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Abstract

Bagging frequently improves the predictive performance of a model. An online version
has recently been introduced, which attempts to gain the benefits of an online algorithm
while approximating regular bagging. However, regular online bagging is an approximation
to its batch counterpart and so is not lossless with respect to the bagging operation. By
operating under the Bayesian paradigm, we introduce an online Bayesian version of bagging
which is exactly equivalent to the batch Bayesian version, and thus when combined with
a lossless learning algorithm gives a completely lossless online bagging algorithm. We also
note that the Bayesian formulation resolves a theoretical problem with bagging, produces
less variability in its estimates, and can improve predictive performance for smaller data
sets.
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1. Introduction

In a typical prediction problem, there is a trade-off between bias and variance, in that after
a certain amount of fitting, any increase in the precision of the fit will cause an increase in
the prediction variance on future observations. Similarly, any reduction in the prediction
variance causes an increase in the expected bias for future predictions. Breiman (1996)
introduced bagging as a method of reducing the prediction variance without affecting the
prediction bias. As a result, predictive performance can be significantly improved.

Bagging, short for “Bootstrap AGGregatING”, is an ensemble learning method. Instead
of making predictions from a single model fit on the observed data, bootstrap samples
are taken of the data, the model is fit on each sample, and the predictions are averaged
over all of the fitted models to get the bagged prediction. Breiman (1996) explains that
bagging works well for unstable modeling procedures, i.e. those for which the conclusions
are sensitive to small changes in the data. He also gives a theoretical explanation of how
bagging works, demonstrating the reduction in mean-squared prediction error for unstable
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procedures. Breiman (1994) demonstrated that tree models, among others, are empirically
unstable.
Online bagging (Oza and Russell, 2001) was developed to implement bagging sequen-

tially, as the observations appear, rather than in batch once all of the observations have
arrived. It uses an asymptotic approximation to mimic the results of regular batch bagging,
and as such it is not a lossless algorithm. Online algorithms have many uses in modern
computing. By updating sequentially, the update for a new observation is relatively quick
compared to re-fitting the entire database, making real-time calculations more feasible.
Such algorithms are also advantageous for extremely large data sets where reading through
the data just once is time-consuming, so batch algorithms which would require multiple
passes through the data would be infeasible.
In this paper, we consider a Bayesian version of bagging (Clyde and Lee, 2001) based

on the Bayesian bootstrap (Rubin, 1981). This overcomes a technical difficulty with the
usual bootstrap in bagging. It also leads to a theoretical reduction in variance over the
bootstrap for certain classes of estimators, and a significant reduction in observed variance
and error rates for smaller data sets. We present an online version which, when combined
with a lossless online model-fitting algorithm, continues to be lossless with respect to the
bagging operation, in contrast to ordinary online bagging. The Bayesian approach requires
the learning base algorithm to accept weighted samples.
In the next section we review the basics of the bagging algorithm, of online bagging,

and of Bayesian bagging. Next we introduce our online Bayesian bagging algorithm. We
then demonstrate its efficacy with classification trees on a variety of examples.

2. Bagging

In ordinary (batch) bagging, bootstrap re-sampling is used to reduce the variability of an
unstable estimator. A particular model or algorithm, such as a classification tree, is specified
for learning from a set of data and producing predictions. For a particular data set Xm,
denote the vector of predictions (at the observed sites or at new locations) by G(Xm).
Denote the observed data by X = (x1, . . . , xn). A bootstrap sample of the data is a
sample with replacement, so that Xm = (xm1, . . . , xmn), where mi ∈ {1, . . . , n} with
repetitions allowed. Xm can also be thought of as a re-weighted version of X, where the

weights, ω
(m)
i are drawn from the set {0, 1

n
, 2
n
, . . . , 1}, i.e., nω

(m)
i is the number of times that

xi appears in themth bootstrap sample. We denote the weighted sample as (X, ω(m)). For
each bootstrap sample, the model produces predictions G(Xm) = G(Xm)1, . . . , G(Xm)P
where P is the number of prediction sites. M total bootstrap samples are used. The bagged
predictor for the jth element is then

1

M

M
∑

m=1

G(Xm)j =
1

M

M
∑

m=1

G(X,ω(m))j ,

or in the case of classification, the jth element is predicted to belong to the most frequently
predicted category by G(X1)j , . . . , G(XM)j .
A version of pseudocode for implementing bagging is

1. For m ∈ {1, . . . ,M},
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(a) Draw a bootstrap sample, Xm, from X.

(b) Find predicted values G(Xm).

2. The bagging predictor is 1
M

∑M
m=1 G(Xm).

Equivalently, the bootstrap sample can be converted to a weighted sample (X, ω(m)) where

the weights ω
(m)
i are found by taking the number of times xi appears in the bootstrap sample

and dividing by n. Thus the weights will be drawn from {0, 1
n
, 2
n
, . . . , 1} and will sum to

1. The bagging predictor using the weighted formulation is 1
M

∑M
m=1 G(Xm, ω(m)) for

regression, or the plurality vote for classification.

2.1 Online Bagging

Online bagging (Oza and Russell, 2001) was recently introduced as a sequential approxima-
tion to batch bagging. In batch bagging, the entire data set is collected, and then bootstrap
samples are taken from the whole database. An online algorithm must process observations
as they arrive, and thus each observation must be resampled a random number of times
when it arrives. The algorithm proposed by Oza and Russell resamples each observation
according to a Poisson random variable with mean 1, i.e., P (Km = k) = exp(−1)/k!, where
Km is the number of resamples in “bootstrap sample” m, Km ∈ {0, 1, . . .}. Thus as each
observation arrives, it is added Km times to Xm, and then G(Xm) is updated, and this is
done for m ∈ {1, . . . ,M}.

Pseudocode for online bagging is

For i ∈ {1, . . . , n},

1. For m ∈ {1, . . . ,M},

(a) Draw a weight Km from a Poisson(1) random variable and add Km copies
of xi to Xm.

(b) Find predicted values G(Xm).

2. The current bagging predictor is 1
M

∑M
m=1 G(Xm).

Ideally, step 1(b) is accomplished with a lossless online update that incorporates the Km

new points without refitting the entire model. We note that n may not be known ahead of
time, but the bagging predictor is a valid approximation at each step.

Online bagging is not guaranteed to produce the same results as batch bagging. In
particular, it is easy to see that after n points have been observed, there is no guarantee
that Xm will contain exactly n points, as the Poisson weights are not constrained to add
up to n like a regular bootstrap sample. While it has been shown (Oza and Russell, 2001)
that these samples converge asymptotically to the appropriate bootstrap samples, there
may be some discrepancy in practice. Thus while it can be combined with a lossless online
learning algorithm (such as for a classification tree), the bagging part of the online ensemble
procedure is not lossless.
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2.2 Bayesian Bagging

Ordinary bagging is based on the ordinary bootstrap, which can be thought of as replacing
the original weights of 1

n
on each point with weights from the set {0, 1

n
, 2
n
, . . . , 1}, with the

total of all weights summing to 1. A variation is to replace the ordinary bootstrap with
the Bayesian bootstrap (Rubin, 1981). The Bayesian approach treats the vector of weights
ω as unknown parameters and derives a posterior distribution for ω, and hence G(X, ω).
The non-informative prior

∏n
i=1 ω

−1
i , when combined with the multinomial likelihood, leads

to a Dirichletn(1, . . . , 1) distribution for the posterior distribution of ω. The full posterior
distribution of G(X, ω) can be estimated by Monte Carlo methods: generate ω(m) from
a Dirichletn(1, . . . , 1) distribution and then calculate G(X, ω(m)) for each sample. The
average of G(X, ω(m)) over the M samples corresponds to the Monte Carlo estimate of
the posterior mean of G(X, ω) and can be viewed as a Bayesian analog of bagging (Clyde
and Lee, 2001).
In practice, we may only be interested in a point estimate, rather than the full posterior

distribution. In this case, the Bayesian bootstrap can be seen as a continuous version of
the regular bootstrap. Thus Bayesian bagging can be achieved by generating M Bayesian
bootstrap samples, and taking the average or majority vote of the G(X, ω(m)). This is
identical to regular bagging except that the weights are continuous-valued on (0, 1), instead
of being restricted to the discrete set {0, 1

n
, 2
n
, . . . , 1}. In both cases, the weights must sum

to 1. In both cases, the expected value of a particular weight is 1
n
for all weights, and the

expected correlation between weights is the same (Rubin, 1981). Thus Bayesian bagging
will generally have the same expected point estimates as ordinary bagging. The variability
of the estimate is slightly smaller under Bayesian bagging, as the variability of the weights
is n

n+1 times that of ordinary bagging. As the sample size grows large, this factor becomes
arbitrarily close to one, but we do note that it is strictly less than one, so the Bayesian
approach does give a further reduction in variance compared to the standard approach. In
practice, for smaller data sets, we often find a significant reduction in variance, possibly
because the use of continuous-valued weights leads to fewer extreme cases than discrete-
valued weights.
Pseudocode for Bayesian bagging is

1. For m ∈ {1, . . . ,M},

(a) Draw random weights ω(m) from a Dirichletn(1, . . . , 1) to produce the Bayesian
bootstrap sample (X, ω(m)).

(b) Find predicted values G(X, ω(m)).

2. The bagging predictor is 1
M

∑M
m=1 G(X, ω(m)).

Use of the Bayesian bootstrap does have a major theoretical advantage, in that for
some problems, bagging with the regular bootstrap is actually estimating an undefined
quantity. To take a simple example, suppose one is bagging the fitted predictions for a
point y from a least-squares regression problem. Technically, the full bagging estimate is
1

M0

∑

m ŷm where m ranges over all possible bootstrap samples, M0 is the total number
of possible bootstrap samples, and ŷm is the predicted value from the model fit using the
mth bootstrap sample. The issue is that one of the possible bootstrap samples contains the
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first data point replicated n times, and no other data points. For this bootstrap sample,
the regression model is undefined (since at least two different points are required), and so
ŷ and thus the bagging estimator are undefined. In practice, only a small sample of the
possible bootstrap samples is used, so the probability of drawing a bootstrap sample with an
undefined prediction is very small. Yet it is disturbing that in some problems, the bagging
estimator is technically not well-defined. In contrast, the use of the Bayesian bootstrap
completely avoids this problem. Since the weights are continuous-valued, the probability
that any weight is exactly equal to zero is zero. Thus with probability one, all weights
are strictly positive, and the Bayesian bagging estimator will be well-defined (assuming the
ordinary estimator on the original data is well-defined).

We note that the Bayesian approach will only work with models that have learning al-
gorithms that handle weighted samples. Most standard models either have readily available
such algorithms, or their algorithms are easily modified to accept weights, so this restriction
is not much of an issue in practice.

3. Online Bayesian Bagging

Regular online bagging cannot be exactly equivalent to the batch version because the Poisson
counts cannot be guaranteed to sum to the number of actual observations. Gamma random
variables can be thought of as continuous analogs of Poisson counts, which motivates our
derivation of Bayesian online bagging. The key is to recall a fact from basic probability — a
set of independent gamma random variables divided by its sum has a Dirichlet distribution,
i.e.,

If wi ∼ Γ(αi, 1), then

(

w1
∑

wi
,

w2
∑

wi
, . . . ,

wk
∑

wi

)

∼ Dirichletn(α1, α2, . . . , αk) .

(See for example, Hogg and Craig, 1995, pp. 187–188.) This relationship is a common
method for generating random draws from a Dirichlet distribution, and so is also used in
the implementation of batch Bayesian bagging in practice.

Thus in the online version of Bayesian bagging, as each observation arrives, it has a
realization of a Gamma(1) random variable associated with it for each bootstrap sample,
and the model is updated after each new weighted observation. If the implementation of the
model requires weights that sum to one, then within each (Bayesian) bootstrap sample, all
weights can be re-normalized with the new sum of gammas before the model is updated. At
any point in time, the current predictions are those aggregated across all bootstrap samples,
just as with batch bagging. If the model is fit with an ordinary lossless online algorithm, as
exists for classification trees (Utgoff et al., 1997), then the entire online Bayesian bagging
procedure is completely lossless relative to batch Bayesian bagging. Furthermore, since
batch Bayesian bagging gives the same mean results as ordinary batch bagging, online
Bayesian bagging also has the same expected results as ordinary batch bagging.

Pseudocode for online Bayesian bagging is

For i ∈ {1, . . . , n},

1. For m ∈ {1, . . . ,M},
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(a) Draw a weight ω
(m)
i from a Gamma(1, 1) random variable, associate weight

with xi, and add xi to X.

(b) Find predicted values G(X, ω(m)) (renormalizing weights if necessary).

2. The current bagging predictor is 1
M

∑M
m=1 G(X, ω(m)).

In step 1(b), the weights may need to be renormalized (by dividing by the sum of all
current weights) if the implementation requires weights that sum to one. We note that for
many models, such as classification trees, this renormalization is not a major issue; for a
tree, each split only depends on the relative weights of the observations at that node, so
nodes not involving the new observation will have the same ratio of weights before and
after renormalization and the rest of the tree structure will be unaffected; in practice, in
most implementations of trees (including that used in this paper), renormalization is not
necessary. We discuss the possibility of renormalization in order to be consistent with the
original presentation of the bootstrap and Bayesian bootstrap, and we note that ordinary
online bagging implicitly deals with this issue equivalently.
The computational requirements of Bayesian versus ordinary online bagging are com-

parable. The procedures are quite similar, with the main difference being that the fitting
algorithm must handle non-integer weights for the Bayesian version. For models such as
trees, there is no significant additional computational burden for using non-integer weights.

4. Examples

We demonstrate the effectiveness of online Bayesian bagging using classification trees. Our
implementation uses the lossless online tree learning algorithms (ITI) of Utgoff et al. (1997)
(available at http://www.cs.umass.edu/∼lrn/iti/). We compared Bayesian bagging to
a single tree, ordinary batch bagging, and ordinary online bagging, all three of which were
done using the minimum description length criterion (MDL), as implemented in the ITI
code, to determine the optimal size for each tree. To implement Bayesian bagging, the code
was modified to account for weighted observations.
We use a generalized MDL to determine the optimal tree size at each stage, replacing all

counts of observations with the sum of the weights of the observations at that node or leaf
with the same response category. Replacing the total count directly with the sum of the
weights is justified by looking at the multinomial likelihood when written as an exponential
family in canonical form; the weights enter through the dispersion parameter and it is easily
seen that the unweighted counts are replaced by the sums of the weights of the observations
that go into each count. To be more specific, a decision tree typically operates with a
multinomial likelihood,

∏

leaves j

∏

classes k

p
njk

jk ,

where pjk is the true probability that an observation in leaf j will be in class k, and njk is
the count of data points in leaf j in class k. This is easily re-written as the product over
all observations,

∏n
i=1 p

∗
i where if observation i is in leaf j and a member of class k then

p∗i = pjk. For simplicity, we consider the case k = 2 as the generalization to larger k is
straightforward. Now consider a single point, y, which takes values 0 or 1 depending on
which class is it a member of. Transforming to the canonical parameterization, let θ = p

1−p ,
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where p is the true probability that y = 1. Writing the likelihood in exponential family

form gives exp
{(

yθ + log 1
1+exp{θ}

)/

a
}

where a is the dispersion parameter, which would

be equal to 1 for a standard data set, but would be the reciprocal of the weight for that
observation in a weighted data set. Thus the likelihood for an observation y with weight

w is exp
{(

yθ + log 1
1+exp{θ}

)/

(1/w)
}

= pwy(1 − p)w(1−y) and so returning to the full

multinomial, the original counts are simply replaced by the weighted counts. As MDL is a
penalized likelihood criterion, we thus use the weighted likelihood and replace each count
with a sum of weights. We note that for ordinary online bagging, using a single Poisson
weight K with our generalized MDL is exactly equivalent to including K copies of the data
point in the data set and using regular MDL.

Table 1 shows the data sets we used for classification problems, the number of classes in
each data set, and the sizes of their respective training and test partitions. Table 2 displays
the results of our comparison study. All of the data sets, except the final one, are avail-
able online at http://www.ics.uci.edu/∼mlearn/MLRepository.html, the UCI Machine
Learning Repository. The last data set is described in Lee (2001). We compare the results
of training a single classification tree, ordinary batch bagging, online bagging, and Bayesian
online bagging (or equivalently Bayesian batch). For each of the bagging techniques, 100
bootstrap samples were used. For each data set, we repeated 1000 times the following pro-
cedure: randomly choose a training/test partition; fit a single tree, a batch bagged tree, an
online bagged tree, and a Bayesian bagged tree; compute the misclassification error rate for
each fit. Table 2 reports the average error rate for each method on each data set, as well as
the estimated standard error of this error rate.

Size of Size of
Number of Training Test

Data Set Classes Data Set Data Set

Breast cancer (WI) 2 299 400
Contraceptive 3 800 673
Credit (German) 2 200 800
Credit (Japanese) 2 290 400
Dermatology 6 166 200
Glass 7 164 50
House votes 2 185 250
Ionosphere 2 200 151
Iris 3 90 60
Liver 3 145 200
Pima diabetes 2 200 332
SPECT 2 80 187
Wine 3 78 100
Mushrooms 2 1000 7124
Spam 2 2000 2601
Credit (American) 2 4000 4508

Table 1: Sizes of the example data sets

149



Lee and Clyde

Bayesian
Single Batch Online Online/Batch

Data Set Tree Bagging Bagging Bagging

Breast cancer (WI) 0.055 (.020) 0.045 (.010) 0.045 (.010) 0.041 (.009)
Contraceptive 0.522 (.019) 0.499 (.017) 0.497 (.017) 0.490 (.016)
Credit (German) 0.318 (.022) 0.295 (.017) 0.294 (.017) 0.285 (.015)
Credit (Japanese) 0.155 (.017) 0.148 (.014) 0.147 (.014) 0.145 (.014)
Dermatology 0.099 (.033) 0.049 (.017) 0.053 (.021) 0.047 (.019)
Glass 0.383 (.081) 0.357 (.072) 0.361 (.074) 0.373 (.075)
House votes 0.052 (.011) 0.049 (.011) 0.049 (.011) 0.046 (.010)
Ionosphere 0.119 (.026) 0.094 (.022) 0.099 (.022) 0.096 (.021)
Iris 0.062 (.029) 0.057 (.026) 0.060 (.025) 0.058 (.025)
Liver 0.366 (.036) 0.333 (.032) 0.336 (.034) 0.317 (.033)
Pima diabetes 0.265 (.027) 0.250 (.020) 0.247 (.021) 0.232 (.017)
SPECT 0.205 (.029) 0.200 (.030) 0.202 (.031) 0.190 (.027)
Wine 0.134 (.042) 0.094 (.037) 0.101 (.037) 0.085 (.034)
Mushrooms 0.004 (.003) 0.003 (.002) 0.003 (.002) 0.003 (.002)
Spam 0.099 (.008) 0.075 (.005) 0.077 (.005) 0.077 (.005)
Credit (American) 0.350 (.007) 0.306 (.005) 0.306 (.005) 0.305 (.006)

Table 2: Comparison of average classification error rates (with standard error)

We note that in all cases, both online bagging techniques produce results similar to
ordinary batch bagging, and all bagging methods significantly improve upon the use of a
single tree. However, for smaller data sets (all but the last three), online/batch Bayesian
bagging typically both improves prediction performance and decreases prediction variability.

5. Discussion

Bagging is a useful ensemble learning tool, particularly when models sensitive to small
changes in the data are used. It is sometimes desirable to be able to use the data in
an online fashion. By operating in the Bayesian paradigm, we can introduce an online
algorithm that will exactly match its batch Bayesian counterpart. Unlike previous versions
of online bagging, the Bayesian approach produces a completely lossless bagging algorithm.
It can also lead to increased accuracy and decreased prediction variance for smaller data
sets.
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