this bias is compensated for in (11) by our introduction of Sinkhorn divergence
for persistence diagrams, which follows parallel ideas developed in OT (Ramdas et al., 2017;
Genevay et al., 2018; Feydy et al., 2019). In the case of persistence diagrams, it was proved
in (Lacombe, 2023) that under relatively mild assumptions we can guarantee SFGε(α, β) ≥
0, with equality if and only if α = β. Furthermore, SFGε(αn, β)→ 0⇔ FG(αn, β)→ 0 for
any β ∈ D and any sequence of persistence diagrams (αn)n.

Summary and Implementation Details. Incorporation of the entropic regularization
term in the optimization problem defining distance between two persistence diagram has
several merits from both theoretical and practical perspectives. The map α→ SFGε(α, β)
allows for a proper definition of smooth gradients everywhere (see Section 3.5), while the

11
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map α 7→ FG(α, β) is only differentiable almost everywhere, meaning that in practice a
small perturbation in α or β can yield arbitrarily different gradients. Additionally, one
might wish to convey uncertainty in the persistence diagrams inherited from uncertainty
of position in the original data, a role the entropic parameter ε precisely fulfills by relaxing
the possible precision of all matchings.

We stress that, as of writing, the implementation we publicly provide to compute SFGε

and its gradient relies on naive Python loops while the implementation of FG that we use,
provided by Gudhi (Maria et al., 2014) (which itself relies on PythonOptimalTransport

(Flamary et al., 2021)), is far more optimized. In particular, we do not leverage the full
computational potential of our approach (e.g. parallelization on GPU, see (Lacombe et al.,
2018; Peyré et al., 2019) for details) in our numerical experiments (see Section 5) as they
are not large enough to benefit from the gains in computational efficiency, and should be
regarded as proof-of-concept for the inclusion of our distance on persistence diagrams into
a Node2vec framework.

3.4 Gradient of the Vietoris-Rips Map

Recall from Section 3.1 that in the Vietoris-Rips construction of persistence diagrams any
point x = (bx, dx) ∈ Ω in the PD of P = {p1, . . . , pn} represents some topological feature,
where bx is its birth value and dx is its death value. These values correspond to unique
(assuming Vietoris-Rips general position) simplices that cause the birth and death. Specif-
ically, the birth value is equal to the length of the longest edge in the simplex σbx which
encloses some perimeter or void, while the death value is equal to the length of the longest
edge in the simplex σdx which fills in the enclosed space.

Further denote the unique longest edge of any σ by the 1-simplex σ̄. That is, the
generator x = (bx, dx) has birth and death values determined by simplices σbx , σdx , which
have longest edges given by σ̄bx = {p1

bx
, p2
bx
} ⊂ P and σ̄dx = {p1

dx
, p2
dx
} ⊂ P.

See Figure 4 for a visual explanation of the following lemma.

Lemma 11 (Lemma 3.5 in (Gameiro et al., 2016)) Any generator x = (bx, dx) ∈ PD(P), seen
as a map Rn → R2, is differentiable. Namely, for p ∈ P,

∂bx
∂p

=
(δp,p1bx

− δp,p2bx )(p1
bx
− p2

bx
)

‖p1
bx
− p2

bx
‖

and
∂dx
∂p

=
(δp,p1dx

− δp,p2dx )(p1
dx
− p2

dx
)

‖p1
dx
− p2

dx
‖

.

The Kronecker delta difference term simply gives us that the partial derivative is zero save for when
p is precisely one of the two determining points of the birth (resp. death) edge.

3.5 Gradients for Topological Losses

We consider the gradient of the map α 7→ d(α, β) when d is either the squared metric FG
introduced in (5) or the Sinkhorn divergence for persistence diagrams SFGε (11) based
on the HUROT problem FGε (9). When minimizing the map α 7→ FG(α, β), a typical
reasoning used in topological data analysis literature is the following: if we let ζ∗ be the
(generically unique) optimal partial matching between α and β, it is natural to define a
pseudo-gradient of α 7→ FG(α, β) by

∇αFG(α, β) : x 7→ ∇x‖x− ζ∗(x)‖2 = 2(x− ζ∗(x)). (12)

That is, a gradient step pushes each x in α toward its corresponding ζ∗(x) (whether this
belongs to the support of β or to the diagonal ∂Ω). A pseudo-gradient of the map α 7→
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x = (bx, dx)

birth edge death edge

p1
bx

p2
bx

p1
dx

p2
dx

σ̄bx
= (p1

bx
, p2

bx
) σ̄dx

= (p1
dx

, p2
dx

)

Figure 4: A visualization of how arrows (gradients) in the PD translate to arrows in the point cloud as
prescribed by Lemma 11. A non-trivial generator in the PD corresponds to two edges: the one responsible
for its birth (the edge that closes off some perimeter) and the one responsible for its death (the longest edge
of the triangle that fills in that perimeter). Movement of the generator in the birth coordinate corresponds
to extension and contraction of the birth edge, while movement in the death coordinate is the same for the
death edge. By extension and contraction, we mean that the two points comprising this ‘edge’ are moved
simultaneously directly toward or directly away from each other. Specifically, movement of the generator in
the negative direction of one axis represents contraction, while movement in the positive direction represents
extension.

FG(α, β) defined in this way can be identified with the usual meaning of gradient for the

map (R2)N → R given by (x1, . . . , xN ) 7→ FG
(∑N

i=1 δxi
, β
)

.

A key contribution of Leygonie et al. (2021, Section 3.2 and 3.3) was in showing that
this pseudo-gradient can indeed be used in a chain rule setting with Theorem 11. Formally,
gradients of maps of the form Q 7→ L(PD(Q)) (with L : D → R) can be obtained as
the composition of the corresponding gradient and pseudo-gradient. In particular, though
the parametrization of α and of any gradients by the n-tuple (x1, . . . , xN ) depends on the
choice of an ordering, the eventual chain rule is independent of this choice.

Building on this result, we derive the gradient of the Sinkhorn divergence for persis-
tence diagrams that we use in our implementation. To alleviate notation, for some partial
transport plan P ∈ Π we will write its total mass as

M(P ) =
∑

1≤i≤N,
1≤j≤M

Pij

and we let
Mi(P ) =

∑
1≤j≤M

Pij

(the fraction mass transported from xi to any of the yj , j = 1, . . . ,M). We then introduce
the barycentric map with parameter ε > 0 from α to β defined on {x1, . . . , xN} by

1

2
T εα,β(xi) = p∂Ω(xi)

(
1−Mi(P

ε
α,β)

)
+

M∑
j=1

(P εα,β)ij · yj ,

where P εα,β is the unique optimal partial transportation plan for FGε(α, β). Note that the
self-optimal partial transportation plan P εα,α is necessarily symmetric.

13
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Proposition 12 Let α =
∑N
i=1 δxi , β =

∑M
j=1 δyj be two persistence diagrams. The gradient of

α 7→ SFGε(α, β) in the sense of (Leygonie et al., 2021) is the map defined on {x1, . . . , xN} by

∇αSFGε(α, β) : xi 7→ T εα,α(xi)− T εα,β(xi) + εKi (13)

with

Ki =

[
1

2

di − bi
pers(α)

(
M(P εα,β)−M(P εα,α)

)
− 2

di − bi
(
Mi(P

ε
α,β)−Mi(P

ε
α,α)

)](−1
1

)
,

where xi = (bi, di) ∈ Ω (so that di > bi), for i = 1, . . . , N .

Proof The gradient with respect to xi of SFGε is given by

∇xi

∑
i′,j

‖xi′ − yj‖22(P εα,β)i′j +

N∑
i′=1

‖xi′ − p∂Ω(xi′)‖22

1−
M∑
j=1

(P εα,β)i′j


−1

2
∇xi

∑
i′j

‖xi′ − xj‖22(P εα,α)i′j +
∑
i′

‖xi′ − p∂Ω(xi′)‖22

1−
M∑
j=1

(P εα,β)i′j


+ε∇xi

ϕ(x1, . . . , xN ),

where

ϕ(x) =
1

2

(
KL

(
P εα,β

∣∣∣∣ abT

pers(α)

)
+ KL

(
P εα,β

∣∣∣∣ abT

pers(β)

))
− 1

2
KL

(
P εα,α

∣∣∣∣ aaT

pers(α)

)
accounts for the entropic regularization terms. Note that ϕ depends on x since the col-
umn vector a accounts for the squared distance between the points in supp(α) and their
projection on the diagonal ∂Ω.

Computing the gradient of the first term yields

∇xi

∑
i′,j

‖xi′ − yj‖22(P εα,β)i′j +

N∑
i′=1

‖xi′ − p∂Ω(xi′)‖22

1−
m∑
j=1

(P εα,β)i′j


=2

M∑
j=1

(xi − yj)(P εα,β)ij + 2(xi − p∂Ω(xi))

1−
M∑
j=1

(P εα,β)ij


=2xi − 2

 M∑
j=1

yj(P
ε
α,β)ij + p∂Ω(xi)

1−
M∑
j=1

(P εα,β)ij


=2xi − T εα,β(xi).

For the second term, using the symmetry of P εα,α and the above calculation, we have

1

2
∇xi

∑
i′,j

‖xi′ − xj‖22(P εα,α)i′j +

N∑
i′=1

‖xi′ − p∂Ω(xi′)‖22

1−
M∑
j=1

(P εα,α)i′j


=2xi − T εα,α(xi).
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The gradient of ϕ is obtained by expanding the factors in the different KL terms and

observing that ∇xi
‖xi − p∂Ω(xi)‖2 = (di − bi)

(
−1
1

)
, resulting in

1

2
∇xi log(pers(α))

∑
i′j

(P εα,β)i′j −∇xi

∑
i′j

(P εα,β)i′j log(‖xj − p∂Ω(xj)‖2)

− 1

2
∇xi

log(pers(α))
∑
jk

(P εα,α)jk +∇xi

∑
jk

(P εα,α)jk log(‖xj − p∂Ω(xj)‖2)

+∇xi

1

2
pers(α)−∇xi

1

2
pers(α))

=

[
1

2

di − bi
pers(α)

(
M(P εα,β)−M(P εα,α)

)
− 2

di − bi
(
Mi(P

ε
α,β)−Mi(P

ε
α,α)

)](−1
1

)
.

Putting these terms together completes the proof.

Remark 13 Interestingly, the term T εα,β−T εα,α appearing in our gradient can be related to (Carlier
et al., 2022, Section 4.2), where it is shown that this quantity represents the tangent vector field
for the gradient flow of the Sinkhorn divergence between probability measures (instead of persistence
diagrams). Because of the particular role played by the diagonal in our problem2, we have the
additional term εKi which acts orthogonally to the diagonal to account for our distance-weighted
entropic term. In particular, when we take the limit as ε → 0, since T εα,β → Pα,β and T εα,α → id,
we expect to retrieve the descent direction Pα,β − id which exactly describes the pseudo-gradient (12)

and is the geodesic between α and β for the usual FG(·, ·) 1
2 metric (Turner et al., 2014). This is

analogous to the displacement interpolation proposed by McCann in OT literature (McCann, 1997).

4 Topological Node2vec

In order to utilize topological information in Node2vec, we need to be able to extract a per-
sistence diagram from a graph. Recall from Section 3.1 that the Vietoris-Rips construction
of the persistence diagram relies only on pairwise distances between points, for which we
can easily make an analog involving the weights of edges in a graph G = (V,E,w). Namely,
the persistence diagram PD(G) of a graph G is the one extracted from the Vietoris-Rips
filtration {VRρ} where each edge (u, v) ∈ V × V is inserted at time

1

(w(u, v) + γ)ν

for ν, γ > 0 with γ very small (1/γν becoming the distance between points connected by
zero-weight edges in the graph). This ensures that vertices u, v connected by a strong
(resp. weak) edge in the graph w(u, v) are regarded as close (resp. far) in the view of the
Vietoris-Rips filtration.

Definition 14 For a Node2vec model with input graph G and parameters Θ = (W1,W2), we define
the topological loss term

L1(G,Θ) = SFGε(PD(Emb(Θ)),PD(G)). (14)

Recall from Definition 1 that Emb(Θ) is the matrix W1 with its rows viewed as Euclidean points. It
follows immediately that the gradient of L1 with respect to any coordinate of W2 is zero.

2. Formally, it induces a spatially varying divergence (Séjourné et al., 2019, Section 2.4)

15



Hiraoka, Imoto, Lacombe, Meehan, and Yachimura

We are now ready to state the gradient of the topological loss function L1(Θ, G) with
respect to Θ, or, as clarified above, with respect to the points p in the current embedding
Emb(Θ).

Theorem 15 (Gradient of Topological Loss Term) Let α = PD(Emb(Θ)) and β ⊂ Ω. Let ζε
be the gradient of α 7→ SFGε(α, β) as provided by (13). Let p ∈ Emb(Θ). We have

∂L1

∂p
=

∑
x∈PD(Emb(Θ))

ζε(x) · ∂x
∂p
,

where the partial derivative
∂x

∂p
is provided by Theorem 11.

Proof From the chain rule of (Leygonie et al., 2021) (see Section 3.5) and Equation (13)
it follows that

∂L1

∂p
=

∑
x∈PD(Emb(Θ))

∂SFGε

∂x
· ∂x
∂p

=
∑

x∈PD(Emb(Θ))

ζε(x) · ∂x
∂p
.

We can now train Node2vec using a loss

L(Θ) = λ0L0(T,Θ) + λ1L1(G,Θ)

for some parameters λ0, λ1 ≥ 0, using a standard gradient descent framework with a
learning rate η > 0. Let Θ(k) denote the parameters after k ∈ Z≥0 steps of gradient
descent updates. Then the next epoch’s parameters are given by

Θ(k + 1) := Θ(k)− η
(
λ0∇Θ(k)L0(T (k),Θ(k)) + λ1∇Θ(k)L1(G,Θ(k))

)
(15)

with individual gradients given by Proposition 5 and Theorem 15. We summarize this in
Algorithm 2.

5 Numerical Experiments

In this section, we elaborate on two synthetic experiments designed to demonstrate what
we gain over the base Node2vec model by including our topological loss function (14).

Our code is publicly available at this repository3. Its implementation provides both
CPU and GPU backend. The CPU-backend relies on Gudhi (Maria et al., 2014), while the
GPU-backend is based on a fork of Ripser++ (Bauer, 2021; Zhang et al., 2020b) where
we adapted the code in order to access the correspondence between a generator x in the
PD and the points in the point cloud responsible for the birth edge and death edge. For
an in-depth examination of all the hyperparameters of this network (both those related
to original Node2vec as well as our topological additions), please see the readme file and
examples notebook in the repository.

3. https://github.com/killianfmeehan/topological_node2vec
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Algorithm 2 Topological Node2vec algorithm

Input: a weighted graph G = (V,E,w), learning rates η, λ0, λ1, embedding dimension m,
neighborhood parameters (l, r, p, q), entropic regularization parameter ε > 0;

Output: P ⊂ Rm with |P| = |V |
Start:
• initialize the parameter matrices Θ(0); let k = 0;
• compute the persistence diagram PD(G)
while not converged do
• compute the persistence diagram PD(Emb(Θ(k)))
• for each node v ∈ V , generate the current neighborhood vector Cv and the training

neighborhood vector Tv; let C(k) = {Cv(k)}v∈V and T (k) := {Tv(k)}v∈V
• update Θ(k + 1) using (15)
• k += 1

end while

Figure 5: Euclidean data for the synthetic experiment, from which we derive a weighted adjacency matrix
to input into (Topological) Node2vec. This data set demonstrates overt topological features on two scales:
the eight smaller cycles and the larger emergent cycle formed by their arrangement.

Remark 16 In practice, we set λ1 = 0 for the first few epochs (no topological loss) in order to
obtain an embedding with mostly accurate geometry, after which we allow λ1 > 0 to begin correcting
the topology. From the point that we let λ1 > 0, it is worth noting that the average value of the loss
function L0 basically does not change while L1 diminishes; that is, the accuracy of the embedding’s
geometry remains constant while the topology improves.

5.1 Experiment: Circle Made of 8 Smaller Circles

We look at a dataset consisting of 8 circles each with 16 points arranged radially in a larger
circle, seen in Figure 5. While the points and the sampled circles themselves are distributed
uniformly, each point is wiggled by some small random noise, ensuring that the input data
satisfies Vietoris-Rips general position (which is guaranteed if all pairwise distances are
unique). The topological loss term for this example uses exclusively homology dimension
1 (loops).

Node2vec neighborhood generation. We first demonstrate that, as shown in Figure 6,
for this data set it is best to forego the random neighborhood generation of Node2vec and
simply use as neighborhoods the columns of the adjacency matrix corresponding to each
vertex. (See Remark 3.)
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(a) l = 1, r = 8 (b) l = 2, r = 4 (c) linear inter-
polation from
l = 1, r = 8 to
l = 8, r = 1

(d) l = 1, r = 16 (e) l = 1, r = ∞,
as in Remark 3

Figure 6: Various non-topological Node2vec embeddings of the point cloud in Figure 5 (specifically the
reciprocal of its pairwise distance matrix) trained with different neighborhood parameters. Even in the best
case, original Node2vec dramatically erases topological information. (a – d) We see that l = 1 and r large
give the best results. (e) This embedding was done using full-column vectors for neighborhood information.

(a) No mini-
batching: 100%
of data used at
every epoch.

(b) Minibatches
of 75% of data.

(c) Minibatches
of 50% of data.

(d) Minibatches
of 25% of data.

(e) Minibatches
graded from 25%
of data at the
beginning of the
embedding pro-
cess to 100% at
the end.

Figure 7: Topological Node2vec embeddings demonstrating the topological loss function’s interaction with
minibatch size. (a – d) As minibatches decrease in size, the inward distortion of the points that provide
the death value of the inner topological feature also decreases. (e) Testing for potential improvement, we
performed another embedding beginning with 25% minibatches and then linearly increasing to 100 % as the
model continued to train. All other parameters are fixed across these five experiments.

Minibatches are important outside of computation time. Upon introduction of the topo-
logical loss function (14), we immediately encounter a novel problem. When identifying
some topological feature in the embedding and matching it to a smaller feature in the orig-
inal data (something that is closer to the diagonal), the gradient update of the topological
loss function (14) expands the birth edge and shrinks the death edge of the feature. (Recall
Figure 4.) However, the points that dictated the birth and death values of this feature are
now all but guaranteed to be the same determining points in the next step of the network,
causing a repeat of the same movement on the same points, leaving the rest of the data set
untouched and the embedding progressively distorted. Taking properly sized minibatches
(subsampling the data at each step of the network) can completely remove this problem,
as the points determining the birth or death of such a generator are likely to change from
one step to the next. Figure 7 demonstrates this in detail.

In less persistent homological vocabulary: the topological loss function is very single-
minded in creating the proper topology at the first opportunity with no regard for geometry
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(spatial relationships between points). This can be seen in most experiments by running the
code without the Node2vec loss function (λ0 = 0). Mini-batching is a way of loosening the
aggressive grip of the topological loss function on features that conflict with the geometry
of the Node2vec loss function, meaning that mistakes which emerge during the embedding
process will appear infrequently and be quickly undone by subsequent steps.

Results. Comparing the best results from original Node2vec in Figure 6 (e) and the
best results from Topological Node2vec in Figure 7 (e), we can starkly see the information
loss in base Node2vec as well as our recovery of it via the topological loss function (14).

5.2 Experiment: Torus

We sample a torus by arranging points uniformly over the surface. (These are not uniformly
sampled from a distribution, but rather a constructed covering. See the demonstration
notebook in the repository for the precise details.) Once again, in order to ensure Vietoris-
Rips general position, we perturb all points by a small random vector.

The smooth torus has two independent one-dimensional topological features, represent-
ing one horizontal loop around the torus and one vertical one. The torus also has a single
two-dimensional feature that represents the hollow interior. We benefit here from a very
small minibatch size, eventually settling on 6.25% of the full data set, constant across all
epochs. The topological loss term for this example uses homology dimensions 1 (loops) and
2 (voids).

Visualization. To visualize our embedded tori, we project the results into the first two
principal components with the third principal component corresponding to distance from
the viewer.

Visualizing the reconstruction of the the hollow tube is vital to judging the success of
any torus embedding. To draw the ‘largest’ inscribable spheres as in Figure 8, in increments
of very small angles we take rectangular slices of the torus widened from the ray that starts
at the torus’ center and extends in the direction of the current angle. Averaging all points
on this rectangle, we obtain a central point c. We then inscribe the largest possible sphere
at that center.

Results. We note the dramatic loss of topology in Node2vec and equally dramatic re-
covery of such features with the inclusion of the topological loss function (14) demonstrated
in Figure 8.

6 Discussion

The most obvious limiting factor for applying this model is the computation time of ac-
quiring the persistence diagram of the proposed embedding at every epoch. Fortunately, in
our synthetic examples, it is almost always the case that the best embeddings come out of
very small minibatch sizes, which also result in dramatically reduced computation times.
As PD computation becomes further optimized, the model will benefit tremendously.

Since the generating point cloud (and thus the resulting persistence diagram) is only
very marginally altered from one epoch to the next, this project seems potentially suitable
for application of the work in (Cohen-Steiner et al., 2006) which may dramatically reduce
computation time after generating the initial persistence diagram. However, this conflicts
(at least at first glance) with subsampling minibatches at every epoch, which causes us to
have largely unrelated PDs from one epoch to the next.

Part of the motivation for this project is the need for improved analysis of chromatin
conformation capture data obtained from methods such as Hi-C and Pore-C (Ulahannan
et al., 2019). These data represent the frequency of all two-contacts (Hi-C) or multi-contacts
(Pore-C) among DNA segments and can be considered as graphs (Hi-C) or hypergraphs
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 8: 3D render of various point clouds with largest inscribable spheres drawn inside. (a,d) Synthetic
data created for this experiment. (b,e) Best embedding proposed by Node2vec over various hyper-parameters.
(c,f) Best embedding proposed by Topological Node2vec over extensive space of hyper-parameters. (g) A
plot of the radii of all largest inscribable spheres drawn inside the preceding tori. In these examples, one
hundred evenly distributed angles are taken, and all radii have been normalized by the final diameter of
their corresponding embedding.

(Pore-C). It is biologically known that chromatin conformation is dynamically deformed
and forms first-order and second-order topological structures to regulate gene expression
in the cell differentiation process. Reconstructing three-dimensional topological structures
of DNA from these data is a crucial point of current cell research, and can be regarded
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as a problem of graph (or hypergraph) embeddings. Our demonstrations in this document
make it clear that conventional data analysis using Node2vec-based methods are unlikely
to capture chromatin conformation precisely due to the eradication of topology, and Topo-
logical Node2vec hopes to resolve this. The validation of Topological Node2vec as applied
to epigenome data science is the primary concern of our future work.
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Appendix A. Delayed Proofs

Proof [Proof of Theorem 5] Let v = vi, 1 ≤ j ≤ m, and 1 ≤ l ≤ n.

∂H(Tv, Cv)

∂W1(l, j)
= −

∂
∑

1≤a≤n Tv(a)uv(a)

∂W1(l, j)
+
∂ log

∑
1≤a≤n e

uv(a)

∂W1(l, j)

= −
∑

1≤a≤n

Tv(a)
∑

1≤b≤m

∂W1(i, b)W2(b, a)

∂W1(l, j)
+
∑

1≤a≤n

euv(a) ∂uv(a)

∂W1(l, j)
· 1∑

1≤a≤n e
uv(a)

= −δil
∑

1≤a≤n

(Tv(a)W2(j, a) +W2(j, a)Cv(a))

= δil
∑

1≤a≤n

W2(j, a)(Cv(a)− Tv(a)).

Next,

∂H(Tv, Cv)

∂W2(j, l)
=
∂(−

∑
1≤a≤n Tv(a)uv(a) + log

∑
1≤a≤n e

uv(a))

∂W2(j, l)

= −
∂
∑

1≤a≤n Tv(a)uv(a)

∂W2(j, l)
+
∂ log

∑
1≤a≤n e

uv(a)

∂W2(j, l)

= −
∑

1≤a≤n

Tv(a)
∂uv(a)

∂W2(j, l)
+
∑

1≤a≤n

∂euv(a)

∂W2(j, l)
· 1∑

1≤a≤n e
uv(a)

= −
∑

1≤a≤n

Tv(a)
∑

1≤b≤m

∂W1(i, b)W2(b, a)

∂W2(j, l)
+
∑

1≤a≤n

euv(a) ∂uv(a)

∂W2(j, l)
· 1∑

1≤a≤n e
uv(a)

= −Tv(l)W1(i, j) +W1(i, j) · euv(l)∑
1≤a≤n e

uv(a)

= W1(i, j)(Cv(l)− Tv(l)).

That is, the gradient of L0(Tv, Cv) with respect to W1 is non-zero only when taking partials
with respect to the ith row of W1 (recall v = vi).
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Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 7045–7054.
PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/moor20a.html.

Arnur Nigmetov and Dmitriy Morozov. Topological optimization with big steps. arXiv preprint
arXiv:2203.16748, 2022.

Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserv-
ing graph embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, page 1105–1114, New York, NY, USA, 2016.
Association for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939751.
URL https://doi.org/10.1145/2939672.2939751.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, page 701–710, New York, NY, USA, 2014. Associa-
tion for Computing Machinery. ISBN 9781450329569. doi: 10.1145/2623330.2623732. URL
https://doi.org/10.1145/2623330.2623732.
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