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The task of learning models for many real-world problemsinesg incorporating domain knowl-
edge into learning algorithms, to enable accurate learinorg a realistic volume of training data.

This paper considers a variety of types of domain knowledgednstraining parameter estimates
when learning Bayesian networks. In particular, we congidenain knowledge that constrains the
values or relationships among subsets of parameters in esizaynetwork with known structure.

We incorporate a wide variety of parameter constraints lesoning procedures for Bayesian
networks, by formulating this task as a constrained optiigzn problem. The assumptions made
in module networks, dynamic Bayes nets and context speciiegendence models can be viewed
as particular cases of such parameter constraints. Werpieesed form solutions or fast iterative
algorithms for estimating parameters subject to severtifip classes of parameter constraints,
including equalities and inequalities among parametensstcaints on individual parameters, and
constraints on sums and ratios of parameters, for discreteantinuous variables. Our methods
cover learning from both frequentist and Bayesian pointa@f, from both complete and incom-
plete data.

We present formal guarantees for our estimators, as welkedisads for automatically learning
useful parameter constraints from data. To validate ourcgmh, we apply it to the domain of
fMRI brain image analysis. Here we demonstrate the abilitpur system to first learn useful
relationships among parameters, and then to use them tar@ionthe training of the Bayesian
network, resulting in improved cross-validated accuratyhe learned model. Experiments on
synthetic data are also presented.
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1. Introduction

Probabilistic models have become increasingly popular in the last decadeseeaf their ability
to capture non-deterministic relationships among variables describing malmywadd domains.
Among these models, graphical models have received significant attentandeeof their ability
to compactly encode conditional independence assumptions over ramd@ailes and because of
the development of effective algorithms for inference and learningdbasé¢hese representations.

A Bayesian network (Heckerman, 1999) is a particular case of a gphadel that compactly
represents the joint probability distribution over a set of random varialilesnsists of two com-
ponents: a structure and a set of parameters. The structure is a diaegtdid graph with one
node per variable. This structure encodes the cocal Markov assumatiamniable is conditionally
independent of its non-descendants in the network, given the valueparasits. The parameters
describe how each variable relates probabilistically to its parents. A Bayestaork encodes a
unique joint probability distribution, which can be easily computed using thie chke.

When learning Bayesian networks, the correctness of the learnedrkeativoourse depends
on the amount of training data available. When training data is scarce, itfid ts@mploy var-
ious forms of prior knowledge about the domain to improve the accuracyaoide models. For
example, a domain expert might provide prior knowledge specifying conditindependencies
among variables, constraining or even fully specifying the network streiciithe Bayesian net-
work. In addition to helping specify the network structure, the domain éxpigiht also provide
prior knowledge about the values of certain parameters in the conditicotzlpility tables (CPTs)
of the network, or knowledge in the form of prior distributions over them@ameters. While pre-
vious research has examined a number of approaches to represauitinigjiaing prior knowledge
about Bayesian network parameters, the type of prior knowledge thaveatilized by current
learning methods remains limited, and is insufficient to capture many types widdage that may
be readily available from experts.

One contribution of our previous work (Niculescu, 2005) was the deveént of a general
framework to perform parameter estimation in Bayesian networks in theruesé any parame-
ter constraints that obey certain differentiability assumptions, by formulatisgatha constrained
maximization problem. In this framework, algorithms were developed from bé&#gaentist and
a Bayesian point of view, for both complete and incomplete data. The optimizatitimods used
by our algorithms are not new and therefore this general learning agpitas serious limitations
given by these methods, especially given arbitrary constraints. Howthigapproach constitutes
the basis for the efficient learning procedures for specific clasgegrafmeter constraints described
in this paper. Applying these efficient methods allows us to take advantggearheter constraints
provided by experts or learned by the program, to perform more decl@@ning of very large
Bayesian networks (thousands of variables) based on very fev) éeaisiples, as we will see later
in the paper.

The main contribution of our paper consists of efficient algorithms (closed §olutions, fast
iterative algorithms) for several classes of parameter constraints whicént methods can not
accommodate. We show how widely used models including hidden Markov matigiamic
Bayesian networks, module networks and context specific indepemdeacspecial cases of one
of our constraint types, described in subsection 4.3. Our framewotlésta represent parame-
ter sharing assumptions at the level of granularity of individual parasiefhile prior work on
parameter sharing and Dirichlet priors can only accommodate simple equalgiraiots between

1358



BAYESIAN NETWORK LEARNING WITH PARAMETER CONSTRAINTS

parameters, our work extends to provide closed form solutions foredaggparameter constraints
that involve relationships between groups of parameters (sum shaiingsharing). Moreover, we
provide closed form maximum likelihood estimators when constraints come in titmedfioseveral
types of inequality constraints. With our estimators come a series of formagfeas: we formally
prove the benefits of taking advantage of parameter constraints to réducariance in parameter
estimators and we also study the performance in the case when the domaladg®vepresented
by the parameter constraints might not be entirely accurate. Finally, werprasnethod for au-
tomatically learning parameter constraints, which we illustrate on a complex tas&d#lling the
fMRI brain image signal during a cognitive task.

The next section of the paper describes related research on congtrznameter estimates for
Bayesian networks. Section 3 presents the problem and describesaunvgrk on a framework
for incorporating parameter constraints to perform estimation of paranwtBes/esian networks.
Section 4 presents the main contribution of this paper: very efficient vdysed form solutions,
fast iterative algorithms) to compute parameter estimates for several impdetssgs of parameter
constraints. There we show how learning in current models that usmetmasharing assumptions
can be viewed as a special case of our approach. In section 5jregpés on both real world and
synthetic data demonstrate the benefits of taking advantage of parameteaicis when compared
to baseline models. Some formal guarantees about our estimators amtgutdaesection 6. We
conclude with a brief summary of this research along with several diredtoffisture work.

2. Related Work

The main methods to represent relationships among parameters fall into twoategjorges: Dirich-
let priors and their variants (including smoothing techniques) and parasiateng of several kinds.

In Geiger and Heckerman (1997), it is shown that Dirichlet priors aretityg possible priors
for discrete Bayes nets, provided certain assumptions hold. One canahalDirichlet prior
as an expert’'s guess for the parameters in a discrete Bayes net, all@emgor some variance
around the guess. One of the main problems with Dirichlet priors and relatddlsnis that it
is impossible to represent even simple equality constraints between paraffmtersample the
constraint:6,,; = 6,,; where8;;, = P(X; = x;j|ParentgX;) = pay)) without using priors on the
hyperparameters of the Dirichelet prior, in which case the marginal likediltam no longer be
computed in closed form, and expensive approximate methods are retpuppedorm parameter
estimation. A second problem is that it is often beyond the expert’s ability tfgefull Dirichlet
prior over the parameters of a Bayesian network.

Extensions of Dirichlet priors include Dirichlet tree priors (Minka, 1988) dependent Dirich-
let priors (Hooper, 2004). Although these priors allow for more cotimiebetween the parameters
of the model than standard Dirichlet priors, essentially they face the samesis$loreover, in
the case of dependent Dirichlet priors, parameter estimators can notrimuted in closed form,
although Hooper (2004) presents a method to compute approximate estimdtmts,are linear
rational fractions of the observed counts and Dirichlet parameters, hiyniring a certain mean
square error measure. Dirichlet priors can be considered to befgetoader category of methods
that employ parameter domain knowledge, called smoothing methods. A conmpafiseveral
smoothing methods can be found in Zhai and Lafferty (2001).

A widely used form of parameter constraints employed by Bayesian netweparameter
sharing Models that use different types of parameter sharing include: dynaayiedtan networks

1359



NICULESCU, MITCHELL AND RAO

(Murphy, 2002) and their special case hidden Markov models (Rgahif880), module networks
(Segal et al., 2003), context specific independence models (Boutikér @996) such as Bayesian
multinetworks, recursive multinetworks and dynamic multinetworks (GeigeHsao#terman, 1996;
Pena et al., 2002; Bilmes, 2000), probabilistic relational models (Friedman &099), object ori-
ented Bayes nets (Koller and Pfeffer, 1997), Kalman filters (Welch aslo, 1995) and bilinear
models (Tenenbaum and Freeman, 2000). Parameter sharing methsiigingrarameters to share
the same value, but do not capture more complicated constraints among fessasueh as in-
equality constraints or constraints on sums of parameter values. The mletiveds are restricted
to sharing parameters at either the level of sharing a conditional probahbity (CPT) (module
networks, HMMSs), at the level of sharing a conditional probability distidouwithin a single CPT
(context specific independence), at the level of sharing a statetéotsdasition matrix (Kalman
filters) or at the level of sharing a style matrix (bilinear models). None of tieer podels allow
sharing at the level of granularity of individual parameters.

One additional type of parameter constraints is describeplrdyabilistic rules This kind of
domain knowledge was used in Rao et al. (2003) to assign values to cetaigters of a Bayesian
network. We are not aware of probabilistic rules being used beyongbtinpbse for estimating the
parameters of a Bayesian network.

3. Problem Definition and Approach

Here we define the problem and describe our previous work on aagesimization based ap-
proach to solve it. This approach has serious limitations when the constragrasbitrary. How-
ever, it constitutes the basis for the very efficient learning procedardble classes of parameter
constraints described in section 4. While the optimization methods we use amewmcapplying
them to our task allows us to take advantage of expert parameter constogiigsorm more ac-
curate learning of very large Bayesian networks (thousands of Vesjabased on very few (tens)
examples, as we will see in subsection 5.2. We begin by describing the iprabig state several
assumptions that we make when deriving our estimators.

3.1 The Problem

Our task here is to perform parameter estimation in a Bayesian network thieesteucture is known
in advance. To accomplish this task, we assume a data set of examples islavaiaddition, a
set of parameter equality and/or inequality constraints is provided by a dexya@nt. The equality
constraints are of the form(6) = 0 for 1 < i < mand the inequality constraints are of the form
hj(8) <0 for 1< j <k, wheref represents the set of parameters of the Bayesian network.

Initially we will assume the domain knowledge provided by the expert is correater, we
investigate what happens if this knowledge is not completely correct. Nexdnumerate several
assumptions that must be satisfied for our methods to work. These are singitantoon assump-
tions made when learning parameters in standard Bayesian networks.

First, we assume that the examples in the training data set are drawn indeghgfrdm the un-
derlying distribution. In other words, examples are conditionally indepargieen the parameters
of the graphical model.

Second, we assume that all the variables in the Bayesian network cannaiteleast two
different values. This is a safe assumption since there is no uncertaintgimdam variable with
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only one possible value. Any such variables in our Bayesian networkeaeleted, along with all
arcs into and out of the nodes corresponding to those variables.

When computing parameter estimators in the discrete case, we additionally absuraé
observed counts corresponding to parameters in the Bayesian netigoskriatly positive. We
enforce this condition in order to avoid potential divisions by zero, whicly mgpact inference
negatively. In the real world it is expected there will be observed cowhish are zero. This
problem can be solved by using priors on parameters, that essentiadiytieeffect of adding a
positive quantity to the observed counts and essentially create strictly positial counts.

Finally, the functionsys,...,gm andhy, ... hg must be twice differentiable, with continuous
second derivatives. This assumption justifies the formulation of our proagea constrained max-
imization problem that can be solved using standard optimization methods.

3.2 A General Approach

In order to solve the problem described above, here we briefly mentioprevious approach
(Niculescu, 2005) based on already existing optimization techniques. €aesdo formulate our
problem as a constrained maximization problem where the objective functieithesr the data
log-likelihood logP(D|8) (for maximum likelihood estimation) or the log-posterior B@|D) (for
maximum aposteriori estimation) and the constraints are giveg;(®) = 0 for 1 <i < mand
hj(8) <Ofor 1< j <k. Itis easy to see that, applying the Karush-Kuhn-Tucker conditionseheo
(Kuhn and Tucker, 1951), the maximum must satisfy a system with the sameenoirdquations
as variables. To solve this system, one can use any of several alsastitygemethods (for example
the Newton-Raphson method (Press et al., 1993)).

Based on this approach, in Niculescu (2005) we develop methods tompdearning from both
a frequentist and a Bayesian point of view, from both fully and partiallyeobable data (via an
extended EM algorithm). While it is well known that finding a solution for theetysgiven by the
KKT conditions is not enough to determine the optimum point, in Niculescu (206%)Iso discuss
when our estimators meet the sufficiency criteria to be optimum solutions foratrérig problem.
There we also describe how to usanstrained conjugate parameter pride the MAP estimation
and Bayesian model Averaging. A sampling algorithm was devised to adtheeshallenging issue
of computing the normalization constant for these priors. Furthermoreeguoes that allow the
automatic learning of useful parameter constraints were also derived.

Unfortunately, the above methods have a very serious shortcoming inrteeagjease. With a
large number of parameters in the Bayesian network, they can be extrempelysése because they
involve potentially multiple runs of the Newton-Raphson method and each snckquires several
expensive matrix inversions. Other methods for finding the solutions oftarsyof equations can
be employed, but, as noted in Press et al. (1993), all these methods havtdimita the case
when the constraints are arbitrary, non-linear functions. The wosst ltcappens when there exists
a constraint that explicitly uses all parameters in the Bayesian network.

Because of this shortcoming and because the optimization methods we usedodemrlgo-
rithms are not new, we choose not to go into details here. We mention thenvichsiolearning
in the presence of parameter constraints can be formulated as a gamstadimed maximization
problem. This general framework also provides the starting point forftivéeat learning methods
for the particular classes of parameter constraints presented in theengghs
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4. Parameter Constraints Classes

In the previous section we mentioned the existence of general method$ampparameter learn-
ing in Bayesian networks given a set of parameter constraints. While tietb®ds can deal with
arbitrary parameter constraints that obey several smoothness asswwnfiteyncan be very slow
since they involve expensive iterative and sampling procedures.

Fortunately, in practice, parameter constraints usually involve only a sraatidn of the total
number of parameters. Also, the data log-likelihood can be nicely decochmyse examples,
variables and values of the parents of each variable (in the case ddtdiseriables). Therefore,
the maximum likelihood optimization problem can be split into a set of many indepgndere
manageable, optimization subproblems, which can either be solved in closedrftor which very
efficient algorithms can be derived. For example, in standard maximum likelibstimation of the
parameters of a Bayesian network, each such subproblem is defisedrm single conditional
probability distribution. In general, in the discrete case, each optimizatiqraolem will span its
own set of conditional probability distributions. The set of maximum likelihoacymeters will be
the union of the solutions of these subproblems.

This section shows that for several classes of parameter constrairggstieen of equations
given by the Karush-Kuhn-Tucker theorem can be solved in an effigiay (closed form or fast
iterative algorithm). In some of these cases we are also able to find a ctosedormula for the
normalization constant of the corresponding constrained parameter prior

4.1 Parameter Sharing within One Distribution

This class of parameter constraints allows asserting that specific Useteggparameters within a
single conditional probability distribution must be shared. This type of caimstallows represent-
ing statements such a%3iven this combination of causes, several effects are equally lik8inte
the scope of this constraint type does not go beyond the level of a siogtitional probability
distribution within a single CPT, the problem of maximizing the data likelihood carpliEisto a
set of independent optimization subproblems, one for each such comdiimability distribution.
Let us consider one of these subproblems (for a varigtdad a specific valuBA(X) = paof the
parents). Assume the parameter constraint asserts that severaljgasareequal by asserting that
the paramete®, appears irk; different positions in the conditional distribution. Denote Mythe
cumulative observed count correspondin@toThe cumulative observed count is the sum of all the
observed counts corresponding to khpositions wher®, appears in the distribution. Lt=5; N;
be the sum of all observed counts in this conditional probability distribution iestotial number of
observed cases WitPA(X) = pa

At first it may appear that we can develop maximum likelihood estimate8§, fand the other
network parameters using standard methods, by introducing new varibbtesapture the groups
of shared parameters. To see that this is not the case, consider therfglexample. Assume a
variableX with values{1,2,3,4} depends olY. Moreover, assume the parameter constraint states
thatP(X = 1Y = 0) = P(X = 2]Y = 0) andP(X = 3]Y = 0) = P(X = 4]Y = 0). Then one can
introduce variableXi> which is 1 if X € {1,2} and 0 otherwise. This variable is assumed dependent
onY and added as a parent Xf It is easy to see th&(X|X;2 = 0,Y = 0) must be equal to the
distribution on{1,2,3,4} that assigns half probability to each of 3 and 4. Thereforé tékes only
one value, the task of finding maximum likelihood estimators with parameter shanieduced to
the one of finding standard maximum likelihood estimatorsd@fY = 0. However, ifY takes only
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one value, then we can safely remove it as a pareid.ohenY can take two values, 0 and 1,
assume the expert states the additional assumptioRtiat 1|Y =1) =P(X=3]Y =1) =P(X =
4Y = 1). Now we need to introduce a new variablg, that depends o¥f and add it as a parent of
X. There must be an edge betwegn andX;34 because, otherwise, the structural assumption that
Xi12 andXy34 are conditionally independent giv&ris obviously not true. Assumink » is the parent
of X134, the constraints given by the expert need to be modelled in the distrideXia| Xi2,Y)
instead. Not only did we fail to encode the constraints in the new structutrejebalso complicated
the problem by adding two nodes in our network. A similar argument holddlfdisarete types of
parameter constraints presented in this section.

Below we present closed form solutions for the maximum likelihood estimatons domplete
data and for the normalization constant for the corresponding constrBiniehlet priors used to
perform maximum aposteriori estimation. These priors are similar to the sthbitéchlet priors,
but they assign zero probability over the space where the expert'saions are not satisfied. The
normalization constant for the constrained Dirichlet prior can be computedtbe scope of a
certain constraint and then all such constants are multiplied to obtain the natioalizonstant
for the prior over the whole set of parameters of the Bayesian netwokkalgd present an EM
algorithm to approach learning from incomplete data under this type of pteastering.

4.1.1 MAXIMUM LIKELIHOOD ESTIMATION FROM COMPLETE DATA
Theorem 1 The maximum likelihood estimators for the parameters in the above condipootal
ability distribution are given by:
R N;
6, =
| k| . N
Proof The problem of maximizing the data log-likelihood subject to the parameter ghewim

straints can be broken down in subproblems, one for each conditiastzipiity distribution. One
such subproblem can be restated as:

P argmax{h(8) | g(8) = 0}
whereh(8) = 3;Nilog6; andg(6) = (Fiki-6;)—1=0

When all counts are positive, it can be easily proved thags a global maximum which is
achieved in the interior of the region determined by the constraints. In thestcassolution oP
can be found using Lagrange multipliers. Introduce Lagrange multiplfer the constraint irP.
Let LM(6,A) = h(8) —A-g(8). Then the point which maximize? is among the solutions of the

systemLM(8,A) = 0. Let(B,)) be a solution of this system. We have:O"aLT’\’I — A\ -k for
alli. Thereforek; -éi = M. Summing up for all values of we obtain:
GLM N; N
Z k-0 ) -l=5-1

From the last equation we compute the valua ef N. This gives usfai = k|_'f",\,. The fact thab
is the set of maximum likelihood estimators follows because the objective furistmncave and
because the constraint is a linear equality. |
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4.1.2 ONSTRAINED DIRICHLET PRIORS

From a Bayesian point of view, each choice of parameters can occuravgértain probability.

To make learning easier, for this type of parameter constraints, we empigygede constrained
Dirichlet priors that have the following form for a given conditional pebbity distribution in the

Bayesian network:

140 ai—1
_J zMika® if 6>0,5k-6 =1
P®) { 0 otherwise

maximum aposteriori estimation can be now performed in exactly the same wayxasumna
likelihood estimation (see Theorem 1), with the only difference that the obgsftthction becomes
P(6|D) O P(D|B)-P(8). The normalization constadtcan be computed by integration and depends
on the elimination order. 18, is eliminated first, we obtain:

Ko [ital (o)
Mtk TSy o)

The above normalization should be thought of as correspondiB8tg. .., 6,_;). If we elimi-
nate a different parameter first when computing the integral, then we olddfar@nt normalization
constant which corresponds to a differént- 1)-tuple of parameters. Note that having different
constants is not an inconsistency, because the corresponding iitplmhstributions overn— 1
remaining parameters can be obtained from each other by a variable sidrstased on the con-
strainty ki - 6; = 1. It is easy to see (Niculescu, 2005) that learning procedures aadfacted in
any way by which parameter is eliminated. In the case of no parameter sftaghisk; = 1 for all
i), all these normalization constants are equal and we obtain the standiatdéDjprior.

Zn:

4.1.3 MAXIMUM LIKELIHOOD ESTIMATION FROM INCOMPLETE DATA

It can be easily proved that learning with incomplete data can be achievedmaified version
of the standard expectation maximization algorithm used to train Bayesian kefwdrere in the
E-Step the expected counts are estimated and in the M-Step parameterestimated using these
expected counts based on Theorem 1.

Algorithm 1 (Expectation maximization for discrete Bayesian netwoks) Randomly initialize
the network parameters with a vallB®. Repeat the following two steps until convergence is
reached:

E-Step At iteration t+ 1, use any inference algorithm to compute expected coumseﬁ and
E[N|6] for each distribution in the network under the current parameter estinites

M-Step: Re-estimate the parametefwl using Theorem 1, assuming that the observed counts are
equal to the expected counts given by the E-Step.

4.2 Parameter Sharing in Hidden Process Models

A hidden process model (HPN§)a probabilistic framework for modelling time series data (Hutchin-
son et al., 2005, 2006) which predicts the value tdrget variable Xat a given point in time as the
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sum of the values of certaimidden processethat are active. The HPM model is inspired by our
interest in modelling hidden cognitive processes in the brain, given a tines sfrobserved fMRI
images of brain activation. One can think of the observed image fedtasethe value of the fMRI
signal in one small cube inside the brain (also called a voxel). A hidderegsamay be thought
of as a mental process that generates fMRI activity at various locatidhs iorain, in response to
an externabtimulus For example, &ComprehendPicture”’process may describe the fMRI signal
that happens in the brain starting when the subject is presented with a pi&ti@emprehendSen-
tence” process may provide the same characterization for the situation when atssligading a
sentence. HPMs assume several cognitive processes may be athigesaime point in time, and
assume in such cases the observed fMRI signal is the sum of the aordésgp processes, translated
according to their starting times. Hidden process models can be viewed bslassuof dynamic
Bayesian networks, as described in Hutchinson et al. (2006).

Formally, ahidden process modé defined by a collection of time series (also called hidden
processes)Py,...,P«. For each process with 1 < k < K, denote byP the value of its corre-
sponding time series at timefter the process starts. Also, Mtbe the value of the target variable
X at timet. If process starts at timéy, then a hidden process model predicts the random variable
X will follow the distribution:

Xt ~ N(Z Pk(tfthrl)vo-Z)

wherea? is considered to be the variance in the measurement and is kept constessttane. For
the above formula to make sense, we consikier 0 if t < 0. Figure 1 shows an example of a
hidden process model for the fMRI activity in a voxel in the brain duringgnitive task involving
reading a sentence and looking at a picture.

In general HPMs allow modeling uncertainty about the timing of hidden psesgsllow un-
certainty about the types of the processes, and allow for multiple instahitessame process to be
active simultaneously (Hutchinson et al., 2006). However, in the treatmerdgeriments in this
paper we make three simplifying assumptions. We assume the times at which tee prddesses
occur are known, that the types of the processes are known, artdithiastances of the same types
of process may not be active simultaneously. These three simplifying assomfgead to a for-
mulation of HPMs that is equivalent to the analysis approach of Dale (1228d on multivariate
regression within the general linear model.

In a typical fMRI experiment, the subject often performs the same cogmétskemultiple times,
on multipletrials, providing multiple observation sequences of the variabldn our framework
we denote by the value ofX; during trialn, and byt the starting point of proce$% during trial
n. Let N be the total number of observations. We can now write:

Xnt ~ N(Z Pk(t—tnk-‘rl)a 02)

While not entirely necessary for our method to work, we assumexlistracked for the same
length of time in each trial. LeT be the length of every such trial (observation). Since we are not
modelling what happens when- T, we can also assume that each process has l@ngth

The natural constraints of this domain lead to an opportunity to specify pnmwledge in the
form of parameter constraints, as follows: an external stimulus will typicdllyence the activity in
multiple voxels of the brain during one cognitive task. For example, lookiagpaiture may activate
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Figure 1: A hidden process model to model a human subject who is askedd@rsentence and
to look at a picture. In half of the observations, the sentence is prestrstedhen the
picture is shown. In the other half of the observations, the picture ismebérst. The
activity in a given voxelX in the brain is modelled as a hidden process model with two
processes: "Sentencd?y) and "Picture” £,). Each observation has lendgth= 32 fMRI
shapshots (16 seconds) and the same holds for both processes. glifdéssfiows an
observation where the sentence is presented atttimel and the picture is shown at
to, = 17 (8 seconds aftdy). After timet,, the two processes overlap and the fMRI signal
Xy is the sum of the corresponding values of the two processedlplus?) measurement
variance. The blue dotted line represents the fMRI activity that woulddrapfter time
T.
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many voxels in the visual cortex. The activation in these voxels may be dliffet each given
point in time. Intuitively, that means the same stimulus may produce differenehigtbcesses
in different voxels. However, certain groups of voxels that are dogether often have similarly
shaped time series, but with different amplitude. In this case, we believeetis®nable to assume
that the underlying hidden processes corresponding to these voggisoortional to one another.
Experiments performed in Section 5 will prove that this assumption will help leetter models
than the ones that choose to ignore it.

In the above paragraph we explained intuitively that sometimes it makestsesisg@e the same
base processes across several time-varying random variablefiplwfor different scaling factors.
Formally, we say that time-varying random variab¥’s..., XV share their correspondirigdden
process modeli there exist base processes. .., P« and constants, for 1 <v <V such that:

Xt ~ N(Z Ck- Pi<(t,trv]k+1),02)

and the values of different variabl¥$ are independent given the parameters of the model. &fere
represents the variance in measurement which is also shared acresgitiasles.

We now consider how to efficiently perform maximum likelihood estimation of thrarpaters
of the variablesx?,..., XV, assuming that they share their corresponding hidden process model
parameters as described above. The parameters to be estimated are fretess parametdig
where 1< k <K and 1<t < T, the scaling constanty (one for each variabl¢ and procesg)
where 1< v <V and the common measurement variaaéelLet P = {Pa|1<k<K, 1<t<T}
be the set of all parameters involved in the base processes d@he-léty) | 1 <k <K, 1<v<V}
be the set of scaling constants. Subsequently, we will think of these settua® vectors. Recall
thatN represents the number of observations. After incorporating the panasharing constraints
in the log-likelihood function, our optimization problem becomes:

P:argmax (PC,0)

where

NTV

1
I(PC,0) = —7‘|09(2T[)—NTV'|09(0)—H'Z(th—gc\ﬁ'ﬂ(t—txkﬂ))z
v

Itis easy to see that the value(®fC) that maximizes is the same for all values of. Therefore,
to maximizel, we can first minimizé/(P,C) = 3 ¢ (X — Sk Ci - Pk(t,txﬁl))z with respect tqP,C)
and then maximizé with respect tao based on the minimum point fot. One may notice thdt is
a sum of squares, where the quantity inside each square can be selmeas function in both
andC. Therefore one can imagine an iterative procedure that first minimizesesigiect td?, then
with respect tcC using the Least Squares method. Once we fiihek min I'(P,C) = I'(P,C), the
value ofo that maximizes is given byg? = % This can be derived in a straightforward fashion
by enforcing%(ls,é, 0) = 0. With these considerations, we are now ready to present an algorithm
to compute maximum likelihood estimatc(lé,é, 0) of the parameters in the shared hidden process
model:

Algorithm 2 (Maximum likelihood estimators in a shared hidden process nodel) LetX be the
column vector of valuesix Start with a random gueg$,C) and then repeat Steps 1 and 2 until

1367



NICULESCU, MITCHELL AND RAO

they converge to the minimum of the functiqiRIC).

STEP 1. Write I'(P,C) = ||A-P—X]|2 where A is a NTV by KT matrix that depends on the cur-
rent estimateC of the scaling constants. More specifically, each row of A corresptmane of
the squares from’land each column corresponds to one of the KT parameters of the base p
cesses (the column number associated with such a parameter mustieaiith its position in
column vector P). Minimize with respectfousing ordinary Least Squares to get a new estimate

P=(AT-A)"1.AT.X,

STEP 2Write I'(P,C) = ||B-C — X||2 where B is a NTV by KV matrix that depends on the current
estimate® of the base processes. More specifically, each row of B corresptorone of the squares
from I’ and each column corresponds to one of the KV scaling constants (thercolumber as-
sociated with such a constant must coincide with its position in column vectavii@)mize with

respect taC using ordinary Least Squares to get a new estirfate(BT -B) 1. BT - X.

'(P.C)

STEP 3.0nce convergence is reached by repeating the above two stef3; VT

It might seem that this is a very expensive algorithm because it is an ieeragithod. However,
we found that when applied to fMRI data in our experiments, it usually ageen 3-5 repetitions
of Steps 1 and 2. We believe that the main reason why this happens is deta@ach partial step
during the iteration we compute a closed form global minimizer on efherC instead of using
a potentially expensive gradient descent algorithm. In Section 5 we widlrérpntally prove the
benefits of this algorithm over methods that do not take advantage of garasharing assumptions.

One may suspect that it is easy to learn the parameters of the above modetdét is a
particular case of bilinear model. However, this is not the case. In the bilnedel representation
(Tenenbaum and Freeman, 2000), the style matrices will corresponddessrparamete and
the content vectors will correspond to scaling constants. It is easy tingem our case the style
matrices have common pieces, depending on when the processes staatdtdrample. Therefore,
the SVD method presented in Tenenbaum and Freeman (2000) that agsdepesndence of these
style matrices is not appropriate in our problem.

4.3 Other Classes of Parameter Constraints

In the above subsections we discussed efficient methods to perfoamet@r estimation for two
types of parameter constraints: one for discrete variables and onerftinwous variables. These
methods bypass the need for the potentially expensive use of methodassiigwton-Raphson.
There are a number of additional types of parameter constraints for wikitlave developed closed
form maximum likelihood and maximum aposteriori estimators: equality and inequalistraints,
on individual parameters as well as on sums and ratios of parametedsséoete and continuous
variables. Moreover, in some of these cases, we were able to computerthalimation constant
in closed form for the corresponding constrained priors, which allosvéouperform parameter
learning from a Bayesian point of view. All these results can be foundi¢ulblscu (2005). We
briefly describe these types of parameter constraints below, and pr@atevorld examples of
prior knowledge that can be expressed by each form of constraint.
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Constraint Type 1: Known Parameter values, DiscreExample: If a patient has a heart
attack (Disease = “Heart Attack”), then there is a 90% probability that thiergawill expe-
rience chest pain.

Constraint Type 2: Parameter Sharing, One Distribution, Discré&rample: Given a com-
bination of risk factors, several diseases are equally likely.

Constraint Type 3: Proportionality Constants, One Distribution, Discr&beample: Given a
combination of risk factors, disease A is twice as likely to occur as disease B.

Constraint Type 4. Sum Sharing, One Distribution, Discrdigample: A patient who is a
smoker has the same chance of having a Heart Disease (Heart Attadngeiive Heart
Failure) as having a Pulmonary Disease (Lung Cancer or Chronic @btggriPulmonary
Disease).

Constraint Type 5: Ratio Sharing, One Distribution, Discréigample: In a bilingual corpus,
the relative frequencies of certain groups of words are the same tlewegh the aggregate
frequencies of these groups may be different. Such groups of wardée: “words about
computers” (“computer”, “mouse”, “monitor”, “keyboard” in both langyes) or “words

about business”, etc. In some countries computer use is more exterasiva tithers and one
would expect the aggregate probability of “words about computers” thffezent. However,

it would be natural to assume that the relative proportions of the “worolstalomputers” are

the same within the different languages.

Constraint Type 6: General Parameter Sharing, Multiple Distributions cBite. Example:
The probability that a person will have a heart attack given that he is aesmgth a family
history of heart attack is the same whether or not the patient lives in a pofitead

Constraint Type 7: Hierarchical Parameter Sharing, Multiple DistributipBsscrete.Exam-
ple: The frequency of severaiternational wordg(for instance “computer”) may be shared
across both Latin languages (Spanish, Italian) and Slavic languagssig§RuBulgarian).
Other Latin words will have the same frequency only across Latin languaige the same
holds for Slavic Languages. Finally, other words will be language spéfofiexample names
of country specific objects) and their frequencies will not be sharedamgtother language.

Constraint Type 8: Sum Sharing, Multiple Distributions, Discrdfgample: The frequency
of nouns in Italian is the same as the frequency of nouns in Spanish.

Constraint Type 9: Ratio Sharing, Multiple Distributions, Discreigample: In two different
countries (A and B), the relative frequency of Heart Attack to Anginetétées as the main
diagnosis is the same, even though the the aggregate probability of HeaasBigHeart
Attack and Angina Pectoris) may be different because of differencdifesiyle in these
countries.

Constraint Type 10: Inequalities between Sums of Parameters, OnebbDi&in, Discrete.
Example: The aggregate probability mass of adverbs is no greater thaggttegate proba-
bility mass of the verbs in a given language.
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e Constraint Type 11: Upper Bounds on Sums of Parameters, One Dittrily Discrete.Ex-
ample: The aggregate probability of nouns in English is no greater tdan 0

e Constraint Type 12: Parameter Sharing, One Distribution, Continu&xample: The stock

of computer makebELL as a Gaussian whose mean is a weighted sum of the stocks of soft-

ware makemMicrosoft (MSFT)and chip makeintel (INTL). Parameter sharing corresponds
to the statement thaISFTandINTL have the same importance (weight) for predicting the
value of stockDELL.

e Constraint Type 13: Proportionality Constants, One Distribution, Contirsuoixample:
Suppose we also throw in the stock of a Power Supply maker (PSUPPLY@ im#&ar mix
in the above example. The expert may give equal weights to INTL and MSFTive times
lower to PSUPPLY.

e Constraint Type 14: Parameter Sharing for Hidden Process Modelample: Several neigh-
boring voxels in the brain exhibit similar activation patterns, but with diffeeenplitudes
when a subject is presented with a given stimulus.

Note that general parameter sharing (Constraint Type 6) encompasdets including HMMs,
dynamic Bayesian networks, module networks and context specific indepee as particular
cases, but allows for much finer grained sharing, at the level of ingigarameters, across dif-
ferent variables and across distributions of different lengths. Britbfily general parameter sharing
allows for a group of conditional probability distributions to share somerpetars across all dis-
tributions in the group, but not share the remaining parameters. This tyy@arheter constraint is
described in more detail in Niculescu et al. (2005) where we demonstratstinators on a task
of modelling synthetic emails generated by different subpopulations.

It is also important to note that different types of parameter constraintbeanixed together
when learning the parameters of a Bayesian network as long as the s¢dpese constraints do
not overlap.

5. Experiments

In this section we present experiments on both synthetic and real world @ataexperiments
demonstrate that Bayesian network models that take advantage of prisiekige in the form of
parameter constraints outperform similar models which choose to ignore thisfdmowledge.

5.1 Synthetic Data - Estimating Parameters of a Discrete Variable

This section describes experiments involving one of the simplest forms afngder constraint:
parameter sharing within one distribution, presented in subsection 4.1. ufhese of these ex-
periments is purely demonstrative and a more complicated scenario, onaddldata, will be

presented in subsection 5.2.

5.1.1 EXPERIMENTAL SETUP

Here, our task is to estimate the set of parameters of a Bayesian netwottk edmisists of one
discrete variableX. We assume that prior knowledge is available that the distributiof sifiares
certain parameters. Without loss of generality, we consider that the p@raroastraint states that
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the parameters to estimate are giverbby {8,,...,6,} where6, appears irk, > 1 known places in
the distribution ofX.

Our synthetic data set was created as follows: first, we randomly gedardtstributionT (the
"true distribution”) that exhibits parameter sharing. This distribution deedrébvariableX with 50
values, which had a total of roughly 50% shared parameter§j.ei ki ~ ¥ _1ki. Each distinct
parameter appeared at most 5 times. We start with an empty distribution andtgemeniformly
random parameter between 0 and 1. Then we generate a random integetween 2 and 5 and
sharev in the firsts places of the distribution. We continue to generate shared parameters entil w
reach 25 (50% of 50 parameters). After that, we generate the regteohpters uniformly randomly
between 0 and 1. After all 50 parameters are obtained using this precedainormalize to yield a
valid probability distribution. Once this distribution was generated, we samptedlitain a data
set of 1000 examples which were used subsequently to perform parasiateation.

In our experiments we compare two models that estimate the parameters of tistribover
X. One is a standard Bayesian network (STBN) that is learned using stiaBdgesian networks
maximum likelihood estimators with no parameter sharing. The second modelBRPIs a
Bayesian network that is learned using the results in 4.1 assuming thetqmrameter sharing
was specified by an oracle. While STBN needs to estirpdtek; parameters, PDKBN only needs
to estimaten parameters. To deal with potentially zero observed counts, we used prothe
parameters of the two models and then performed maximum aposteriori estimatorsTBN
we introduced a Dirichlet count of 2 for each parameter while for PDKBNused a constrained
Dirichlet count ofk; + 1 for each distinct paramet€y in the network. The role of these priors is
simply to assure strictly positive counts.

5.1.2 RESULTS ANDDISCUSSION

We performed parameter estimation for the STBN and PDKBN models, varyengumber of
examples in the training set from 1 to 1000. Since we were using syntheticwatsere able to
assess performance by computing KL(T,STBN) and KL(T,PDKBN), theditlergence from the
true distributionT .

Figure 2 shows a graphical comparison of the performance of the twolsndtiean be seen
that our model (PDKBN) that takes advantage of parameter constraimgstamtly outperforms the
standard Bayesian network model which does not employ such constittietslifference between
the two models is greatest when the training data is most sparse. The hibkestenl difference
between KL(T,STBN) and KL(T,PDKBN) was 0.05, which was observdemwthe two models
were trained using 30 examples. As expected, when the amount of traiaiagmtreases, the
difference in performance between the two models decreases dramatically.

Training Examples KL(T,PDKBN) | Examples needed by STBN
5 0.191 16
40 0.094 103
200 0.034 516
600 0.018 905
650 0.017 > 1000

Table 1: Equivalent training set size so that STBN achieves the sanwrparfce as PDKBN.
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Figure 2: KL divergence of PDKBN and STBN with respect to correctieid.

To get a better idea of how beneficial the prior knowledge in these pamoogistraints can be
in this case, let us examirtbow far STBN is behind PDKBN”"For a model PDKBN learned from
a data set of a given size, this can be measured by the number of exanapl83 BN requires in
order to achieve the same performance. Table 1 provides these nuotsagdral training set sizes
for PDKBN. For example, STBN uses 16 examples to achieve the same Ktgdivce as PDKBN
at 5 examples, which is a factor of23(the maximum observed) increase in the number of training
samples required by STNB. On average, STBN neefis times more examples to perform as well
as PDKBN.

As mentioned previously, this subsection was intended to be only a proohoépt. We next
provide experimental results on a very complex task involving severaséimmbrandom variables
and prior knowledge in the form of parameter constraints across mamitiooral probability dis-
tributions.

5.2 Real World Data - fMRI Experiments

As noted earlier, functional magnetic resonance imaging (fMRI) is a teabrfiy obtaining three-
dimensional images of activity in the brain, over time. Typically, there are teffitéefi thousand
voxels (three dimensional pixels) in each image, where each voxelsavdew tens of millimeters
of brain tissue. Due to the nature of the signal, the fMRI activation obbkrdae to neural activity
extends for approximately 10 seconds after the neural activity, resuftiagtemporally blurred
response (see Mitchell et al. (2004) for a brief overview of machinmileg approaches to fMRI
analysis).

This section presents a generative model of the activity in the brain whileremsubject
performs a cognitive task, based on the hidden process model amdgtaraharing approach dis-
cussed in section 4.2. In this experiment involving real fMRI data and a leongognitive task,
domain experts were unable to provide parameter sharing assumptionsircadv herefore, we
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have developed an algorithm to automatically discover clusters of voxelsathéie more accurately
learned with shared parameters. This section describes the algorithisdoveting these param-
eter sharing constraints, and shows that training under these paraoetgamts leads to hidden
process models that far outperform the baseline hidden process matelsden the absence of
such parameter constraints.

5.2.1 EXPERIMENTAL SETUP

The experiments reported here are based on fMRI data collected in addtseigtence and picture
comprehension (Carpenter et al., 1999). Subjects in this study wemnpedswith a sequence of
40 trials. In 20 of these trials, the subject was first presented with a senfierd seconds, such as
“The plus sign is above the star sign.”, then a blank screen for 4 secand finally a picture such
as

for another 4 seconds. During each trial, the subject was require@$s pr‘yes” or “no” button
to indicate whether the sentence correctly described the picture. Durimgrttagning 20 trials the
picture was presented first and the sentence presented secondhessagie timing.

In this data set, the voxels were grouped into 24 anatomically defined sjggjiiiahs of interest
(ROIs), each voxel having a resolution of 3 by 3 by 5 millimeters. An imageebthin was taken
every half second. For each trial, we considered only the first 32 imdgeseconds) of brain
activity. The results reported in this section are based on data from a binglen subject (04847).
For this particular subject, our data set tracked the activity of 4698 diffaroxels.

We model the activity in each voxel by a hidden process model with two psesecorrespond-
ing to the cognitive processes of comprehendirfgeatencer aPicture The start time of each
processes is assumed to be known in advance (i.e., we assume the pegiessmmediately upon
seeing the sentence or picture stimulus). We further assume that the actidifferent voxels
is independent given the hidden processes corresponding to theds.v&ince the true under-
lying distribution of voxel activation is not known, we use the averagelilajihood score (the
log-likelihood of the test data divided by the number of test examples) teapseformance of the
trained HPMs. Because data is scarce, we can not afford to keepeahieldyout test set. Instead,
we employ a leave-two-out cross-validation approach to estimate the marioe of our models.

In our experiments we compare three HPM models. The first nfitlPM which we consider
a baseline, consists of a standard hidden process model learnedndeéeihe for each voxel. The
second modeShHPMis a hidden process model, shared for all the voxels within an ROI. In other
words, all voxels in a specific ROI share the same shape hidden pescéss with different am-
plitudes (see Section 4.2 for more detailShHPMis learned using Algorithm 2. The third model
(HieHPM) also learns a set of shared hidden process models, but insteadiofirgs priori that
a particular set of voxels should be grouped together, it choosesubesiegroupings itself, using
a nested cross-validation hierarchical approach to both come up withitopaof the voxels in
clusters that form a shared hidden process model. The algorithm is aggpllo

Algorithm 3 (Hierarchical Partitioning and Hidden Process Models learning)

1373



NICULESCU, MITCHELL AND RAO

STEP 1. Split the 40 examples into a set containing 20 folds [, ..., Fxo}, each fold containing
one example where the sentence is presented first and one exammetvehpicture is presented
first.

STEP 2. For all 1 <k < 20, keep fold k aside and learn a model from the remaining folds using
Steps 3-5.

STEP 3. Start with a partition of all voxels in the brain by their ROIs and mark all stbssNot
Final.

STEP 4. While there are subsets in the partition that &fet Final take any such subset and try
to split it using equally spaced hyperplanes in all three directions (in opegrents we split each
subset into 4 (2 by 2) smaller subsets. If the cross-validation averggeetire of the model learned
from these new subsets using Algorithm 2 (based on foldsJFis lower than the cross-validation
average log score of the initial subset for folds in F, then mark the initial subset d&nal and
discard its subsets. Otherwise remove the initial subset from the partitiomeguhaice it with its
subsets which then mark &kt Final

STEP 5. Given the partition computed by STEPS 3 and 4, based on the 38 data pointsHn F
learn a hidden process model that is shared for all voxels inside edudeswof the partition. Use
this model to compute the log score for the examples/trialg.in F

STEP 6. In Steps 2-4 we came up with a partition for each fold Fo come up with one single
model, compute a partition using STEPS 3 and 4 based on all 20 folds, #ead bn this partition
learn a model as in STEP 5 using all 40 examples. The average log attns last model can be
estimated by averaging the numbers obtained in STEP 5.

5.2.2 RESULTS ANDDISCUSSION

We estimated the performance of our three models using the average legIsased on a leave
two out cross-validation approach, where each fold contains one éxamphich the sentence is
presented first, and one example in which the picture is presented first.

Our first set of experiments, summarized in Table 2, compared the thredsnbaded on their
performance in the visual cortex (CALC). This is one of the ROIs activelglved in this cognitive
task and it contains 318 voxels. The training set size was varied frorar6@es to all 40 examples,
in multiples of two. Sharing the parameters of hidden process models prevgdeneficial and
the impact was observed best when the training set size was the smallest.nWititemse in the
number of examples, the performanceSifHPMstarts to degrade because it makes the biased
assumption that all voxels in CALC can be described by a single sharedrhjgtdcess model.
While this assumption paid off with small training set size because of the reducti@riance, it
definitely hurt in terms of bias with larger sample size. Even though the biashvésus in CALC,
we will see in other experiments that in certain ROIs, this assumption holds @hds@ cases the
gains in performance may be quite large.

As expected, the hierarchical mod¢leHPM performed better than botBtHPMand ShHPM
because it takes advantage of shared hidden process models while kiog tie restrictive as-
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Training | No Sharing| All Shared| Hierarchical Cells
Trials (StHPM) | (ShHPM) | (HieHPM) | (HieHPM)
6 -30497 -24020 -24020 1
8 -26631 -23983 -23983 1
10 -25548 -24018 -24018 1
12 -25085 -24079 -24084 1
14 -24817 -24172 -24081 21
16 -24658 -24287 -24048 36
18 -24554 -24329 -24061 37
20 -24474 -24359 -24073 37
22 -24393 -24365 -24062 38
24 -24326 -24351 -24047 40
26 -24268 -24337 -24032 44
28 -24212 -24307 -24012 50
30 -24164 -24274 -23984 60
32 -24121 -24246 -23958 58
34 -24097 -24237 -23952 61
36 -24063 -24207 -23931 59
38 -24035 -24188 -23921 59
40 -24024 -24182 -23918 59

Table 2: The effect of training set size on the average log score of the thodels in the visual
cortex (CALC) region.

sumption of sharing across entire ROIs. The largest difference ionpesthce betweerlieHPM
and StHPMis observed at 6 examples, in which c&telPMbasically fails to learn a reasonable
model while the highest difference betwddieHPM and ShHPMoccurs at the maximum number
of examples, presumably when the biasSifHPMis most harmful. As the number of training
examples increases, bo#tHPMandHieHPM tend to perform better and better and one can see
that the marginal improvement in performance obtained by the addition of wexa&mples tends
to shrink as both models approach convergence. While with an infinite arnbdata, one would
expectStHPMandHieHPM to converge to the true model, at 40 exampléigHPM still outper-
forms the baseline mod&tHPMby a difference of 106 in terms of average log score, which is an
improvement o&'%® in terms of data likelihood.

Probably the measure that shows best the improvemetiiedfPM over the baselin&tHPMis
the number of examples needed $HPMto achieve the same performanceHisHPM. It turns
out that on average&StHPMneeds roughly 2.9 times the number of examples needétidiyPM
in order to achieve the same level of performance in the visual cortex QAL

The last column of Table 2 displays the number of clusters of voxels in whieHPM parti-
tioned CALC. As can be seen, at small sample BiimHPM draws its performance from reductions
in variance by using only one cluster of voxels. However, as the numbexasfiples increases,
HieHPM improves by finding more and more refined partitions. This number of sivaved sets
tends to stabilize around 60 clusters once the number of examples re@chdsch yields an av-
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erage of more than 5 voxels per cluster given that CALC is made of 31&s/okor a training set
of 40 examples, the largest cluster has 41 voxels while many clusterstaufrsigy one voxel.

ROI Voxels | No Sharing| All Shared | Hierarchical Cells
(StHPM) | (ShHPM) | (HieHPM) | Hierarchical
CALC 318 -24024 -24182 -23918 59
LDLPFC | 440 -32918 -32876 -32694 11
LFEF 109 -8346 -8299 -8281 6
LIPL 134 -9889 -9820 -9820 1
LIPS 236 -17305 -17187 -17180 8
LIT 287 -21545 -21387 -21387 1
LOPER | 169 -12959 -12909 -12909 1
LPPREC| 153 -11246 -11145 -11145 1
LSGA 6 -441 -441 -441 1
LSPL 308 -22637 -22735 -22516 4
LT 305 -22365 -22547 -22408 18
LTRIA 113 -8436 -8385 -8385 1
RDLPFC| 349 -26390 -26401 -26272 40
RFEF 68 -5258 -5223 -5223 1
RIPL 92 -7311 -7315 -7296 11
RIPS 166 -12559 -12543 -12522 20
RIT 278 -21707 -21720 -21619 42
ROPER | 181 -13661 -13584 -13584 1
RPPREC| 144 -10623 -10558 -10560 1
RSGA 34 -2658 -2654 -2654 1
RSPL 252 -18572 -18511 -18434 35
RT 284 -21322 -21349 -21226 24
RTRIA 57 -4230 -4208 -4208 1
SMA 215 -15830 -15788 -15757 10
All Brain | 4698 -352234 -351770 -350441 299

Table 3: Per ROI performance (average log score) of the three modtiels lwarned using all 40
examples.

The second set of experiments (see Table 3) describes the perfermftie three models
for each of the 24 individual ROIs of the brain, and trained over theebtiain. While we have
seen thaShHPMwas biased in CALC, we see here that there are several ROIs wher&esma
sense to characterize all of its voxels by a single shared hidden pmoeld. In fact, in most of
these regiong;lieHPMfinds only one cluster of voxels. ActuallghHPMoutperforms the baseline
model StHPMin 18 out of 24 ROIs whileHieHPM outperformsStHPMin 23 ROIs. One may ask
how StHPM can possibly outperforrilieHPM on a ROI, sinceHieHPM may also represent the
case when there is no sharing. The explanation is that the hierarchprabap can get stuck in a
local maximum of the data log-likelihood over the search space if it cannobiagsy splitting at
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Figure 3: Parameter sharing found using mddielHPM. Slice five of the brain is showed here.
Shared neighboring voxels have the same color.

a specific step, since it is a greedy process that does not look beyatnspth for a finer grained
partition. Fortunately, this problem appears to be rare in these experiments.

Over the whole brainllieHPM outperformsStHPMby a factor 1792 in terms of log likelihood
while ShHPMoutperformsStHPMonly by a factor of 464. The main drawback of t8eHPMis
that it also makes a very restrictive sharing assumption and thereforaggesHieHPM as the
recommended approach. Next we give the reader a feel of what timetddieHPM model looks
like.

As mentioned aboveilieHPM automatically learns clusters of voxels that can be represented
using a shared hidden process model. Figure 3 shows the portions @f¢hesed clusters in slice
five of the eight vertical slices that make up the 3D brain image captured bigvitRe scanner.
Neighboring voxels that were assignedeHPM to the same cluster are pictured with the same
color. Note that there are several very large clusters in this picture. midysbe because of the
fact that it makes sense to represent an entire ROI using a single shiddeth process model if
the cognitive process does not activate voxels in this ROI. Howevge tdusters are also found in
areas like CALC, which we know is directly involved in visual processing.

In Figure 4 we can see the learn8dntencénidden process for the voxels in the visual cor-
tex (CALC). Again, the graphs corresponding to voxels that belong tsdhee cluster have been
painted in the same color, which is also the same as the color used in FigurerBakéothese
graphs readable, we only plotted the base process, disregardingatimg gamplitude) constants
corresponding to each voxel within a given cluster (consult Sectioroddre details about shared
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hidden process models).
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Figure 4: Per voxel basgentenc@rocesses in the visual cortex (CALC).

To summarize, this subsection presented experiments training differestagiga models for
the fMRI signal during a cognitive task, all based on hidden Proces®isiodVe demonstrated
experimentally that parameter sharing for hidden Process models (asdl&fiSection 4.2) can
greatly benefit learning, and that it is possible to automatically discoveulysafameter sharing
constraints in this domain using our hierarchical partitioning algorithm.

6. Formal Guarantees

Taking advantage of parameter constraints can be beneficial to leaetagde, intuitively, it has
the effect of lowering the variance in parameter estimators by shrinkingetpees of freedom of
the model. In this section we provide a formal proof of this fact. In ordeofo proof to work,

we make the assumption that the true distribution factors according to theBmyasian network
structure and that it obeys the parameter constraints provided by the.eXpe second interesting
result presented in this section will give theoretical guarantees in thewdase the constraints
provided by the expert are not entirely accurate. While we only investibitéssue for one type
of constraint, parameter sharing within one distribution (introduced in stibset.1), we believe
similar formal guarantees describe all other types of parameter conspegstnted in this paper.

6.1 Variance Reduction by Using Parameter Constraints

Assume we want to learn a Bayesian network in the case when a domaih gxpédes parameter
constraints specifying that certain parameters appear multiple times (agesivithin a conditional
probability distribution. Each conditional probability distribution in the Bayesiatwork can have
its own such constraints. Also, the case when all parameters are distinict evithsuch distribution
may be seen as a particular case of parameter sharing within one distrilnline, each parameter
is shared exactly once.
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There are two ways to perform maximum likelihood parameter learning in theedbayesian
network. First, one may choose to ignore the constraints given by thetexgbcompute standard
maximum likelihood estimators. A second option is to incorporate the constraints iraming
method, in which case we can use the results described in subsection 4 woDkl intuitively
expect that taking advantage of the constraints provided by the expaftlweduce the variance
in parameter estimates when compared to the first approach. In Nicule¥@b) (e prove the
following result:

Theorem 2 Assuming a domain expert can specify parameter sharing assumptadriakb place
inside the conditional probability distributions of a Bayesian network, theimmax likelihood es-
timators that use this domain knowledge as computed with Theorem 1 hasevarance than
standard maximum likelihood estimators computed ignoring the domain kageviéMore specif-
ically, for one parametef;;, that is shared s> 1 times within RX;|PA; = pay), denote b;éi"j"k'-
the maximum likelihood estimator that ignores domain knowledge aléﬁfwr\e maximum likeli-
hood estimator that uses the parameter sharing assumptions specified bypert. We have the
following identity:

~ o 1 1
Var[Oi ] — Var[Bfe] = 6 - (1— <) E[?‘Nik #0 >0

6.2 Performance with Potentially Inaccurate Constraints

Sometimes it may happen that the parameter constraints provided by ananepeot completely
accurate. In all our methods so far, we assumed that the parameteragtsséire correct and
therefore errors in domain knowledge can prove detrimental to the peafwe of our learned
models. In this section we investigate the relationship between the true, undetistribution of
the observed data and the distribution estimated using our methods basedmetea constraints.
In particular, we come up with an upper bound on how well our estimated noadgderform given
a set of potentially incorrect parameter constraints.

Assume an expert provides a set of potentially incorrect parameténglaasumptions as de-
scribed in subsection 4.1. In other words, for each conditional pitityathistribution ¢ in the
Bayesian network, the expert is stating that paranttés shared irkic given positions. We denote
by Nic the cumulative observed count corresponding to the presumably gemateteB,. and by
N. the cumulative observed count corresponding to the conditional distnbati@ssentially, we
follow the notations in subsection 4.1, to which we add an additional indexsmonding to the
conditional probability distribution that a parameter belongs to.

Let us introduce the notion tfue probabilistic counts (TPCBupposé is the true distribution
from which data is sampled. If, for example, the expert statestipa the shared parameter that
describes the sdtP(X = x1|PA(X) = pa),...,P(X = % |PAX) = pa)}, let TPG. = ik":°l P(X =
xi, PA(X) = pa). Let P* be the distribution that factorizes according to the structure provided by the
expert and has parameters given by theorem 1 where the obsesd ece replaced by ttieue
probabilistic counts

Theorem 3 P* is the closest distribution to P (in terms of KR.-)) that factorizes according to the
given structure and obeys the expert’s parameter sharing assumptions
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Proof Let Q be such a distribution. Minimizingl(P, Q) is equivalent to maximizing 4P(d) -
logQ(d). Let 8 be the set of parameters that describe this distribufiom\fter breaking the log-
arithms into sums of logarithms based on the factorization given by the prosidecture, our
optimization problem reduces to the maximizatioryof PG, - log6,.. This is exactly the objective
function used in theorem 1. This is equivalent to the fact®ig&ee the definition above) minimizes
KL(P,-) out of all the distributions that factorize according to the given structndecdey the ex-
pert's sharing assumptions. |

Theorem 4 With an infinite amount of data, the distributidhgiven by the maximum likelihood
estimators in Theorem 1 converges toviAth probability 1.

Proof Assume the number of data points in a data set sampledRrizndenoted byr. According
to the law of large numbers, we hak'rmn_,m% = TPGc. This implies thaP converges td&* with
probability 1. |

Corollary 5 If the true distribution P factorizes according to the given structure and if tram-
eter sharing provided by the expert is completely accurate, then the distiibP given by the
estimators computed in Theorem 1 converges to P with probability 1.

Again, we mention that we analyzed the formal guarantees presented iedtisusing only
one type of parameter constraints. We are confident that these resulie extended to all other
types of constraints for which we computed closed form solutions.

7. Conclusions and Future Work

Building accurate models from limited training data is possible only by using somedbprior
knowledge to augment the data. In this paper we have demonstrated battittadly and experi-
mentally that the standard methods for parameter estimation in Bayesian netaois naturally
extended to accommodate parameter constraints capable of expressirg\amety of prior do-
main knowledge.

We mentioned our previous work on methods for incorporating generahper constraints
into estimators for the parameters of a Bayesian network, by framing this sagkcanstrained
optimization problem. In the general case, solving the resulting optimizatiotepnalnay be very
difficult. Fortunately, in practice the optimization problem can often be deceathmto a set of
many smaller, independent, optimization subproblems. We have preserdatepar estimators for
several types of constraints, including constraints that force varipes tyf parameter sharing, and
constraints on sums and other relationships among groups of parametesecton 4.3 provides a
comprehensive list of the parameter constraint types we have studiad,vaith brief examples of
each. We considered learning with both discrete and continuous variabthe presence of both
equality and inequality constraints. While for most of these types of paracmtstraints we can
derive closed form maximum likelihood estimators, we developed a verjegffiterative algorithm
to perform the same task for shared hidden process models. In manysefdases, for discrete
variables, we are also able to compute closed form normalization constamt® foorresponding
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constrained parameter priors, allowing one to perform closed form M#APBayesian estimation
when the data is complete.

The general parameter sharing domain knowledge type (Constrain6dgfened in subsection
4.3) encompasses models including HMMs, dynamic Bayesian networks,lenoeliworks and
context specific independence as particular cases, but allows forfineclyrained sharing, at the
parameter level, across different variables and across distributiodifferent lengths. It is also
important to note that one can combine different types of parameter dotstrdnen learning the
parameters of a Bayesian network as long as the scopes of theseiotsdtvarot overlap.

Experimental results using an fMRI brain imaging application demonstrate #iagtadvan-
tage of parameter constraints can be very beneficial for learning in thisdimgensional, sparse-
data domain. In the context of this application we developed methods to autdiyatiseover pa-
rameter sharing constraints. Using these methods our program distclesters of voxels whose
parameters can be shared. Our results showed that the impact of thasd lg@ameter constraints
can be equivalent to almost tripling the size of the training set on this taslerigxgnts on synthetic
data demonstrated the same beneficial effect of incorporating pararoestraints.

A basic theoretical result is that the estimators taking advantage of a simpledfqrarameter
sharing achieve variance lower than that achieved by estimators that igncin constraints. We
conjecture that similar results hold for other types of parameter constiainteir proof is left as
future work. In addition, we proved that even when the asserted pteaomnstraints turn out to
be incorrect, given an infinite amount of training data our maximum likelihotichasors converge
to the best describable distribution; that is, the distribution closest in termk df¥fance from the
true distribution, among all distributions that obey the parameter constrashfaetor according to
the given structure.

We see many useful directions for future work. In this paper we hawsidered only how to
take advantage of deterministic parameter constraints when the structuseeRBdythsian network
is known in advance. It would be interesting to investigate methods to in@igprobabilistic
constraints in learning algorithms for Bayesian networks. A second diretdiexplore is to also
use parameter constraints to perform structure learning. This might bevadiby specifying an
initial set of parameter constraints, then at each step of the hill climbing dstiogture search
performing a change of variable to adapt the constraints to the new pareaiibe of the network.
Finally, we would like to extend our results to undirected graphical models, texteat that it is
intuitive to acquire domain knowledge from an expert about the much hirdgerpret parameters
of such models.
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