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Abstract

The paper brings together methods from two disciplines: machine learning theory and robust statis-
tics. We argue that robustness is an important aspect and we show that many existing machine
learning methods based on the convex risk minimization principle have — besides other good prop-
erties — also the advantage of being robust. Robustness properties of machine learning methods
based on convex risk minimization are investigated for the problem of pattern recognition. As-
sumptions are given for the existence of the influence function of the classifiers and for bounds on
the influence function. Kernel logistic regression, support vector machines, least squares and the
AdaBoost loss function are treated as special cases. Some results on the robustness of such methods
are also obtained for the sensitivity curve and the maxbias, which are two other robustness criteria.
A sensitivity analysis of the support vector machine is given.

Keywords: AdaBoost loss function, influence function, kernel logistic regression, robustness,
sensitivity curve, statistical learning, support vector machine, total variation

1. Introduction

In statistical learning theory the principle of regularized empirical risk minimization based on con-
vex loss functions plays an important role, see Vapnik (1998). One strong argument in favor of such
methods is that many classifiers based on convex loss functions are universally consistent under
weak conditions. Nevertheless, it is important to investigate robustness properties for such statis-
tical learning methods for the following reasons. In almost all cases statistical models are only
approximations to the true random process which generated a given data set and for which a method
for analyzing the data is designed. Hence the natural question arises what impact such deviations
may have on the results. J.W. Tukey, one of the pioneers of robust statistics, mentioned already in
1960 (Hampel et al., 1986, p. 21):

A tacit hope in ignoring deviations from ideal models was that they would not matter;
that statistical procedures which were optimal under the strict model would still be
approximately optimal under the approximate model. Unfortunately, it turned out that
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this hope was often drastically wrong; even mild deviations often have much larger
effects than were anticipated by most statisticians.

The main aims of robust statistics are the description of the structure best fitting the bulk of the data
and the identification of points deviating from this structure or deviating substructures for further
treatment, cf. Hampel et al. (1986). Very briefly, a good robust method can be described as follows.

e If the strict model assumptions are violated, than the results of a robust method are only
influenced in a moderate way by a few data points, which deviate grossly from the structure of
the bulk of the data set, or by many data points, which deviate only mildly from the structure
of the bulk of the data set.

e A robust method should have a reasonable high efficiency when the data set was in fact
generated by the assumed model.

In practice one has to apply machine learning methods to a data set with a finite sample size. Ma-
chine learning methods are nonparametric tools. Nevertheless, the robustness issue is important,
because the classical assumption that all data points were independently generated by the same dis-
tribution can be violated in practice. One reason is that outliers often occur in real data sets. Outliers
can be described as data points which “are far away ... from the pattern set by the majority of the
data”, see Hampel et al. (1986, p. 25). Sometimes outliers are even correlated, which contradicts the
classical assumption that the observations in the data set were generated in an independent manner.
There are many reasons for the occurrence of outliers, e.g. typing errors and gross errors, which
are errors due to a source of deviations which acts only occasionally but is quite powerful. E.g.
undetected outliers may have an extreme impact on the estimation of insurance tariffs computed by
motor vehicle insurance companies. From a robustness point of view the occurrence of outliers is
only one of several possible deviations from the assumed model. There are often no or virtually no
gross errors in high-quality data, but 1% to 10% of gross errors in routine data seem to be more the
rule than the exception, cf. Hampel et al. (1986, p. 27f). Especially in large data mining problems
the data quality is sometimes far from being optimal, cf. Hand et al. (2001) or Hipp et al. (2001).
Obviously, it is not the goal to model the occurrence of typing errors or gross errors, because it is
unlikely that they will occur in the same manner for other data sets which will be collected in the
future. Goals of robust statistics are to investigate the impact such data points can have on the results
of estimation, testing or prediction methods and the development of methods such that the impact
of such data points is bounded.

We like to give an example showing that robustness properties of statistical methods can be very
important in practice. A data set from 15 German motor vehicle insurance companies from the
Verband offentlicher Versicherer in Dusseldorf, Germany, is investigated by Christmann (2004).
The main goals are the estimation of the expected claim amount, which is the primary response
variable, and the probability that a customer has at least one claim within one year, which is the
secondary response variable. It is well-known that even the very weak assumptions typically made
by machine learning methods, see Section 2, may be violated for such data sets for the following
reasons. The true values of the claim amount, i.e. the primary response variable, is not known
exactly for all customers. E.g. if a major accident occurs in November, the exact claim size will
often not be known at the end of the year and perhaps not even at the end of the following year.
Possible reasons are law-suits or the case of physical injuries. In this case, a statistician will have to
use more or less appropriate estimations of the exact claim size to construct a new insurance tariff
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for the next year. Hence, the empirical distribution of the claim amount is in general a mixture of
really observed values and of estimated claim amounts. Further, some explanatory variables may
have imprecise values. E.g. there is a variable describing how many kilometers a customer is driving
with the car within one year. The customer has to choose between some categories, e.g. below 9000
kilometers, between 9000 and 12000 kilometers, between 12000 and 15000 kilometers, and so on.
There are reasons making it plausible, that a percentage of these values in the data set are too small,
e.g. it is well-known to the customers that the premium of an insurance tariff increases for increasing
values of this variable. The data set contains data from more than four million customers with more
than 70 variables. Hence there is a high probability that some data points are typing errors, although
the data set is of high quality.

There are different approaches to robustness in the statistical literature. For statistics repre-
sentable as a functional of the empirical distribution, qualitative robustness, which is defined as
equicontinuity of the distributions of the statistic as the sample size changes, is closely related to
continuity of the statistic viewed as a functional in the weak(-star) topology, cf. Huber (1981, p. 7f)
or Hampel et al. (1986, p. 41). The concept of qualitative robustness is a rather weak robustness
criterion. It has the disadvantage that it does not offer arguments how to choose among different
qualitative robust procedures. Huber’s minimax approach of robust statistics (Huber, 1964, 1981)
is to minimize the maximum asymptotic variance of the estimator within a neighborhood of the
model. Other strategies of robust statistics are Hampel’s influence function (Hampel, 1974; Hampel
et al., 1986), the finite sample breakdown point proposed by Donoho and Huber (1983), the ap-
proach based on least favourable local alternatives (Rieder, 1994), and the regression depth method
proposed by Rousseeuw and Hubert (1999).

Here, we will mainly use the approach based on the influence function. This approach can be
applied to quite general models and the influence function has a nice interpretation, because it is a
special Gateaux derivative, see Section 3. Amap T is called robust in the theory of robust statistics
based on influence functions, if T has as a bounded influence function. From the viewpoint of
robust statistics it is important to investigate the impact a small amount of contamination of the
‘true’ probability measure IP can have on the statistical learning process which is specified via the

regularized theoretical risk, i.e. the objective functions RE?P,J\(.) and R}, (-,.) given in (6) and (7).

This paper investigates robustness properties of statistical learning methods based on convex risk
minimization and is organized as follows. Section 2 gives some notions on convex risk minimization
methods. Section 3 gives the definitions of the influence function, the sensitivity curve, and the
maxbias, which are the robustness concepts we are dealing with. Section 4 and Section 5 contain
the main results. For practical applications Theorem 12 is our most important result and it covers a
broad class of loss functions including the ones used by SVM, kernel logistic regression, AdaBoost
and least squares. In Section 4 sufficient conditions are given for the existence of the influence
function for classifiers based on (6) and (7). In Section 5 it is shown that the influence function of
the solution of (7) and the difference quotient used in the definition of the influence function for (6)
can be bounded independently of z and P. Bounds for the sensitivity curve and for the maxbias are
also given. Section 6 describes the results of some simulation experiments to gain insight into the
robustness properties of the SVM for finite sample sizes and investigates the impact a single data
point can have if a radial basis function kernel or a linear kernel is used. Section 7 contains the
conclusion. Finally, the Appendix gives the proofs of the main theorems discussed in this paper and
lists some mathematical facts which are used in our proofs.
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2. Convex Risk Minimization in Machine Learning

In pattern recognition and statistical machine learning the major goal is the estimation of a func-
tional relationship y; ~ f(x;) between an outcome y; and a vector of explanatory variables x; =
(Xi1,---,Xik) € RY. The function f is unknown. The estimate for f is used to get predictions of
an unobserved outcome Ynew based on an observed value Xnew. One needs the implicit assumption
that the relationship between Xpew and ynew is—at least almost—the same as in the training data
set (xi,Vi), i =1,...,n. Otherwise, it is useless to extract knowledge on f from the training data
set. The classical assumption in machine learning is that the training data (x;,y;) are independent
and identically generated from an underlying unknown distribution P for a pair of random variables
(Xi,Yi). In practical applications the training data set is often quite large, high dimensional and
complex. The quality of the predictor f(x;) is measured by some loss function L(y;, f(x;)). The
goal is to find a predictor fp(x;) that minimizes the expected loss, i.e.

EpL(Y, fp(X)) = minEzL(Y, (X)), (1)

where EpL(Y, f(X)) = [L(y, f(x))dP(x,y) denotes the expectation of L with respect to P. We
sometimes write L(f) instead of L(y, f(x)) and L(f +b) instead of L(y, f(x) +b) to shorten the
notation, if misunderstandings are unlikely. We use this kind of notation also for derivatives of L.

In this paper we are interested in binary classification, where y; € Y := {—1,+1}. The straight-
forward prediction rule is: predict y; = +1 if f(x;) > 0, and predict y; = —1 otherwise. The loss
function for the classification error is given by I (y;, f(x)) =I(yi f (xi) <0) +I(f(x;) = 0)I(y; = —1),
where I denotes the indicator function. Inspired by the law of large numbers one might estimate fp
with the minimizer femp of the empirical classification error, that is

fump = 21 mfin%_z (i, F4)) @)

To avoid over-fitting one usually has to restrict the class of functions f considered in (2). Unfortu-
nately, the classification function I is not convex and the minimization of (2) is often NP-hard, cf.
Hoffgen et al. (1995). To circumvent this problem, one can replace the classification error function
I(yi, f(xi)) in (2) by a convex upper bound L : Y x R — R cf. Vapnik (1998) and Schélkopf and
Smola (2002). Furthermore, using reproducing kernel Hilbert spaces and an additional regulariza-
tion term have some algorithmic advantages. These modifications lead to the following empirical
regularized risks:

- 1N
- i 2 4 = . :
fop =argminAI i+ 3 5 L0 T04)), 3)
Fa ~ - 2 l n
(fua.bor) =arg, min  Allflli+ 5 3 L0 T00)+b), @)

where A > 0 is a small regularization parameter, H is a reproducing kernel Hilbert space (RKHS) of
a kernel k, and b is called offset. The decision functions are sign( fAn,A) or sign( fAn,A + BM). Note that
in practice usually (4) is solved while many theoretical papers deal with (3) since the unregularized
offset b often causes technical difficulties in the analysis.

In practice the dual problems of (3) and (4) are solved. In these problems the RKHS does not
occur explicitly, instead the corresponding kernel is involved. The choice of the kernel k enables
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Method L L’

Support Vector Machine max(1—v,0) —1,ifv<l
0,ifv>1

Kernel Logistic Regression  In(1+exp(—V)) —1/(1+exp(v))

AdaBoost exp(—v) —exp(—V)

Least Squares (1—v)? 2(v—1)

Modified Least Squares max(1 —v,0)? —2max(0,1—v)

Modified Huber —4v, ifv< -1 -4, ifv< -1

max(1—v,0)?, else —2max(0,1— V), otherwise

Table 1: Loss functions, where v =y f(x) or v =y[f(x) + b], respectively.

the above methods to efficiently estimate not only linear, but also non-linear functions. Of special
importance is the Gaussian radial basis function (RBF) kernel

k(X>X/) :eXp(—yHX—Xl”Z), y> 07 (5)

which is a universal kernel on every compact subset of RY in the sense of Steinwart (2001). Fur-
thermore, this kernel is a bounded kernel, as [k(x,x’)| < 1 for all x,x’ € RY. Polynomial kernels
k(x,x") = (c4 (x,x'))™ are also popular in practice, but are unbounded for m > 1 and X = R¢.

Popular loss functions depend ony and f viav =yf(x) or v=y(f(x)+b). Some important spec-
ifications of L are given in Table 1. The support vector machine (SVM) penalizes points linearly if
v < 1. Kernel logistic regression and AdaBoost use twice continuously differentiable loss functions.
The loss function used by kernel logistic regression (Wahba, 1999) penalizes misclassifications in a
similar way to the SVM, i.e. approximately linearly if v— —oo. The loss function used by AdaBoost
increases exponentially for v— —oo, cf. Freund and Schapire (1996), Friedman et al. (2000), and
Hastie et al. (2001). The modified Huber’s loss function, cf. Zhang (2004), changes the modified
least squares loss such that misclassified points with v < —1 are penalized only linearly.

Two major benefits of using a convex loss function are known:

e For convex loss functions the resulting problems (3) and (4) are computationally tractable in
the sense that they can be approximately solved in polynomial time. In fact, for many loss
functions fast algorithms do exist. For bounded loss functions the convexity is lost and to our
best knowledge almost nothing is known whether the problems are computational tractable.
For applications of non-convex loss functions in the context of weighted least squares support
vector machines for regression problems see Suykens et al. (2002).

e In the last two years an exciting observation almost revolutionized considerations on the learn-
ing performance of classification algorithms. The standard approach for bounding the estima-
tion error of (regularized) empirical risk minimization (ERM) algorithms is to apply a uniform
deviation bound. With this technique no learning rates faster than n—2, where n is the sample
size, can be obtained for nontrivial function classes and noisy distributions. However, if one
“quantifies” the amount of noise (Tsybakov, 2004) and considers ERM-type algorithms with
convex loss functions then learning rates up to n~! are possible! For more information of
this recent development we refer to Bartlett et al. (2002), Bartlett et al. (2003) and Bartlett
and Mendelson (2002). In particular, this program has been successively applied to support
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vector machines by Scovel and Steinwart (2003). Learning rates for boosting methods are
investigated by Blanchard et al. (2003).

These two benefits of convex loss functions are the major reasons why the convexity plays a very
important role in recent machine learning algorithms. This is in contrast to robust statistics, where
often non-convex loss functions are used, although such robust statistics are based on objective
functions with more than one local optimum, c.f. Hampel et al. (1986) and Christmann (1994,
1998).

Problems (3) and (4) can be interpreted as a stochastic approximation of the minimization of the
theoretical regularized risk given in (6) or (7), respectively (Vapnik, 1998; Zhang, 2004; Steinwart,
2002a):

fo = argminA||f[[§ +Ex L(Y, £(X)), (6)
(fea,bpa) =arg min A||f[|3 +EpL(Y,f(X)+b). )
feH,beR

The objective functions in (6) and (7) are denoted by R "}, (.) and R["}. , (-, ) in the sequel.

Steinwart (2002b) shows that SVM’s are universally consistent, i.e. the classification error of
fAM(.) converges to the optimal Bayes error Ep (Y, fp(X)) in probability, provided that the repro-
ducing kernel Hilbert space is dense in the space C(X), X € RY compact, and A = A, tends “slowly”
to 0 for n — oo, Zhang (2004) improves this result by showing that for many convex loss functions
the classifiers based on (3) are universally consistent if A, — 0 and Ann — co. Steinwart (2002a)
characterizes the loss functions which lead to universally consistent classifiers and establishes uni-
versal consistency for classifiers based on (3) and (4). Furthermore, he shows that there exist so-
lutions of both the theoretical and the empirical problems. Under certain assumptions on the data
generating distribution one can even establish rates on the learning speed of SVM’s. Such results
can be found in Steinwart (2001), Chen et al. (2003), and Scovel and Steinwart (2003). Moreover,
Steinwart (2003) gives lower asymptotical bounds on the number of support vectors, i.e. on the data
points with non-vanishing coefficients, and investigates the asymptotic behavior of fAM(.) in terms
of the loss function L. As a by-product it also turns out that the solutions of (3) and (6) are unique.
The same holds for the RKHS part of the solutions of (4) and (7). Upper bounds on the number
of support vectors can be found in Steinwart (2004). Scholkopf and Smola (2002) describe other
support vector machines and give an overview on algorithms to solve the minimization problems
corresponding to SVMs.

3. Robustness

In the statistical literature different criteria have been proposed to define the notion of robustness in
a mathematical way, e.g. the minimax approach (Huber, 1964), the sensitivity curve (Tukey, 1977),
the approach based on influence functions (Hampel, 1974; Hampel et al., 1986), the maxbias curve
(Huber, 1964; Hampel et al., 1986), and the finite sample breakdown point (Donoho and Huber,
1983).

In this paper, we mainly use the approach based on the influence function proposed by Hampel
(1974) and Hampel et al. (1986). We will consider a map T which assigns to every distribution P
on a given set Z an element T () of a given Banach space E. In the case of the convex risk mini-
mization methods given in (6) and (7) E equals the RKHS and T (P) = fp or T(P) = (fp,bp)),
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respectively. The book by Huber (1981, p. 34ff) is a standard reference for Gateaux and Fréchet
derivatives in the context of robust statistics.

Definition 1 (Influence function) The influence function of T at a point z for a distribution PP is the
special Gateaux derivative (if it exists)

FaT.5) iy T ((1_e)P+:Az) ~T(P)

: (8)
where 4; is the Dirac distribution at the point z such that A;({z}) = 1.

The influence function has the interpretation, that it measures the impact of an (infinitesimal)
small amount of contamination of the original distribution [P in direction of a Dirac distribution
located in the point z on the theoretical quantity of interest T (PP). Therefore, in the robustness
approach based on influence functions it is desirable that a statistical method which can be written as
T (P) has a bounded influence function. If T fulfills some regularity conditions, it can be linearized
near P in terms of the influence function via

T (P*) :T(IP’)+/IF(Z;T,IP) P*(dz) — P(d2)] + ...

where P* is a probability distribution near P, cf. Huber (1981, p. 14). If different methods have a
bounded influence function, the one with a lower bound is the more robust one.

The sensitivity curve SC,, proposed by J.W. Tukey and discussed in detail by Hampel et al. (1986,
p. 93) can be interpreted as a finite sample version of the influence function, see (10). The sensitivity
curve measures the impact of just one additional data point z on the empirical quantity of interest,
i.e. on the estimate Tj.

Definition 2 (Sensitivity curve) The sensitivity curve of an estimator T, at a point z given a data
setzy,...,2,_1 is defined by

SCn(z;Tn) =n(Tn(z1,-.-,20-1,2) = Tn-1(21, ..., Zn-1)) . 9)

If the estimator T, is defined via T (IP,), where P, denotes the empirical distribution of the data
points z1,...,z,, then we have for g, =1/n:

SCo(T) = T((l—sn)IP’n_ll—snAz) “T@hy) (10)

Of theoretical as well as of practical importance is also the notion of maxbias, which measures
the maximum bias T (Q) — T (P) within a neighborhood of probability distributions Q near P. In ro-
bust statistics the so-called contamination (or gross-error) neighborhood (defined below), cf. Huber
(1981), is quite common for the following three reasons. It allows a good interpretation because it
contains mixture distributions with respect to the "true’ distribution > and some other distribution.
The contamination neighborhood has some relationship to the influence function and to breakdown
points, and finally it is often easier to deal with this set of distributions than with other neighbor-
hoods. Note that the contamination neighborhood is not a neighborhood in the topological sense.
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Definition 3 (Maxbias) Let P be a fixed probability distribution on X x Y. A contamination neigh-
borhood of P is given by

~ . 1
Ne(P) = {Q = (1—¢)P+¢€P; Pisany distributionon X xY,0 <& < 5} :

The maxbias (or supremum bias) of T at the distribution P with respect to the contamination neigh-
borhood Ng(P) is defined by

maxbias(e; T,P) = sup |[T(Q)—T(P)].
QeNe(P)

4. Existence of the Influence Function

In this section we give sufficient conditions for the existence of the influence function for classifiers
based on (6) and (7), whereas the next section will show that the influence function is bounded under
weak conditions. Most of our results are valid for any distribution P on X x Y. Therefore, they are
also valid for the special case of the empirical distribution Py = £ 57, A .y, i.e. for a given data
set, and for the empirical regularized risks defined in (3) and (4).

Since our robustness results in this section are based on the calculus in (infinite dimensional)
Banach spaces we first recall some basic notions; more details are given in the appendix. To this
end let G: E — F be a map between two Banach spaces E and F. We say that G is (Fréchet)-
differentiable in xo € E if there exists a bounded linear operator A: E — F and a function ¢ :E — F
with % — 0 for X — 0 such that

G(xo+X)—G(Xo) = Ax+(x) (11)

forall x € E. It turns out that A is uniquely determined by (11). We hence write G'(x) := g—g(x) =A
The map G is called continuously differentiable if the map x — G’(x) exists on E and is continuous.
Analogously we define continuous differentiability on open subsets of E.

We also have to introduce the notion of Bochner-integrals. For simplicity we restrict ourselves
to the RKHS case, since this is the only one we actually need. To this end let H be a RKHS of a
bounded, continuous kernel k on X with feature map @ : X — H, i.e. ®(x) = k(x,.). Furthermore,
let P be a probability measure on X xY and h:Y x X — R be a function which is continuous in
its second variable x € X. Then the Bochner-integral Eph(Y,X)®(X) is an element of H which in
our case can be computed by a simple Riemann approach, i.e. by partitioning the underlying space
X x Y. For a precise definition of Bochner-integrals we refer to Diestel and Uhl (1977). Note that in
our special situation we can also interpret Eph(Y,X)®(X) as an element of the dual space H’ by the
Fréchet-Riesz theorem, i.e. Eph(Y,X)®(X) acts as a functional on H viaw — (Eph(Y,X)®(X),w).
Finally, we have to consider Bochner-integrals of the form Eph(Y,X)(®(X), .)®(X) which define
bounded linear operators on H by the map w — Eph(Y,X)(®(X),w)dP(X).

We can now establish our first two results which treat classifiers based on (6) with a smooth loss
function and a bounded continuous kernel. The first theorem covers e.g. the Gaussian RBF kernel.
The Dirac distribution in the point z is denoted by A;.

Theorem 4 LetL:Y xR — [0,0) be a convex and twice continuously differentiable loss function.
Furthermore, let X c RY be a closed or open subset, H be a RKHS of a bounded continuous kernel
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on X and P be a distribution on X xY. We define G: R xH — H by
G(e, f) == 2Af +E(1_gppien,L'(Y, f(X))P(X)
which implies

O (0. ) = ~Ep[L(Y, fp (K)POO)] L' (2, frp(22)) D(22).

Furthermore, we define S: H — H by

o 9G

= a—H(O, fpa) = 2Nidy +EpL” (Y, fp A (X)) (P(X),.)D(X).

Then the influence function of the classifiers based on (6) exists for all z = (zy,zy) € X xY and is
given by
G

IF(z;T,P)=—-S"1o E(O’ fp) - (12)

Remark 5 The influence function derived in Theorem 4 depends on the point z = (zx, zy), where the
point mass contamination takes place, only by the term L' (zy, fp ) (2x)) ®(zx)-

In practice the set X is usually a bounded and closed subset of RY and hence compact. In this case
existence of the influence function can be shown without the assumption that the kernel is bounded,
and hence the following theorem covers also polynomial kernels.

Theorem 6 LetL:Y xR — [0,00) be a convex and twice continuously differentiable loss function.
Furthermore, let X c RY be compact, H be a RKHS of a continuous kernel on X and IP be a
distribution on X x Y. Then the influence function of the classifiers based on (6) exists for all
ze X xY.

Remark 7 By a simple modification of the proof of the above theorem we actually find that the
special Gateaux derivative of T : [P — fp  exists for every direction, i.e.

lim f(lfs)IPJrs]lN”,)\ — fpa
€|0 €

exists for all distributions > and P on X x Y provided that the assumptions of Theorem 4 hold. This
is an interesting result from the viewpoint of applied statistics, because a point mass contamination
is just one possible kind of contamination which can occur in practice.

The following theorem shows the existence of the influence function for classifiers based on (7).
Since the offset bp ) can be infinite for certain loss functions if P is degenerate, i.e P({(y,x) : x €
X})=1fory=+1lory= —1, we have to exclude these probability measures. Note that these mea-
sures almost surely produce training sets of the form ((1,x1),...,(1,Xa)), or ((=1,X1),...,(—1,Xn)),
respectively.
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Theorem 8 LetL:Y xR — [0,0) be a convex and twice continuously differentiable loss function
with L” > 0. Furthermore, let X ¢ RY be open or closed, H be a RKHS of a continuous kernel on X
and P be a non-degenerate distribution on X xY. We define G: RxH xR — H xR by

G(e, f,b) = (ZM +Eqgpien,L' (Y, F(X) +0)O(X), E(rgypyen L' (Y, F(X) + b))

which implies
0G / /
E(O’ fpa,bpp) = —Ep[L'(Y, fppn (X) +bp ) P(X)] +L(zy, fpar(zx) +bpp)P(2) -
Furthermore, for S := %(0, fex, Dp ) We have
g _ ( 2Nidu +EpL"(Y, fpr(X) +bpa){(®(X), ) @(X)  EpL”(Y, fp(X) +bp ) P(X)
EpL"(Y, fp A (X) +bpr)P(X) EpL" (Y, fpp(X) +bpy) '

Then the influence function of the classifiers based on (7) exists for all z = (zy,zy) € X xY and is
given by
. , 0G

IF(z;T,P)=-S""o E(O, fpa,bp) - (13)
Remark 9 The influence function derived in Theorem 8 depends on the point z = (zx,zy), where
the point mass contamination takes place, only by the term L'(zy, fp ) (2x) +bp)®(z«). Hence loss
functions L and kernels k such that L’ and the feature map @ are bounded are of special interest
from the view point of robust statistics.

Remark 10 As in the case of problem (6) a slight modification of the proof gives that T : P —
(fp,bp ) is special Gateaux differentiable.

Remark 11 Considering the loss functions in Table 1 we immediately see that the above theorems
apply to the kernel logistic regression, the least squares and the AdaBoost loss function. The second
derivatives of the modified least squares and the modified Huber loss function fail to exists in only
one point. For the loss function of the standard SVM, even the first derivative does not exist in one
point.

5. Bounds on the Influence Function, Sensitivity Curve and Maxbias

As mentioned in Section 1, a desirable property of a robust statistical method is that T has a bounded
influence function. In this section we show that for certain loss functions the influence function can
be bounded independently of z and IP for classifiers based on (6) and (7). For the formulation of
our results we need to recall that the norm of total variation of a signed measure p on a space X is
defined by

n
Illar := [UI(X) = sup{ Zl IU(AI)| : Ag,...,Aq is a partition of X} .
i=
For more information on this norm we refer to Brown and Pearcy (1977).

Our first result bounds the difference quotient in the definition of the influence function for classi-
fiers based on (6). For practical applications Theorem 12 is our most important result. In particular,

1016



ROBUSTNESS OF CONVEX RISK MINIMIZATION METHODS

it states that the influence function of these classifiers is uniformly bounded whenever it exists, and
that the sensitivity curve is uniformly bounded too. Please note that the following theorem based
on Steinwart (2003) applies to all six loss functions given in Table 1 because differentiability of L
is not assumed.

Theorem 12 Let L :Y x R — [0,0) be a continuous and convex loss function. Furthermore, let
X c RY and H be a RKHS of a bounded, continuous kernel on X. Then for all A > 0 there exists a
constant ¢ (A) > 0 explicitly given in (27) such that for all distributions > and P on X x Y we have

<LV [P~ Blla, £>0.

H

” f(l*S)P*PS@,}\ —fpa
€

Remark 13 The above theorem also gives uniform bounds for Tukey’s sensitivity curve of f. Con-

sider the special case that I? is equal to the empirical probability measure of (n—1) data points, i.e.
Py = -1 z?:‘ll Ay, ), and that P is equal to the Dirac measure Ay ) in some point (x,y) € X x Y.

—1
Let € = =. Under the assumptions of Theorem 12 it follows from (10), that

SIS

N[ fa ey reneyr = Boaaln SCLA) [Poot —Axy)llar, €>0.

Essentially, this result has already been established by Bousquet and Elisseeff (2002).

Remark 14 Because no assumptions on PP are made in Theorem 12, an upper bound for the maxbias
of fp (see Definition 3) for such machine learning methods is given by

maxbias(e; f,IP) = sup [|for — fpal| < €cL(A) sup [P — 1P| <2cL(Me,
QeNg Pep

where € € (0,1/2), and P denotes the set of all probability measures on X x Y. As no assumptions

are made for IP, this result is valid for empirical distributions too. Consider the empirical distribu-

tion P, defined by given data set (x;,yi) € X x Y with n data points. Then the maxbias of fp_, ina

contamination neighborhood Ng (P, ) is at most 2c (A)e, where € € (0,1/2).

Unfortunately, using the estimate of Steinwart (2003) does not give any meaningful result for
classifiers based on (7). However, under some additional assumptions on L we can still bound the
influence function.

Theorem 15 LetL:Y xR — [0,) be a convex and twice continuously differentiable loss function
with a <L” < b for some a,b > 0. Furthermore, let X C RY be open or closed, H be a RKHS of a
continuous kernel on X, and Ty (P) = (fp,bp ) be given by (7). Then for all A > 0 there exists a
constant ¢, (A) > 0 such that for all non-degenerated distributions Pon X xY andall ze X xY we
have

INF@T,P) [ < L) 1P Aoy

Remark 16 Theorem 15 applies to (7) with the least squares loss function. However, Theorem 15
covers neither the logistic regression loss function as we only have L” > 0 nor the AdaBoost loss
function which satisfies L” = L = exp(—.) However, we get the same bound of the influence function
if we restrict our considerations to distributions P with

a < / L"(Y, fpr(X) +bpp)dP < b (14)
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for some b > a > 0. A simple sufficient condition for the latter can be derived by the proof of
Steinwart (2002a, Lemma 11.6): let A := {x € X : P(y|x) > p}, y €Y, p >0, and ap(p) :=
pmin{Py (A]),Px (AP ,)}. Then fixing A > 0, a twice continuously differentiable L and a thresh-
old a > 0 there exist b > a > 0 such that every P with a p(p) > o for some p > 0 satisfies (14). Note
that the assumption ap(p) > a guarantees that the two classes of P are “balanced”.

Remark 17 As mentioned in Remark 10 the map T : P — (fp,bp)) is special Gateaux differen-
tiable. A simple modification of the proof of Theorem 15 shows that the special Gateaux derivative
of T can be uniformly bounded.

Remark 18 Consider the case that P and [P are probability measures with densities p and p with
respect to some dominating measure v. Then, the last two theorems also give bounds of the influence
functions and the sensitivity curve in terms of the Hellinger metric H (P, P) = [ (/P — v/F)?dv]*/2.
This follows from a relationship between the norm of total variation and the Hellinger metric:

5 = %111/2
IP— Bl <2H(P,B) < 2||P—B| /2.

Note that the bounds for the difference quotient in Theorem 12 and for the influence function in
Theorem 15 converge to infinity, if A converges to 0 and ||P— P|| 5, > 0 or ||P— A, || 4, > 0. However,
A converging to 0 has the interpretation that misclassifications are penalized by constants C tending
to oo, Therefore, decreasing values of A correspond to a decreasing amount of robustness, which was
to be expected. The quantity A can be interpreted as a tuning constant controlling the robustness
properties of the method in a similar way than it is well-known for many robust methods, e.g. Huber-
type M-estimators in location or regression models. Consider the Huber-type M-estimator (Huber,
1964) in a univariate location model, where all data points are realizations from n independent and
identically distributed random variables with some distribution function F(- — 8), where 8 € R is
unknown. Huber’s robust M-estimator with tuning constant b € (0, ) has an influence function
proportional to Yy (z) = min{b,max{z—b}}, cf. Hampel et al. (1986, p. 104f). For all b € (0,)
the influence function is bounded by +b. However, the bounds tend to 4o if b — oo, and Huber’s
M-estimator with b = o is equal to the non-robust maximum likelihood estimator which has an
unbounded influence function. Therefore, the quantity 1 /A (or the cost C) in the machine learning
methods we are dealing with has a similar role to the tuning constant b in Huber-type M-estimators.

6. Empirical Results for the SVM

In this section we study the impact an additional data point can have on the SVM with offset b for
pattern recognition. An analogous investigation for the case without offset gave similar results to
those described in this section. We generated a training data set with n = 500 data points x; from a bi-
variate normal distribution with expectation p = (0,0) and covariance matrix . The variances were
set to 1, whereas the covariance was set to 0.5. The responses y; were generated from a classical lo-
gistic regression model with 6 = (—1,1)’, b = 0.5, such that P(Y; = +1) = [1 +exp(— (X8 +b))]*
and P(Y; = —1) = 1—P(Y; = +1). The computations were done using the software SVM"9" devel-
oped by Joachims (1999). SVM'9" solves the dual program corresponding to the primal optimiza-
tion problem

n
argMinter ber o || 113 +%_lei

such that yi(f(xi)+Db) ;1 —§&
& >0.

(15)
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We consider two popular kernels: a Gaussian radial basis function kernel with parameter vy, see
(5) and a linear kernel. Appropriate values for y and for the constant C (or A) are important for
the SVM and are often determined by cross validation, cf. Scholkopf and Smola (2002, p. 217).
A cross validation based on the leave-one-out error for the training data set was carried out by a
two-dimensional grid search on

y€ {0.05,0.1,0.25,0.5,0.75,1,1.5,2,3,4,5,10,20}

and
C €{0.5,0.75,1,1.25,1.5,1.75,2,5,10,20}.

As a result of the cross validation, the tuning parameters for the SVM with RBF kernel were set to
y=0.25and C = 2. The leave-one-out error for the SVM with a linear kernel turned out to be stable
over a broad range of values for C. We used C = 1 in the computations for the linear kernel. For
n = 500 this results in A = (2Cn)~! = 5 x 10~ for the RFB kernel and A = (2Cn)~* = 0.001 for
the linear kernel. Please note that such small values of A will result in relatively large bounds.

Figure 1 shows the sensitivity curves of f +b:= f,, + by, if we add a single point z = (x,y) to
the original data set, where x; = 6, X, = 6, and y = +1. The additional data point has a local and
smooth impact on f + b with a peak in a neighborhood of (x1,X2), if one uses the RBF kernel. For a
linear kernel, the impact is approximately linear. The reason for this different behavior of the SVM
with different kernels becomes clear from Figure 2 where plots of f+bare given for the original
data set and for the modified data set, which contains the additional data point z. Please note that
the RBF kernel yields f + b approximately equal to zero outside a central region, as almost all data
points are lying inside the central region. Comparing the plots of f + b based on the RBF kernel
for the modified data set with the corresponding plot for the original data set, it is obvious that the
additional smooth peak is due to the new data point located at x = (6, 6) withy = +1. Itis interesting
to note that although the estimated functions f + b for the original data set and for the modified data
set based on the SVM with the linear kernel are looking quite similar, the sensitivity curve is similar
to an affine hyperplane which is affected by the value of z. This allows the interpretation, that just
a single data point can have an impact on f + b estimated by a SVM with a linear kernel over a
broader region than for an SVM with an RBF kernel.

Now, we study the impact of an additional data point z = (x,y), where y = +1, on the percent
of classification errors and on the fitted y—value for z. We vary z over a grid in the x—coordinates.
Figure 3 shows that the percentage of classification errors is approximately constant outside the
central region that contains almost all data points if a Gaussian RBF kernel was used. For the
SVM with a linear kernel, the percentage of classification errors tends to be approximately constant
in one half-space but changes in the other half-space. The response of the additional data point
was correctly estimated by ¥ = +1 outside the central region, if a RBF kernel is used, see Figure
4. In contrast to that, using a linear kernel results in estimated responses §y = +1 or y = —1 of
the additional data point depending on the affine half-space in which the x—value of z is lying.
Finally, let us study the impact of an additional data point located at z= (x,y), where y = +1, on the
estimated parameters b and 6, see Figure 5. We vary z over a grid in the x—coordinates in the same
manner as before. As the plots for 6, and B, are looking very similar, we only show the latter. Note
that the axes are not identical in Figure 5 due to the kernels. The sensitivity curves for the slopes
estimated by the SVM with an RBF kernel are similar to a hyperplane outside the central region,
which contains almost all data points. In the central region, there is a smooth transition between
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Figure 1: Sensitivity function of f + b, if the additional data point z is located at z = (x,y), where
X =(6,6) andy = +1. Left: RBF kernel. Right: linear kernel.

regions with higher sensitivity values and regions with lower sensitivity values. The sensitivity
curves for the slopes of the SVM with a linear kernel are flat in one affine half-space, but change
approximately linearly in the other affine half-space. This behavior also occurs for the sensitivity
curve of the offset by using a linear kernel. In contrast to that, the sensitivity curve of the offset
based on a SVM with a RBF kernel shows a smooth but curved shape outside the region containing
the majority of the data points.

7. Concluding Remarks

In this paper, we used the influence function approach of robust statistics (Hampel et al., 1986) for
recent statistical learning methods based on convex risk minimization methods for the problem of
pattern recognition. The influence function has the interpretation that it measures the impact of an
infinitesimal amount of contamination of the original distribution IP in direction of a Dirac distribu-
tion located in the point z on the theoretical quantity of interest T (). Special cases of such convex
risk minimization methods are the support vector machine, kernel logistic regression, AdaBoost,
and least squares. Assumptions were derived for the existence of the influence function of f or
(f,b) used by the classifiers and also for uniform bounds on the influence function which hold with
respect to the distribution P and the point z of the Dirac distribution A; describing the contamination.
For the case without offset b one can uniformly bound the difference quotient considered by the in-
fluence function under weak conditions which also yields uniform bounds for Tukey’s sensitivity
curve and uniform upper bounds for the maxbias. In particular, the influence function for these clas-
sifiers is uniformly bounded if it exists. Some of the results are not limited to the special Gateaux
derivative used in the definition of the influence function. The assumptions of some of our results
exclude the support vector machine because the SVM uses a loss function which is not differentiable
in one point, but Theorem 12 covers the SVM as a special case. We gave some numerical results for
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Figure 2: Plot of f+b. Upper left: RBF kernel, original data set. Upper right: linear kernel,
original data set. Lower left: RFB kernel, modified data set. Lower right: linear kernel,
modified data set. The modified data set contains the additional data point z = (x,y),
where x = (6,6) and y = +1.

the sensitivity curve, which can be interpreted as a finite sample version of the influence function, of
the SVM classifier. It turned out, that the popular exponential radial basis function kernel resulted
in smooth sensitivity curves for f + b and for the estimated coefficients (8,b). Varying the position
of one additional data point had a smooth and local impact on f + b, if one uses an RBF kernel. For
the linear kernel the impact of varying one additional data point behaves also in a relatively smooth
manner, but the impact seems to be more globally than locally.

For a numerical comparison between the support vector machine and the regression depth method
recently proposed by Rousseeuw and Hubert (1999) see Christmann and Rousseeuw (2001) and
Christmann et al. (2002).
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Figure 3: Percent of classification errors if one data point z

where x varies over the grid. Left: RBF kernel. Right: linear kernel.

Figure 4: Fitted y—value for new observation if one data point z

data set, where x varies over the grid. Left: RBF kernel. Right: linear kernel.

It would be interesting to study the

other problems, e.g. e—regression or kernel principal component analysis, or to consider other

robustness concepts, but this is beyond the scope of this paper.
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Appendix A. Mathematical Background

In Appendix A we list some facts from functional analysis, which are used in Appendix B to prove
our theorems.

Since our proofs are heavily based on the calculus in (infinite dimensional) Banach spaces we
first recall the basic facts, see e.g. Akerkar (1999), Brown and Pearcy (1977), and Yosida (1974).
To this end let G : E — F be a map between two Banach spaces E and F. Recall, that we say that
G is (Fréchet)-differentiable in xo € E if there exists a bounded linear operator A: E — F and a
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function ¢ : E — F with 2, 0 for x — 0 such that

X
G(Xo+x) —G(xo) = AX+(X) (16)

for all x € E. It turns out that A is uniquely determined by (16). As in Section 4 we hence write
G'(x) := g—g(x) := A. Again, the map G is called continuously differentiable if the map x — G’(x)
exists on E and is continuous. Analogously we define continuous differentiability on open subsets
of E.

Unlike 1-dimensional derivates general Fréchet derivates suffer from some notational difficulties.
For example, the derivate G’(x) itself is a map for every x and thus G’(x) is described by y — G’ (x)y.
Furthermore, considering partial derivates can cause notational problems too. Indeed, if e.g. idg is
the identity of E we have ”

. did did(x
X = id(x)x = E(x)x = 5 X
where the right expression uses standard notation. We feel that the latter can cause problems for the
unexperienced reader.

As in the finite dimensional case the differential operator satisfies basic calculus, that is linearity

and a chain rule

(G20G1)(x) = G5(Ga(x)) oG} (x)

for Gy : E1 — E», Gy : Ex — E3 whenever all derivates exist in the above equation. Furthermore, for
a bounded linear map A : E — F we have A'(x) = Aforall x € E. If G(f) := || f||3 for all elements
f of a Hilbert space H we find G’ = 2idy, where idy denotes the identity on H.

Let us consider an example that helps to understand the differentiation steps in the following
proofs. To this end let P be a probability measure on a subset X ¢ RY and H be a RKHS of bounded
continuous functions over X with feature map @ : X — H, i.e. ®(x) :=Kk(x,.), where k is the kernel
of H. We consider the map G : H — R which is defined by Gf :=EpLo f forall f € H and a twice
continuously differentiable function L : R — R. In order to compute the derivate of this map we
decompose G into G =BoAol, where | : H — Cp(X) is the canonical embbeding w — (w, ®(.))
of H into the space of all bounded continuous functions Cp(X), A : Cp(X) — Cp(X) is defined by
f—LofandB:Cpy(X)— Risthe functional f — Epf. For the chain rule we need to compute the
derivatives of these factors. Since | is linear we have I’(v)w = Iw for all vyw € H. Analogously, the
linearity of B gives B'(f)g = Epg for all f,g € Cy(X). As shown in the book of Akerkar (1999), we
also have A’(f)g=g-(L'o f) forall f,g € Cy(X), i.e. A’ is the multiplication operator with respect
to L' o f. Applying the chain rule to Ao I we hence find

(Aol (V)w = (A'(1(v))ol'(V))w = L' o(lv)- (Iw)

for all v,w € H. As we see the brackets play an important role for the mechanic evaluation of these
derivatives. Another application of the chain rule gives

G'(Vw = (B'(Acl(v))o(Aol)(v))w = B'(Acl(v))((Acl) (v)w)
Ep(Aol) (v)w
EpL o (Iv) - (1w)

for all v,w € H. Note that by definition G’(v) : H — R is a bounded functional. By the theorem of
Fréchet-Riesz such functionals can be represented by elements of H via the mapping v — (v,.). In

1024



ROBUSTNESS OF CONVEX RISK MINIMIZATION METHODS

our situation we can directly compute this representation: for v,w € H we have
(EpL' o (IV)®,w) = EpL o (Iv)(Iv,w) = EpL o (lv)- (Iw),

i.e. EpL’o (Iv)®is a representation of G'(v). Note that EpL’ o (Iv)® is a H-valued Bochner-integral.
For finite dimensional spaces R" the R"-valued Bochner-integral can be computed by the integrals
of the n components. In general Banach spaces some problems can occur by different notions of
measurability. Since in our case H is separable by the continuity of ® and all our functions are
continuous we do not have these difficulties. In fact for compact X our Bochner-integrals can be
even computed using a simple Riemann approach. For more information about Bochner-integrals
we refer to Diestel and Uhl (1977) or Yosida (1974).

Since in our proofs we also have to compute the second derivate of maps of the form of G, let
us now treat G”. For convenience we use the Fréchet-Riesz representation of G’. Analogously
to the above considerations we decompose G’. To this end B : Cp(X) — H denotes the operator
defined by Bf := Epf® for all f € Cy(X). Furthermore, A : Cp(X) — Cp(X) is the operator Af :=
L'o f, f € Cp(X). Using the Fréchet-Riesz representation of G’ we then find G’ =BoAol. Now
observe that B is linear. Therefore we have B'(f)g = Epg® for all g € C,(X). Moreover, we find
(Aol)/(v)w=L"o(lv)lw for all v,w € H as above. Using the chain rule this gives

G"(v)w = B"(Acl(v))((Aol)(v)w) = Ep(Acl) (V)wd = EpL” o (Iv)lwd

for all vyw € H.

Our proofs also heavily rely on the implicit function theorem in Banach spaces. Therefore, we
recall a simplified version of this theorem (Akerkar, 1999; Zeidler, 1986). Here and throughout this
appendix Bg denotes the open unit ball of a Banach space E.

Theorem 19 (Implicit function theorem) Let E,F be Banach spaces and G: E xF — F be a
continuously differentiable map. Suppose that we have (Xo,Yo) € E x F such that G(xg,yo) =0
and S—E(xo,yo) is invertible. Then there exists a & > 0 and a continuously differentiable map f :
Xo + OB — Yo + OB such that for all x € xg + ®Bg, y € yo + 0Bg we have

G(x,y)=0 if and only if y = f(x).

Moreover, the derivative of f is given by

-1
f'(x) = — <Z_E(X7 f(x))> Z_S(X’ f(x)).

For the application of the implicit function theorem we have to show that certain operators are
invertible. For this the following theorem which is known as the Fredholm Alternative, (Cheney,
2001) turns out to be very helpful:

Theorem 20 (Fredholm Alternative) Let E be a Banach space and S : E — E be a compact oper-

We also need the Krein-Milman theorem, see Yosida (1974, p. 363) or Brown and Pearcy (1977,
p. 309).

Theorem 21 (Krein-Milman theorem) Let K be a non-void compact convex subset of a locally
convex real linear topological space. Then K is equal to the closure of the convex hull of the set of
all extreme points of K.
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Appendix B. Proofs of the Theorems

In this appendix we prove the theorems from Section 4 and Section 5. We sometimes write L(f)
instead of L(y, f(x)) and L(f +b) instead of L(y, f(x) -+b) to shorten the notation, if misunderstand-
ings are unlikely. We use this kind of notation also for derivatives of L.

PROOF OF THEOREM 4. Let us first check that the solution fp) exists in our situation.
Indeed, in the proof of the existence statement by Steinwart (2002a) the compactness of X is only
used to ensure K := ||| : H — {o(X)|| < o, where £, (X) denotes the space of all bounded functions
f : X — R equipped with the supremum norm and | is the canonical embbeding. The finiteness of
this norm, however, characterizes bounded kernels. Therefore, the existence statement by Steinwart
(2002a) is true in our case too.

Now, let @ : X — H be the feature map of H as in the above example. Our analysis heavily rely
onthe map G: R x H — H that is defined by

G(e, ) 1= 2Af +Ey_gppien,L(Y, F(X)D(X).

Note that for € ¢ [0,1] the H-valued expectation is with respect to a signed measure. For these
measures we refer to Dudley (2002). Now as in the above example, for € € [0, 1] we obtain

R c)psen,
(1—&)P+eAy,
G(e, f) = —HUR (), 17)
Since f =R )5, e, (T) is convex forall € € [0, 1] Equation (17) shows that we have G(e, f) =0

if and only if f = f;_¢pien,a for such e. Our aim is to show the existence of a differentiable
function € — f; defined on a small interval [—, 8] for some & > 0 that satisfies G(g, f¢) = 0 for all
€ € [—9,9]. Once we have shown the existence of this function we immediately obtain
ofe
IF(z;T,P)=—(0).
@T.P) =5 (0)

For the existence of € — f; we only have to check by Theorem 19 that G is continuously differen-
tiable and that g—ﬁ(o, fp ) is invertible. Let us start with the first: an easy computation shows

?TC:(E’ £) = —EpL/(Y, f(X))D(X) +Ea,L'(Y, (X)) D(X). (18)

Moreover, as in the above example we find

9 (.1) = 2Nty + Ey_ajp-en L (Y. 1(X)) (9(X). JO(X). (19)

Since H has a bounded kernel it is a simple routine to check that both partial derivatives are continu-
ous. This together with the continuity of G ensures that G is continuously differentiable, cf. Akerkar
(1999).

In order to show that S—S(O, fp) is invertible it suffices to show by the Fredholm Alternative that
9G (0, fp,) is injective and that

Ag:=EpL"(Y, fpr(X))g(X)P(X),  geH,
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defines a compact operator on H. To show the compactness we have to recall some measure theory,
see Dudley (2002). Since X is assumed to be open or closed, it is a Polish space. Furthermore, Borel
probability measures on Polish spaces are regular by Ulam’s theorem, i.e. they can be approximated
from inside by compact sets, cf. Bauer (1990, p. 180). In our situation, this means that for all
n > 1 there exists a compact subset X, C X with Px (X,) > 1—1/n, where Px denotes the marginal
distribution of IP with respect to X. We define a sequence of operators A, : H — H by

Aigi= [ L0 Ter(0)G0)@(OAE(x,Y)
XnxY

forall g € H. Let us now show that all A, are compact. By the definition of A, there exists a constant
¢ > 0 depending on A, L” and K such that for all g € B we have

Ang € c-acoP(Xp), (20)

where aco ®(X,) denotes the absolute convex hull of ®(X,). Indeed, for discrete probability mea-
sures P relation (20) follows directly from the definition using the fact ||g||,, < K for g € By. To see
the general case recall that by Krein-Milman’s theorem the set of discrete probability measures is
weak*-dense in the set of probability measures. Then (20) follows since H has the approximation
property (Lindenstrauss and Tzafriri, 1977). Furthermore, since ® is continuous ®(X,) is compact
and hence so is aco®(Xp). This shows that A, is compact. In order to see that A is compact, it
therefore suffices to show ||A, —A|| — 0 for n — . The latter convergence can be easily checked
using Px (Xn) >1—1/n.
It remains to prove that A is injective. To this end for g ## 0 we find

{(2Nidy +A)g, (2Aidy +A)g) = 4A%(g,0) +4N(g,Ag) + (Ag,Ag)

4N(g,AQ)

= 4N, EpL"(Y, fer(X))g(X)®(X))
ANEBL"(Y, fp2(X))g*(X)

0

V

v

Here, the last equation is due to the fact that BEEph = EpBh for all E-valued functions h and all
bounded linear operators B : E — F between Banach spaces E and F. A much stronger result is
given in Diestel and Uhl (1977, p. 47). The last inequality is true since the second derivative of
a convex function is always nonnegative. Obviously, the above estimate shows that g—ﬁ(o, fpr) =
2\ idy + A is injective.

We use IF(z;T,P) = %(0) to derive a formula for the influence function, where € — f¢ is the
function implicitly defined by G(g, f) = 0. The implicit function theorem hence gives

IF(z;T,P)=—-S"1o Z_S(o, fea) (21)

PROOF OF THEOREM 6. Since every compact subset of RY is closed and continuous kernels on
compact subsets are bounded the assertion directly follows from Theorem 4. B
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PROOF OF THEOREM 8. The proof is similar to that of Theorem 4. However, due to the extra
variable b we have to adapt our approach. As in the proof of Theorem 4 we first point out that the
solutions (fp,bp)) € H x R exist. Again, this can be seen by a slight modification of the argument
used by Steinwart (2002a). Now, let us definethemap G: R xH xR — H x R by

G(e, f,b) := (2)\ f+Eq epreal (T +0)®, Eq eppyen,l'(F+ b)) :

Again, for € € [0, 1] the definition of G ensures
reg
aRL,(lfs)IEMeAZ,)\ ( )

Ge,f,b) = d(H xR)

if we apply the Fréchet-Riesz identification (H x R)’ = H x R. Since R[eg pien, 1S convex for all

(1—¢
e € [0,1] we have G(g, f,b) = 0ifand only if (f,b) minimizes R "/, , ]P,J(FFAZ’)A for such €. Our aim is
to apply the implicit function theorem in the way we did it in the proof of Theorem 4. However, this
time the implicit function theorem will also ensure the uniqueness of the solution of (7). Obviously,
this is necessary for the existence of the influence function. In order to apply Theorem 19 we need
the partial derivatives of G. By an easy computation we find

0G

S (& 1.0) = —EpL/(f +D)®(X) + En,L'(f + b)®(X)

and
0G (e, .b) = 2Nidy +EcL"(f +b)(P,.)d EL"(f+b)d
AHxR) 7777 Eel"(f+b)® EeL"(f+b) ’
where we use the abbreviation E¢ := E(1_¢)pien,. A routine check shows that both G and the partial
derivatives are continuous and hence G is continuously differentiable.

Now, let us fix a solution (fp,bp ) of (7). In order to show that the operator ﬁ(o, fp.bp )
is invertible it suffices to show by the Fredholm Alternative that it is injective and that

A [ EeL"(fea+bpa)(®, )@ Epl”(fpr+Dbp))®
"\ EpL"(fpr +Dbpy)® EpL”(fpp +bpy) —2A

is a compact operator on H x R. The latter can be seen using the argument of the proof of Theorem
4. For the former let us suppose that we have an element (g,t) € H x R with (2Aidy«r +A)(g,t) =0.
This is equivalent to the following linear system of equations

2)\g—|—]EPLN(fP7)\+b]P>7)\)ch+t]EpL//(fp’)\—I—b]p)\)cb =0 (22)
EpL”(fpr+bpr)g+tEpL"(fpr +bpa) (23)

I
o

Let us first assume that t = 0. Then the above system yields
2)\9 +EPL//( f[p’)\ + b]}nJ\)gCD =0.

Using the techniques of the proof of Theorem 4 we easily find that this implies g = 0. Therefore,
we may assume without loss of generality thatt = 1. In order to avoid long notations we introduce
the measure dp := L"(fp\ +bp)dP. Note that L” > 0 implies p # 0. Now, (23) yields

I.l(g) = _“(1)7 (24)
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where 1 denotes the constant function with value 1. Hence, by (22) we find

0= 2A\(9,9) +1(g%) + 1(g) = 2A(g,9) + K(g%) — H(L) . (25)

Furthermore, (24) implies

0 <p((g+1)?) = u(g?) +2u(g) +u(1) = p(g?) — p(1).

This together with (25) yields 2A(g,g) < 0 and hence g = 0. However, the latter contradicts (24)
and hence there is no non-trivial solution of the system (22), (23).

Now, the implicit function theorem states in particular, that the solution (fp»,bp,) is unique in a
small neighborhood of (fp,,bp ). Hence it is globally unique since the set of solutions of (7) is
convex. The rest of the proof follows the ideas of the proof of Theorem 4.

We use IF(z; T,P) = %(O) to derive a formula for the influence function, where € — (fg,bg)
is the function implicitly defined by G(g, f,b) = 0. The implicit function theorem hence gives

IF(;T,P) = -S Lo %—S(O, foaDEA) | (26)

where S := %(0, fpr,0py).

PROOF OF THEOREM 12. Recall that every convex function on R is locally Lipschitz con-
tinuous. Let |Lyy . —c |1 denote the Lipschitz constant of L restricted to Y x [—c,c], ¢ > 0. We
define &) 1= 1/(L(—1,0)+L(1,0))/A and K := sup,.x /k(x,x). We fix a distribution P. An easy
estimate (Steinwart, 2002a) shows || fp ||, < & K. We will apply Theorem 28 in Steinwart (2003).
Since this result is only formulated for compact subsets X we first have to check that it is also true
in our situation. Indeed Propositions 26 and 27 in Steinwart (2003) only uses the boundedness of
the kernel. Furthermore, the proof of Theorem 28 itself only uses the boundedness, too. Hence this
theorem actually holds in our case! Thus, there exists a measurable function h: X xY — R with
1]l < |Ly <[—5,k.5,k] |, Such that for all distributions PP we have

1
Ifea—faplln < 5 [|[Ech® —Eghol|,.

where @ : X — H is the feature map of H. Let P:= (1—- s)]P’+s}fD. Then the above inequality yields

IA

(EN) T [Eph® —Eq_p 5@,
= N YEph® —Eshd|y
L) [P —Plar,

1
€ [If1_gprepa — foallH

N

where
cL(A) =N KLy —ayK.8K] |1 (27)

This shows the assertion. l

For the proof of Theorem 15 we need the following result.
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Lemma 22 Let A, € (0,) be fixed constants. Then the function g : (0,1) — R, g(s) = 2As? —
2us[1 — s?)%/2 4 p has a global minimum in the point

Smn =212 (1 N v
min (U2 4 A2)1/2

A )\2 1/2
g(Smm):)\<1—m>+p<l—<l—m> >0.

PROOF OF LEMMA 22.  Lets € (0,1). We have g/(s) = 4As — 2u(1 — 2s?)[1 — s?] /2 and

s(1—25?) 2u
1-s2 ) /1-¢2

and

2u
V1-¢2

>4\ +3s >0

g"(s) = 4N+ <4s -

foralls € (0,1). Define a:= A/ [p? 4+ A? Y2 \We have 4Aspin > 0 and
2“(1_25%in)[1_5%in]_1/2 _ E a
AASmin A [(1+a)(1_a)}1/2
~1/2
W2 49172 MW+
This yields g (smin) = 0 and we obtain the expression g(Smin) = A [1 - (L@JW} +u [1 —(1- u2A+2A2 2|

PROOF OF THEOREM 15. By rescaling problem (7) we may assume without loss of generality
that K := sup,.x /k(x,x) < 1. Recall, that in the proof of Theorem 8 we used

0(fe,be)
220,

where € — (fg,bg) was the function implicitly defined by G(g, f,b) = 0. The implicit function
theorem hence gives

IF(z;T,P) =

IF(z;T,P) = —S 1o %—S(O, fpa,DEA) 5 (28)

where S := #&R)(O, fpa,bpa). Therefore, it suffices to bound the norms of the operators on the
right side of (28). We begin with

0G

H 5(07 fpa,Dpa)

= ||EpL’'(fpr+bpr)P—EpL (fpr+bpa)®|

IN

b [P — D llar -
Furthermore, for (g,t) € H x R we have

S(g.t) — 2N idy +EpL" (fpp +bpp)(®, )@ EpL”(fp +bpy)® g
ot = EpL”(fp) +bpy)P EpL"(fpr+bpy) t

_ 2Ag+EpL" (fp\ +bpr)g® +tEpL"(fp\ +bp) )P
EPL"(fp’)\-l-bp’)\)g +tE]pL”(f[p>7)\+bp7;\) ’
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As in the proof of Theorem 8 we write dj := L”(fp , +bp)dP. Then we find

(S(0,1),(9.1)) = 2X(9,9) -+ H(g) + 2tp(Q) +t7u(1). (29)

Let us suppose that ||(g,t)|| = 1. Then there exist w € H with ||w|| =1 and s € [0,1] such that g = sw
and t = ++v/1—s2. If y(w) > 0 Equation (29) then yields

2,2
> :11(1(\)/\/) —25v/1—s2u(w) + (1 —s?)p(l). (30)
Here, we used p(w) < y/u(1)\/p(w). It is easy to check that (30) also holds if p(w) < 0. Now,

recall that by the assumption of the theorem we have L” > a. This implies (1) > a > 0. For the
special case s = 0 it follows from (30), that

(S(g:1), (9:1)) > u(1) >a>0. (31)
For the special case s = 1 it follows from (30), that

(S(g,1),(g,t)) > 2As*+

WA (w)
(S(g,t),(g,t)) > 2A+ e >2\>0. (32)

Now, we will consider the case s € (0,1). We first minimize the right hand side of (30) with
respect to pu(w). To this end recall that K < 1 implies |pu(w)| < p(1). Therefore, the function

u(w) — Szﬁfl(‘)”) —25v/1—s2p(w) is minimal if
H(w) = min{u(L), u(1)s V1 -2} (33)
Using (30) it follows for p(w) = pu(1) that
(S(g,1), (g,1)) > 2As?+ (1) (L —25v/1—52) = 2As® —2u(1)sV/1—s2+p(1).  (34)
Hence, Lemma 22 and (34) yield for the case s € (0,1) and p(w) = p(1) that
(S(91),(9,1)) > Ciow € (0,%0), (35)

\ A2 1/2
C'°W=A<1‘W>+“<”<l‘<l‘m> )

By (33) we finally have to treat the case s € (0,1) and p(w) = p(1)s~1v/1 —s2. In this case we have
§? > % by p(w) < u(1). Hence we obtain from (30) that

(8(9,1),(9,)) > 2A+ (1=$?)u(1) —2(L =) )u(1) + (1 —s7)u(1) = A > A, (36)
Combining (31), (32), (35), and (36) we obtain
(S(g,t),(g,t)) > min{a,2A,cCiow,A} >0. (37)
Therefore, by the proof of Pedersen (1989, Prop. 3.2.12) it follows
15(g,t) ]| = min{a, A, ciow} (9, V)]

where

for all (g,t) € H xR, and
1

A =
IS5 < min{a, A, Ciow }

€ (0,0).

This shows the assertion. l
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