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Abstract

This paper describes a scheme for local computation in tiondl Gaussian Bayesian networks
that combines the approach of Lauritzen and Jensen (20@k)saine elements of Shachter and
Kenley (1989). Message passing takes place on an eliminage structure rather than the more
compact (and usual) junction tree of cliques. This yieldsal computation scheme in which all
calculations involving the continuous variables are penfed by manipulating univariate regres-
sions, and hence matrix operations are avoided.

Keywords: Bayesian networks, conditional Gaussian distributionspagation algorithm, elimi-
nation tree

1. Introduction

Bayesian networks were developed within the field of artificial intelligeneetasl for representing
and managing uncertainty (Pearl, 1988; Cowell et al., 1999), but avdinding many applications
beyond that field. When a Bayesian network represents the joint distritnftioset of finite discrete
random variables, exact and efficient local computations schemes nggti¢o evaluate marginal
distributions of interest. Shachter and Kenley (1989) introduced Gawsglaence diagrams to
represent multivariate Gaussian distributions and performed inferertbem using standard influ-
ence diagram operations such as arc-reversals and barren noolealeRaphael (2003) presented
an alternative computational scheme for degenerate multivariate Gauissidsutions and has ap-
plied it to problems of rhythmic parsing of music.

Lauritzen (1992) introduced a method of exact local computation of meahsaiances for
Bayesian networks with conditional Gaussian distributions (Lauritzen amch\il, 1984, 1989),
but it was later discovered that the method was numerically unstable. Mmpthe Lauritzen and
Jensen (2001) have developed an alternative and stable local compstdteame in junction trees
for these conditional Gaussian networks. Apart from the improved rinatstability compared to
the previous algorithm, their method is able to calculate full mixture marginals dihcmus vari-
ables, and is also able to include deterministic linear relationships betweenumurgtivariables.
However their method is quite complicated, requiring evaluations of matrix ghzest inverses,
and recursive combinations of potentials. This paper presents an titersegheme in which the
local computation is performed on an elimination tree, rather than using a juriction As will
be shown this means that matrix manipulations are avoided because all mpasang opera-
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tions involving the densities of the continuous variables are performed bipofating univariate
regressions, and complex operations such as recursive combinafioteafials are avoided.

The plan of the paper is as follows. The following section presents notatioocohditional
Gaussian regressions. Then elimination trees are defined and comppnectitn trees. A simple
network is used to illustrate the various phases of the message passingescheen the general
procedure is presented: deriving an elimination tree derived from aonetimitializing the elim-
ination tree is given (this is perhaps the most complicated part of the schenejing evidence
and evaluating posterior marginal densities. A discussion relating thentwiebeme to those of
Shachter and Kenley (1989) and Lauritzen and Jensen (2001) snpeds followed by an algo-
rithm for sampling from the posterior and two maximization operations.

2. CG Regressions

Following the notation of Lauritzen and Jensen (2001), a mixed Bayestammreconsists of a set
of nodesV partitioned into a set aliscretenodesA, and a set of continuous nodés, Each node
represents a random variable. The Bayesian network is directed agsegtib, with the restriction
that discrete nodes are not allowed to have continuous parents. Aeslogith eachy € I of the
continuous nodes are conditional Gaussian (CG) regressions, ioggctoconfiguration in the state
space of the discrete paremtsf Y, given by

LY|1=1,Z=2) = N(a(i) +B(i) "z %)),

wherea (i) is a real numberZ is a vector of the continuous parents\aff3(i) is a vector of real
numbers of the same size Bf anda?(i) is a non-negative real number. If the variamégi) = 0,
then the regression represents a deterministic linear relationship betis®htheZ. Associated
with each discrete random variab¥ec A is a conditional probability distribution of the variable
given its parents in the graph.

The product of the densities associated with the continuous randomleargibes the (multi-
variate normal) density of the continuous variallesonditional on the discrete variablds On
multiplying this by the product of the conditional probability distributions of eatkthe discrete
variables, the joint density of both discrete and continuous variables imebta

Lauritzen and Jensen (2001) introduce as their basic computational al§j& potentia) rep-
resented by the tuple = [p,A,B,C|(H|T), where: H is a set ofr continuous variables, called
thehead T is a set ofs continuous variables, called titail; HNT = 0; p= {p(i)} is a table of
nonnegative numbergs = {A(i)} is a table ofr x 1 vectors;B = {B(i)} is a table ofr x s matri-
ces; andC = {C(i)} is a table ofr x r positive semidefinite symmetric matrices. They introduce
various operations on such potentials: multiplication, extension, marginalizaif@ct combina-
tion, complementation, and recursive combination. These operationgjaieecefor their message
passing algorithm on the junction tree structure, and in the main correspopérations on prob-
ability distributions. However there are restrictions that must be obseordtidse operations to
be permissible; for example, it is not possible to directly combine two CG potetugdsher if the
intersection of their heads is non-empty. Such constraints are obeyedr jprigagation algorithm.

In comparison to the propagation scheme presented in this paper, muchoofntipéexity of
their algorithm arises because their local computational structure is a girartgpn tree of cliques.
The cliques with continuous variables essentially contain, after a basic initiatizanultivariate
CG regressions. Sending a sum-marginal message between two cligleesecire marginaliza-
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tion over both discrete and continuous variables, in which case the latteraaggnalized first. In
contrast, we work with univariate regressions on an elimination tree, agoidatrix operations.
(Indeed one could implement the current scheme using the CG potentialseéimopibrations, re-
stricting them to heads that contain only one variable, sorthat.)

3. Junction Trees and Elimination Trees

In this section we review the notions of a junction tree of cliques and of an eliimmaee, and
of their relative advantages and disadvantages. More details aboaisthestures may be found in
Cowell et al. (1999).

3.1 Making a Junction Tree

Since the work of Lauritzen and Spiegelhalter (1988) the most commonigaaptructure on which

to perform exact inference on Bayesian networks by local messagagaias been a junction tree
of cligues. This is a tree structure, with the node set being the set of clifoésa chordal graph,
such that the intersectid®y NC, of any two cliquesC; € € andC; € C is contained in every clique
on the path in the junction tree betwe€nandC,. The intersection of two cliques adjacent in a
junction tree is called aeparator The basic algorithmic steps in constructing the junction tree,
starting from a directed acyclic grag) are as follows:

1. Add moral edges t&, and then drop directionality on the edges to form the moral g&ihh
2. Add sufficient fill-in edges t&™ to make a chordal grap®°.

3. Identify the cliques ofs°, and join them up to form a tree structure which has the running-
intersection property.

Step 1 is straightforward, and Step 3 may be done efficiently usinghthemum cardinality
searchalgorithm (Tarjan and Yannakakis, 1984). It is Step 2, also commonly krestrian-
gulation, that presents the main obstacle to efficient message passing. Therergrevays to
triangulate the moral grap8™, what is desirable is that the cliques that arise are kept small, or
more specifically the sum total state space size over the cliques is minimized. Foptingl
triangulations is NP-hard (Yannakakis, 1981), and so early worksfedwn heuristic algorithms,
typically of a one-step-look-ahead type (Kjeerulff, 1990), but other odgthfor example genetic
algorithms (Larr@aga et al., 1997) have also been used. More recent work haséacos divide-
and-conquer approaches that can yield close to optimal or even optinmgjuiddions (Becker and
Geiger, 2001; Olesen and Madsen, 2002), and an optimal triangulationtiahg is implemented in
the commercial expert system HUGIN.

3.2 Making an Elimination Tree

Elimination trees were introduced by Cowell (1994) for analysing decisioblpms, and are de-
scribed on pages 58—-60 of Cowell et al. (1999). An elimination tree is similarjemction tree,
in that it is a tree structure, but with the node set being a subset of the densplegraphs of a
chordal graph (rather than the set of cliques) such that the inters&itio®, of any two nodes

1. The company web site is hattp://www.hugin.com
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in the elimination tree is contained in every node on the path in the tree be@yemmC,. The
subset of complete subgraphs is determined by an elimination sequencesitigigb ordering of
the nodes of the chordal graph. The basic steps to make an elimination ttiegy stéth the directed
acyclic graphG are as follows:

1. Add moral edges t&, and then drop directionality on the edges to form the moral g&ihh

2. Take an elimination sequen®g vk_1,...,v1 of the k nodes (suitably re-numbered) of the
moral graphG™, and use this to form a triangulated graph

3. For each node associate a so calleduster sef nodes consisting of; and its neighbours
later in the elimination sequence (and hence of lower number), call thi}.set

4. Join the set€1,Cy,...,Ck, which has the running-intersection property, together to form a
tree.

Step 1 is the same step as for making a junction tree. For Step 2, we firstiitattiemnodev,
and add edges so that it and its neighbours form a complete subgraphilithiske the seCy in
Step 3). Then move onto nodg 1, add edges so that it and its neighbours that occur later in the
elimination sequence form a complete subgraph (this will make th@sein Step 3). Repeat this
last step for the other nodes in the elimination sequence. There vkicthester sets, one for each
of thek nodes in the grapt®, andC; = {v1}. The choice of elimination sequence will govern the
number of fill-ins in the triangulation, and hence the size of the state space elittination tree.
Reasonable choices can usually be made by a one-step-look-ahezd dkdice that if one knows
an optimal triangulatiois® of G™, then a perfect numbering of the nodes35fcould be used as an
elimination sequence fdB™. Step 4 may be done in time typically linearkr{but possibly as bad
asO(k?)), by the simple expedient of finding in each clusterGethe first nodev, say, that was
eliminated aftex; and then joiningC; to Cg.

3.3 Comparing Elimination and Junction Trees

In an elimination tree, the set of cluster sets contains the set of cliques ofahguiated graph
together with some other sets. Hence in terms of storage requirements fotigdeten the sets,
elimination trees are less efficient than junction trees. Sometimes they canybeadgras shown
with the following example.

Suppose the original graph or its moral graphG™ is a complete graph df nodes, each of
which represents a binary random variable. Then there are no fill-irsedgee added a€™ is
already triangulated, and the junction tree is a single clique containitkgaliles ofG and having
a total state space of sizé.2Now consider the elimination tree, made by using an elimination
sequencey, k-1, . .., V1. This will yield k cluster sets, witlej = Uijzl{vi}, having a total state space
size given by 2-22+...4-2K=2(2K—1). Thatis, it requires almost double the storage requirements
of the junction tree. Actually things are worse than this, because we hatakea into account the
k— 1 separators between adjacent clusters which have total state spa2e-g%e---- + 21 =
2¢— 2, thus leading to a factor of almost three in the storage requirements. Eoiteshould
be emphasized that this is a worst case scenario, and in most applicatiavethead is a small
fraction of the total state space of the corresponding junction tree.
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Now suppose that the variables Gfare continuous rather than being discrete, v@mow
representing a multivariate Gaussian distribution. To represent this diiiriba the junction tree
will requirek values for the means of each variable, and a fuitfles 1) /2 values for the symmetric
covariance matrix, making a total kbfk-+3) /2 values to be stored. In the corresponding elimination
tree, as we shall see, only univariate regressions are stored. ke@Ggceve store two numbers (a
mean and a variance), @& we store three numbers (a mean, one coefficient and a variance),
, and inCy we storek+ 1 numbers, (a meahk,— 1 coefficients, and a variance). Adding all these
together we have a total of 23+ ---+ (k+1) = k(k+ 3)/2 values to be stored, the same as for
the junction tree. Thus the use of the elimination tree does not introduce digoligathe values
to be stored, in contrast to the discrete case. Hence the elimination &leeastas efficient as the
junction tree in storage requirements (only almost, because there will be stradeokkeeping
needed to keep track of which variables are in each of the cluster sets).

3.4 Strongly Rooted Trees

For purely discrete Bayesian networks and purely continuous multivébatssian Bayesian net-
works the junction or elimination trees described above may be used far ragagation algo-
rithms, with any clique or cluster set being chosen as the root to which nessaeg collected to
and distributed from. For the conditional Gaussian networks in which bothedésand continuous
variables appear, Lauritzen (1992) used the notionrobeked graph(Leimer, 1989) to define the
structure of atrongly rooted junction trei order to have a manageable propagation scheme which
handles the asymmetry between the discrete and continuous variablestrddtisrs is retained in
Lauritzen and Jensen (2001). Here we use a similar structure basditharaton trees, which
we shall call astrongly rooted elimination treeWe shall assume without loss of generality that
the graphG of the Bayesian network is connected. Then a strongly rooted eliminatiomagde
formed in the same way as a standard elimination tree provided that, in the eliminagjioense
used, all of the continuous variables occur before any of the discaeibles. The cluster sets are
joined up as before, and the last cluster formed is taken to be the strandIfa® has more than
one connected component, then we form a strong elimination tree for eagjooent; it can then
be useful to introduce an empty cluster set connected to each of the stasgf the individual
elimination trees, and make this the strong root of the forest of elimination trees.)

The reason for using a strong elimination tree will become apparent whdisaess the initial-
ization of the tree and propagation on it. For a more efficient computatiommectfeom a storage
requirement viewpoint) is it convenient to use a tree structure that is inteatadxktween a junction
tree and an elimination tree, a structure which we calrang semi-elimination treéntroduced in
the next section.

3.5 From Elimination Tree to Junction Tree

Given an elimination ordering for a grafih one can construct a triangulated gragh use maxi-
mum cardinality search to find the cliques, and then organize the cliques imotejutree. Alter-
natively, one could take the elimination tree and remove the redundant dettehat are subsets
of cliques, by repeated application of the following result due to LeimerQl@&e also Lemma
2.13 of Lauritzen (1996) or Lemma 4.16 of Cowell et al. (1999)):
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Lemma 3.1 Let G, ...,Ck be a sequence of sets having the running intersection property. Assume
that G C C,, for some t# p and that p is minimal with this property for fixed t. Then:

@) Ift > p,theng@,...,C_1,C.1,...,Ck has the running intersection property.

(i) Ift <p,thenG,...,G_1,Cp,Cis1,...,Cp-1,Cpt1,...,Ck has the running intersection prop-
erty.

The preceding Lemma operates on sets, but in the elimination tree we also Hes/ddin
tween sets, which will need to be rearranged if a set if deleted. The folipaligorithm, based
on Lemma 3.1 makes a single pass through the cluster sets of an elimination treguocepa junc-
tion tree, it assumes that the elimination tree is connected. It is convenient &thea&dges of the
elimination tree directed edges, with directions pointing away from theGoot¥We may then talk
of parentg pa) and children(ch) of the cluster sets in the tree in the obvious manner.

Algorithm 3.2 (Elimination tree to Junction tree)

1. Initialize:

e An ordered list L of the cluster setg ©5,...,Cy derived from the elimination ordering

Vi, Vk_1, . .. V1 having the running intersection property, and joined to form an elimina-
tion tree.

e An ordered list J, initially empty.
2. While L is non-empty do:

e Remove the first elementftom L;
e If C; is a clique then append it to the end of J, otherwise:
(@) find G, € ch(C) such that p is minimized,
(b) Remove gfrom L,
(c) Set p&Cp) = pa(G);
(d) Ineach cluster & ch(C;) \ C,, replace G in pa(c) with Cp;
(e) Add the elements of @) \ C,, to the set ctCy);
(f) PutG, at the front of L;
(9) Discard G.

It is left to the reader to verify that this repeatedly applies Step (ii) of LemmavBth Steps
2(c)-(e) updating the connections in the tree. When the algorithm terminatéistth contains the
cligues in running intersection order, and the parent and child sets &f tligaes contain the links
required to make a strong junction tree. An example illustrating the steps in AlgoB8ithis shown
in Figure 1.

Although the message passing algorithms presented below will work on & stliomination
tree, to optimize the storage requirements it is better to workstroag semi-elimination treélhis
is a strong elimination tree in which the purely discrete clusters that are suifsgtser purely
discrete clusters have been removed, with links among the remaining clusitetdysadjusted.
Algorithm 3.3 produces a strong semi-elimination tree from a strong elimination tree
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(BcoED>—>(F
B—>e>—>(EO—>CBcn3
CBCDE>—>(F)

28> (B—>Cco

BCDE>—>(CES)
G

Figure 1: lllustration of Algorithm 3.2. On the left a Bayesian network, aqdright the elimina-
tion tree obtained using the elimination sequence of reverse alphabetieghgrdn the
top tree we first remove the redundant clugter= {A} having the unique child cluster
Cp = {AB}, yielding the second tree in whig/AB} now has no parent. Then the redun-
dant clustelC; = {BC} is removed: it has the unique child clus@ = {BCD}, and so
this now inherits{BC}'s parent{ AB}. Finally the redundant clust€; = {BCD} is re-
moved. It has two child clusters, of theSg= {BCDE} becausé is eliminated afteF.

Cp has its parent changed {&B} (Step 2b) and is itself made the new parenfBEDF}
(Step 2c). It inherits the extra chifBCDF} from C; (Step 2d) to yield the bottom tree,
which after dropping directions on the edges gives the junction tree.
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Algorithm 3.3 (Strong elimination tree to strong semi-elimination tree)
1. Initialize:

e An ordered list L of the cluster sets ©,,...,Ck derived from the strong elimination
ordering \, Vk_1, - - . V1 having the running intersection property.

e An ordered list J, initially empty.
2. While L is non-empty do:

e Remove the first elementftom L;

¢ If C; contains a continuous variable, ok @& purely discrete and not a subset of another
purely discrete cluster, append it to J, otherwise:

— Find G, € ch(C) such that p is minimized; (note thap @ill be purely discrete and
C: c Cp), and then:

(a) Remove gfrom L;

(b) InC, set pdCy) = pa(C);

(c) Ineach cluster & ch(C) \ Cp, replace G in pa(c) with Cy;
(d) Add the elements of (&) \ C;, to the set cfCy);

(e) PutG atthe front of L;

(f) Discard G.

4. Computations on a Simple Network

The computational scheme to be presented here is more complicated than porahediscrete
case. Although both start with moralizing the Bayesian network, for CG nkgsastrong triangu-
lation is required, leading to a strong elimination tree. For discrete netwdt&s{lae junction tree
of cliques has been made, the initialization stage is quite straightforwardstng®f: (i) setting
all entries in all of the tables (potentials) in the cliques and separators ofribggn tree to unity;
(i) a multiplication of each conditional probability table of the Bayesian netwadik amy one suit-
able clique table (one whose clique variables contains the variables of tdéicnal probability
table); and (iii) propagation on the junction tree to yield cligue and separdlestatoring marginal
distributions. For the CG networks we use the same initialization process fdidtrete part of
the elimination tree. However on the continuous part of the tree things arecoogicated, and
its initialization is perhaps the most important and complicated part of the compuadasicimeme
of this paper. In the initialization phase, CG regressions are passeddmetwrtinuous clusters,
and so we introduce a list structure callegastbagto store such messages that are to be passed.
In addition we introduce for each continuous cluster another list structalted anlp-potential
that will on completion of the initialization phase store the conditional density oélih@nation
variable associated with the cluster (conditional on the remaining variables iciubkter). Each
regression of the Bayesian network is initially allocated to either sipap®tentialor postbagby
rules given below. During the initialization process the contents ofppotentials andpostbads
may be modified by an operation that we caldHANGE (see Section 5.3), which is equivalent to
an arc-reversal in the Bayesian network. These€EANGE operations have to done in a correct
order, which requires postbags contents to be sorted.
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Evaluating node marginals is also more complicated. For discrete variablesabéegds as in
the purely discrete case, by a marginalization of the tables in the discretasingdiee elimination
tree. For continuous variables we use thesR operation introduced by Lauritzen and Jensen
(2001), which is a sequence oKEHANGE operations carried out among regressions in continuous
clusters along a path in the tree, to obtain for a continuous variable its madgimsity conditional
on a set of discrete variables. When combined with the marginal of thosetis@riables we
obtain the marginal density of the continuous variable—typically a mixture. Tis#i®peration is
also used as part of the process of entering evidence about corgivaigables.

In this section we use a simple example to illustrate the steps of constructing admee fr
Bayesian network, initializing the tree, and finding the marginal of a contsinode, before giving
the formulation of these algorithmic steps for a general network in the substegection. Some
terminology is also introduced that will be used later.

4.1 Specification

Figure 2 shows a small mixed Bayesian network consisting of three disenetiom variables,
shown as square-shaped nodes, and three continuous real-\vahaednr variables, shown as cir-
cles. It follows from the structure of the Bayesian network that the jointidigion of the discrete

Figure 2: A mixed Bayesian network: square nodes represent dis@gébles, circular nodes
continuous variables.

variables isP(A =a,B=b,C = c) = P(A = a)P(B = ¢)P(C = c), where the marginal probabil-
ity distributions on each individual variable are assumed specified. Toletarpe probabilistic
specification, we require the set of linear regressions (witlthg's anda’s being constants):

L(X|A=aB=b) = A (ax:ab O%ap)
LY|X=x,C=c) = AN (Oy:c+By:cX 0\2(:0)
L(ZIY=y,C=c) = N(azc+BzcY, 0%:0)

So for example, if all discrete variables are binary, four regressiomseguired forX, and two
each forY andZ. This set of linear regressions defines the joint density of the continuiables
conditional on the discrete variables.

4.2 Making the Elimination Tree

The first stage is to transform the Bayesian network into the tree on whichdbgage passing takes
place. There are 36 possible elimination sequences that could be appliedrtwmthl graph (3!
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ways of eliminating the continuous variables first, followed by 3! ways of elitirigathe discrete
variables); here we shall use a sequence in wiidh eliminated first, therX. This is not the
most computationally efficient sequence (eliminatihfirst will ensure tha”Z does not appear in a
cluster withX), but helps illustrate the operations of the propagation algorithm. In Figweshow
various trees that may be formed based on this elimination sequence; fmopagation algorithm
we shall use the middle tree, which has the strong {8dC}.

Figure 3: Strong elimination tree (top) with strong rd@}, strong semi-elimination tree with
strong roof{ ABC} (middle) and strong junction tree (bottom) with strong ro¥%Z ABC,
using the elimination sequen¥eX ZCABapplied to the moralized graph derived from the
network in Figure 2. Separators are not shown.

4.3 Assignment of Potentials

The next stage is to assign the conditional probabilities and densities of ylesiBa network to the
tree so that the tree contains a representation of the joint density of all vatiables. For purely
discrete Bayesian networks, and in the formulations of mixed networks wfitzan (1992) and
Lauritzen and Jensen (2001), each conditional distribution of a disuoelie given its parents may
be assigned to any clique in the junction tree that contains the family of the awodajmilarly for
the continuous variables the conditional density of a node given its paseagsigned to any clique
containing the family of the node.

In contrast we apply a more restrictive assignment: for continuous Vesidbe conditional
density of a node given its parents is assigned to any cluster containingntilg 6f the node, but
the conditional distribution of a discrete node given its parents may be assigrany cluster set
that contains the family of the node provided that the cluster set does miairt@ny continuous
variables. There always exists such a cluster set, because disciabdegare not eliminated until
after the continuous variables are eliminated.

As a consequence of this assignment, the subtree consisting of thosescbastiaining only
discrete variables contains all of the information required to reconstragbitht marginal of the
discrete variables; this part of the tree shall be referred to adisheete part Similarly, the clusters
having the continuous variables hold representations of all of the densitiesvhich one can
construct the joint density of the continuous variables conditional on tieeatiésvariables; this part
of the tree will be called theontinuous part The set of discrete clusters that are neighbours to the
continuous part will be called theoundary Thus in Figure 3 the discrete part of the middle tree
consists of the sgtABC}, the continuous part consists of the SEABC}, {XZABC and{Y XzZC,
and the boundary consists of the single{g®BC}. We assign probability tables and regressions as
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follows: _
Cluster \ Regressions

ABC | P(A),P(B),P(C)
ZABC | —

XZABC| L(X|A,B)

YXZC | L(Z|Y,C),L(Y|X,C)

Our aim is that when initialization is complete, on the continuous part of the trekawe the
following regressions:

Cluster \ Regressions
ZABC | L(Z|A,B,C)
XZABC| L(X]|Z,A,B,C)
YXzC | L(Y|X,Z,C)

and in general we aim to represent in each continuous cluster set tbi@oal densities of the
eliminated node given the remaining variables in the cluster set. This congspmthe set-chain
representation (Lauritzen and Spiegelhalter, 1988), at least on thiawaus part of the tree. Note
that we do not explicitly store potentials on separators between continlusiisrcsets. In contrast
for the discrete part of the tree we will retain separators, and perfeual sum-propagation to find
the sum-marginal potential representation (see Cowell et al. (1999nt&h@); however in this
example there is no such separator.

We move from the initial assignment of regressions to this (partial) set-ckpiesentation
by local message passing as follows. First, in the clustef6&tZC we rearrange the pair of
regressions as follows,

L(Z|Y,C=c¢),L(Y|X,C=c¢) = L(Z,Y|X,C=c¢) = L(Y|Z,X,C=c),L(Z|X,C=c¢)

for each value thaC can take. This rearrangement corresponds to the arc-reversa dirécted
edge fromY to Z in Figure 2 (that is, an application of Bayes’ theorem). In the expressidhe
right the regressions (Y |ZXC) are retained in the cluster set. The regressio(s| X,C), which

are independent of, are forwarded to the neighbouring cluster set towards the root{ X&tABC} .

After this rearrangement we have the following represented on the consrart of the tree:

Cluster | Regressions

ZABC | —

XZABC| L(X|A,B), L(Z|X,C)
YXZC | L(Y|X,Z,C)

Next, the regressions in the clusfetZABC are modified as follows:

L(X|A=a,B=b),L(Z|X,C=c)
— L(X,Z|A=a,B=Db,C=c)
— L(X|Z,A=aB=b,C=c),L(Z|A=a,B=Db,C=c).
The regressions (X |Z,A,B,C) are retained in the clustéKZABGC}, and the regressions(Z | A, B,C)
are forwarded to the clust¢Z ABC}, and we are done.

Note that it is not necessary to form the intermediate joint density implied bygXample,
L(X,Z|AB,C). Instead, the algebraicdEHANGE formulae (see Section 5.3) may be applied to
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pass directly from one pair of regressions to another, even in the cissothe variances are zero
(corresponding to deterministic linear relationship between continuousbies)a These formu-
lae are essentially equivalent to Theorem 1 of Shachter and Kenley)(1B89vorking directly
and only with linear regressions, instead of multivariate conditional Gaudsiasities, the need for
matrix algebra and evaluation of determinants is avoided. Another advanftdgeEX CHANGE for-
mulae, as emphasized by Shachter and Kenley (1989), is that they sloblddchthrough roundoff
error to negative values of variances, something that could happanmaeipulating multivariate
densities?

4.4 Calculating Marginals

One of the prime applications of the propagation algorithms in Bayesian netwotk evaluate
marginal distributions of variables, perhaps conditional on values (ev@dindings) of some other
variables in the network. We illustrate the procedure for the simple examgli@neg with the case
that no variable in the network has evidence.

Suppose that we wish to evaluate the marginal densif &ormally this may be written as

fz2(2) = %/ / fxyz asc(X,Y; 2| &, b, c)p(a,b,c)dydx
abc/X=—oJy==%°

- %/x_ fxz|aec(X,Z| &, b,c)p(a, b, c)dx
a,b,c =—0

= % fZ\ABC(Z|aﬂ b, C) p(aa ba C)a
ab.c

where fxy 7 agc(X,¥; Z/a,b,c) is the multivariate normal density of the continuous variables given
the values of the discrete variables, etc. Now on our elimination tree we hapesentation of
fxvz/agc(-) interms of the three linear regressiob§’ | X, Z,C), L(X|Z,A,B,C) andL(Z|A,B,C),
and the last of these combined with the joint distributR(iA, B,C) stored in the discrete cluster
{ABC} is sufficient to evaluate the marginal densityZyfwhich will thus be a mixture of normal
densities.

Now suppose we wish to evaluate the marginal density. dformally this is given by

fy(y) = %/ / fxvz asc(X,Y;2]a,b,c)p(a,b,c)dzdx
ab,c/X=—°Jz=—0

= %/ / fyxzc(Y[%,2,¢) fx|zaBc(X| 2 & b, €) %
abc X=—00 J7Z=—00
fz1aBc(2|a,b,c)p(a, b,c)dzdx (1)

where in (1) we have written down the factorization of the joint density aitadoka on the tree. We
wish to evaluate this by local message passing. To do this we rearrangerinat €actorization into
a more suitable form. First we take the pair of densifigkzc(y| X,z ¢), fx|zasc(X| 2 a, b, c) and
use the KCHANGE operation to rewrite these as the pBiry zasd X |,z a,b,¢), fy|zasc(Y|Z a,b,c)

2. Or so in theory! In implementing the algorithms described in this paperutieor came across the problem that
when subtracting one zero double precision from another, the ressiltava but with the negative bit set, and so was
treated by the compiled program as a negative number! Tracking dasvibtig’ took the author a couple of days.
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which leaves the product density unchanged. Now integrating>oyethich gives unity) leaves the
following expression to evaluate:

W)= 3 [ frizasclyl2b.0)fz seclz| b c)plabc)dz
abc’/&E—®

We now apply the ECHANGE operation again to the two densities in this expression to yield

UED / f7/vasc(zY,a.b.0) fy |ascly|a,b,c) p(a,b,c)dz
abc’/&F—®

in which theZ integral gives unity, leaving the desired marginal

fy(y) = % fy|asc(y|a b,c)p(a,b,c).
ab.c

This sequence may be described in terms of a local message passing\as:féljJdake the
regression stored in the clusteY XZC and pass it to{ XZABG; (ii) perform the EXCHANGE
operation on the pair of regressions stored X2 ABC}; (iii) take the resulting regression that has
Y in the head and pass it it ttZABC}; (iv) perform the EXKCHANGE operation on the pair of
regressions now stored {fZ ABC}; (v) combine the resulting regression that Nas the head with
the joint distributionP(A, B,C) that may be obtained from the boundary set to yield the marginal of
Y.

This process of rearranging the regressions involwng an example of the BsH operation
introduced by Lauritzen and Jensen (2001). (TheisP operation can act more generally on a
group of variables, but because we are working with an elimination treelye@quire it to act on
one variable at a time.) We say that the variablbas been BsSHED to the boundary. The B%sH
operation leaves unchanged the overall joint density of the continuoiadhles conditional on the
discrete variables.

Lauritzen and Jensen also used thuisR operation to incorporate evidence on continuous vari-
ables, and we shall follow them. Thus suppose that we wish to evaluate thmatatensity ofZ
givenY = y*. The first step is to BsH the variableY to the boundary, and when it arrives there
substitutey = y* in all cluster sets in which it appears: In the cluster neighbouring the lzoyivd
appears in the head and the tail is empty of continuous variables, and sigltiésaylikelihood term
for each configuration of the discrete variables that is passed to (tmatligplied into the discrete
potential stored in) the boundary set. The tree then stores the followingsegations:

Cluster \ Regressions and Distributions
ABC P(A,B,C,Y =y*)

ZABC | L(Z|AB,C)Y =¥

XZABC| L(X|A,B,C,Z,Y =Yy*)

YXZC | —

We may now take the CG regressions stored ZRBC} and combine them with the marginal
P(A,B,C,Y = y*) to obtain, after normalization, the marginal densityZogiven the evidence. To
obtain the marginal density of, we would RJsH the regressions iKEXZABGC to the boundary.

Evidence about the discrete variables may also be entered, but only dis¢hete part of the tree.
For evidence on several continuous variables it is convenient to emtezvilence one variable
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at a time. For example, to enter additional evidence ¥at x*, we first RUSH the regression
L(X|A,B,C,Z,Y =y*) to the boundary, and then substitite= x*, yielding the representation:

Cluster \ Regressions and Distributions
ABC P(A,B,C,X =x*Y =y*)
ZABC | L(Z|A,B,C,X =x"Y =Yy*)
XZABC| —

YXZC | —

from which the marginal oZ given the evidence may be found. Notice that the likelihood of the
evidence is found, as usual, as the normalization constant when all egilas been collected to
the strong root.

5. The General Local Propagation Scheme

The example in the previous section has illustrated the main steps in initializationvialesee
propagation, and evaluation of marginal densities of variables. Hovilegerxample is too simple
to exhibit all of the subtleties involved in the general procedure. In thisssewe assume that
we have a strong elimination tree, and that it is connected. If the tree is distied, then the
scheme described below may be applied to each connected componeatedgp@he algorithms
will also work for a strong semi-elimination tree, and in implementations this mightéfenped on
efficiency grounds; no details of the following algorithms depend on whitheotwo types of tree
is used.

5.1 Some Notation and Terminology

Let us suppose that the original conditional-Gaussian Bayesian nelhasrnk> 0 continuous vari-
ables” ={yi,...,Y¥n} andm> 0 discrete variable& = {31, ...,0m}. Also suppose that the variables
have been numbered so that the elimination ordering of the continuouslgarialnake the strong
elimination tree iy, ¥n-1,-..,Y1). The ordering of the discrete variables is unimportant for our
purposes, except that it should lead to a computationally efficient treedevate the set of con-
tinuous cluster sets byr, with Cr(i) € ¢ denoting the cluster set associated with eliminating
the continuous variablg. Let S denote the separators adjacent to continuous cluster sets, with
S (i) € Sr denoting the separator betwe@n(i) and its neighbouring cluster set in the direction of
the strong root. Note that if the neighbouring cluster is part of the bowyr{tteat is, purely discrete),
thenS-(i) will be purely discrete. We will denote the set of purely discrete clustersabynd the
set of separators between purely discrete clusterg by

In the present propagation scheme, the conditional distribution of the coasrvariables given
the discrete variables is maintained in factored form by sets of univarigtessons. The messages
passed between the continuous clusters consists of such sets. To fagdifitatesion of this we
introduce data structures to store such sets of regressions.

In each continuous cluster we retain, for each configuration of theetiserariables in the
cluster, two list structures to store zero or more linear regressions, anheetcall thepostbag the
other we call thdp-potential(lp is short forlinear predictor. On the separatot§ we retain only
the postbag On the clusterga and separatorsy of the discrete part of the tree we store the usual
tables (called potentials) of discrete junction tree propagation algorithms.
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5.2 Pre-initializing the Tree

After constructing the tree from the Bayesian network, the first task is tosa#athe conditional
probability tables and CG regressions to the clusters of the tree. We adupeaestrictive alloca-
tion than Lauritzen and Jensen (2001) in that we restrict where thehilibptables are allocated.
The allocation scheme is as follows:

Algorithm 5.1 Allocation of potentials
Pre-initialize tree potentials
In each continuous cluster set @) € Cr:

e Set eacHp-potentialto empty;

e Set eaclpostbago an empty list.
In each $(i) € S: set eachpostbago an empty list.

Set all table entries to unity in all potentials of the clustgfsand separatorssy of the discrete
part of the tree.

Allocation of probability tables

For each Xe A: multiply P(X|pa(X)) into the potential of any one discrete cluster@f that
contains XU pa(X).

Allocation of CG regressions
For each Xe T, find a cluster, €(i) say, which contains X pa(X), and:

e |F the elimination node(i) of G- (i) is X, then add. (X | pa(X)) to thelp-potentiaj
OTHERWISE append (X | pa(X)) to thepostbagof C-(i).

Under this allocation the discrete part of the tree contains all of the condifi@né uncondi-
tional) probability tables of the discrete variables, and the product of ttenpals in the discrete
clusters yields the joint marginal distribution of the discrete variables. Indhtrmious part of the
tree are contained all of the CG regressions of the continuous variabllies Bayesian network,
hence the lists in the clusters in the continuous part of the tree represéattired form) the joint
multivariate density of the continuous variables given the discrete variables

Applying this to the example of Section 4, both thestbagandlp-potentialof {ZABC} were
empty, thepostbagf {XZABC was empty but it{p-potentialstoreds (X | A, B), whilst for {Y XZC
the postbagcontainedZ (Z|Y,C) and thelp-potentialstoredZ(Y | X,C).

Note that the continuous leaves of the elimination tree will have non-elpgigtentiak, be-
cause for each such leaf, its associated elimination node appears a@lgesin the tree, and so
there is no other cluster where the conditional density of that variableecatidzated.
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5.3 TheEXCHANGE Operation

The basic formula required in the message passing scheme of this papeEstheNGE oper-
ation, which is essentially Bayes’ theorem. DétZ,Wi,...\W be continuous variables (wheye
andZ do not refer to the variables in our example), @gdhy, ... &, b, Co,Cy,...C,0y andozy be
constants, withp # 0, such that we have the pair of CG regressions:

ZIYWi,.. W~ N(ao+aWa+ - +aW +bY,03 ),
YIWL,.. W~ N(Co+CiWo+ -+ W, 02).

Then the KCHANGE operator converts these into the pair of distributions
Y|ZW, ... W ~N(-,-) andZ|Wi,...W ~ N(-,-), (2)

that have the same joint density as the original pair. For convenience welung and define
Wp = 1. We show in Appendix A that

|
Z|Wi,...\W ~N (%(a +bq)V\,{,o§Y+bzo$> .
1=

For the conditional distribution of there are three cases to consider.
Case 10§ > 0 andog, > O:

|
Siso (CiG%w — aibcr%) W +bo2z o%o%w

2 262 ) 262
07y T b0y 07y +b°0%

Y|ZW,...W ~N

Case 202 > 0 ando?, =0:

Z|Y
¥ g
YZ,Wl,...WNN(w@).

Case 3.0¢ = 0 ando3 , > O:

|
Y|ZWi,...\W ~N EOCiW"O .
i=

The derivation of these formulae is straightforward and is given in Agipeh. Case 1 is
equivalent to Theorem 1 of Shachter and Kenley (1989), but difjdrirthat they use the central-
moment representation of multivariate Gaussian distributions, whereasxttieali GE operation
(like Lauritzen and Jensen (2001)) employs the raw-moment represantatses 2 and 3 may be
obtained as mathematical limits of Case 1, however computer implementations wauile these
to be treated separately.

Finally, if b =0 (so that£(Z|Y,W,...\W) does not depend ori), the EXCHANGE operation
merely permutes the two regressions, witlandZ disappearing from the conditioning sets of the
two regressions.
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5.4 Initial Transformation of the Tree: An Example

Having allocated potentials according to Algorithm 5.1, we proceed to completaithalization
phase via local message passing to yield, on the continuous part of thertiesgiate regressions

in the Ip-potentiak and emptypostbag, so representing, in set-chain form on the continuous part
of the tree, the joint density of the continuous variables conditional on tleeetiésvariables. In

the example of Section 4 mmostbagcontained more than one regression (for each discrete con-
figuration); in larger and more complicated networks this might not happehsa within each
continuous cluster a sequence fEANGE operations may be necessary. When this happens care
must be taken in the ordering of such operations. We illustrate this in an exaefple giving the
general procedure.

The example we shall use is given as Example 3 in Lauritzen and Jensdn), (@00 is shown
in Figure 4. This example is chosen because Lauritzen and Jensen stiowttieir initialization
phase several layers of recursive combinations of potentials areeggquVe shall see how this
arises and is avoided in our propagation scheme.

ABCD (ABCD

(8>

Figure 4: Mixed Bayesian network (left) with one discrete varighlgiven as Example 3 in Lau-
ritzen and Jensen (2001). In the strong elimination tree (right) the strarngsra, and
the two setCDEF} and {ABCDE} would by themselves form a strong junction tree
with {ABCDE} as the strong root.

We shall use the same initial allocation of regressions as Lauritzen arehJartsch means that
L(F|—) is put into thelp-potentialof cluster{CDEF}, and in itspostbagwe placeL(E |CF) and
L(D|F). Inthepostbagof cluster{ ABCDE} we place the regressiosC|DA) and L(B| ACDE).
Thelp-potentialof cluster{ ABCDE} is empty, as are thip-potentiak andpostbag of the three re-
maining continuous clustefABCD}, {ABC} and{AB}. The discrete distributioR(A) is allocated
to the strong roofA}. This allocation is displayed in the following table.
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Cluster Ip-potential postbag
{CDEF} L(F|-) L(E|CF), L(D|F)
{ABCDE} - L(C|DA), L(B|ACDE)
{ABCD} - -

{ABC} - -

{AB} : -

{A} P(A)

Our aim is to transform thép-potential of cluster{CDEF} into L(F |CDE), (becausé- is
the elimination variable for this cluster) using the origifapotential the postbagcontents, and
EXCHANGE operations. This corresponds to arc-reversal operations on thereetedl edgef —

D andF — E in the original Bayesian network. Now if we first reverse thefare: E, then this will
give rise to an illegal directed-cycle in the Bayesian netwé&rk{ F — D — C — E); this is avoided
if we first reverse the arE — D. Hence our sequence oKEHANGE operations is summarized by

L(F|-),L(D|F),L(E|CF) — L(D|-),L(F|D),L(E|CF)

n'g

— L(D|-),L(E|CD), L(F|CDE),

in which the pairings of the potentials in eaclh&ANGE operation is indicated. We now retain
L(F |CDE) in thelp-potentialof cluster{ CDEF} and pass the regressionsD | —) and L(E |CD)
to the cluste{ ABCDE}. Now because the variable is the elimination variable in this cluster,
this means that (E|CD) is put into thelp-potentialand £(D | —) is put into thepostbag Actu-
ally, because this cluster contains the discrete variApthere is arp-potentialand apostbagfor
each configuration oh. Hence we really put a copy df(E |CD) into each suclp-potential and
similarly a copy of£(D|—) into each suclpostbag This corresponds to a trivial extension of the
regressions td.(E | ACD) = L(E|CD) andL(D|A) = L(D|-). (In the following we shall assume
for brevity that we are working with a particular configuration/fto avoid repeating the phrase
“for each configuration oA”.)

So now in the clustefABCDE} we have the following regressions stored:

Ip-potential L(E|ACD)
postbag L(D|A), L(C|DA), L(B|ACDE)
In our desired set-chain representation we wish to end up ih| ABCD) in thelp-potential
we may use the following sequence cfEHANGE operations,

L(E|ACD), £(D|A), £(C|DA),L(B|ACDE)

— L(D|A), L(E|ACD), L(C|DA), L(B| ACDE)

— L(D|A), L(C| DA), L(E |ACD), (B | ACDE)

— L(D|A), L(C| DA), L(B| ACD), L(E | ABCD),

in which the first two operations merely permute the regressi@asn¢D are already conditioning
variables of the regressions B, and only the last is an application of Bayes’ theorem. From this
set,L(E|ABCD) is retained in thép-potentialof { ABCDE}, L(D|A) is put into thep-potentialof
{ABCD} (becaus@® is the elimination variable of this cluster), addC|DA) and L(B|ACD) are

put into thepostbagof { ABCD}. Hence in the clustefABCD} we have:
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Ip-potential L(D|A)
postbag L(B|ACD), L(C|DA)

Now D appears in the tails of both regressions in plestbag hence care must be taken. The
correct EKCHANGE sequence is:

L(D|A),L(C|DA), L(B|ACD) — L(C|A),L(D|AC), L(B|ACD)

— L(C|A), L(B|AC), L(D|ABC)

L(D|ABC) is retained in the clustefABCD}, £L(C|A) is put into thelp-potential of the cluster
{ABC}, andL(B| AC) is put into itspostbag
In the cluste{ ABC} we apply the KCHANGE operation,

L(C|A), L(B|AC) — L(B|A), L(C|AB),

retainingL(C| AB) in thelp-potentialand puttingZ(B|A) into thelp-potentialof cluster{ AB}, and
we are done.

Before proceeding in the next section to give the general initialization itigorwe need to
explain how we choose the ordering exchange operations to be pedferh@n gpostbagcontains
more than one regression. The answer is straightforward: one dhdersgressions in postbag
by a topological ordering in the original Bayesian network of the respdimsad) variables in the
regressions, such that in the ordering all the parents of a vatkabfgpear to the left oK, and all
child variables appear to the right & This ordering ensures that the sequence ©EEANGE
operations is valid. (It is essentially Proposition 2 of Shachter and Kehf89).)

5.5 Initial Transformation of the Tree: General Algorithm
We now present the general algorithm for initializing the CG regressiotieedfee. Recall thag
is the elimination variable associated with the continuous cl@stéy.

Algorithm 5.2 (Initialization of CG regressions)
1. Given:
e A mixed Bayesian networ with a strong elimination tree initialized according to
Algorithm 5.1.
e The elimination sequeneg, Yn_1, - - -, Y1 Of the continuous nodes.
e Atopological orderingrop of the variables inB.

2. Message passing sequence:
Fori:=n step -1 until 1 do:
For each configuratiod" of the discrete variables inii) do:
e Sort the regressions in th® postbagof C-(i) so that their head variables occur in the
same sequence as in the topological orderagp;
e While thed’ postbagof Cr (i) is not empty do:
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— Remove the first regression R in &jepostbagof G- (i);

— If the tail of R containsy;, then modify R and th&' Ip-potentialof Cr(i) via the
EXCHANGE operation, such that R does not dependyon

— For each configuratiod; 2 &, of the discrete variables in the clusterGi) neigh-
bouring G- (i) in the direction of the strong root, put a copy of R either (1) indhe
Ip-potentialof G- (j;) if the head of R is the elimination variable of G;), or (2) in
thed;, postbagof Gr(ji) otherwise.

— Discard R.

Note that by the strong nature of the tree, the set of discrete variab@gigfis contained in
the set of discrete variables Gf(ji). Hence for each configuratiadj, there will be an induced
sub-configuratio;.

On completion of Algorithm 5.2 all of thpostbag are empty, and thp-potentiak contain the
desired set-chain CG regressions. To see this, first note that eauhaEGE operation is a valid
application of Bayes’ theorem, and does not at any stage alter the jointioaatldensity that can
be reconstructed from the regressions stored inpfotentiab andpostbag. Secondly, when the
outeri-th loop is performed thép-potentialof Cr(i) is not empty, eithe€r (i) is a leaf cluster, in
which case it started out non empty; otherwise it will have started out notyeangd remained so,
or it will have started out empty but then became non-empty because ited@eregression from a
neighbouring cluster away from the root. (The conditional density given its parents must have
been placed either in tHp-potentialof Cr (i), or in somepostbagof a cluster on some path from
Cr (i) through clusters further away from the root tf@ti), and will arrive, possibly modified via
EXCHANGE operations & (i) through application of the previous steps of the algorithm for higher
values ofi.)

5.6 Entering Evidence and thePusH Operation

Evidence on discrete and/or continuous variables may be entered gabpted on the tree, and
posterior distributions of individual nodes found. Discrete evidencatisred and propagated in
the usual waybut only on the discrete part of the tre@o enter continuous evidence, and to find
marginal densities of continuous variables, we use tbeHPoperation of Lauritzen and Jensen
(2001).

Itis convenient to enter evidence on the continuous variables oneveblsariable at a time. In
order to keep track of those variables that have already had their eei@erered, in each contin-
uous cluster we retain a boolean variable—caéletiveflag—which is initially set to TRUE before
any continuous evidence has been entered. A value of FALSE indicatesvidence on the elimi-
nation variable of the cluster has been entered. A TRUE value indicatevttiahce concerning the
elimination variable may be entered, or that the marginal density of the variagleerzalculated.

Recall that the separat& (i) between a continuous cluster &(i) that is a neighbour to a
discrete cluster i€y only contains those discrete variablesdn(i). In every such separator we
store a table of real values indexed by the states of the discrete varidtilds we call aweight
table.

In the algorithm below the cluster neighbouri@g(i) in the direction of the strong root will be
denoted byoroot(i), and is either another continuous cluster, or a purely discrete boucidatgr.
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If toroot(i) is continuous its index is denoted by(so thatr; € {1,2,...,i — 1} andtoroot(i) =

Cr(ri)).

We now state the algorithm for entering evidence on a continuous vayiabtedexed accord-
ing the elimination ordering) which consists of the finding tiggt=y;. Basically it performs a
sequence of ECHANGE operations so that in the final regression in whyghs the head variable,
no continuous variables appear in the tail; the substitutjoay; may then be performed in all re-
gressions in whicly; appears, and where it is the head variable this substitution forms a likelihood

to be incorporated into the discrete part of the tree.

Algorithm 5.3 (The PusH operation: Entering evidencey; = ;)
e Given:

— A tree with elimination sequengg, yn-1, - - -, 1 Of the continuous variables.

— The tree initialized according to Algorithm 5.2, and then possibly having hatksy-
idence already entered and propagated—but not on the varigbteaccording to this
algorithm. (Note: allpostbag are empty.)

— Evidencey; = y;j to enter and propagate on the tree.
e Step 1: Entery; =vj in all regressions in whicly; is a conditioning variable.

— Fori:=nstep-1until f-1do
* |F activeflagof Gr (i) is TRUE andy; € Cr (i) substitutey; = y; in everylp-potential
regression of €(i).
e Step 2: Initialize the loop for pushing; towards a boundary cluster.

— Seti:=|.

— For each configuratior®’ of the discrete variables offCi) move the regression in the
& Ip-potentialof C- (i) into thed postbagof Cr(i).

— Setactiveflagof G- (i) to FALSE.

e Step 3: Pushy; towards a boundary cluster.
while toroot(i) is not a boundary cluster do:

— For each configuratiody, of the discrete variables ofiCr;) (with induced configuration
&' of the discrete variables ofiTi)) do:
x |F activeflagof toroot(i) is FALSE, then:
1. Copy thed’ postbagof Cr (i) into thed;, postbagof G- (r;);
OTHERWISE:
1. Copy thed postbagof G- (i) into thed;, postbagof G ()
2. Perform theEXCHANGE operation on théy;. Ip-potentialand postbagf Gr(ri)
(such that the resultingostbagegression hay; as head).

3. Substitutey; = yj in thed;, Ip-potentialof G (ri);
— Discard the content of evepostbagf G- (i);
— Seti:=r;.

1537



COWELL

e Step 4: Update the discrete part of the tree.

1. For each configuratio; of the discrete variables ofrQi) substitutey; = y;j into the
density of the regression stored in thepostbagof G- (i) and store the result in th&*
entry of the weight table ofr&i).

2. Multiply theweighttable of $ (i) into the discrete cluster potential of torqoy;
3. Empty theostbagf Cr(i).

Substitutingy; = yj into a regression in whicl; is in the tail, andy, is the head variable will
result in another regression @af on the remaining variables of the tail, affecting the expression for
the mean. In the more complex substitutions of Step 4(1), there is a regrestierd;” postbagof
Cr (i) of the formy; ~ N(ay j,07;), so that the5; entry in theweighttable will store

exp(—(\ff ~a))2/20%))

w5 = .

\ /21'[05j

If oﬁj = 0, which could (though not necessarily must) occur if there are logitatisaships
on the continuous variables, this could be mathematically undefined (Lauaitzedensen (2001)
provide an example). Should such an event occur an implementation ofitAlgd.3 should warn
the user.

To see how the algorithm works, suppose that we start with no evidenggghazeen entered.
In this case the continuous part of the tree stores a representation ainttiédanal density of the
continuous variables given the discrefé] |A). When evidencg; = yj is entered on a continuous
variableyj, the sequence of XCHANGE operations and substitutions pf= yj leads to a factored
representatioc (I \ {y; }|Y;j,4), L(yj |A) where the first term is represented in thepotentiak of
the continuous clusters in which thetiveflagis TRUE, and the last term is passed as a likelihood
term via a weight table to the discrete part of the tree. After standard ed@deopagation on the
discrete part of the tree, the latter stores a representati®t/dfy; = yj,8") or P(4,y; = vj,d")
depending on whether or not the discrete potentials have been normalinadytdd* represents
discrete evidence). If a second piece of evidence is entgged,y; say, the algorithm leads to
the active continuous clusters storing a factored representatiofiof {y;, vk} |Yj = Y}, Yk = Y. Q)
and the further likelihood factorL(yk = Y |Yj = Yj,A) being multiplied into the discrete part of
the tree. At each stage tlaetiveflag which are FALSE in the continuous clusters identify, via
the elimination variables of the clusters, those continuous variables abait exhdence has been
entered, thdp-potentiak in the other clusters (in which trectiveflag are TRUE) represent the
joint density of the unobserved continuous variables given the discaetbles and the observed
continuous variables.

After all continuous evidence has been entered, and evidence oetdisariables has been
entered and propagation performed on the discrete part of the treeistitete part contains a
factored representation of the posterior probability of the unobserngedetk variables given the
evidence on all variables.
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We illustrate the algorithm by revisiting the example in Section 4. We start with nees&on
the continuous part of the tree, which is initialized thus:

Cluster | Ip-potentials

ZABC | Z|abc~ N (0z:abc, 05.4p0)

XZABC| X |zabc~ N (x:abc+ Px:zabZ 0%.apc)
YXZC | Y |xzc~ N(ay:c+ By:xcX+ By:zeZ, 07..)

If X =x* is observed, then Algorithm 5.3 operates as follows:

1. Inthe cluste{Y XZQ, the distributionY |xzc~ A (Oy:c + By:xcX+ By:zcZ, 0$:C) — Y |x*zc~
N (Oy:c + By:xeX* + By:zcz, 02..). Theactiveflagremains TRUE.

2. In {XZABG, theactiveflagis set to FALSE, and for each configuratiabc the regression
N (Ox:-abc+ Bx:zabZ, of(:abc) is moved into thebc postbagf {ZABC}

3. In{ZABC}, for each configuratioabcthe EXCHANGE operations acts on ttac Ip-potential
representingl.(Z|A=a,B =b,C = c), and theabc postbago give a newabc Ip-potential
representing’(Z| X = x,A=a,B =b,C = ¢) and modifiecabc postbagontent representing
L(X=x|A=a,B=Db,C=c). Then thdp-potentialis settoL(Z| X =x*,A=a,B=Db,C=
c), and the weight table entry(a,b,c) stores the density value af(X = x*|A=a,B =
b,C=c).

4. Thepostbag of {ZABC} are emptied, thactiveflagremains TRUE.
5. In the discrete clust§iABC}, the potentialp(a, b,c) — p(a,b,c)w(a,b,c) ¥ {a,b,c}.

6. On normalizing the potential in the discrete clugt&BC} we obtain the probability distribu-
tion P(A,B,C| X =x").

5.7 Evaluating Posterior Marginals of Individual Variables

After propagating evidence on variables as described above, findingasterior marginal of a
discrete variablel) say, proceeds in the usual way: Find a cluster set in the discrete [ihet bée
containingD and marginalize the joint table in that cluster set appropriately.

Finding the posterior density of an unobserved continuous variablghs&sysH operation in
a way similar to but simpler than Algorithm 5.3. Suppose the marginal densttydf is required.
The idea is to use a sequence ofdHANGE operations to push to a clusteiC neighbouring the
boundary, so that we have a representation of the distributidfl Zr,B) where £+ denotes the
evidence on the continuous variables, &d A are the discrete variables in the clusterFrom
the boundary cluster the margir(B| £-_a) may be found and then combined witlfY | -, B) to
give the required posterior marginal6f The complete algorithm is given in Algorithm 5.4, which
uses the same notation as Algorithm 5.3.

Algorithm 5.4 (Find the posterior density of a continuous variable)
e Given:

— A strong elimination tree with elimination sequenggyn_1,...,y1 Of the continuous
variables.
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— Thetree initialized according to Algorithm 5.2, with eviderigeentered as in Algorithm 5.3,
and discrete evidencg&y entered and propagated on the discrete part, so that the dis-
crete clusters contain posterior distributions. (Note: pdistbag are empty.)

— Task: to find the posterior density of an unobserved continuous varyab(@lote: the
activeflagof G-(j) is TRUE.)

e Step 1. Initialize the loop.

— For each configuratiord; of the discrete variables ofiCj) copy thed; Ip-potentialof
Cr(]) into thed; postbagof Cr(j).

— Seti:=|

e Step 2. Pushy; towards a boundary cluster.

while toroof(i) is not a boundary cluster do:

— For each configuratiody, of the discrete variables ofiCr;) (with induced configuration
&' of the discrete variables ofiTi)) do:

* Copy thed postbagof G (i) into thed;, postbagof Gr-(ri);

*+ IF activeflagof G- (r;) is TRUE andy; is in the tail of the regression in th& Ip-
potentialof G- (r;), THEN use theEXCHANGE operation formulae to modify the
&, postbagof C-(rj) (so thaty; is still the head variable) but do not modify tbg
Ip-potentialof Cr(r;);

— Empty all of thepostbag of G-(i);

— Seti:=r;.
e Step 3: Find the marginal density.

1. Marginalize the discrete potential in the boundary cluster neighbourip@)Qo the
weighttable in the separator(§i).

2. Output the result of adding together the product of eaglight table entry with the
density of the regression stored in the correspongiagtbagof G- (i).

3. Empty all of thgpostbag of G-(i).

Prior to an application of this algorithm thg-potentiak in the active clusters represent a fac-
torization of the joint conditional density of the unobserved continuouahis given the evidence
on the continuous variables. The algorithm does not change these inagmamd so does not
alter this joint conditional density, and indeed the algorithm leaves the trely ieaa state for
finding the marginal density of another continuous variable. The algorithostisising thepost-
bags as temporary storage to find, by repeated (partial) application oftbe &\ GE formulae, the
marginal density of; conditional on the discrete variables and the values of the observedigontin
ous variables. Step 3 combines this with the correct posterior probability efitbbserved discrete
variables ofCr (i) (conditional on all evidence) to form the posterior marginal density .of
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6. Comparison to Other Methods

In this section we review the propagation scheme described in this paplecoapare it to the
scheme of Lauritzen and Jensen (2001) and to the work of Shachtéfesuhely (1989). We then
discuss some possible extensions of the scheme.

6.1 Summary of Current Scheme

In the current scheme, evidence propagation and evaluation of madigt@butions in a mixed
Bayesian networkB takes place on a strong elimination tree or strong semi-elimination tree. The
tree has two distinct parts, the continuous part and the discrete part, witraheg root located in

the discrete part. The continuous part is initialized using the CG regressicdhisand represents,
using a collection of univariate regressions, the density of the contintariables conditional on

the discrete variables. The discrete part represents the marginal distribfthe discrete variables,
and is initialized using the discrete conditional probability table8.dEntering evidence on contin-
uous variables, and evaluating marginal densities of continuous variabksthe BsH operation

with the EXCHANGE formulae, the latter being an application Bayes’ theorem. Discrete evidence
is entered on the discrete part of the tree and propagated on the disotatétpe tree in the usual
way. For finding marginals of continuous variables there is OTRIBUTE operation on the tree.

6.2 Comparison with the Lauritzen and Jensen (2001) Scheme

As discussed in Section 2 the Lauritzen and Jensen propagation schesr&esisong junction tree
architecture. Associated with each clique of the junction tree is a CG potertiah vg a tuplep=
[p,A,B,C](H|T) of scalars, vectors and matrices and a partition of the variables into cormdition
variables (the head) and conditioning variables (the tail). The conditiasibaition or density
of a variableX in B may be assigned to any clique or separator that contains the famuyirof
the Bayesian network. CG potentials may be combined but there are resfritiiemirhave to be
followed, which necessitate the introduction of tleeursive combinatiorf potentials to allow
incoming messages to a clique to be combined correctly.

It is instructive to see how recursive combination is avoided in the curchrense, or alterna-
tively, how to interpret recursive combination within the current schenoe thts we return to the
example in Section 5.4. In Figure 4 the clustgedHEF} and{ ABCDE} form a strong junction tree
with the latter as the strong root. In the Lauritzen and Jensen analysisstgeraent of potential
to clique {CDEF} leads to a CG potential having the head and tail strugiDeeF |C). This is de-
composed intdF |CED) and(DE |C) the latter is passed to the cligg&BCDE} to be combined
with the potential BC| DE). However the heads’ and tails’ contents of these two potentials preclude
their direct combination. Instead they must be combined recursively. rBistthige is to decompose
(DE|C) — (E|CD),(D|—), however this is not sufficient, 4& |CD) cannot be directly combined
with (BC|DE). So we decompos@BC|DE) — (B|CDE),(C|D) and then we may combine the
four potential¥ B|CDE)(E |CD)(C|D)(D| —) in that orderto yield a potentialBCDE| —).

If one compares these four potentials with the regressions stored in therdlABCDE} in
Section 5.4 we see that they have the same head-and-tail structures. durridnet scheme the
regressions.(D|—), L(E|CD) were passed to the clusttABCDE}, which stored (omitting the
dependence o) the regressions (C|D), L(B|CDE). These are subject tod€ HANGE operation,
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dependent on the topological ordering of the head variables in the Rayetwork3, the ordering
beingD —C—E —B.

Thus we interpret the recursive combination of potentials as a ordesedlifation of potentials
so their direct combinations are well defined (although it will not alwaysdgose potentials to
univariate CG potentials). The current scheme avoids the recursivigication operation because it
works all the time with a factored representation, and the correct orderlEBgCHANGE operations
is ensured by using the topological ordering of the variable®. iti has echoes dazy-propagation
(Madsen and Jensen, 1998), in which potentials are stored in factomedwhen initializing a
junction tree and are only combined when required; the difference is tlmtrischeme factored
forms are always retained.

In our scheme there is NnBUM-DISTRIBUTE operation on the continuous part of the tree,
whereas Lauritzen and Jensen have such an operation that cando® stere weak-marginals
in the separators. If weak-marginals are desired in the current schiegenay be found using the
mean and variance of the mixture marginals.

Another aspect of the Lauritzen and Jensen scheme should be mentidmedis their opera-
tion of minimizationof the tails of CG potentials. In their operations on CG potentials represented
by tuplesp = [p,A,B,C|(H|T), when a column oB has entries all zero for every configuration of
the discrete variables in the CG potential, then that column and the associatiedigos tail vari-
able may be removed. This iseductionoperation, and takes place during recursive combination.
In the current scheme, reduction occurs as a result of ®EHENGE operation: theZ regression
of (2) does not depend oxy, so an implementation of theX€ HANGE operation would, in taking
this into account, automatically perform a reduction. Tiaimizationof a potential occurs if the
potential has been reduced as far as possible.

Lauritzen and Jensen also discuss the possibility of forming the marginajrolua of contin-
uous variables. This should be possible within the present scheme, witbstlielreing expressed
as weighted sets of linear regressions. However it may be that in the regsssging process more
than one regression might be stored poastbag(for a given configuration of discrete variables) and
if so their order would be important, not however the topological orderfrigeooriginal Bayesian
network variables used in Algorithm 5.2, but the (reverse of) the eliminatidering. This would
be appropriate because it is a perfect numbering of the strongly tridadwjeaph associated with
the tree. Similar considerations suggests it ought to be possible to progagiace on several
continuous variables simultaneously. These connections are discudsetthén detail in the next
subsection.

6.3 Relationship to the Shachter and Kenley (1989) Scheme

In the Shachter and Kenley scheme, arc-operations are performeBayeaian network one pair
of variables at a time, which means that it operates on pairs of linear segmeswhich is like the
current scheme. (Their paper is concerned with pure Gaussian Refviout this is difference is
not very significant.) When several arcs need reversing in a ProliNisde Reduction operation
(their PROPOSITIONZ2) the sequence of arc reversals has to follow an ordering which isadeni
to one obtained from a topological ordering of the nodes in the Bayesiawrie Hence this is very
similar to the sequence o EHANGE operations in initializing the tree described in Algorithm 5.2.
The close connections between the current scheme, and of both Shaihtéenley (1989)
and Lauritzen and Jensen (2001) are illuminated by the paper of Shathdkr(1990). These
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authors show that the inference algorithms operating on junction treessestially the same as
node reductions algorithms operating on influence diagrams, becausaréhegth working on the
same underlying graphical structures. In the terms of the present, paperthey show is that in
the elimination sequencg,yn_1,...,Yy1 operating on the moralized mixed Bayesian network, the
clusterCr (i) is the same as that which would be obtained in the influence diagram for fantiig of
nodey; after all outgoing arcs have been reversed to nyadarren node, if the nodes are removed
from the mixed Bayesian network in the same order as the elimination seqUeraeoid directed
cycles being introduced there is a restriction to the order in reversing tlieacbs of a node, the
restriction uses a topological ordering of the original Bayesian netwdhey also describe how
evidence is entered—if evidence is entered on a node then arcs arerkge that that node has no
parents, and in the process child arcs from the node are removed. théndone the likelihood
associated with that node may be found. This process—which thegwdénce propagaticris
essentially the BsH operation on a continuous variable, except that arcs are revergetbdhe
point that the variable has no continuous parents, and then substitutingideaae value leads to
modification of those regressions in which the variable appears in the tag¢ponding to removal
of those arcs from the influence diagram viewpoint) and evaluation of Ehlilael to be passed on
to the discrete part of the tree. The elimination tree, witHptpotentialand postbagstructures,
provides an organizing framework for such operations. They alstribeshow multiple evidence
may be entered simultaneously, and their procedure should be trafsfatatihe current scheme.

6.4 Implementation Issues

The propagation scheme presented here works by manipulating lineassiegns. To aid the presen-
tation the paper has used, like Lauritzen and Jensen (2001), a raw memesentation, for which

the EXCHANGE formulae of Section 5.3 may be used. If the user wishes to implement the fcurren
scheme then one possibility would be to represent CG regressions by lén@ tufp, A, B,C|(H | T)

of Lauritzen and Jensen, but nawandC are scalars anB a vector (corresponding to= 1) for

each configuration of the discrete variables. Further restrictions arthéhtablep is a table of 1's

if the CG regression has continuous variables, and hence are notdkqu

However this is not the only possibility. In the author's C++ implementation, ancative
array of the formst d: : map<vari abl e, doubl e> is used to store coefficients of covariates in the
regressions. The reduction operation is effected by a variable beimyesl from the associative
array.

One could instead use the central-moment representation of Shachteemliegl, kll that would
be required would be suitable replacements of txeEANGE formulae which describe Bayes’
theorem. In this case the formulae in Theorem 1 of Shachter and Kenl&y lsewsed (suitably
extended to take account of deterministic relationships and the configwaltitine discrete vari-
ables).

A further possibility could be to use computer algebra. Each univariatessign is specified by
(1) a specification of the head and tail variables and either (2a) a digaftran in the continuous
variables if the variance is strictly positive, or (2b) a linear form for dateistic relationships.
These are readily represented and manipulated in computer algebra@sciad so the current
scheme could be implemented in which the messages are either linear exgresstuadratic
forms in the continuous variables. Reduction operations would be takerotautomatically by
such computer algebra calculations.
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From these comments above we see that, although the presentation in thisgsafoetussed on
using the raw-moment representation, the propagation scheme is moraldgkaerthis. The only
place that the raw-moment representation has been used is in the explicinEGE formulae of
Section 5.3.

7. Sampling and Mode-Finding Algorithms

Aside from finding the posterior marginals of variables, the use of the elimmage in the current
scheme facilitates other operations that may be of interest in applicationectiots7.1 we show
how to sample from the posterior distribution, and in Section 7.2 we show howddalfe highest
peak in the posterior mixture distribution, which could be useful as the staotiimg of an iterative
search for the posterior mode.

7.1 Sampling from the Posterior

It may be desirable to sample from the posterior distribution of the variable®iBalgesian net-
work given some observed evidengg _a. Dawid (1992) has shown how to do this for discrete
networks, his method is as follows. Starting from a junction tree of cliquasa#éiar entering and
sum-propagating evidenck, the clique and separator tables contain posterior marginals of their
variables. Suppose we label the cliques in running intersection @de€»,...,Cy say, withCy
being chosen as the root clique. First one samples from the posterioinalangCy, to give some
configurationd;. Then one samples from the posterior marginal of the variablgsd@onditional on
&3, yielding some combined configuratidhu 5. Then one samples the variable€nconditional
on & U&5. Proceeding in this way will yield a sampd& = & Ud5 U --- U &, from the posterior
distribution on the junction tree.

Here we present in Algorithm 7.1 a simple extension of Dawid’s method to condiit®aussian
networks. The idea is to sample the discrete variables, and then sample tlingroantinuous
variables one at a time in a distribute-type operation.

Algorithm 7.1 (Sampling from the posterior)

e Given: A tree with elimination sequenag,yn-1,...,Yy1 of the continuous variables, which
has been initialized and has had evidence propagated according to AlgositB, and any
discrete evidence has also been propagated on the discrete part oé¢he tr

e Sample:

— Sample a configuratiod® of the discrete variableA using the algorithm of Dawid.
— Fori:=1step 1l untilndo

 |IF activeflagof Cr (i) is TRUE then find the sub-configuratidhC &° of the discrete
variables in G (i), and sampley; from the regression stored in ti& Ip-potential
of Cr(i) in which the sampled or observed values of all continuous tail variables
€{y},¥5,-..,¥7_1} have been substituted; denote the sampled valuyg. by

+x OTHERWISE there is evidenge= v, so simply sef’ = v

e The configuratioy’:i=1,...,n} U&® is a sample from the posterior density.
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Note that, because of the elimination tree structure employed, each simylistedmpled from
a univariate normal distribution. Such simulation may be done efficiently byiatyaf methods
and is much simpler than sampling from a multivariate normal distribution.

7.2 Locating the Mode (Approximately)

It is sometimes of interest to locate the most probable values of the unobsemiables given
evidence on observed variables. For discrete networks this may be ligundal propagation as
shown by Dawid (1992). For CG networks an exact solution to the proidemot known, and
we do not propose a solution here. Instead in Algorithm 7.2 we proposdtedthat finds the
component having thhighest peakin the posterior distribution. The posterior distribution is a
mixture of weighted multivariate normal densities. Each component multivargistgt will attain
maximum height at its mean, the height will be proportional to the weight of thipoaent divided
by the square root of the determinant of the covariance matrix of the compombese heights
are compared by Algorithm 7.2. Now if the variances of the components in theinaiare small
compared to the distances between their means, then the location of the camipaviag the
highest peak might be expected to be a good approximation to the posterier on@uld be used
as the starting point of an iterative search for the mode. Algorithm 7.2 is sligtdig complicated
than Algorithm 7.1, and cannot be used if any variances are zero.der tw keep track of the
heights of each component, we need to keape@ghttable in every continuous separator3n.
Note that it is not necessary to evaluate a determinant.

Algorithm 7.2 (Highest Component Search)

e Given:

— Atree with elimination sequengg,yn_1, ..., Y1 of the continuous variables, which has
been initialized and had evidence propagated according to Algorithm 5Baan dis-
crete evidence also been propagated on the discrete part of the tree.

— All entries in allweighttables initialized to unity.
e Highest Peak Search:

— Fori:=nstep-1untilldo

1. IF activeflagof C-(i) is TRUE THEN: For each configuratiod of the discrete
variables in G (i) multiply thed; entry in theweighttable of $ (i) by1//2m0?(3)
wherea?(&") is the variance in the regression stored in &dp-potentialof G- (i).

2. IF toroot(i) is NOT a boundary cluster, THEN: For each configuratignof the
discrete variables of €r;) (with induced configuratio® of the discrete variables
of Cr(i)), multiply thed; entry in the weight table ofr$r;) by thed; entry in the
weight table of §(i).

OTHERWISE if torodi) IS a boundary cluster, then multiply the weight table of
S (i) into the discrete potential of toro@ in the usual way.

— Use theM Ax -PROPAGATEalgorithm of Dawid (1992) on the discrete part of the tree to
give a“max-configuration"d™ of the discrete variables.

— Fori:=1step 1 untilndo
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« |F activeflagof C- (i) is FALSE, then there is evidenge= yi, so set the peak value
V=V
OTHERWISHactiveflagof G (i) is TRUE, so find the sub-configuratiéft C 8™ of
the discrete variables infi), and sety; to the mean of the regression stored in the
O™ Ip-potentialof G- (i) in which the peak values or observed values of all continu-
ous tail variabless {y{",\5,...,y";} have been substituted; denote the peak value

by y™

e The configurationy": i = 1,...,n} Ud™ specifies the location of the highest component in
the joint multivariate posterior density.

Mathematically Algorithm 7.2 may be understood in the following mannerlLet{ly, I2,..., Ik}
denote the set of indices of the continuous nodes for which no evideaseden entered (with
Ik > lk_1 > --- > 11). Then the algorithm starts out with the tree storing a recursive factonizatio
the posterior multivariate normal mixture density in the form:

P(A Erua) [ it [S(1), Er)

ielr

where thefi(-|-) are appropriate CG regression densities. Given the covariates amthewjcach
CG regression density is maximized at the mean, so the component having timeumatteight
may be obtained as a sequence of ordered maximizations:

k
np%x(p(M Erun) Jll fi, (v [S(1), ﬂ))

k-1
= m X( (A Eron)wi, (S I_l fI yl 1S(1; )

r

k—
= m X( (A|EFUA)W|k(SV<Ik)7£r)W|k 1 Ik 1), I_ifl YI ‘SV ))

ra

= mAaX<p(A! Erun) Jljwlj (S5, ZI')) ;

where thew;(-) are theweighttables representing the values of the densities of the CG regressions
located at the means. The algorithm accumulates the product of these amtuguiltiplies them
into the discrete part of the tree, from which standard -PROPAGATIONMay be used to find™.
(Note that this accumulated product is valid because of the strong nattire i€e: a continuous
clusterCr(r;) neighbouring another continuous cluste(i) but closer to the strong root will contain
all of the discrete variables that areGn(i).) This information is then distributed back to locate the
mean values of the continuous variables for the configuraifoof the discrete variables, in the
final stage of Algorithm 7.2.

Finally, we mention another maximization operation catb&iiMAX -PROPAGATIONthat can
easily be carried out in the current scheme. This consists of finding thelikelg configuration
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of the posterior marginal distribution of the discrete variables, that is, finttie maximum of
P(A|‘Erua). For this we propagate evidence as in Algorithm 5.3, and incorporatersdden the
discrete variables on the discrete part of the tree. We then performastimalx -PROPAGATIONON

the discrete part of the tree according to the algorithm of Dawid (1982WIMAX -PROPAGATION

was introduced and applied to forensic DNA problems involving the modellimhaaalysis of
mixed DNA samples using CG networks by Cowell et al. (2004).

8. Summary

We have presented a local propagation scheme for conditional Galssjasian networks based
on elimination trees, that combines the scheme of Lauritzen and Jenseh\@bthat of Shachter
and Kenley (1989). Complex matrix algebra is avoided because operatanipulate linear regres-
sions. The propagation scheme is not dependent on a particular implemeafatie representation
of linear regressions, although the paper has used one for expdsitierhave also introduced: an
algorithm for sampling on such networks; an algorithm for finding higheakp that could be use-
ful either as an approximation to, or an iterative algorithm for locating, ttstepior mode of the
distribution; and have briefly described another operation call2tiMAX -PROPAGATION
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Appendix A. Derivation of EXCHANGE Formulae of Section 5.3

From the pair of normal distributions

ZIY,Wi,.. W~ N(ao+aWi+...a\W +bY,05y),
YW, ... W~ N(co+CWa+...qW,02),

it follows thatY | Z,W;, ...\ andZ |W,, ...W are also normal distributions. The mean and variance
of the latter is readily found using

E[Z|Wi,.. W] = E[E[Z|Y,W,...W]] =E[ao+aWi +...aW +bY]
I
= (a+ba)W
V[Z|Wa,.. W] = E[V[Z]Y,W,...\W]]+V[E[Z]Y, W, ... W]

= E[05y]+V]ao+aWi+...aW +bY]

_ 2 22
= 07y tboy

where we defind\p = 1.
There are three cases to consider in finding the conditional distributiéhai, ...\ .

3. ltis also one implemented by the author.
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Case l:oy >0and oz, > 0.

The joint conditional density of,Z |W,,...,W is

fyziwe,..w (%2 = Tz iy, (%, 2) Fy pw,ow (Y)
_ —(z— 3l_oaW — by)? exp<—(y—Z!00iW|)2>
2107y Oy 20§|Y 202
= fyizwe,.. w2 fzpwe,..w (2)
~y-a BZ)2> exp<(z IC +bq>vv.>2> |

= 2 2
210y |20z ( 205, 1z 205

whereaq, 3 and0$|z are constants to be determined. The density |&, W, ...,WM may be found
directly by dividing the first expression for the joint density by the denditg |3\, ..., (Bayes’
theorem), or alternatively it may be deduced from the linear and quadratis iay in the expo-
nential terms as follows. Equating the coefficientgofields

1 b? 1
202, 207, ' 203
Oyiz <Oz y <Oy
from which it follows that the desired variance is

2 2
o2 _ %%
Y|ZT 52 242

07y + b0y

Equating the terms linear yields

a+PBz_ b(z—yioaW) n 510GV
0\2(\2 0%w g

hence the conditional mean+ BZ is given by

(b(Z—z!_oaaV\é) N Z!-oCiV\é> /<o§|Y+bzo$> sk (CiO'%‘Y—aibO'\z()W-i-bO'\z(Z
2 2 -

2 2 2 2
971v0Y GZ‘Y—HJZGY

Oz|v Oy

Thus,

Y|ZW,.. W ~N 310 (60 —abof )W +b0iZ  ofo?
) 17"‘ ~ M )
ogw + 0202 0%\\( + 0202

Case 2:0y > 0and 0%, =0.

We may deduce that

-5l &
Y|ZW,.. W ~N <w,0>

either by considering the limi , — 0 in Case 1, or by noting that &2

2|y =0, then

Y

ZIY, W, .. W ~ N(ao+a1w1+...a.vw+bv,o§w)
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is equivalent to
Z=a+aWi+---+aW +bY

which is equivalent to the constraint

_Z-a—aWi—--—aW

Y b

Case 3:0y = 0and 0%\\/ > 0.

We may obtain

sl g
Y|ZW,...\W ~N <M’O>

either as the limitZ — 0 of Case 1, or by noting that the deterministic constraint implied by
|

Y Wi, ...W ~N (%qW.,O) =Y = -qu'

will be unaffected by further conditioning ah
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