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Abstract

This paper describes a scheme for local computation in conditional Gaussian Bayesian networks
that combines the approach of Lauritzen and Jensen (2001) with some elements of Shachter and
Kenley (1989). Message passing takes place on an elimination tree structure rather than the more
compact (and usual) junction tree of cliques. This yields a local computation scheme in which all
calculations involving the continuous variables are performed by manipulating univariate regres-
sions, and hence matrix operations are avoided.

Keywords: Bayesian networks, conditional Gaussian distributions, propagation algorithm, elimi-
nation tree

1. Introduction

Bayesian networks were developed within the field of artificial intelligence asa tool for representing
and managing uncertainty (Pearl, 1988; Cowell et al., 1999), but are now finding many applications
beyond that field. When a Bayesian network represents the joint distributionof a set of finite discrete
random variables, exact and efficient local computations schemes may beused to evaluate marginal
distributions of interest. Shachter and Kenley (1989) introduced Gaussian influence diagrams to
represent multivariate Gaussian distributions and performed inference on them using standard influ-
ence diagram operations such as arc-reversals and barren node removal. Raphael (2003) presented
an alternative computational scheme for degenerate multivariate Gaussian distributions and has ap-
plied it to problems of rhythmic parsing of music.

Lauritzen (1992) introduced a method of exact local computation of means and variances for
Bayesian networks with conditional Gaussian distributions (Lauritzen and Wermuth, 1984, 1989),
but it was later discovered that the method was numerically unstable. More recently Lauritzen and
Jensen (2001) have developed an alternative and stable local computation scheme in junction trees
for these conditional Gaussian networks. Apart from the improved numerical stability compared to
the previous algorithm, their method is able to calculate full mixture marginals of continuous vari-
ables, and is also able to include deterministic linear relationships between continuous variables.
However their method is quite complicated, requiring evaluations of matrix generalized inverses,
and recursive combinations of potentials. This paper presents an alternative scheme in which the
local computation is performed on an elimination tree, rather than using a junctiontree. As will
be shown this means that matrix manipulations are avoided because all messagepassing opera-
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tions involving the densities of the continuous variables are performed by manipulating univariate
regressions, and complex operations such as recursive combination ofpotentials are avoided.

The plan of the paper is as follows. The following section presents notation for conditional
Gaussian regressions. Then elimination trees are defined and compared tojunction trees. A simple
network is used to illustrate the various phases of the message passing scheme. Then the general
procedure is presented: deriving an elimination tree derived from a network; initializing the elim-
ination tree is given (this is perhaps the most complicated part of the scheme);entering evidence
and evaluating posterior marginal densities. A discussion relating the current scheme to those of
Shachter and Kenley (1989) and Lauritzen and Jensen (2001) is presented, followed by an algo-
rithm for sampling from the posterior and two maximization operations.

2. CG Regressions

Following the notation of Lauritzen and Jensen (2001), a mixed Bayesian network consists of a set
of nodesV partitioned into a set ofdiscretenodes,∆, and a set of continuous nodes,Γ. Each node
represents a random variable. The Bayesian network is directed acyclicgraph, with the restriction
that discrete nodes are not allowed to have continuous parents. Associated with eachY ∈ Γ of the
continuous nodes are conditional Gaussian (CG) regressions, one for each configuration in the state
space of the discrete parentsI of Y, given by

L(Y | I = i,Z = z) = N (α(i)+β(i)Tz,σ2(i)),

whereα(i) is a real number,Z is a vector of the continuous parents ofY, β(i) is a vector of real
numbers of the same size ofZ, andσ2(i) is a non-negative real number. If the varianceσ2(i) = 0,
then the regression represents a deterministic linear relationship betweenY and theZ. Associated
with each discrete random variableX ∈ ∆ is a conditional probability distribution of the variable
given its parents in the graph.

The product of the densities associated with the continuous random variables gives the (multi-
variate normal) density of the continuous variablesΓ conditional on the discrete variables∆. On
multiplying this by the product of the conditional probability distributions of eachof the discrete
variables, the joint density of both discrete and continuous variables is obtained.

Lauritzen and Jensen (2001) introduce as their basic computational object a CG potential, rep-
resented by the tupleφ = [p,A,B,C](H |T), where: H is a set ofr continuous variables, called
the head; T is a set ofs continuous variables, called thetail; H ∩T = /0; p = {p(i)} is a table of
nonnegative numbers;A = {A(i)} is a table ofr ×1 vectors;B = {B(i)} is a table ofr × s matri-
ces; andC = {C(i)} is a table ofr × r positive semidefinite symmetric matrices. They introduce
various operations on such potentials: multiplication, extension, marginalization, direct combina-
tion, complementation, and recursive combination. These operations are required for their message
passing algorithm on the junction tree structure, and in the main correspond tooperations on prob-
ability distributions. However there are restrictions that must be observed for these operations to
be permissible; for example, it is not possible to directly combine two CG potentialstogether if the
intersection of their heads is non-empty. Such constraints are obeyed in their propagation algorithm.

In comparison to the propagation scheme presented in this paper, much of thecomplexity of
their algorithm arises because their local computational structure is a strongjunction tree of cliques.
The cliques with continuous variables essentially contain, after a basic initialization, multivariate
CG regressions. Sending a sum-marginal message between two cliques could require marginaliza-
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tion over both discrete and continuous variables, in which case the latter aremarginalized first. In
contrast, we work with univariate regressions on an elimination tree, avoiding matrix operations.
(Indeed one could implement the current scheme using the CG potentials and their operations, re-
stricting them to heads that contain only one variable, so thatr = 1.)

3. Junction Trees and Elimination Trees

In this section we review the notions of a junction tree of cliques and of an elimination tree, and
of their relative advantages and disadvantages. More details about these structures may be found in
Cowell et al. (1999).

3.1 Making a Junction Tree

Since the work of Lauritzen and Spiegelhalter (1988) the most common graphical structure on which
to perform exact inference on Bayesian networks by local message passing has been a junction tree
of cliques. This is a tree structure, with the node set being the set of cliquesC of a chordal graph,
such that the intersectionC1∩C2 of any two cliquesC1 ∈ C andC2 ∈ C is contained in every clique
on the path in the junction tree betweenC1 andC2. The intersection of two cliques adjacent in a
junction tree is called aseparator. The basic algorithmic steps in constructing the junction tree,
starting from a directed acyclic graphG, are as follows:

1. Add moral edges toG, and then drop directionality on the edges to form the moral graphGm.

2. Add sufficient fill-in edges toGm to make a chordal graphGc.

3. Identify the cliques ofGc, and join them up to form a tree structure which has the running-
intersection property.

Step 1 is straightforward, and Step 3 may be done efficiently using themaximum cardinality
searchalgorithm (Tarjan and Yannakakis, 1984). It is Step 2, also commonly known as trian-
gulation, that presents the main obstacle to efficient message passing. There are many ways to
triangulate the moral graphGm, what is desirable is that the cliques that arise are kept small, or
more specifically the sum total state space size over the cliques is minimized. Findingoptimal
triangulations is NP-hard (Yannakakis, 1981), and so early work focused on heuristic algorithms,
typically of a one-step-look-ahead type (Kjærulff, 1990), but other methods, for example genetic
algorithms (Larrãnaga et al., 1997) have also been used. More recent work has focussed on divide-
and-conquer approaches that can yield close to optimal or even optimal triangulations (Becker and
Geiger, 2001; Olesen and Madsen, 2002), and an optimal triangulation algorithm is implemented in
the commercial expert system HUGIN.1

3.2 Making an Elimination Tree

Elimination trees were introduced by Cowell (1994) for analysing decision problems, and are de-
scribed on pages 58–60 of Cowell et al. (1999). An elimination tree is similar toa junction tree,
in that it is a tree structure, but with the node set being a subset of the complete subgraphs of a
chordal graph (rather than the set of cliques) such that the intersectionC1∩C2 of any two nodes

1. The company web site is athttp://www.hugin.com.
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in the elimination tree is contained in every node on the path in the tree betweenC1 andC2. The
subset of complete subgraphs is determined by an elimination sequence, this being an ordering of
the nodes of the chordal graph. The basic steps to make an elimination tree starting with the directed
acyclic graphG are as follows:

1. Add moral edges toG, and then drop directionality on the edges to form the moral graphGm.

2. Take an elimination sequencevk,vk−1, . . . ,v1 of the k nodes (suitably re-numbered) of the
moral graphGm, and use this to form a triangulated graphGc.

3. For each nodevi associate a so calledcluster setof nodes consisting ofvi and its neighbours
later in the elimination sequence (and hence of lower number), call this setCi .

4. Join the setsC1,C2, . . . ,Ck, which has the running-intersection property, together to form a
tree.

Step 1 is the same step as for making a junction tree. For Step 2, we first start with the nodevk,
and add edges so that it and its neighbours form a complete subgraph (thiswill make the setCk in
Step 3). Then move onto nodevk−1, add edges so that it and its neighbours that occur later in the
elimination sequence form a complete subgraph (this will make the setCk−1 in Step 3). Repeat this
last step for the other nodes in the elimination sequence. There will bek cluster sets, one for each
of thek nodes in the graphG, andC1 = {v1}. The choice of elimination sequence will govern the
number of fill-ins in the triangulation, and hence the size of the state space of the elimination tree.
Reasonable choices can usually be made by a one-step-look-ahead search. Notice that if one knows
an optimal triangulationGc of Gm, then a perfect numbering of the nodes ofGc could be used as an
elimination sequence forGm. Step 4 may be done in time typically linear ink (but possibly as bad
asO(k2)), by the simple expedient of finding in each cluster setCi the first nodevei , say, that was
eliminated aftervi and then joiningCi to Cei .

3.3 Comparing Elimination and Junction Trees

In an elimination tree, the set of cluster sets contains the set of cliques of the triangulated graph
together with some other sets. Hence in terms of storage requirements for potentials on the sets,
elimination trees are less efficient than junction trees. Sometimes they can be very bad, as shown
with the following example.

Suppose the original graphG or its moral graphGm is a complete graph ofk nodes, each of
which represents a binary random variable. Then there are no fill-in edges to be added asGm is
already triangulated, and the junction tree is a single clique containing allk nodes ofG and having
a total state space of size 2k. Now consider the elimination tree, made by using an elimination
sequencevk,vk−1, . . . ,v1. This will yield k cluster sets, withCj =∪

j
i=1{vi}, having a total state space

size given by 2+22+ · · ·+2k = 2(2k−1). That is, it requires almost double the storage requirements
of the junction tree. Actually things are worse than this, because we have not taken into account the
k−1 separators between adjacent clusters which have total state space size2+ 22 + · · ·+ 2k−1 =
2k − 2, thus leading to a factor of almost three in the storage requirements. However it should
be emphasized that this is a worst case scenario, and in most applications theoverhead is a small
fraction of the total state space of the corresponding junction tree.
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Now suppose that the variables ofG are continuous rather than being discrete, withG now
representing a multivariate Gaussian distribution. To represent this distribution in the junction tree
will requirek values for the means of each variable, and a furtherk(k+1)/2 values for the symmetric
covariance matrix, making a total ofk(k+3)/2 values to be stored. In the corresponding elimination
tree, as we shall see, only univariate regressions are stored. Hencein C1 we store two numbers (a
mean and a variance), inC2 we store three numbers (a mean, one coefficient and a variance),. . .
, and inCk we storek+ 1 numbers, (a mean,k−1 coefficients, and a variance). Adding all these
together we have a total of 2+ 3+ · · ·+(k+ 1) = k(k+ 3)/2 values to be stored, the same as for
the junction tree. Thus the use of the elimination tree does not introduce duplication in the values
to be stored, in contrast to the discrete case. Hence the elimination tree isalmostas efficient as the
junction tree in storage requirements (only almost, because there will be some extra bookkeeping
needed to keep track of which variables are in each of the cluster sets).

3.4 Strongly Rooted Trees

For purely discrete Bayesian networks and purely continuous multivariateGaussian Bayesian net-
works the junction or elimination trees described above may be used for exact propagation algo-
rithms, with any clique or cluster set being chosen as the root to which messages are collected to
and distributed from. For the conditional Gaussian networks in which both discrete and continuous
variables appear, Lauritzen (1992) used the notion of amarked graph(Leimer, 1989) to define the
structure of astrongly rooted junction treein order to have a manageable propagation scheme which
handles the asymmetry between the discrete and continuous variables. This structure is retained in
Lauritzen and Jensen (2001). Here we use a similar structure based on elimination trees, which
we shall call astrongly rooted elimination tree. We shall assume without loss of generality that
the graphG of the Bayesian network is connected. Then a strongly rooted elimination treemay be
formed in the same way as a standard elimination tree provided that, in the elimination sequence
used, all of the continuous variables occur before any of the discrete variables. The cluster sets are
joined up as before, and the last cluster formed is taken to be the strong root. (If G has more than
one connected component, then we form a strong elimination tree for each component; it can then
be useful to introduce an empty cluster set connected to each of the strong roots of the individual
elimination trees, and make this the strong root of the forest of elimination trees.)

The reason for using a strong elimination tree will become apparent when wediscuss the initial-
ization of the tree and propagation on it. For a more efficient computation scheme (from a storage
requirement viewpoint) is it convenient to use a tree structure that is intermediate between a junction
tree and an elimination tree, a structure which we call astrong semi-elimination tree, introduced in
the next section.

3.5 From Elimination Tree to Junction Tree

Given an elimination ordering for a graphG, one can construct a triangulated graphGc, use maxi-
mum cardinality search to find the cliques, and then organize the cliques into a junction tree. Alter-
natively, one could take the elimination tree and remove the redundant clustersets that are subsets
of cliques, by repeated application of the following result due to Leimer (1989) (see also Lemma
2.13 of Lauritzen (1996) or Lemma 4.16 of Cowell et al. (1999)):
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Lemma 3.1 Let C1, . . . ,Ck be a sequence of sets having the running intersection property. Assume
that Ct ⊆Cp for some t6= p and that p is minimal with this property for fixed t. Then:

(i) If t > p, then C1, . . . ,Ct−1,Ct+1, . . . ,Ck has the running intersection property.

(ii) If t < p, then C1, . . . ,Ct−1,Cp,Ct+1, . . . ,Cp−1,Cp+1, . . . ,Ck has the running intersection prop-
erty.

The preceding Lemma operates on sets, but in the elimination tree we also have links be-
tween sets, which will need to be rearranged if a set if deleted. The following algorithm, based
on Lemma 3.1 makes a single pass through the cluster sets of an elimination tree to produce a junc-
tion tree, it assumes that the elimination tree is connected. It is convenient to make the edges of the
elimination tree directed edges, with directions pointing away from the rootC1. We may then talk
of parents(pa) and children(ch) of the cluster sets in the tree in the obvious manner.

Algorithm 3.2 (Elimination tree to Junction tree)

1. Initialize:

• An ordered list L of the cluster sets C1,C2, . . . ,Ck derived from the elimination ordering
vk,vk−1, . . .v1 having the running intersection property, and joined to form an elimina-
tion tree.

• An ordered list J, initially empty.

2. While L is non-empty do:

• Remove the first element Ct from L;

• If Ct is a clique then append it to the end of J, otherwise:

(a) find Cp ∈ ch(Ct) such that p is minimized;

(b) Remove Cp from L;

(c) Set pa(Cp) = pa(Ct);

(d) In each cluster c∈ ch(Ct)\Cp replace Ct in pa(c) with Cp;

(e) Add the elements of ch(Ct)\Cp to the set ch(Cp);

(f) Put Cp at the front of L;

(g) Discard Ct .

It is left to the reader to verify that this repeatedly applies Step (ii) of Lemma 3.1, with Steps
2(c)-(e) updating the connections in the tree. When the algorithm terminates the list J contains the
cliques in running intersection order, and the parent and child sets of these cliques contain the links
required to make a strong junction tree. An example illustrating the steps in Algorithm 3.2 is shown
in Figure 1.

Although the message passing algorithms presented below will work on a strong elimination
tree, to optimize the storage requirements it is better to work on astrong semi-elimination tree. This
is a strong elimination tree in which the purely discrete clusters that are subsetsof other purely
discrete clusters have been removed, with links among the remaining clusters suitably adjusted.
Algorithm 3.3 produces a strong semi-elimination tree from a strong elimination tree.
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Figure 1: Illustration of Algorithm 3.2. On the left a Bayesian network, and top right the elimina-
tion tree obtained using the elimination sequence of reverse alphabetical ordering. In the
top tree we first remove the redundant clusterCt = {A} having the unique child cluster
Cp = {AB}, yielding the second tree in which{AB} now has no parent. Then the redun-
dant clusterCt = {BC} is removed: it has the unique child clusterCp = {BCD}, and so
this now inherits{BC}’s parent{AB}. Finally the redundant clusterCt = {BCD} is re-
moved. It has two child clusters, of theseCp = {BCDE} becauseE is eliminated afterF .
Cp has its parent changed to{AB} (Step 2b) and is itself made the new parent of{BCDF}
(Step 2c). It inherits the extra child{BCDF} from Ct (Step 2d) to yield the bottom tree,
which after dropping directions on the edges gives the junction tree.
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Algorithm 3.3 (Strong elimination tree to strong semi-elimination tree)

1. Initialize:

• An ordered list L of the cluster sets C1,C2, . . . ,Ck derived from the strong elimination
ordering vk,vk−1, . . .v1 having the running intersection property.

• An ordered list J, initially empty.

2. While L is non-empty do:

• Remove the first element Ct from L;

• If Ct contains a continuous variable, or Ct is purely discrete and not a subset of another
purely discrete cluster, append it to J, otherwise:

– Find Cp ∈ ch(Ct) such that p is minimized; (note that Cp will be purely discrete and
Ct ⊂Cp), and then:

(a) Remove Cp from L;

(b) In Cp set pa(Cp) = pa(Ct);

(c) In each cluster c∈ ch(Ct)\Cp replace Ct in pa(c) with Cp;

(d) Add the elements of ch(Ct)\Cp to the set ch(Cp);

(e) Put Cp at the front of L;

(f) Discard Ct .

4. Computations on a Simple Network

The computational scheme to be presented here is more complicated than for thepurely discrete
case. Although both start with moralizing the Bayesian network, for CG networks a strong triangu-
lation is required, leading to a strong elimination tree. For discrete networks, after the junction tree
of cliques has been made, the initialization stage is quite straightforward, consisting of: (i) setting
all entries in all of the tables (potentials) in the cliques and separators of the junction tree to unity;
(ii) a multiplication of each conditional probability table of the Bayesian network into any one suit-
able clique table (one whose clique variables contains the variables of the conditional probability
table); and (iii) propagation on the junction tree to yield clique and separator tables storing marginal
distributions. For the CG networks we use the same initialization process for thediscrete part of
the elimination tree. However on the continuous part of the tree things are morecomplicated, and
its initialization is perhaps the most important and complicated part of the computational scheme
of this paper. In the initialization phase, CG regressions are passed between continuous clusters,
and so we introduce a list structure called apostbagto store such messages that are to be passed.
In addition we introduce for each continuous cluster another list structurecalled anlp-potential
that will on completion of the initialization phase store the conditional density of theelimination
variable associated with the cluster (conditional on the remaining variables in the cluster). Each
regression of the Bayesian network is initially allocated to either somelp-potentialor postbagby
rules given below. During the initialization process the contents of thelp-potential’s andpostbag’s
may be modified by an operation that we call EXCHANGE (see Section 5.3), which is equivalent to
an arc-reversal in the Bayesian network. These EXCHANGE operations have to done in a correct
order, which requires apostbag’s contents to be sorted.
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Evaluating node marginals is also more complicated. For discrete variables this proceeds as in
the purely discrete case, by a marginalization of the tables in the discrete clusters in the elimination
tree. For continuous variables we use the PUSH operation introduced by Lauritzen and Jensen
(2001), which is a sequence of EXCHANGE operations carried out among regressions in continuous
clusters along a path in the tree, to obtain for a continuous variable its marginaldensity conditional
on a set of discrete variables. When combined with the marginal of those discrete variables we
obtain the marginal density of the continuous variable—typically a mixture. The PUSH operation is
also used as part of the process of entering evidence about continuous variables.

In this section we use a simple example to illustrate the steps of constructing a tree from a
Bayesian network, initializing the tree, and finding the marginal of a continuous node, before giving
the formulation of these algorithmic steps for a general network in the subsequent section. Some
terminology is also introduced that will be used later.

4.1 Specification

Figure 2 shows a small mixed Bayesian network consisting of three discrete random variables,
shown as square-shaped nodes, and three continuous real-valued random variables, shown as cir-
cles. It follows from the structure of the Bayesian network that the joint distribution of the discrete

A B C

X

Y Z

Figure 2: A mixed Bayesian network: square nodes represent discretevariables, circular nodes
continuous variables.

variables isP(A = a,B = b,C = c) = P(A = a)P(B = c)P(C = c), where the marginal probabil-
ity distributions on each individual variable are assumed specified. To complete the probabilistic
specification, we require the set of linear regressions (with theα’s, β’s andσ’s being constants):

L(X |A = a,B = b) = N (αX:ab,σ2
X:ab)

L(Y |X = x,C = c) = N (αY:c +βY:cx,σ2
Y:c)

L(Z |Y = y,C = c) = N (αZ:c +βZ:cy,σ2
Z:c)

So for example, if all discrete variables are binary, four regressions are required forX, and two
each forY andZ. This set of linear regressions defines the joint density of the continuousvariables
conditional on the discrete variables.

4.2 Making the Elimination Tree

The first stage is to transform the Bayesian network into the tree on which themessage passing takes
place. There are 36 possible elimination sequences that could be applied to the moral graph (3!
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ways of eliminating the continuous variables first, followed by 3! ways of eliminating the discrete
variables); here we shall use a sequence in whichY is eliminated first, thenX. This is not the
most computationally efficient sequence (eliminatingZ first will ensure thatZ does not appear in a
cluster withX), but helps illustrate the operations of the propagation algorithm. In Figure 3we show
various trees that may be formed based on this elimination sequence; for ourpropagation algorithm
we shall use the middle tree, which has the strong root{ABC}.

B AB ABC ZABC XZABC YXZC

ABC ZABC XZABC YXZC

XZABC YXZC

Figure 3: Strong elimination tree (top) with strong root{B}, strong semi-elimination tree with
strong root{ABC} (middle) and strong junction tree (bottom) with strong root{XZABC},
using the elimination sequenceYXZCABapplied to the moralized graph derived from the
network in Figure 2. Separators are not shown.

4.3 Assignment of Potentials

The next stage is to assign the conditional probabilities and densities of the Bayesian network to the
tree so that the tree contains a representation of the joint density of all of thevariables. For purely
discrete Bayesian networks, and in the formulations of mixed networks of Lauritzen (1992) and
Lauritzen and Jensen (2001), each conditional distribution of a discretenode given its parents may
be assigned to any clique in the junction tree that contains the family of the node,and similarly for
the continuous variables the conditional density of a node given its parentsis assigned to any clique
containing the family of the node.

In contrast we apply a more restrictive assignment: for continuous variables the conditional
density of a node given its parents is assigned to any cluster containing the family of the node, but
the conditional distribution of a discrete node given its parents may be assigned to any cluster set
that contains the family of the node provided that the cluster set does not contain any continuous
variables. There always exists such a cluster set, because discrete variables are not eliminated until
after the continuous variables are eliminated.

As a consequence of this assignment, the subtree consisting of those clusters containing only
discrete variables contains all of the information required to reconstruct the joint marginal of the
discrete variables; this part of the tree shall be referred to as thediscrete part. Similarly, the clusters
having the continuous variables hold representations of all of the densitieswith which one can
construct the joint density of the continuous variables conditional on the discrete variables; this part
of the tree will be called thecontinuous part. The set of discrete clusters that are neighbours to the
continuous part will be called theboundary. Thus in Figure 3 the discrete part of the middle tree
consists of the set{ABC}, the continuous part consists of the sets{ZABC},{XZABC} and{YXZC},
and the boundary consists of the single set{ABC}. We assign probability tables and regressions as
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follows:
Cluster Regressions
ABC P(A),P(B),P(C)
ZABC −
XZABC L(X |A,B)
YXZC L(Z |Y,C),L(Y |X,C)

Our aim is that when initialization is complete, on the continuous part of the tree wehave the
following regressions:

Cluster Regressions
ZABC L(Z |A,B,C)
XZABC L(X |Z,A,B,C)
YXZC L(Y |X,Z,C)

and in general we aim to represent in each continuous cluster set the conditional densities of the
eliminated node given the remaining variables in the cluster set. This corresponds to the set-chain
representation (Lauritzen and Spiegelhalter, 1988), at least on the continuous part of the tree. Note
that we do not explicitly store potentials on separators between continuous cluster sets. In contrast
for the discrete part of the tree we will retain separators, and perform usual sum-propagation to find
the sum-marginal potential representation (see Cowell et al. (1999), Chapter 6); however in this
example there is no such separator.

We move from the initial assignment of regressions to this (partial) set-chain representation
by local message passing as follows. First, in the cluster set{YXZC} we rearrange the pair of
regressions as follows,

L(Z |Y,C = c),L(Y |X,C = c) → L(Z,Y |X,C = c) → L(Y |Z,X,C = c),L(Z |X,C = c)

for each value thatC can take. This rearrangement corresponds to the arc-reversal of the directed
edge fromY to Z in Figure 2 (that is, an application of Bayes’ theorem). In the expression on the
right the regressionsL(Y |ZXC) are retained in the cluster set. The regressionsL(Z |X,C), which
are independent ofY, are forwarded to the neighbouring cluster set towards the root, here{XZABC}.
After this rearrangement we have the following represented on the continuous part of the tree:

Cluster Regressions
ZABC −
XZABC L(X |A,B),L(Z |X,C)
YXZC L(Y |X,Z,C)

Next, the regressions in the cluster{XZABC} are modified as follows:

L(X |A = a,B = b),L(Z |X,C = c)

→ L(X,Z |A = a,B = b,C = c)

→ L(X |Z,A = a,B = b,C = c),L(Z |A = a,B = b,C = c).

The regressionsL(X |Z,A,B,C) are retained in the cluster{XZABC}, and the regressionsL(Z |A,B,C)
are forwarded to the cluster{ZABC}, and we are done.

Note that it is not necessary to form the intermediate joint density implied by, forexample,
L(X,Z |A,B,C). Instead, the algebraic EXCHANGE formulae (see Section 5.3) may be applied to
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pass directly from one pair of regressions to another, even in the case that some variances are zero
(corresponding to deterministic linear relationship between continuous variables). These formu-
lae are essentially equivalent to Theorem 1 of Shachter and Kenley (1989). By working directly
and only with linear regressions, instead of multivariate conditional Gaussian densities, the need for
matrix algebra and evaluation of determinants is avoided. Another advantageof the EXCHANGE for-
mulae, as emphasized by Shachter and Kenley (1989), is that they should not lead through roundoff
error to negative values of variances, something that could happen when manipulating multivariate
densities.2

4.4 Calculating Marginals

One of the prime applications of the propagation algorithms in Bayesian networks is to evaluate
marginal distributions of variables, perhaps conditional on values (evidence, findings) of some other
variables in the network. We illustrate the procedure for the simple example, beginning with the case
that no variable in the network has evidence.

Suppose that we wish to evaluate the marginal density ofZ. Formally this may be written as

fZ(z) = ∑
a,b,c

Z ∞

x=−∞

Z ∞

y=−∞
fXYZ|ABC(x,y,z|a,b,c)p(a,b,c)dydx,

= ∑
a,b,c

Z ∞

x=−∞
fXZ|ABC(x,z|a,b,c)p(a,b,c)dx

= ∑
a,b,c

fZ |ABC(z|a,b,c)p(a,b,c),

where fXYZ|ABC(x,y,z|a,b,c) is the multivariate normal density of the continuous variables given
the values of the discrete variables, etc. Now on our elimination tree we have arepresentation of
fXYZ|ABC(·) in terms of the three linear regressionsL(Y |X,Z,C), L(X |Z,A,B,C) andL(Z |A,B,C),
and the last of these combined with the joint distributionP(A,B,C) stored in the discrete cluster
{ABC} is sufficient to evaluate the marginal density ofZ, which will thus be a mixture of normal
densities.

Now suppose we wish to evaluate the marginal density ofY. Formally this is given by

fY(y) = ∑
a,b,c

Z ∞

x=−∞

Z ∞

z=−∞
fXYZ|ABC(x,y,z|a,b,c)p(a,b,c)dzdx,

= ∑
a,b,c

Z ∞

x=−∞

Z ∞

z=−∞
fY |XZC(y|x,z,c) fX |ZABC(x|z,a,b,c)×

fZ |ABC(z|a,b,c)p(a,b,c)dzdx, (1)

where in (1) we have written down the factorization of the joint density as available on the tree. We
wish to evaluate this by local message passing. To do this we rearrange the current factorization into
a more suitable form. First we take the pair of densitiesfY |XZC(y|x,z,c), fX |ZABC(x|z,a,b,c) and
use the EXCHANGE operation to rewrite these as the pairfX |YZABC(x|y,z,a,b,c), fY |ZABC(y|z,a,b,c)

2. Or so in theory! In implementing the algorithms described in this paper, theauthor came across the problem that
when subtracting one zero double precision from another, the result was zero but with the negative bit set, and so was
treated by the compiled program as a negative number! Tracking down this ‘bug’ took the author a couple of days.
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which leaves the product density unchanged. Now integrating overX (which gives unity) leaves the
following expression to evaluate:

fY(y) = ∑
a,b,c

Z ∞

z=−∞
fY |ZABC(y|z,a,b,c) fZ |ABC(z|a,b,c)p(a,b,c)dz,

We now apply the EXCHANGE operation again to the two densities in this expression to yield

fY(y) = ∑
a,b,c

Z ∞

z=−∞
fZ |YABC(z|y,a,b,c) fY |ABC(y|a,b,c)p(a,b,c)dz,

in which theZ integral gives unity, leaving the desired marginal

fY(y) = ∑
a,b,c

fY |ABC(y|a,b,c)p(a,b,c).

This sequence may be described in terms of a local message passing as follows: (i) take the
regression stored in the cluster{YXZC} and pass it to{XZABC}; (ii) perform the EXCHANGE

operation on the pair of regressions stored in{XZABC}; (iii) take the resulting regression that has
Y in the head and pass it it to{ZABC}; (iv) perform the EXCHANGE operation on the pair of
regressions now stored in{ZABC}; (v) combine the resulting regression that hasY in the head with
the joint distributionP(A,B,C) that may be obtained from the boundary set to yield the marginal of
Y.

This process of rearranging the regressions involvingY is an example of the PUSH operation
introduced by Lauritzen and Jensen (2001). (Their PUSH operation can act more generally on a
group of variables, but because we are working with an elimination tree we only require it to act on
one variable at a time.) We say that the variableY has been PUSHED to the boundary. The PUSH

operation leaves unchanged the overall joint density of the continuous variables conditional on the
discrete variables.

Lauritzen and Jensen also used the PUSH operation to incorporate evidence on continuous vari-
ables, and we shall follow them. Thus suppose that we wish to evaluate the marginal density ofZ
givenY = y∗. The first step is to PUSH the variableY to the boundary, and when it arrives there
substituteY = y∗ in all cluster sets in which it appears: In the cluster neighbouring the boundaryY
appears in the head and the tail is empty of continuous variables, and so this yields a likelihood term
for each configuration of the discrete variables that is passed to (that is,multiplied into the discrete
potential stored in) the boundary set. The tree then stores the following representations:

Cluster Regressions and Distributions
ABC P(A,B,C,Y = y∗)
ZABC L(Z |A,B,C,Y = y∗)
XZABC L(X |A,B,C,Z,Y = y∗)
YXZC −

We may now take the CG regressions stored in{ZABC} and combine them with the marginal
P(A,B,C,Y = y∗) to obtain, after normalization, the marginal density ofZ given the evidence. To
obtain the marginal density ofX, we would PUSH the regressions in{XZABC} to the boundary.
Evidence about the discrete variables may also be entered, but only on thediscrete part of the tree.
For evidence on several continuous variables it is convenient to enter the evidence one variable

1529



COWELL

at a time. For example, to enter additional evidence thatX = x∗, we first PUSH the regression
L(X |A,B,C,Z,Y = y∗) to the boundary, and then substituteX = x∗, yielding the representation:

Cluster Regressions and Distributions
ABC P(A,B,C,X = x∗,Y = y∗)
ZABC L(Z |A,B,C,X = x∗,Y = y∗)
XZABC −
YXZC −

from which the marginal ofZ given the evidence may be found. Notice that the likelihood of the
evidence is found, as usual, as the normalization constant when all evidence has been collected to
the strong root.

5. The General Local Propagation Scheme

The example in the previous section has illustrated the main steps in initialization and evidence
propagation, and evaluation of marginal densities of variables. Howeverthe example is too simple
to exhibit all of the subtleties involved in the general procedure. In this section we assume that
we have a strong elimination tree, and that it is connected. If the tree is disconnected, then the
scheme described below may be applied to each connected component separately. The algorithms
will also work for a strong semi-elimination tree, and in implementations this might be preferred on
efficiency grounds; no details of the following algorithms depend on which of the two types of tree
is used.

5.1 Some Notation and Terminology

Let us suppose that the original conditional-Gaussian Bayesian networkhasn > 0 continuous vari-
ablesΓ = {γ1, . . . ,γn} andm> 0 discrete variables∆ = {δ1, . . . ,δm}. Also suppose that the variables
have been numbered so that the elimination ordering of the continuous variables to make the strong
elimination tree is(γn,γn−1, . . . ,γ1). The ordering of the discrete variables is unimportant for our
purposes, except that it should lead to a computationally efficient tree. Wedenote the set of con-
tinuous cluster sets byCΓ, with CΓ(i) ∈ CΓ denoting the cluster set associated with eliminating
the continuous variableγi . Let SΓ denote the separators adjacent to continuous cluster sets, with
SΓ(i) ∈ SΓ denoting the separator betweenCΓ(i) and its neighbouring cluster set in the direction of
the strong root. Note that if the neighbouring cluster is part of the boundary (that is, purely discrete),
thenSΓ(i) will be purely discrete. We will denote the set of purely discrete clusters byC∆, and the
set of separators between purely discrete clusters byS∆.

In the present propagation scheme, the conditional distribution of the continuous variables given
the discrete variables is maintained in factored form by sets of univariate regressions. The messages
passed between the continuous clusters consists of such sets. To facilitatediscussion of this we
introduce data structures to store such sets of regressions.

In each continuous cluster we retain, for each configuration of the discrete variables in the
cluster, two list structures to store zero or more linear regressions, one that we call thepostbag, the
other we call thelp-potential(lp is short forlinear predictor). On the separatorsSΓ we retain only
thepostbag. On the clustersC∆ and separatorsS∆ of the discrete part of the tree we store the usual
tables (called potentials) of discrete junction tree propagation algorithms.
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5.2 Pre-initializing the Tree

After constructing the tree from the Bayesian network, the first task is to allocate the conditional
probability tables and CG regressions to the clusters of the tree. We adopt amore restrictive alloca-
tion than Lauritzen and Jensen (2001) in that we restrict where the probability tables are allocated.
The allocation scheme is as follows:

Algorithm 5.1 Allocation of potentials

Pre-initialize tree potentials

In each continuous cluster set CΓ(i) ∈CΓ:

• Set eachlp-potentialto empty;

• Set eachpostbagto an empty list.

In each SΓ(i) ∈ SΓ: set eachpostbagto an empty list.

Set all table entries to unity in all potentials of the clustersC∆ and separatorsS∆ of the discrete
part of the tree.

Allocation of probability tables

For each X∈ ∆: multiply P(X | pa(X)) into the potential of any one discrete cluster ofC∆ that
contains X∪ pa(X).

Allocation of CG regressions

For each X∈ Γ, find a cluster, CΓ(i) say, which contains X∪ pa(X), and:

• IF the elimination nodeγ(i) of CΓ(i) is X, then addL(X | pa(X)) to thelp-potential;

OTHERWISE appendL(X | pa(X)) to thepostbagof CΓ(i).

Under this allocation the discrete part of the tree contains all of the conditional (and uncondi-
tional) probability tables of the discrete variables, and the product of the potentials in the discrete
clusters yields the joint marginal distribution of the discrete variables. In the continuous part of the
tree are contained all of the CG regressions of the continuous variables inthe Bayesian network,
hence the lists in the clusters in the continuous part of the tree represent (infactored form) the joint
multivariate density of the continuous variables given the discrete variables.

Applying this to the example of Section 4, both thepostbagand lp-potentialof {ZABC} were
empty, thepostbagof {XZABC}was empty but itslp-potentialstoredL(X |A,B), whilst for{YXZC}
thepostbagcontainedL(Z |Y,C) and thelp-potentialstoredL(Y |X,C).

Note that the continuous leaves of the elimination tree will have non-emptylp-potentials, be-
cause for each such leaf, its associated elimination node appears nowhere else in the tree, and so
there is no other cluster where the conditional density of that variable can be allocated.
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5.3 TheEXCHANGE Operation

The basic formula required in the message passing scheme of this paper is theEXCHANGE oper-
ation, which is essentially Bayes’ theorem. LetY,Z,W1, . . .Wl be continuous variables (whereY
andZ do not refer to the variables in our example), anda0,a1, . . .al , b, c0,c1, . . .cl ,σY andσZ |Y be
constants, withb 6= 0, such that we have the pair of CG regressions:

Z |Y,W1, . . .Wl ∼ N(a0 +a1W1 + · · ·+alWl +bY,σ2
Z |Y),

Y |W1, . . .Wl ∼ N(c0 +c1W1 + · · ·+clWl ,σ2
Y).

Then the EXCHANGE operator converts these into the pair of distributions

Y |Z,W1, . . .Wl ∼ N(·, ·) andZ |W1, . . .Wl ∼ N(·, ·), (2)

that have the same joint density as the original pair. For convenience we introduce and define
W0 ≡ 1. We show in Appendix A that

Z |W1, . . .Wl ∼ N

(
l

∑
i=0

(ai +bci)Wi ,σ2
Z |Y +b2σ2

Y

)

.

For the conditional distribution ofY there are three cases to consider.
Case 1:σ2

Y > 0 andσ2
Z |Y > 0:

Y |Z,W1, . . .Wl ∼ N




∑l

i=0

(

ciσ2
Z |Y −aibσ2

Y

)

Wi +bσ2
YZ

σ2
Z |Y +b2σ2

Y

,
σ2

Yσ2
Z |Y

σ2
Z |Y +b2σ2

Y



 .

Case 2:σ2
Y > 0 andσ2

Z |Y = 0:

Y |Z,W1, . . .Wl ∼ N

(
Z−∑l

i=0aiWi

b
,0

)

.

Case 3:σ2
Y = 0 andσ2

Z |Y ≥ 0:

Y |Z,W1, . . .Wl ∼ N

(
l

∑
i=0

ciWi ,0

)

.

The derivation of these formulae is straightforward and is given in Appendix A. Case 1 is
equivalent to Theorem 1 of Shachter and Kenley (1989), but differing in that they use the central-
moment representation of multivariate Gaussian distributions, whereas the EXCHANGE operation
(like Lauritzen and Jensen (2001)) employs the raw-moment representation. Cases 2 and 3 may be
obtained as mathematical limits of Case 1, however computer implementations would require these
to be treated separately.

Finally, if b = 0 (so thatL(Z |Y,W1, . . .Wl ) does not depend onY), the EXCHANGE operation
merely permutes the two regressions, withY andZ disappearing from the conditioning sets of the
two regressions.
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5.4 Initial Transformation of the Tree: An Example

Having allocated potentials according to Algorithm 5.1, we proceed to complete the initialization
phase via local message passing to yield, on the continuous part of the tree, univariate regressions
in the lp-potentials and emptypostbags, so representing, in set-chain form on the continuous part
of the tree, the joint density of the continuous variables conditional on the discrete variables. In
the example of Section 4 nopostbagcontained more than one regression (for each discrete con-
figuration); in larger and more complicated networks this might not happen, and so within each
continuous cluster a sequence of EXCHANGE operations may be necessary. When this happens care
must be taken in the ordering of such operations. We illustrate this in an examplebefore giving the
general procedure.

The example we shall use is given as Example 3 in Lauritzen and Jensen (2001), and is shown
in Figure 4. This example is chosen because Lauritzen and Jensen show that in their initialization
phase several layers of recursive combinations of potentials are required. We shall see how this
arises and is avoided in our propagation scheme.

A

D

F

EC

B A AB

ABCABCD

ABCDE CDEF

Figure 4: Mixed Bayesian network (left) with one discrete variableA, given as Example 3 in Lau-
ritzen and Jensen (2001). In the strong elimination tree (right) the strong root is a, and
the two sets{CDEF} and{ABCDE} would by themselves form a strong junction tree
with {ABCDE} as the strong root.

We shall use the same initial allocation of regressions as Lauritzen and Jensen, which means that
L(F |−) is put into thelp-potentialof cluster{CDEF}, and in itspostbagwe placeL(E |CF) and
L(D |F). In thepostbagof cluster{ABCDE} we place the regressionsL(C|DA) andL(B|ACDE).
The lp-potentialof cluster{ABCDE} is empty, as are thelp-potentials andpostbags of the three re-
maining continuous clusters{ABCD}, {ABC} and{AB}. The discrete distributionP(A) is allocated
to the strong root{A}. This allocation is displayed in the following table.
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Cluster lp-potential postbag
{CDEF} L(F |−) L(E |CF), L(D |F)
{ABCDE} - L(C|DA), L(B|ACDE)
{ABCD} - -
{ABC} - -
{AB} - -
{A} P(A)

Our aim is to transform thelp-potential of cluster{CDEF} into L(F |CDE), (becauseF is
the elimination variable for this cluster) using the originallp-potential, thepostbagcontents, and
EXCHANGE operations. This corresponds to arc-reversal operations on the two directed edgesF →
D andF → E in the original Bayesian network. Now if we first reverse the arcF → E, then this will
give rise to an illegal directed-cycle in the Bayesian network (E →F →D→C→E); this is avoided
if we first reverse the arcF → D. Hence our sequence of EXCHANGE operations is summarized by

L(F |−),L(D |F)
︸ ︷︷ ︸

,L(E |CF) → L(D |−),L(F |D),L(E |CF)
︸ ︷︷ ︸

→ L(D |−),L(E |CD),L(F |CDE),

in which the pairings of the potentials in each EXCHANGE operation is indicated. We now retain
L(F |CDE) in thelp-potentialof cluster{CDEF} and pass the regressionsL(D |−) andL(E |CD)
to the cluster{ABCDE}. Now because the variableE is the elimination variable in this cluster,
this means thatL(E |CD) is put into thelp-potentialandL(D |−) is put into thepostbag. Actu-
ally, because this cluster contains the discrete variableA, there is anlp-potentialand apostbagfor
each configuration ofA. Hence we really put a copy ofL(E |CD) into each suchlp-potential, and
similarly a copy ofL(D |−) into each suchpostbag. This corresponds to a trivial extension of the
regressions toL(E |ACD) ≡ L(E |CD) andL(D |A)≡ L(D |−). (In the following we shall assume
for brevity that we are working with a particular configuration ofA, to avoid repeating the phrase
“for each configuration ofA”.)

So now in the cluster{ABCDE} we have the following regressions stored:

lp-potential L(E |ACD)
postbag L(D |A), L(C|DA), L(B|ACDE)

In our desired set-chain representation we wish to end up withL(E |ABCD) in the lp-potential;
we may use the following sequence of EXCHANGE operations,

L(E |ACD),L(D |A)
︸ ︷︷ ︸

,L(C|DA),L(B|ACDE)

→ L(D |A),L(E |ACD),L(C|DA)
︸ ︷︷ ︸

,L(B|ACDE)

→ L(D |A),L(C|DA),L(E |ACD),L(B|ACDE)
︸ ︷︷ ︸

→ L(D |A),L(C|DA),L(B|ACD),L(E |ABCD),

in which the first two operations merely permute the regressions, (C andD are already conditioning
variables of the regressions ofE), and only the last is an application of Bayes’ theorem. From this
set,L(E |ABCD) is retained in thelp-potentialof {ABCDE}, L(D |A) is put into thelp-potentialof
{ABCD} (becauseD is the elimination variable of this cluster), andL(C|DA) andL(B|ACD) are
put into thepostbagof {ABCD}. Hence in the cluster{ABCD} we have:
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lp-potential L(D |A)
postbag L(B|ACD), L(C|DA)

Now D appears in the tails of both regressions in thepostbag, hence care must be taken. The
correct EXCHANGE sequence is:

L(D |A),L(C|DA)
︸ ︷︷ ︸

,L(B|ACD) → L(C|A),L(D |AC),L(B|ACD)
︸ ︷︷ ︸

→ L(C|A),L(B|AC),L(D |ABC)

L(D |ABC) is retained in the cluster{ABCD}, L(C|A) is put into thelp-potentialof the cluster
{ABC}, andL(B|AC) is put into itspostbag.

In the cluster{ABC} we apply the EXCHANGE operation,

L(C|A),L(B|AC) → L(B|A),L(C|AB),

retainingL(C|AB) in thelp-potentialand puttingL(B|A) into thelp-potentialof cluster{AB}, and
we are done.

Before proceeding in the next section to give the general initialization algorithm, we need to
explain how we choose the ordering exchange operations to be performed when apostbagcontains
more than one regression. The answer is straightforward: one ordersthe regressions in apostbag
by a topological ordering in the original Bayesian network of the response (head) variables in the
regressions, such that in the ordering all the parents of a variableX appear to the left ofX, and all
child variables appear to the right ofX. This ordering ensures that the sequence of EXCHANGE

operations is valid. (It is essentially Proposition 2 of Shachter and Kenley (1989).)

5.5 Initial Transformation of the Tree: General Algorithm

We now present the general algorithm for initializing the CG regressions ofthe tree. Recall thatγi

is the elimination variable associated with the continuous clusterCΓ(i).

Algorithm 5.2 (Initialization of CG regressions)

1. Given:

• A mixed Bayesian networkB with a strong elimination tree initialized according to
Algorithm 5.1.

• The elimination sequenceγn,γn−1, . . . ,γ1 of the continuous nodes.

• A topological orderingTOP of the variables inB.

2. Message passing sequence:

For i := n step -1 until 1 do:

For each configurationδ∗i of the discrete variables in CΓ(i) do:

• Sort the regressions in theδ∗i postbagof CΓ(i) so that their head variables occur in the
same sequence as in the topological orderingTOP;

• While theδ∗i postbagof CΓ(i) is not empty do:
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– Remove the first regression R in theδ∗i postbagof CΓ(i);

– If the tail of R containsγi , then modify R and theδ∗i lp-potentialof CΓ(i) via the
EXCHANGE operation, such that R does not depend onγi .

– For each configurationδ∗j i ⊇ δ∗i , of the discrete variables in the cluster CΓ( j i) neigh-
bouring CΓ(i) in the direction of the strong root, put a copy of R either (1) in theδ∗j i
lp-potentialof CΓ( j i) if the head of R is the elimination variable of CΓ( j i), or (2) in
theδ∗j i postbagof CΓ( j i) otherwise.

– Discard R.

Note that by the strong nature of the tree, the set of discrete variables ofCΓ(i) is contained in
the set of discrete variables ofCΓ( j i). Hence for each configurationδ∗j i there will be an induced
sub-configurationδ∗i .

On completion of Algorithm 5.2 all of thepostbags are empty, and thelp-potentials contain the
desired set-chain CG regressions. To see this, first note that each EXCHANGE operation is a valid
application of Bayes’ theorem, and does not at any stage alter the joint conditional density that can
be reconstructed from the regressions stored in thelp-potentials andpostbags. Secondly, when the
outer i-th loop is performed thelp-potentialof CΓ(i) is not empty, eitherCΓ(i) is a leaf cluster, in
which case it started out non empty; otherwise it will have started out non empty and remained so,
or it will have started out empty but then became non-empty because it received a regression from a
neighbouring cluster away from the root. (The conditional density ofγi given its parents must have
been placed either in thelp-potentialof CΓ(i), or in somepostbagof a cluster on some path from
CΓ(i) through clusters further away from the root thanCΓ(i), and will arrive, possibly modified via
EXCHANGE operations atCΓ(i) through application of the previous steps of the algorithm for higher
values ofi.)

5.6 Entering Evidence and thePUSH Operation

Evidence on discrete and/or continuous variables may be entered and propagated on the tree, and
posterior distributions of individual nodes found. Discrete evidence is entered and propagated in
the usual way,but only on the discrete part of the tree. To enter continuous evidence, and to find
marginal densities of continuous variables, we use the PUSH operation of Lauritzen and Jensen
(2001).

It is convenient to enter evidence on the continuous variables one observed variable at a time. In
order to keep track of those variables that have already had their evidence entered, in each contin-
uous cluster we retain a boolean variable—calledactiveflag—which is initially set to TRUE before
any continuous evidence has been entered. A value of FALSE indicates that evidence on the elimi-
nation variable of the cluster has been entered. A TRUE value indicates thatevidence concerning the
elimination variable may be entered, or that the marginal density of the variable may be calculated.

Recall that the separatorSΓ(i) between a continuous cluster setCΓ(i) that is a neighbour to a
discrete cluster inC∆ only contains those discrete variables inCΓ(i). In every such separator we
store a table of real values indexed by the states of the discrete variables which we call aweight
table.

In the algorithm below the cluster neighbouringCΓ(i) in the direction of the strong root will be
denoted bytoroot(i), and is either another continuous cluster, or a purely discrete boundarycluster.
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If toroot(i) is continuous its index is denoted byr i (so thatr i ∈ {1,2, . . . , i − 1} and toroot(i) ≡
CΓ(r i)).

We now state the algorithm for entering evidence on a continuous variableγ j (indexed accord-
ing the elimination ordering) which consists of the finding thatγ j = γ∗j . Basically it performs a
sequence of EXCHANGE operations so that in the final regression in whichγ j is the head variable,
no continuous variables appear in the tail; the substitutionγ j = γ∗j may then be performed in all re-
gressions in whichγ j appears, and where it is the head variable this substitution forms a likelihood
to be incorporated into the discrete part of the tree.

Algorithm 5.3 (The PUSH operation: Entering evidenceγ j = γ∗j )

• Given:

– A tree with elimination sequenceγn,γn−1, . . . ,γ1 of the continuous variables.

– The tree initialized according to Algorithm 5.2, and then possibly having had some ev-
idence already entered and propagated—but not on the variableγ j—according to this
algorithm. (Note: allpostbags are empty.)

– Evidenceγ j = γ∗j to enter and propagate on the tree.

• Step 1: Enter γ j = γ∗j in all regressions in whichγ j is a conditioning variable.

– For i := n step -1 until j+1 do

∗ IF activeflagof CΓ(i) is TRUE andγ j ∈CΓ(i) substituteγ j = γ∗j in everylp-potential
regression of CΓ(i).

• Step 2: Initialize the loop for pushingγ j towards a boundary cluster.

– Set i:= j.

– For each configurationδ∗i of the discrete variables of CΓ(i) move the regression in the
δ∗i lp-potentialof CΓ(i) into theδ∗i postbagof CΓ(i).

– Setactiveflagof CΓ(i) to FALSE.

• Step 3: Pushγ j towards a boundary cluster.

while toroot(i) is not a boundary cluster do:

– For each configurationδ∗r i
of the discrete variables of CΓ(r i) (with induced configuration

δ∗i of the discrete variables of CΓ(i)) do:

∗ IF activeflagof toroot(i) is FALSE, then:

1. Copy theδ∗i postbagof CΓ(i) into theδ∗r i
postbagof CΓ(r i);

OTHERWISE:

1. Copy theδ∗i postbagof CΓ(i) into theδ∗r i
postbagof CΓ(r i)

2. Perform theEXCHANGE operation on theδ∗r i
lp-potentialandpostbagof CΓ(r i)

(such that the resultingpostbagregression hasγ j as head).

3. Substituteγ j = γ∗j in theδ∗r i
lp-potentialof CΓ(r i);

– Discard the content of everypostbagof CΓ(i);

– Set i:= r i .
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• Step 4: Update the discrete part of the tree.

1. For each configurationδ∗i of the discrete variables of CΓ(i) substituteγ j = γ∗j into the
density of the regression stored in theδ∗i postbagof CΓ(i) and store the result in theδ∗i
entry of the weight table of SΓ(i).

2. Multiply theweighttable of SΓ(i) into the discrete cluster potential of toroot(i);

3. Empty thepostbagof CΓ(i).

Substitutingγ j = γ∗j into a regression in whichγ j is in the tail, andγv is the head variable will
result in another regression ofγv on the remaining variables of the tail, affecting the expression for
the mean. In the more complex substitutions of Step 4(1), there is a regressionin theδ∗i postbagof
CΓ(i) of the formγ j ∼ N(ai, j ,σ2

i, j), so that theδ∗i entry in theweighttable will store

w[δ∗i ] =
exp
(

−(γ∗j −ai, j)
2/2σ2

i, j

)

√

2πσ2
i, j

.

If σ2
i, j = 0, which could (though not necessarily must) occur if there are logical relationships

on the continuous variables, this could be mathematically undefined (Lauritzenand Jensen (2001)
provide an example). Should such an event occur an implementation of Algorithm 5.3 should warn
the user.

To see how the algorithm works, suppose that we start with no evidence having been entered.
In this case the continuous part of the tree stores a representation of the conditional density of the
continuous variables given the discrete,L(Γ |∆). When evidenceγ j = γ∗j is entered on a continuous
variableγ j , the sequence of EXCHANGE operations and substitutions ofγ j = γ∗j leads to a factored
representationL(Γ\{γ j}|γ∗j ,∆),L(γ∗j |∆) where the first term is represented in thelp-potentials of
the continuous clusters in which theactiveflagis TRUE, and the last term is passed as a likelihood
term via a weight table to the discrete part of the tree. After standard evidence propagation on the
discrete part of the tree, the latter stores a representation ofP(∆ |γ j = γ∗j ,δ∗) or P(∆,γ j = γ∗j ,δ∗)
depending on whether or not the discrete potentials have been normalized tounity (δ∗ represents
discrete evidence). If a second piece of evidence is entered,γk = γ∗k say, the algorithm leads to
the active continuous clusters storing a factored representation ofL(Γ\{γ j ,γk}|γ j = γ∗j ,γk = γ∗k,∆)
and the further likelihood factorL(γk = γ∗k |γ j = γ∗j ,∆) being multiplied into the discrete part of
the tree. At each stage theactiveflags which are FALSE in the continuous clusters identify, via
the elimination variables of the clusters, those continuous variables about which evidence has been
entered, thelp-potentials in the other clusters (in which theactiveflags are TRUE) represent the
joint density of the unobserved continuous variables given the discrete variables and the observed
continuous variables.

After all continuous evidence has been entered, and evidence on discrete variables has been
entered and propagation performed on the discrete part of the tree, the discrete part contains a
factored representation of the posterior probability of the unobserved discrete variables given the
evidence on all variables.
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We illustrate the algorithm by revisiting the example in Section 4. We start with no evidence on
the continuous part of the tree, which is initialized thus:

Cluster lp-potentials
ZABC Z |abc∼ N (αZ:abc,σ2

Z:abc)
XZABC X |zabc∼ N (αX:abc+βX:Zabcz,σ2

X:abc)
YXZC Y |xzc∼ N (αY:c +βY:Xcx+βY:Zcz,σ2

Y:c)

If X = x∗ is observed, then Algorithm 5.3 operates as follows:

1. In the cluster{YXZC}, the distributionY |xzc∼ N (αY:c+βY:Xcx+βY:Zcz,σ2
Y:c)→Y |x∗zc∼

N (αY:c +βY:Xcx∗ +βY:Zcz,σ2
Y:c). Theactiveflagremains TRUE.

2. In {XZABC}, theactiveflagis set to FALSE, and for each configurationabc the regression
N (αX:abc+βX:Zabcz,σ2

X:abc) is moved into theabc postbagof {ZABC}

3. In{ZABC}, for each configurationabcthe EXCHANGE operations acts on theabc lp-potential,
representingL(Z |A = a,B = b,C = c), and theabc postbagto give a newabc lp-potential
representingL(Z |X = x,A= a,B= b,C = c) and modifiedabc postbagcontent representing
L(X = x|A = a,B = b,C = c). Then thelp-potentialis set toL(Z |X = x∗,A = a,B = b,C =
c), and the weight table entryw(a,b,c) stores the density value ofL(X = x∗ |A = a,B =
b,C = c).

4. Thepostbags of{ZABC} are emptied, theactiveflagremains TRUE.

5. In the discrete cluster{ABC}, the potentialp(a,b,c) → p(a,b,c)w(a,b,c) ∀ {a,b,c}.

6. On normalizing the potential in the discrete cluster{ABC} we obtain the probability distribu-
tion P(A,B,C|X = x∗).

5.7 Evaluating Posterior Marginals of Individual Variables

After propagating evidence on variables as described above, finding the posterior marginal of a
discrete variable,D say, proceeds in the usual way: Find a cluster set in the discrete part ofthe tree
containingD and marginalize the joint table in that cluster set appropriately.

Finding the posterior density of an unobserved continuous variable usesthe PUSH operation in
a way similar to but simpler than Algorithm 5.3. Suppose the marginal density ofY ∈ Γ is required.
The idea is to use a sequence of EXCHANGE operations to pushY to a clusterC neighbouring the
boundary, so that we have a representation of the distributionL(Y |EΓ,B) whereEΓ denotes the
evidence on the continuous variables, andB ⊆ ∆ are the discrete variables in the clusterC. From
the boundary cluster the marginalP(B|EΓ∪∆) may be found and then combined withL(Y |EΓ,B) to
give the required posterior marginal ofY. The complete algorithm is given in Algorithm 5.4, which
uses the same notation as Algorithm 5.3.

Algorithm 5.4 (Find the posterior density of a continuous variable)

• Given:

– A strong elimination tree with elimination sequenceγn,γn−1, . . . ,γ1 of the continuous
variables.
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– The tree initialized according to Algorithm 5.2, with evidenceEΓ entered as in Algorithm 5.3,
and discrete evidenceE∆ entered and propagated on the discrete part, so that the dis-
crete clusters contain posterior distributions. (Note: allpostbags are empty.)

– Task: to find the posterior density of an unobserved continuous variableγ j . (Note: the
activeflagof CΓ( j) is TRUE.)

• Step 1: Initialize the loop.

– For each configurationδ∗j of the discrete variables of CΓ( j) copy theδ∗j lp-potentialof
CΓ( j) into theδ∗j postbagof CΓ( j).

– Set i:= j

• Step 2: Pushγ j towards a boundary cluster.

while toroot(i) is not a boundary cluster do:

– For each configurationδ∗r i
of the discrete variables of CΓ(r i) (with induced configuration

δ∗i of the discrete variables of CΓ(i)) do:

∗ Copy theδ∗i postbagof CΓ(i) into theδ∗r i
postbagof CΓ(r i);

∗ IF activeflagof CΓ(r i) is TRUE andγ j is in the tail of the regression in theδ∗r i
lp-

potentialof CΓ(r i), THEN use theEXCHANGE operation formulae to modify the
δ∗r i

postbagof CΓ(r i) (so thatγ j is still the head variable) but do not modify theδ∗r i

lp-potentialof CΓ(r i);

– Empty all of thepostbags of CΓ(i);

– Set i:= r i .

• Step 3: Find the marginal density.

1. Marginalize the discrete potential in the boundary cluster neighbouring CΓ(i) to the
weighttable in the separator SΓ(i).

2. Output the result of adding together the product of eachweight table entry with the
density of the regression stored in the correspondingpostbagof CΓ(i).

3. Empty all of thepostbags of CΓ(i).

Prior to an application of this algorithm thelp-potentials in the active clusters represent a fac-
torization of the joint conditional density of the unobserved continuous variables given the evidence
on the continuous variables. The algorithm does not change these in any way, and so does not
alter this joint conditional density, and indeed the algorithm leaves the tree ready in a state for
finding the marginal density of another continuous variable. The algorithm isjust using thepost-
bags as temporary storage to find, by repeated (partial) application of the EXCHANGE formulae, the
marginal density ofγ j conditional on the discrete variables and the values of the observed continu-
ous variables. Step 3 combines this with the correct posterior probability of the unobserved discrete
variables ofCΓ(i) (conditional on all evidence) to form the posterior marginal density ofγ j .
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6. Comparison to Other Methods

In this section we review the propagation scheme described in this paper, and compare it to the
scheme of Lauritzen and Jensen (2001) and to the work of Shachter andKenley (1989). We then
discuss some possible extensions of the scheme.

6.1 Summary of Current Scheme

In the current scheme, evidence propagation and evaluation of marginaldistributions in a mixed
Bayesian networkB takes place on a strong elimination tree or strong semi-elimination tree. The
tree has two distinct parts, the continuous part and the discrete part, with thestrong root located in
the discrete part. The continuous part is initialized using the CG regressionsof B, and represents,
using a collection of univariate regressions, the density of the continuousvariables conditional on
the discrete variables. The discrete part represents the marginal distribution of the discrete variables,
and is initialized using the discrete conditional probability tables ofB. Entering evidence on contin-
uous variables, and evaluating marginal densities of continuous variables, uses the PUSH operation
with the EXCHANGE formulae, the latter being an application Bayes’ theorem. Discrete evidence
is entered on the discrete part of the tree and propagated on the discrete part of the tree in the usual
way. For finding marginals of continuous variables there is no DISTRIBUTE operation on the tree.

6.2 Comparison with the Lauritzen and Jensen (2001) Scheme

As discussed in Section 2 the Lauritzen and Jensen propagation scheme uses a strong junction tree
architecture. Associated with each clique of the junction tree is a CG potential, which is a tupleφ =
[p,A,B,C](H |T) of scalars, vectors and matrices and a partition of the variables into conditioned
variables (the head) and conditioning variables (the tail). The conditional distribution or density
of a variableX in B may be assigned to any clique or separator that contains the family ofX in
the Bayesian network. CG potentials may be combined but there are restrictions that have to be
followed, which necessitate the introduction of therecursive combinationof potentials to allow
incoming messages to a clique to be combined correctly.

It is instructive to see how recursive combination is avoided in the current scheme, or alterna-
tively, how to interpret recursive combination within the current scheme. For this we return to the
example in Section 5.4. In Figure 4 the clusters{CDEF} and{ABCDE} form a strong junction tree
with the latter as the strong root. In the Lauritzen and Jensen analysis, the assignment of potential
to clique{CDEF} leads to a CG potential having the head and tail structure(DEF |C). This is de-
composed into(F |CED) and(DE |C) the latter is passed to the clique{ABCDE} to be combined
with the potential(BC|DE). However the heads’ and tails’ contents of these two potentials preclude
their direct combination. Instead they must be combined recursively. The first stage is to decompose
(DE |C) → (E |CD),(D |−), however this is not sufficient, as(E |CD) cannot be directly combined
with (BC|DE). So we decompose(BC|DE) → (B|CDE),(C|D) and then we may combine the
four potentials(B|CDE)(E |CD)(C|D)(D |−) in that orderto yield a potential(BCDE|−).

If one compares these four potentials with the regressions stored in the cluster {ABCDE} in
Section 5.4 we see that they have the same head-and-tail structures. In thecurrent scheme the
regressionsL(D |−),L(E |CD) were passed to the cluster{ABCDE}, which stored (omitting the
dependence onA) the regressionsL(C|D),L(B|CDE). These are subject to EXCHANGE operation,
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dependent on the topological ordering of the head variables in the Bayesian networkB, the ordering
beingD−C−E−B.

Thus we interpret the recursive combination of potentials as a ordered factorization of potentials
so their direct combinations are well defined (although it will not always decompose potentials to
univariate CG potentials). The current scheme avoids the recursive combination operation because it
works all the time with a factored representation, and the correct orderingof EXCHANGE operations
is ensured by using the topological ordering of the variables inB. It has echoes oflazy-propagation
(Madsen and Jensen, 1998), in which potentials are stored in factored form when initializing a
junction tree and are only combined when required; the difference is that inour scheme factored
forms are always retained.

In our scheme there is noSUM-DISTRIBUTE operation on the continuous part of the tree,
whereas Lauritzen and Jensen have such an operation that can be used to store weak-marginals
in the separators. If weak-marginals are desired in the current scheme,they may be found using the
mean and variance of the mixture marginals.

Another aspect of the Lauritzen and Jensen scheme should be mentioned,which is their opera-
tion of minimizationof the tails of CG potentials. In their operations on CG potentials represented
by tuplesφ = [p,A,B,C](H |T), when a column ofB has entries all zero for every configuration of
the discrete variables in the CG potential, then that column and the associated continuous tail vari-
able may be removed. This is areductionoperation, and takes place during recursive combination.
In the current scheme, reduction occurs as a result of the EXCHANGE operation: theZ regression
of (2) does not depend onY, so an implementation of the EXCHANGE operation would, in taking
this into account, automatically perform a reduction. Theminimizationof a potential occurs if the
potential has been reduced as far as possible.

Lauritzen and Jensen also discuss the possibility of forming the marginal of agroup of contin-
uous variables. This should be possible within the present scheme, with the result being expressed
as weighted sets of linear regressions. However it may be that in the message passing process more
than one regression might be stored in apostbag(for a given configuration of discrete variables) and
if so their order would be important, not however the topological ordering of the original Bayesian
network variables used in Algorithm 5.2, but the (reverse of) the elimination ordering. This would
be appropriate because it is a perfect numbering of the strongly triangulated graph associated with
the tree. Similar considerations suggests it ought to be possible to propagateevidence on several
continuous variables simultaneously. These connections are discussed infurther detail in the next
subsection.

6.3 Relationship to the Shachter and Kenley (1989) Scheme

In the Shachter and Kenley scheme, arc-operations are performed on aBayesian network one pair
of variables at a time, which means that it operates on pairs of linear regressions, which is like the
current scheme. (Their paper is concerned with pure Gaussian networks, but this is difference is
not very significant.) When several arcs need reversing in a Probabilistic Node Reduction operation
(their PROPOSITION2) the sequence of arc reversals has to follow an ordering which is equivalent
to one obtained from a topological ordering of the nodes in the Bayesian network. Hence this is very
similar to the sequence of EXCHANGE operations in initializing the tree described in Algorithm 5.2.

The close connections between the current scheme, and of both Shachter and Kenley (1989)
and Lauritzen and Jensen (2001) are illuminated by the paper of Shachteret al. (1990). These
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authors show that the inference algorithms operating on junction trees are essentially the same as
node reductions algorithms operating on influence diagrams, because theyare both working on the
same underlying graphical structures. In the terms of the present paper, what they show is that in
the elimination sequenceγn,γn−1, . . . ,γ1 operating on the moralized mixed Bayesian network, the
clusterCΓ(i) is the same as that which would be obtained in the influence diagram for family ofthe
nodeγi after all outgoing arcs have been reversed to makeγi a barren node, if the nodes are removed
from the mixed Bayesian network in the same order as the elimination sequence.To avoid directed
cycles being introduced there is a restriction to the order in reversing the child arcs of a node, the
restriction uses a topological ordering of the original Bayesian network.They also describe how
evidence is entered—if evidence is entered on a node then arcs are reversed so that that node has no
parents, and in the process child arcs from the node are removed. Whenthis is done the likelihood
associated with that node may be found. This process—which they callevidence propagation—is
essentially the PUSH operation on a continuous variable, except that arcs are reversed only to the
point that the variable has no continuous parents, and then substituting the evidence value leads to
modification of those regressions in which the variable appears in the tail (corresponding to removal
of those arcs from the influence diagram viewpoint) and evaluation of a likelihood to be passed on
to the discrete part of the tree. The elimination tree, with itslp-potentialandpostbagstructures,
provides an organizing framework for such operations. They also describe how multiple evidence
may be entered simultaneously, and their procedure should be transferable into the current scheme.

6.4 Implementation Issues

The propagation scheme presented here works by manipulating linear regressions. To aid the presen-
tation the paper has used, like Lauritzen and Jensen (2001), a raw momentrepresentation, for which
the EXCHANGE formulae of Section 5.3 may be used. If the user wishes to implement the current
scheme then one possibility would be to represent CG regressions by the tuple φ = [p,A,B,C](H |T)
of Lauritzen and Jensen, but nowA andC are scalars andB a vector (corresponding tor = 1) for
each configuration of the discrete variables. Further restrictions are that the tablep is a table of 1’s
if the CG regression has continuous variables, and hence are not required.

However this is not the only possibility. In the author’s C++ implementation, an associative
array of the formstd::map<variable,double> is used to store coefficients of covariates in the
regressions. The reduction operation is effected by a variable being removed from the associative
array.

One could instead use the central-moment representation of Shachter and Kenley, all that would
be required would be suitable replacements of the EXCHANGE formulae which describe Bayes’
theorem. In this case the formulae in Theorem 1 of Shachter and Kenley could be used (suitably
extended to take account of deterministic relationships and the configurations of the discrete vari-
ables).

A further possibility could be to use computer algebra. Each univariate regression is specified by
(1) a specification of the head and tail variables and either (2a) a quadratic form in the continuous
variables if the variance is strictly positive, or (2b) a linear form for deterministic relationships.
These are readily represented and manipulated in computer algebra packages, and so the current
scheme could be implemented in which the messages are either linear expressions or quadratic
forms in the continuous variables. Reduction operations would be taken care of automatically by
such computer algebra calculations.
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From these comments above we see that, although the presentation in this paperhas focussed on
using the raw-moment representation, the propagation scheme is more general than this. The only
place that the raw-moment representation has been used is in the explicit EXCHANGE formulae of
Section 5.3.

7. Sampling and Mode-Finding Algorithms

Aside from finding the posterior marginals of variables, the use of the elimination tree in the current
scheme facilitates other operations that may be of interest in applications. In Section 7.1 we show
how to sample from the posterior distribution, and in Section 7.2 we show how to find the highest
peak in the posterior mixture distribution, which could be useful as the startingpoint of an iterative
search for the posterior mode.

7.1 Sampling from the Posterior

It may be desirable to sample from the posterior distribution of the variables in the Bayesian net-
work given some observed evidenceEΓ∪∆. Dawid (1992) has shown how to do this for discrete
networks, his method is as follows. Starting from a junction tree of cliques, and after entering and
sum-propagating evidenceE∆, the clique and separator tables contain posterior marginals of their
variables. Suppose we label the cliques in running intersection orderC1,C2, . . . ,Ck say, withC1

being chosen as the root clique. First one samples from the posterior marginal in C1, to give some
configurationδs

1. Then one samples from the posterior marginal of the variables inC2 conditional on
δs

1, yielding some combined configurationδs
1∪δs

2. Then one samples the variables inC3 conditional
on δs

1 ∪ δs
2. Proceeding in this way will yield a sampleδs = δs

1 ∪ δs
2 ∪ ·· · ∪ δs

k from the posterior
distribution on the junction tree.

Here we present in Algorithm 7.1 a simple extension of Dawid’s method to conditional-Gaussian
networks. The idea is to sample the discrete variables, and then sample the remaining continuous
variables one at a time in a distribute-type operation.

Algorithm 7.1 (Sampling from the posterior)

• Given: A tree with elimination sequenceγn,γn−1, . . . ,γ1 of the continuous variables, which
has been initialized and has had evidence propagated according to Algorithm 5.3, and any
discrete evidence has also been propagated on the discrete part of the tree.

• Sample:

– Sample a configurationδs of the discrete variables∆ using the algorithm of Dawid.

– For i := 1 step 1 until n do

∗ IF activeflagof CΓ(i) is TRUE then find the sub-configurationδs
i ⊆ δs of the discrete

variables in CΓ(i), and sampleγi from the regression stored in theδs
i lp-potential

of CΓ(i) in which the sampled or observed values of all continuous tail variables
∈ {γs

1,γ
s
2, . . . ,γ

s
i−1} have been substituted; denote the sampled value byγs

i .

∗ OTHERWISE there is evidenceγi = γ∗i , so simply setγs
i = γ∗i .

• The configuration{γs
i : i = 1, . . . ,n}∪δs is a sample from the posterior density.
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Note that, because of the elimination tree structure employed, each simulatedγi is sampled from
a univariate normal distribution. Such simulation may be done efficiently by a variety of methods
and is much simpler than sampling from a multivariate normal distribution.

7.2 Locating the Mode (Approximately)

It is sometimes of interest to locate the most probable values of the unobserved variables given
evidence on observed variables. For discrete networks this may be foundby local propagation as
shown by Dawid (1992). For CG networks an exact solution to the problemis not known, and
we do not propose a solution here. Instead in Algorithm 7.2 we propose a method that finds the
component having thehighest peakin the posterior distribution. The posterior distribution is a
mixture of weighted multivariate normal densities. Each component multivariate density will attain
maximum height at its mean, the height will be proportional to the weight of the component divided
by the square root of the determinant of the covariance matrix of the component. These heights
are compared by Algorithm 7.2. Now if the variances of the components in the mixture are small
compared to the distances between their means, then the location of the component having the
highest peak might be expected to be a good approximation to the posterior mode, or could be used
as the starting point of an iterative search for the mode. Algorithm 7.2 is slightlymore complicated
than Algorithm 7.1, and cannot be used if any variances are zero. In order to keep track of the
heights of each component, we need to keep aweight table in every continuous separator inSΓ.
Note that it is not necessary to evaluate a determinant.

Algorithm 7.2 (Highest Component Search)

• Given:

– A tree with elimination sequenceγn,γn−1, . . . ,γ1 of the continuous variables, which has
been initialized and had evidence propagated according to Algorithm 5.3, and any dis-
crete evidence also been propagated on the discrete part of the tree.

– All entries in allweighttables initialized to unity.

• Highest Peak Search:

– For i := n step -1 until 1 do

1. IF activeflagof CΓ(i) is TRUE THEN: For each configurationδ∗i of the discrete
variables in CΓ(i) multiply theδ∗i entry in theweighttable of SΓ(i) by1/

√

2πσ2(δ∗i )
whereσ2(δ∗i ) is the variance in the regression stored in theδ∗i lp-potentialof CΓ(i).

2. IF toroot(i) is NOT a boundary cluster, THEN: For each configurationδ∗r i
of the

discrete variables of CΓ(r i) (with induced configurationδ∗i of the discrete variables
of CΓ(i)), multiply theδ∗r i

entry in the weight table of SΓ(r i) by theδ∗i entry in the
weight table of SΓ(i).
OTHERWISE if toroot(i) IS a boundary cluster, then multiply the weight table of
SΓ(i) into the discrete potential of toroot(i) in the usual way.

– Use theMAX -PROPAGATEalgorithm of Dawid (1992) on the discrete part of the tree to
give a“max-configuration”δm of the discrete variables.

– For i := 1 step 1 until n do
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∗ IF activeflagof CΓ(i) is FALSE, then there is evidenceγi = γ∗i , so set the peak value
γm

i = γ∗i ;
OTHERWISEactiveflagof CΓ(i) is TRUE, so find the sub-configurationδm

i ⊆ δm of
the discrete variables in CΓ(i), and setγi to the mean of the regression stored in the
δm

i lp-potentialof CΓ(i) in which the peak values or observed values of all continu-
ous tail variables∈ {γm

1 ,γm
2 , . . . ,γm

i−1} have been substituted; denote the peak value
by γm

i .

• The configuration{γm
i : i = 1, . . . ,n}∪ δm specifies the location of the highest component in

the joint multivariate posterior density.

Mathematically Algorithm 7.2 may be understood in the following manner. LetIΓ = {I1, I2, . . . , Ik}
denote the set of indices of the continuous nodes for which no evidence has been entered (with
Ik > Ik−1 > · · · > I1). Then the algorithm starts out with the tree storing a recursive factorization of
the posterior multivariate normal mixture density in the form:

p(∆ |EΓ∪∆)∏
i∈IΓ

fi(γi |Sγ(i),EΓ)

where thefi(· | ·) are appropriate CG regression densities. Given the covariates and evidence, each
CG regression density is maximized at the mean, so the component having the maximum height
may be obtained as a sequence of ordered maximizations:

max
Γ,∆

(

p(∆ |EΓ∪∆)
k

∏
j=1

fI j (γI j |Sγ(I j),EΓ)

)

= max
Γ,∆

(

p(∆ |EΓ∪∆)wIk(Sγ(Ik),EΓ)
k−1

∏
j=1

fI j (γI j |Sγ(I j),EΓ)

)

= max
Γ,∆

(

p(∆ |EΓ∪∆)wIk(Sγ(Ik),EΓ)wIk−1(Sγ(Ik−1),EΓ)
k−2

∏
j=1

fI j (γI j |Sγ(I j),EΓ)

)

...

= max
∆

(

p(∆ |EΓ∪∆)
k

∏
j=1

wI j (Sγ(I j),EΓ)

)

,

where thewi(·) are theweighttables representing the values of the densities of the CG regressions
located at the means. The algorithm accumulates the product of these valuesand multiplies them
into the discrete part of the tree, from which standardMAX -PROPAGATIONmay be used to findδm.
(Note that this accumulated product is valid because of the strong nature ofthe tree: a continuous
clusterCΓ(r i) neighbouring another continuous clusterCΓ(i) but closer to the strong root will contain
all of the discrete variables that are inCΓ(i).) This information is then distributed back to locate the
mean values of the continuous variables for the configurationδm of the discrete variables, in the
final stage of Algorithm 7.2.

Finally, we mention another maximization operation calledSEMIMAX -PROPAGATION that can
easily be carried out in the current scheme. This consists of finding the most likely configuration
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of the posterior marginal distribution of the discrete variables, that is, finding the maximum of
P(∆ |EΓ∪∆). For this we propagate evidence as in Algorithm 5.3, and incorporate evidence on the
discrete variables on the discrete part of the tree. We then perform standardMAX -PROPAGATIONon
the discrete part of the tree according to the algorithm of Dawid (1992).SEMIMAX -PROPAGATION

was introduced and applied to forensic DNA problems involving the modelling and analysis of
mixed DNA samples using CG networks by Cowell et al. (2004).

8. Summary

We have presented a local propagation scheme for conditional GaussianBayesian networks based
on elimination trees, that combines the scheme of Lauritzen and Jensen (2001) with that of Shachter
and Kenley (1989). Complex matrix algebra is avoided because operationsmanipulate linear regres-
sions. The propagation scheme is not dependent on a particular implementation of the representation
of linear regressions, although the paper has used one for exposition.3 We have also introduced: an
algorithm for sampling on such networks; an algorithm for finding highest peaks that could be use-
ful either as an approximation to, or an iterative algorithm for locating, the posterior mode of the
distribution; and have briefly described another operation calledSEMIMAX -PROPAGATION.
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Appendix A. Derivation of EXCHANGE Formulae of Section 5.3

From the pair of normal distributions

Z |Y,W1, . . .Wl ∼ N(a0 +a1W1 + . . .alWl +bY,σ2
Z |Y),

Y |W1, . . .Wl ∼ N(c0 +c1W1 + . . .clWl ,σ2
Y),

it follows thatY |Z,W1, . . .Wl andZ |W1, . . .Wl are also normal distributions. The mean and variance
of the latter is readily found using

E[Z |W1, . . .Wl ] = E[E[Z |Y,W1, . . .Wl ] ] = E[a0 +a1W1 + . . .alWl +bY]

=
l

∑
i=0

(ai +bci)Wi

V[Z |W1, . . .Wl ] = E[V[Z |Y,W1, . . .Wl ] ]+V[E[Z |Y,W1, . . .Wl ] ]

= E[σ2
Z |Y]+V[a0 +a1W1 + . . .alWl +bY]

= σ2
Z |Y +b2σ2

Y

where we defineW0 ≡ 1.
There are three cases to consider in finding the conditional distribution ofY |Z,W1, . . .Wl .

3. It is also one implemented by the author.
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Case 1:σY > 0 and σ2
Z |Y > 0.

The joint conditional density ofY,Z |W1, . . . ,Wl is

fY,Z |W1,...,Wl
(y,z) = fZ |Y,W1,...,Wl

(y,z) fY |W1,...,Wl
(y)

=
1

2πσZ |YσY
exp

(

−(z−∑l
i=0aiWi −by)2

2σ2
Z |Y

)

exp

(
−(y−∑l

i=0ciWi)
2

2σ2
Y

)

= fY |Z,W1,...,Wl
(y,z) fZ |W1,...,Wl

(z)

=
1

2πσY |ZσZ
exp

(

−(y−α−βz)2

2σ2
Y |Z

)

exp

(
−(z−∑l

i=0(ai +bci)Wi)
2

2σ2
Z

)

,

whereα, β andσ2
Y |Z are constants to be determined. The density ofY |Z,W1, . . . ,Wl may be found

directly by dividing the first expression for the joint density by the density of Z |W1, . . . ,Wl (Bayes’
theorem), or alternatively it may be deduced from the linear and quadratic terms iny in the expo-
nential terms as follows. Equating the coefficients ofy2 yields

1

2σ2
Y |Z

=
b2

2σ2
Z |Y

+
1

2σ2
Y

from which it follows that the desired variance is

σ2
Y |Z =

σ2
Z |Yσ2

Y

σ2
Z |Y +b2σ2

Y

.

Equating the terms linear iny yields

α+βz

σ2
Y |Z

=
b
(
z−∑l

i=0aiWi
)

σ2
Z |Y

+
∑l

i=0ciWi

σ2
Y

hence the conditional meanα+βZ is given by

(

b(Z−∑l
i=0aiWi)

σ2
Z |Y

+
∑l

i=0ciWi

σ2
Y

)/(
σ2

Z |Y +b2σ2
Y

σ2
Z |Yσ2

Y

)

=
∑l

i=0

(

ciσ2
Z |Y −aibσ2

Y

)

Wi +bσ2
YZ

σ2
Z |Y +b2σ2

Y

Thus,

Y |Z,W1, . . .Wl ∼ N




∑l

i=0

(

ciσ2
Z |Y −aibσ2

Y

)

Wi +bσ2
YZ

σ2
Z |Y +b2σ2

Y

,
σ2

Yσ2
Z |Y

σ2
Z |Y +b2σ2

Y



 ,

Case 2:σY > 0 and σ2
Z |Y = 0.

We may deduce that

Y |Z,W1, . . .Wl ∼ N

(
Z−∑l

i=0aiWi

b
,0

)

either by considering the limitσ2
Z |Y → 0 in Case 1, or by noting that ifσ2

Z |Y = 0, then

Z |Y,W1, . . .Wl ∼ N(a0 +a1W1 + . . .alWl +bY,σ2
Z |Y)
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is equivalent to
Z = a0 +a1W1 + · · ·+alWl +bY

which is equivalent to the constraint

Y =
Z−a0−a1W1−·· ·−alWl

b
.

Case 3:σY = 0 and σ2
Z |Y ≥ 0.

We may obtain

Y |Z,W1, . . .Wl ∼ N

(
Z−∑l

i=0aiWi

b
,0

)

either as the limitσ2
Y → 0 of Case 1, or by noting that the deterministic constraint implied by

Y |W1, . . .Wl ∼ N

(
l

∑
i=0

ciWi ,0

)

≡Y =
l

∑
i=0

ciWi

will be unaffected by further conditioning onZ.
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