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Abstract 

Background  Technology-based assessments using 2D virtual reality (VR) environments and goal-directed instru-
mented tasks can deliver digital health metrics describing upper limb sensorimotor function that are expected 
to provide sensitive endpoints for clinical studies. Open questions remain about the influence of the VR environment 
and task complexity on such metrics and their clinimetric properties.

Methods  We aim to investigate the influence of VR and task complexity on the clinimetric properties of digital 
health metrics describing upper limb function. We relied on the Virtual Peg Insertion Test (VPIT), a haptic VR-based 
assessment with a virtual manipulation task. To evaluate the influence of VR and task complexity, we designed two 
novel tasks derived from the VPIT, the VPIT-2H (VR environment with reduced task complexity) and the PPIT (physical 
task with reduced task complexity). These were administered in an observational longitudinal study with 27 able-
bodied participants and 31 participants with multiple sclerosis (pwMS, VPIT and PPIT only) and the value of kinematic 
and kinetic metrics, their clinimetric properties, and the usability of the assessment tasks were compared.

Results  Intra-participant variability strongly increased with increasing task complexity (coefficient of variation + 56%) 
and was higher in the VR compared to the physical environment (+ 27%). Surprisingly, this did not translate into signif-
icant differences in the metrics’ measurement error and test–retest reliability across task conditions (p > 0.05). Respon-
siveness to longitudinal changes in pwMS was even significantly higher (effect size + 0.35, p < 0.05) for the VR task 
with high task complexity compared to the physical instrumented task with low task complexity. Increased inter-par-
ticipant variability might have compensated for the increased intra-participant variability to maintain good clinimetric 
properties. No significant influence of task condition on concurrent validity was present in pwMS. Lastly, pwMS rated 
the PPIT with higher usability than the VPIT (System Usability Scale + 7.5, p < 0.05).

Conclusion  The metrics of both the VR haptic- and physical task-based instrumented assessments showed adequate 
clinimetric properties. The VR haptic-based assessment may be superior when longitudinally assessing pwMS due 
to its increased responsiveness. The physical instrumented task may be advantageous for regular clinical use due to its 
higher usability. These findings highlight that both assessments should be further validated for their ideal use-cases.
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Introduction
Upper limb disability is common in neurological disor-
ders, such as persons with multiple sclerosis (pwMS), 
which strongly contributes to an inability to perform 
daily life activities and increases dependency on caregiv-
ers [1]. In clinical studies, assessments are of fundamental 
importance to advance our understanding of the types 
of upper limb impairments and their underlying mecha-
nisms [2]. In addition, assessments are essential to pro-
vide sensitive and reliable endpoints that can be used to 
evaluate the effectiveness of pharmacological or rehabili-
tation interventions.

The most commonly applied assessments in clinical 
studies subjectively describe movement quality on ordi-
nal scales or capture the time to complete functional 
tasks [2]. While these assessments have high usabil-
ity, provide a good overview of the disability level of a 
patient, and are well-accepted by the clinical community, 
they have a limited ability to serve as detailed, insightful 
endpoints for clinical studies [2, 3]. This is because ordi-
nal scales typically have ceiling effects and low sensitivity, 
while subjective assessments are prone to rater-induced 
bias [4]. In addition, time-based assessments are not 
able to provide information on the mechanism under-
lying suboptimal task performance; for example, they 
cannot distinguish whether grip force control or gross 
movement control is impaired. Because of these limita-
tions, there is a consensus in the research community 
that novel, complementary and more sensitive endpoints 
are urgently required to provide more detailed insights 
into the mechanisms of upper limb impairments and the 
effect of therapeutic interventions [3, 5, 6].

Technology-based assessments can record objective 
sensor-based data on upper limb movement patterns and 
hand grip forces during functional manipulation tasks 
[7, 8]. These can be transformed into digital health met-
rics (discrete one-dimensional metrics extracted from 
health-related sensor data such as movement kinematics 
and kinetics) with ratio scales, thereby promising novel, 
sensitive, and insightful endpoints [9, 10]. Technology-
based assessments often consist of a robotic interface 
(e.g., haptic devices) that serves as a control input (i.e., 
joystick) and a virtual reality (VR) environment with a 
goal-directed manipulation task rendered, for example, 
on a 2D computer screen [11], [12–15].

VR environments are a unique element of technol-
ogy-based assessments, as they provide flexibility in the 
implementation of assessment tasks with different levels 
of complexity to target specific sensorimotor and cog-
nitive impairments. Also, VR environments promise to 
increase engagement and motivation of participants, and 
VR-based depth cues can support a realistic representa-
tion of 3D movements on a 2D screen [16, 17]. However, 

when compared to physical environments, VR environ-
ments and the different levels of task complexity they 
may generate are also known to influence the kinemat-
ics of goal-directed movements. This can be, for example, 
in terms of reduced smoothness and speed, or increased 
movement variability [15, 18–22]. Crucially, it remains 
an open question whether this change in kinematics and 
variability also influences the extracted digital health 
metrics and in particular their clinimetric properties. 
These properties include test–retest reliability, measure-
ment error, responsiveness, and concurrent validity and 
ultimately determine whether digital health metrics can 
be used as insightful and robust endpoints in clinical 
studies [9, 10, 23].

The aim of this work is to describe the influence of 
VR and task complexity on the clinimetric properties 
of digital health metrics extracted from a goal-directed, 
technology-based upper limb assessment. The secondary 
aim is to describe the influence of these two factors on 
the magnitude of the metrics, the observed intra-partici-
pant variability, and the usability of the technology-based 
assessment.

For this purpose, we relied on the Virtual Peg Inser-
tion Test (VPIT, Fig.  1), a previously established haptic 
end effector- and VR-based assessment describing upper 
limb movement patterns and hand grip force control dur-
ing the insertion of nine virtual pegs into nine holes. To 
assess the impact of both task complexity and VR, we 
developed two distinct assessment tasks: the VPIT-2 
Hole (VPIT-2H, Fig. 1) requires inserting only two virtual 
pegs into two virtual holes, thereby simplifying the origi-
nal VPIT. To examine the influence of VR, we introduced 
the Physical Peg Insertion Test (PPIT, Fig.  1). The PPIT 
uses the same end effector device as the VPIT, but instead 
of a virtual task, it uses a physical pegboard with two 
magnetic pegs and physical holes, and an electromagnet 
to transport the magnetic pegs. These assessments were 
administered in an observational longitudinal study with 
27 able-bodied participants (VPIT, VPIT-2H, and PPIT; 
test and retest) and 31 pwMS (VPIT and PPIT; admission 
and discharge to a rehabilitation program; Fig. 2).

We hypothesized that a physical technology-based 
assessment task reduces intra-participant variabil-
ity when compared to a similar VR-based task, where 
a complex visuomotor mapping is required to match 
position of the end-effector and the non-collocated VR 
environment. Similarly, we expected that decreasing 
task complexity reduces the observed intra-participant 
variability. Additionally, we expected that this reduced 
intra-participant variability leads to increased test–retest 
reliability and responsiveness as well as reduced meas-
urement errors in the extracted digital health metrics. 
Lastly, we hypothesized that a physical environment has 
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higher concurrent validity and usability, as it more closely 
resembles the tasks of conventional clinical scales.

Addressing these research questions would provide 
evidence that can inform the future design and choice 
of technology-based assessments for sensitively and 
robustly monitoring upper limb impairments in clinical 
studies.

Methods
Participants and procedures
This observational, longitudinal study was performed 
at two sites, namely ETH Zurich (Zurich, Switzerland) 
where able-bodied participants were recruited and the 
Rehabilitation Centre Valens (Valens, Switzerland) where 
pwMS were recruited. For able-bodied participants, the 
inclusion criteria were age of at least 18 years and the 
ability to follow procedures and to give informed consent. 
All pwMS being admitted to the Rehabilitation Center 
Valens for a 3-week inpatient rehabilitation program 
focused on achieving individualized patient goals were 
screened for eligibility based on the standard physical 
examination protocol of the clinic. Patient goals did not 
necessarily need to include upper limb function and were 
defined in agreement with clinical personnel and patient. 
Inclusion criteria were a confirmed diagnosis of MS, age 
of at least 18 years, and the ability to follow procedures 
and to give informed consent. Additionally, pwMS were 
required to have mild to moderate upper limb disability 
and an absence of strong cognitive deficits. This was eval-
uated based on the standard medical report generated 

at clinic admission through the absence of, for example, 
strong paresis, spasticity, or neglect. If no relevant infor-
mation on cognitive function or upper limb disability was 
available in the report, an experienced clinical researcher 
of the study team would subjectively evaluate the partici-
pant. For both populations, exclusion criteria were con-
comitant diseases that affect upper limb function.

Able-bodied participants performed an initial assess-
ment session followed by a break of three weeks and 
another retest session. Each session consisted of the 
VPIT, PPIT, and VPIT-2H protocol performed with the 
dominant hand. PwMS participated in one assessment 
session upon admission to the rehabilitation centre 
and one session before discharge (Fig.  2). Each session 
consisted of the VPIT and PPIT protocol, question-
naires, and conventional clinical assessments performed 
with one body side. The most suitable body side for the 
assessment was chosen based on the disability level of 
the patient. To avoid fatigue, the VPIT-2H was not per-
formed in pwMS. No additional test–retest session was 
scheduled for pwMS to avoid extra burden on partici-
pants. For both populations, the order of performing the 
VPIT or PPIT was pseudo-randomized.

All study procedures were approved by the respective 
ethics commissions (EKOS 21/045).

Technology‑based assessments: VPIT, VPIT‑2H, and PPIT
The VPIT is a well-established technology-based assess-
ment of upper limb movement patterns and hand grip 
forces, which has been extensively applied and validated 

Fig. 1  Assessment platforms VPIT (A), PPIT (B), and virtual display of the VPIT-2H (C). These are used to study the influence of task complexity 
and virtual reality on the clinimetric properties of digital health metrics
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in able-bodied participants and persons with neurologi-
cal disorders [9, 10, 24, 25]. In brief, the approach relies 
on a haptic end effector (Phantom Omni or Geomagic 
Touch, 3D Systems, US), a custom-made handle with 

integrated force sensors, and a computer displaying a 2D 
projection of a VR environment. The VPIT task consists 
of a virtual pegboard and nine virtual pegs that need to 
be inserted as fast and accurately as possible into nine 

Fig. 2  Overview of study protocol (A, B) and analysis approach (C). Able-bodied participants were tested on the VPIT, PPIT, and VPIT-2H 
in a test–retest protocol. Participants with Multiple Sclerosis were tested with the VPIT and PPIT at admission and discharge within a 3-week 
neurorehabilitation program. The analysis focused on a comparison between the three experimental conditions (VPIT, PPIT, VPIT-2H) 
for the clinimetric properties (primary aim) and to gain a behavioral understanding of the effect of experimental conditions and describe 
the usability of the assessments (secondary aim). EDSS: Expanded Disability Status Scale. NHPT: Nine Hole Peg Test. BBT: Box and Block Test. CoV: 
Coefficient of Variation. ICC: Intra-class correlation coefficient. SRD: Smallest Real Difference. SRM: Standardized response mean. # > SRD: Number 
of individuals with changes larger than the SRD. SUS: System Usability Scale
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corresponding holes. Pegs can be picked up in arbitrary 
order and transported into any of the holes. Initially, the 
virtual cursor needs to be lifted to the base height of the 
virtual pegboard. To pick up and transport a peg, the 
cursor needs to be spatially aligned with the peg and a 
grip force of at least 2N must be applied until insertion 
into a hole. No requirements or instructions are given 
to increase vertical displacement during peg trans-
port. If a grip force of at least 2N is applied before cur-
sor and peg are spatially aligned, the color of the cursor 
changes to red. If a peg is successfully lifted, the color of 
the cursor becomes green. While the VPIT may visually 
resemble the conventional Nine Hole Peg Test (NHPT), 
the VPIT requires different movements (i.e., arm lifting 
and gross upper limb movement) as well as a different 
grip (i.e., power grasp) on the handle. Thus, it should be 
interpreted as a hybrid assessment between the NHPT 
and the Box and Block Test (BBT), testing both fine and 
gross manual dexterity and fine power grasp control. The 
typical VPIT protocol consists of a standardized seating 
position and standardized instructions, an initial famil-
iarization period where the participant can explore the 
VR environment, followed by five repetitions of the task. 
Herein, we applied a shortened version of the protocol 
with only three task repetitions (i.e., inserting nine pegs 
three times) that has shown a good trade-off between 
applicability and robustness [25].

To evaluate the influence of task complexity, an addi-
tional VR task based on the VPIT concept but with 
reduced complexity was designed (VPIT-2H, Fig.  1). In 
the VPIT-2H, only two instead of nine pegs are displayed 
and need to be transported into corresponding holes. In 
addition, each peg needs to be inserted into the hole that 
is aligned with the initial position of the peg. The task 
needs to be started with picking up the peg that is closer 
to the participant, of the two available pegs. This aims to 
increase standardization to reduce intra-participant vari-
ability and ultimately improve clinimetric properties of 
kinematic and kinetic metrics. Further, a haptically ren-
dered virtual wall was placed on the pegboard to force 
the vertical lifting of the cursor and arm during the task 
and facilitate more natural movements. Equivalent to the 
VPIT, the VPIT-2H protocol starts with standardized 
instructions and an initial familiarization period. Subse-
quently, 14 task repetitions are performed (i.e., inserting 
two pegs 14 times; 28 transport movements) to match 
the number of movements performed in the regular 
VPIT (27 transport movements over three repetitions).

To further evaluate the influence of VR, a physical task 
similar to the VPIT-2H was designed, the PPIT (Fig. 1). 
The PPIT relies on the same haptic end-effector and grip 
force sensing handle as the VPIT and the same task as 
the VPIT-2H but has no VR component. Importantly, 

an electromagnet that is controlled by the applied grip 
forces was attached at the bottom of the end-effector, 
allowing to “grasp” the physical pegs through the handle 
of the haptic device. Additionally, a magnet was included 
in the physical pegs such that they can be picked up 
by the electromagnet. Infrared through-beam sensors 
were placed in all holes to capture whether a physical 
peg has been lifted and inserted into a hole. Addition-
ally, LED stripes providing feedback on the status of the 
electromagnet were added to the sides of the pegboard. 
The LED lighted up in green if at least 2N of grip force 
were applied to match the requirements of the VPIT. In 
addition, the LEDs lighted up in red when 5N grip force 
were exerted to avoid handle damage. Equivalent to the 
VPIT-2H, the PPIT protocol consists of standardized 
instructions, an initial familiarization period, and 14 task 
repetitions (i.e., inserting two pegs 14 times). The dimen-
sions of the pegboard and pegs of the VPIT-2H and PPIT 
were designed to approximate the ones of the VPIT to 
ensure comparability between the movements in differ-
ent conditions.

While there is no alignment in the research commu-
nity about how to best describe task complexity [26], 
we relied for our definition on the concept of compo-
nent complexity [27], which focuses on the number of 
distinct actions and information cues required for task 
performance. In this study, component complexity is 
reflected by the increased number of actions that need 
to be executed to perform one repetition of the task in 
the VPIT as compared to the VPIT-2H and PPIT. Addi-
tionally, the number of information cues that need to be 
processed is considerably higher in the VPIT compared 
to the VPIT-2H and PPIT given that the former features 
nine instead of two pegs and does allow flexibility in the 
order in which the pegs and holes are chosen. Moreo-
ver, the VPIT and VPIT-2H require learning a complex 
spatial transformation from the end-effector to the VR 
coordinate system, as opposed to the PPIT that has end-
effector and task coordinate system physically aligned, 
thus further reducing the complexity of the PPIT. 
Another design feature potentially influencing task com-
plexity is the presence of a wall requiring cursor lifting 
during peg transport in the VPIT-2H and PPIT but not 
the VPIT condition. While the same type of grip is used 
for VPIT, VPIT-2H, and PPIT, different visual feedback of 
the applied grip force is provided in the VR (feedback via 
screen) and physical condition (feedback via LEDs). This 
is however not expected to systematically influence task 
complexity.

Extraction of digital health metrics
Based on previous work with the VPIT in able-bodied 
and neurological participants, a core set of 10 validated 
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digital health metrics describing the most important 
aspects of movement patterns and hand grip forces 
has been defined [9, 10, 25, 28]. While these metrics 
have been refined through additional studies [25], we 
herein keep the initial 10 core metrics to best cover dif-
ferent behavioral aspects of the test in view of the com-
parison of different experimental conditions. Given that 
the VPIT, VPIT-2H, and PPIT collect the same type of 
movement and grip force data and task dimensions are 
matched across conditions, the signal processing frame-
work that was initially defined for the VPIT could be 
seamlessly applied to the VPIT-2H and PPIT. In the fol-
lowing, we will briefly restate the signal processing steps 
and the definition of the metrics, whereas details are pro-
vided in previous work [9, 10].

First, the position and grip force time-series recorded 
by the haptic device at a sampling rate of 1 kHz were 
pre-processed using standard low-pass filtering and 
interpolation operations. Second, the time-series were 
temporally segmented into multiple phases that engage 
different aspects of motor control. This included the 
transport phase (i.e., ballistic movement between lifting 
a peg and inserting it into a hole), the return phase (i.e., 
ballistic movement between inserting a peg into a hole 
and lifting the next peg), the peg approach phase (i.e., fine 
movement before lifting a peg), and the hole approach 
phase (i.e., fine movement before inserting a peg). Third, 
digital health metrics were extracted to describe dif-
ferent aspects of movement patterns and grip forces. 
More specifically, the logarithmic normalized jerk (log 
jerk transport/return) as well as the spectral arc length 
(SPARC return) metrics were calculated to describe 
movement smoothness [29]. The SPARC metric cap-
tures the normalized arc length of the velocity spectrum. 
A short arc length reflects a spectrum with few domi-
nant frequency components (i.e., submovements) and is 
indicative of smooth movements [29]. Further, the ratio 
between the shortest possible and the actual path in the 
horizontal plane (path length ratio transport/return) was 
used to capture movement efficiency [30]. In addition, 
the maximum velocity during the return phase (max. 
velocity return) was calculated to describe the speed of 
ballistic movements. To collect information on fine posi-
tion adjustments when picking up pegs, the jerk metric 
was calculated during the peg approach phase (jerk peg 
approach). Lastly, hand grip force control was character-
ized based on the number of peaks in the grip force rate 
profile (force rate num. peaks transport) and the spectral 
arc length of the grip force rate (force rate SPARC trans-
port/hole approach) [31].

For each assessment task, the metrics were calculated 
on a peg-by-peg level and then aggregated via the grand 
median to obtain one value per session and body side. 

Compared to the regular VPIT processing pipeline, we 
did not normalize the metrics with respect to an able-
bodied population given that such data is not available 
for VPIT-2H and PPIT [9, 10].

Conventional clinical assessments and questionnaires
Two conventional clinical assessments were performed 
with all participants to allow comparing the concurrent 
validity of the digital health metrics between the differ-
ent technology-based assessment tasks. Gross manual 
dexterity was assessed using the BBT, which describes 
the number of wooden blocks that can be transported 
over a physical barrier within one minute [32, 33]. Also, 
fine manual dexterity was captured with the NHPT 
which describes the time to transport nine physical pegs 
into nine physical holes and is a well-accepted outcome 
measure in pwMS [32–34]. Additionally, the overall dis-
ability level of pwMS was rated based on the Expanded 
Disability Status Scale (0: no disability; 10: death due to 
MS) [35].

Furthermore, all participants were asked to perform 
the System Usability Scale (SUS) after the completion 
of each technology-based assessment task during the 
first measurement session. The SUS is a well-accepted 
10-item usability questionnaire describing effectiveness, 
efficiency, and satisfaction of a system and ranges from 0 
(worst usability) to 100 (best usability).

Data analysis
The analysis steps described below were performed 
separately for each of the available technology-aided 
assessments. Afterwards, the outcomes were compared 
between assessments using statistical tests, namely a 
Wilcoxon signed rank test or Friedman omnibus test 
for non-parametric paired samples, followed by post-
hoc tests (MATLAB version R2022b, functions signrank, 
friedman and multcompare).

Usability
Usability of the technology-based assessments was evalu-
ated based on the SUS. Scores above 71.1 were inter-
preted as ‘acceptable’ usability [36].

Intra‑subject variability
In order to have endpoints that are reliable, have low 
measurement error, and are sensitive, it is essential that 
participants have low variability when repeating the task 
within an assessment session (i.e., low intra-participant 
variability) [37, 38]. To evaluate intra-participant vari-
ability, we calculated the coefficient of variation, which is 
defined as the standard deviation of a metric divided by 
the absolute value of its mean, for each metric and partic-
ipant. For this analysis, the cross-sectional data from the 
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first measurement timepoint were used on a peg-by-peg 
basis (i.e., one value per peg) to account for the difference 
in number of movements per repetitions across task and 
take the intra-participant variability into account.

Test–retest reliability
Test–retest reliability takes the intra- and inter-partici-
pant variability into account and describes the ability of a 
metric to discriminate across participants and measure-
ment sessions [9, 10, 37, 38]. In simplified terms, test–
retest reliability can be expressed as 
reliability = inter−participant variability

inter−participant variability + error
 , where error 

includes any source of systematic or random error, 
including intra-participant variability [38]. Test–retest 
reliability is commonly described using the agreement 
intra-class correlation coefficient (ICC, 0: worst reliabil-
ity, 1: best reliability), which was calculated based on a 
two-way analysis of variance (ICC A,1) [37]. For this 
analysis, the test–retest data from able-bodied partici-
pants were used and aggregated per session (i.e., one 
value per session).

Measurement error
The measurement error describes a range of values for 
which the assessment is not able to discriminate between 
measurement-related noise, for example due to high 
intra-participant variability, and an actual physiologi-
cal change [9, 10, 37]. Mathematically, this is expressed 
as the smallest real difference, which is dependent 
on the intra-participant variability ( �) and the ICC: 
SRD = 1.96

√
2�

√
1− ICC  [37]. To allow a comparison 

between metrics, the SRD can further be normalized 
with respect to the range of observed values (SRD%) [9, 
10]. For this analysis, the test–retest data from able-bod-
ied participants were aggregated per session.

Concurrent validity
Even though digital health metrics are expected to pro-
vide information complementary to conventional clinical 
scales, one can still expect at least low to moderate cor-
relations between digital health metrics and conventional 
clinical scales capturing similar physiological constructs 
[7]. To evaluate concurrent validity, we calculated Spear-
man correlation coefficients (ρ) between digital health 
metrics and selected clinical scales that assess similar 
constructs as the VPIT, namely the BBT and NHPT. We 
used the absolute value of the correlation coefficient to 
allow an analysis across metrics where different signs of 
the correlation might indicate a positive effect. For this 
analysis, cross-sectional data from the first assessment 
session were aggregated.

Responsiveness
Responsiveness denotes the ability of a metric to capture 
intervention-induced changes [39]. To describe respon-
siveness, we counted the number of pwMS that exhib-
ited a meaningful change according to the digital health 
metrics. This was defined as a change in a digital health 
metric between admission and discharge that exceeded 
the SRD, which is an accepted measure of responsiveness 
[37]. Additionally, we used the standardized response 
mean (SRM), which is the difference in means between 
admission and discharge divided by the standard devia-
tion of changes between admission and discharge, to 
describe the population-level effect sizes [39]. The 
level of the effect can be broadly categorized into small 
(0.2 ≤ SRM < 0.5), moderate (0.5 ≤ SRM < 0.8), and high 
(SRM ≥ 0.8). Also, to compare the responsiveness of the 
digital health metrics to the clinical level of responsive-
ness, we calculated additionally the SRM for the NHPT 
and BBT. Lastly, we counted the number of metrics that 
indicated a statistically significant change across the 
rehabilitation program. For this analysis, only pwMS 
were included that had complete data at admission and 
discharge, and the data were aggregated per session.

Results
Participant details are provided in Table  1. In brief, 27 
able-bodied participants (age 30.5 ± 15.5 years, 15 male, 
reported as median ± interquartile range) were recruited 
and completed the assessment protocol at the first test-
ing session. Fifteen of those further participated in a sec-
ond retest session. Further, 34 pwMS were recruited. Of 
those, 31 (age 56 ± 19.5 years, 16 male, EDSS 4.5 ± 3.5) 
completed the assessment session at admission to the 
rehabilitation program, whereas 21 completed the assess-
ment session at discharge. Reasons for participants not 
completing the assessment protocol were: too severe 
upper limb disability, unexpected discharge from the 
rehabilitation program, and technical difficulties with the 
assessment platforms.

Influence of task setup and complexity on kinematics 
and kinetics
While the main objective of this work is to evaluate the 
impact of task conditions on the clinimetric properties, 
we had to first confirm previous reports about the impact 
of VR and task complexity on movement kinematics and 
kinetics. Thus, the results for this are summarized here, 
whereas the details are provided in Figures SM1–4.

In brief, for able-bodied participants, goal-directed 
movements were statistically smoother and faster in the 
PPIT than the VPIT and VPIT-2H according to the log 
jerk transport and return, velocity max. return metrics 
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(Fig. 3A). Additionally, movements were more efficient in 
the VPIT than the VPIT-2H and PPIT according to the 
path length ratio transport and return metrics. Further, 
fine movements when approaching a peg were jerkier for 
the PPIT than the VR-based tasks according to the jerk 
approach peg metric. Moreover, grip force control was 
smoother in able-bodied participants for the PPIT and 
VPIT than the VPIT-2H according to force rate number 
of peaks transport and force rate SPARC transport met-
rics. Lastly, grip force control when approaching a hole 
was significantly smoother for the PPIT compared to the 
VPIT and VPIT-2H according to the force rate SPARC 
hole approach metric.

For pwMS (Fig.  4A), goal-directed movements were 
significantly smoother for the PPIT than the VPIT 
according to the log jerk transport and return metrics. 
These trends were confirmed, but not significant, for 
the SPARC return metric. Movements were significantly 
more efficient for the VPIT than the PPIT according 
to the path length ratio transport and return metrics. 
Movements were significantly faster for the PPIT than 

the VPIT according to the velocity max. return metric. 
No significant difference between VPIT and PPIT in the 
jerkiness of movements when approaching a peg were 
found. Force control during goal-directed movements did 
not differ significantly between conditions, whereas force 
control when approaching a hole was smoother for the 
VPIT than the PPIT.

Intra‑participant variability
For the intra-participant variability in able-bodied par-
ticipants (Fig. 3B and C), the coefficient of variation was 
significantly smaller for the PPIT (0.20 ± 0.15 across all 
metrics) than the VPIT (0.40 ± 0.58 across all metrics) for 
all metrics except log jerk transport and return, jerk peg 
approach and force rate SPARC transport. In addition, the 
path length ratio transport and return, the velocity max. 
return, the jerk peg approach, and the force rate number 
of peaks transport metrics had significantly smaller coeffi-
cient of variations for the VPIT-2H (0.26 ± 0.20 across all 
metrics) than the VPIT. The SPARC​ return and the veloc-
ity max. return metrics indicated significantly smaller 

Table 1  Participant details

The content of each row is described in the first table column. Values are denoted as median ± interquartile range (minimum–maximum)

Able-bodied participants Test Retest

n 27 15

Age 30.5 ± 15.5 (21–68) 34 ± 24.5 (23–68)

Sex 15 m, 12 f 9 m, 6 f

Box and Block Test
(blocks per minute)

77.0 ± 8.5 (66.0–92.0) –

Nine Hole Peg Test (s) 17.0 ± 3.9 (12.1–23.0) –

Participants with multiple sclerosis Admission Discharge

n 31 21

Age 56 ± 19.5 (33–72) 57 ± 21 (34–69)

Sex 16 m, 15 f 13 m, 8 f

Multiple sclerosis type 6 primary progressive
12 secondary progressive
13 relapsing–remitting

4 primary progressive
7 secondary progressive
10 relapsing–remitting

Expanded Disability Status Scale (0–10) 4.5 ± 3.5 (2.5–6.5)
1 missing value

4.75 ± 3.25 (2.5–6.5)
1 missing value

Box and Block Test (blocks per minute) 54.0 ± 22.0 (18.0–70.0)
7 missing values

55.0 ± 24.0 (22.0–70.0)
8 missing values

Nine Hole Peg Test (s) 30.6 + −17.0 (16.2–160) 30.7 + −29.5 (16.3–94.3)

Fig. 3  Able-bodied participants. Visualization of an example metric across all conditions (A, grey lines connect individual participants), its 
coefficient of variation (CoV, B, grey lines connect individual participants), and the CoV for all metrics and conditions (C). In addition, the test–retest 
reliability of metrics across all conditions (D, grey lines connect individual metrics) and the usability outcomes (E, grey lines connect individual 
participants) are depicted. The middle, long horizontal bar represents the median and the shorter horizontal bars or end of the filled box 
the 25th- and 75th-percentile. The whiskers in C represent the minimum and maximum value within 1.5 times the interquartile range. A.u. arbitrary 
units. *p < 0.05. **p < 0.01

(See figure on next page.)
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A: Example metric

C: All metrics - CoV

B: Example metric - CoV

D: Test-retest reliability E: Usability

Fig. 3  (See legend on previous page.)
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A: Example metric B: Example metric - CoV

D: Responsiveness

C: All metrics - CoV

E: Usability

Fig. 4  Participants with multiple sclerosis. Visualization of an example metric for all participants with multiple sclerosis across all conditions (A), its 
coefficient of variation (CoV, B), and the CoV for all metrics and conditions (C). In addition, the responsiveness of all metrics across all conditions (D) 
and the usability outcomes (E) are depicted. Detailed legend in Fig. 3
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coefficients of variation for the PPIT than the VPIT-2H. 
For the intra-participant variability in pwMS (Fig. 4B and 
C), the coefficient of variation was significantly smaller 
for the PPIT (0.19 ± 0.17) than the VPIT (0.60 ± 0.77) for 
all digital health metrics except for log jerk return.

Clinimetric properties
For the test–retest reliability in able-bodied participants, 
the ICC across metrics for the PPIT, VPIT, and VPIT-2H 
was 0.64 ± 0.18, 0.66 ± 0.35, and 0.58 ± 0.43, respectively 
(difference between groups p > 0.05, Fig.  3D). The ICC 
and confidence interval for individual metrics is shown 
in Figure SM5: confidence intervals of the ICC were large 
across most metrics and the most notable difference 
in ICC between conditions was for the SPARC return, 
where VPIT-2H and VPIT performed considerably better 
than the PPIT.

For the measurement error in able-bodied partici-
pants, the SRD% was 39.4 ± 12.3 for the PPIT, 36.9 ± 34.4 
for the VPIT, and 38.8 ± 21.7 for the VPIT-2H (difference 
between groups not significant p = 0.74). The SRD and 
SRD% for all metrics is listed in Table SM1 in the Supple-
mentary Materials (SM).

In terms of responsiveness (details in Table 2, Fig. 4D, 
and SM), the VPIT was superior to the PPIT according to 
the number of pwMS exhibiting changes above the SRD 
(increased by 2.5, p > 0.05), effect sizes (SRM increased by 
0.35, p < 0.05), and number of metrics indicating signifi-
cant changes over the rehabilitation program (4 for the 
VPIT indicating improvement in upper limb function, 1 
for the PPIT). Responsiveness for the NHPT and BBT are 
described in the SM.

For concurrent validity in pwMS (Table 2), no signifi-
cant differences between VPIT and PPIT were found for 
both BBT and NHPT.

Usability
The median of the SUS for able-bodied participants was 
90 ± 15 for the PPIT, 85 ± 14.4 for the VPIT, and 70 ± 15 
for the VPIT-2H (Fig.  3E). A Friedman omnibus test 
revealed a significant difference between the three con-
ditions (p < 0.001). Post-hoc tests revealed no statisti-
cal difference between the SUS of PPIT and VPIT but 
showed significant lower scores for VPIT-2H than PPIT 
(p < 0.001) and VPIT (p < 0.001).

The median of the SUS for pwMS was 90 ± 12.5 for the 
PPIT and 82.5 ± 22.5 for the VPIT, which was a statisti-
cally significant difference (p < 0.01, Fig. 3E).

Discussion
Technology-based upper limb assessments can provide 
digital health metrics that are expected to expand on the 
limitations of conventional clinical scales and serve as 
novel, sensitive, and objective endpoints for clinical tri-
als evaluating pharmacological or rehabilitation interven-
tions in neurological disorders [3, 5–7]. Such assessments 
often rely on 2D VR environments and tasks with differ-
ent levels of complexity, two factors that were shown to 
have influence on movement kinematics [21, 22]. Herein, 
we aimed to additionally describe which influence these 
factors have on the clinimetric properties of digital health 
metrics in terms of test–retest reliability, measurement 
error, responsiveness, and concurrent validity. As a sec-
ondary aim, we strived to evaluate the influence of vir-
tual environment and task complexity on the values of 

Table 2  Responsiveness (standardized response mean SRM and number of individuals with changes exceeding the measurement 
noise # > SRD) and concurrent validity (correlation ρ to Nine Hole Peg Test NHPT and Box and Block Test BBT) for persons with MS

*Indicates metrics that had a statistically significant change over the rehabilitation program (1 for the PPIT, 4 for the VPIT). Aggregate indicates the median ± inter-
quartile range of the absolute (abs.) value across metrics

Metric PPIT VPIT

SRM # > SRD ρ BBT ρ NHPT SRM # > SRD ρ BBT ρ NHPT

Log Jerk TP − 0.32 5 − 0.84 0.68 − 0.46 1 − 0.56 0.63

Log Jerk RT 0.19 4 − 0.62 0.75 − 0.35* 0 − 0.58 0.67

SPARC RT − 0.12 7 − 0.50 0.44 − 0.29 10 − 0.67 0.79

Path length ratio TP 0.02 5 − 0.14 0.27 − 0.13 7 − 0.45 0.32

Path length ratio RT − 0.17 3 − 0.49 0.45 − 0.46* 7 − 0.49 0.32

Velocity max. RT 0.21 0 0.48 -0.65 0.16 3 0.53 − 0.56

Jerk peg approach 0.16* 8 − 0.50 0.67 − 0.43 10 − 0.38 0.28

Force rate num. peaks TP − 0.44 2 − 0.57 0.52 − 0.53 5 − 0.42 0.44

Force rate SPARC TP 0.02 1 − 0.53 0.41 − 0.47* 1 − 0.34 0.50

Force rate SPARC hole approach 0.04 3 − 0.48 0.39 − 0.42* 8 − 0.57 0.47

Aggregate (abs. values) 0.16 ± 0.17 3.5 ± 3.0 0.50 ± 0.09 0.48 ± 0.27 0.43 ± 0.18 6.0 ± 7.0 0.51 ± 0.15 0.49 ± 0.31
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the metrics, the intra-participant variability, and the 
usability of the assessment platform. For this purpose, 
we compared a previously validated technology-based 
assessment, the VPIT, with two newly designed tasks 
based on the VPIT concept, the VPIT-2H (VR environ-
ment with reduced task complexity) and the PPIT (physi-
cal task with reduced task complexity).

Aspects of movement kinematics and kinetics differ 
between assessment setups and tasks
In line with previous research, our results show a con-
siderable influence of the different assessment setups 
and tasks. Specifically, goal-directed movements were 
smoother and faster in the PPIT than the VPIT and 
VPIT-2H. This likely results from the end-effector and 
task being co-located in the PPIT, whereas depth per-
ception and a visuomotor transformation from the 
end-effector space to the VR space is required for the 
VR-based tasks [40]. Additionally, this might be influ-
enced by faster movements being shorter and having less 
data samples, which in turn may affect the calculation 
of smoothness metrics. Goal-directed movements were 
more efficient in the VPIT than the VPIT-2H and PPIT, 
which might be an artifact of the wall in the center of the 
pegboard that was introduced in the latter two condi-
tions. This wall is supposed to hinder dragging the peg 
across the pegboard (i.e., performing movements only in 
the horizontal plane), which is indeed more efficient than 
performing three-dimensional movements but was not 
desired when designing the assessment task initially [24, 
41]. Even though grip force control was smoother in able-
bodied participants for the PPIT, these results were not 
confirmed in pwMS.

Overall, these findings support previous research 
showing reaching movements in VR are typically less 
smooth and slower compared to physical environments, 
and that increasing task complexity decreases movement 
smoothness and speed [18, 20–22, 42, 43].

Physical assessment task with low task complexity 
has lowest intra‑participant variability
The main contribution of our work is to evaluate whether 
clinimetric properties of metrics describing movement 
kinematics and kinetics are improved by an instrumented 
physical assessment task, compared to a haptic VR-based 
task, and by tasks with different complexity levels. Given 
that many clinimetric properties are complex statistical 
constructs that are influenced by multiple measurands, 
we performed an intermediate analysis step describing 
the metrics’ intra-participant variability. This is an easily 
quantifiable construct, based on the coefficient of vari-
ation, and is expected to have a strong influence on the 
clinimetric properties [37, 38].

Indeed, we observed that a physical instrumented task 
with the expected lowest complexity consistently had the 
lowest intra-participant variability for almost all digital 
health metrics when compared to a similar haptic VR-
based task with higher complexity (VPIT), in both able-
bodied participants and pwMS. Additionally, the physical 
instrumented task with low complexity showed lower 
intra-participant variability for movement speed and 
aspects of movement smoothness as compared to the 
haptic VR-based task with low complexity in able-bodied 
participants. This suggests that the biggest contribution 
to increased intra-participant variability stems from the 
VR environment, including the required visuomotor 
transformation to map between end effector and display 
as well as the requirements for depth perception on a 
2D computer screen. This is in line with previous work 
showing that the required visuomotor transformation has 
a strong influence on task performance in exoskeleton-
based reaching, especially when learning the task initially 
[40]. Further, the increased intra-participant variabil-
ity for the haptic VR-based task with higher complexity 
likely stems from the larger possible choice in strategy 
(e.g., order of pegs) and difference in movement trajec-
tories across different peg-hole combinations and task 
repetitions [22]. Additionally, tasks with increasing com-
plexity are known to have additional cognitive demand 
[44], which can also alter repeated task performance.

Clinimetric properties are not significantly different 
between assessment setups and tasks
These strong changes in the metrics’ intra-participants 
variability across task conditions did not lead to system-
atic changes in most of the metrics’ clinimetric proper-
ties. While the PPIT metrics indeed had the smallest 
measurement error compared to the VPIT and VPIT-2H 
metrics, these differences were not statistically significant 
and test–retest reliability of the metrics was mostly simi-
lar across task conditions. The main difference between 
the conditions was in the responsiveness in pwMS, where 
the VPIT metrics actually achieved significantly better 
performance than the PPIT.

These findings are surprising, given the strong effects 
on the intra-participant variability level, and that intra-
participant variability is factored into the calculation 
of test–retest reliability and measurement error. Most 
likely, this is because the inter-participant variability also 
increases in tasks with higher complexity and a VR envi-
ronment. This allows to compensate for the increased 
intra-participant variability in the calculation of the 
intra-class correlation coefficient, thus allowing to main-
tain high levels of test–retest reliability as metrics are 
still able to accurately discriminate between participants 
[38]. Indeed, inter-participant variability was consistently 
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increased for the VPIT compared to the PPIT (e.g., Fig-
ure SM3 and SM4), thereby supporting this argumenta-
tion. The reason why this increased level of intra- and 
inter-participant variability in the VPIT metrics led to 
higher responsiveness compared to the PPIT metrics 
might be that increased inter-participant variability indi-
cates that the metric is more responsive to behavioral 
changes, not only between participants but also because 
of an intervention.

While the absolute levels of test–retest reliability and 
measurement error for the VPIT metrics were not excel-
lent, this was expected given that they were estimated 
in able-bodied participants that are known to have less 
inter-participant variability, which influences the calcula-
tion of the intra-class correlation coefficient. This is sup-
ported by VPIT-based test–retest studies in persons with 
neurological disorders that achieved considerably better 
reliability [9, 25].

The absolute level of responsiveness of the digi-
tal health metrics in pwMS is challenging to interpret 
given the lack of comparable literature and the need for 
a dedicated analysis in a larger sample. A careful initial 
evaluation based on commonly used cut-offs to judge 
effect sizes would suggest that the responsiveness of the 
VPIT metrics was superior to the PPIT, NHPT, and BBT 
(details in SM and Table SM2 and SM3). Specifically, the 
VPIT showed small to moderate effects that were signifi-
cant for four metrics and, for example, the VPIT SPARC 
RT metric that indicated 10 pwMS improved movement 
smoothness beyond measurement error. In comparison, 
the NHPT showed only non-significant small effects and 
only three individuals improved beyond measurement 
error in NHPT. For the BBT, moderate effect sizes were 
observed and three pwMS improved beyond measure-
ment error, albeit missing data challenges the compa-
rability. Also, all pwMS that had improvements above 
the SRD in the BBT or NHPT also improved above the 
SRD in at least one metric in the VPIT and, except for 
one pwMS, also in the PPIT. Hence, in addition to larger 
effect sizes, the kinematic and kinetic metrics identified 
pwMS that improved in movement quality or grip force 
control but did not improve according to the clinical 
scales. However, these findings require further investiga-
tion in carefully designed, larger interventional studies 
that can highlight the value of digital health metrics in 
the absence of a true clinical ground truth.

Concurrent validity in pwMS is similar across tasks
Interestingly, the changes in intra- and inter-participant 
variability across task conditions did not significantly 
influence concurrent validity in pwMS. This is surprising, 

given that movements were most natural in the physi-
cal instrumented task, according to the metrics describ-
ing smoothness and speed, and should therefore more 
closely resemble the conventional assessments. This sug-
gests that sensorimotor impairments can be captured by 
digital health metrics from behavioral tasks that elicit dif-
ferent levels of movement smoothness and speed.

Instrumented assessment with a haptic VR or physical task 
are both suitable for clinical studies
These findings highlight that both haptic-based assess-
ment with 2D VR environments and physical task-based 
instrumented assessments can provide metrics with 
adequate clinimetric properties for potentially providing 
novel endpoints for clinical studies. However, the hap-
tic VR-based assessment with high task complexity had 
higher responsiveness in pwMS, thus being most promis-
ing for longitudinally assessing pwMS, even though these 
preliminary results need further confirmation. This sup-
ports the usage of haptic VR-based assessments with dif-
ferent levels of complexity that are already widely present 
in the research community [11–15]. It is also important 
to highlight that the physical instrumented task with low 
task complexity was superior in certain aspects to the 
VR-based tasks. Specifically, in the PPIT, movements 
were most intuitive (i.e., had highest speed and smooth-
ness), intra-participant variability was lowest and usabil-
ity ratings in pwMS were highest. This highlights that a 
physical instrument task with low task complexity might 
also be beneficial in certain clinical use-cases.

Assessment design should consider usability, minimize 
intra‑ and maximize inter‑participant variability
Furthermore, these results highlight that minimizing 
intra-participant variability should not be the main cri-
teria when designing an assessment with optimized 
clinimetric properties. Instead, the relationship of 
intra-participant to inter-participant variability needs 
to be considered and to obtain ideal clinimetric proper-
ties, intra-participant variability should be minimized 
whereas inter-participant variability should be maxi-
mized. While this is already obvious from the basic defi-
nition of reliability, previous research suggested indeed 
that the main focus should be on minimizing intra-par-
ticipant variability to optimize the responsiveness of an 
assessment [37]. While minimizing intra-participant 
variability can be achieved by reducing task complex-
ity and switching from a haptic VR to a physical task, 
it is an open question how assessment tasks should be 
designed to additionally maximize inter-participant vari-
ability. Potentially, this could be achieved when partici-
pants have disability-related differences in their behavior 
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when performing the assessment, but consistently stick 
to that behavior throughout repetitions. While this can 
potentially be implemented by designing complex assess-
ment tasks, it is most important that the task complexity 
is also catered to the disability level of the target popula-
tion. Specifically, persons with severe motor or cognitive 
disabilities would not be able to perform complex tasks 
and instead need simpler alternatives. Also, it needs to be 
considered that increasing task complexity challenges the 
dissociation of different mechanism underlying abnor-
mal task performance. For example, an added visuomo-
tor transformation in a sensorimotor task could make it 
more difficult to distinguish the effect of sensorimotor 
and visuomotor impairments on task performance. This 
highlights that task complexity is closely linked to the 
interpretability of digital health metrics.

As not only clinimetric properties of metrics but also 
the usability of the assessment platform needs to be con-
sidered when attempting to establish a technology-based 
assessment, we asked participants to rate the platforms 
usability based on the SUS. While the usability of all plat-
forms was rated as acceptable, the PPIT had the highest 
usability for able-bodied participants and pwMS. This, 
together with the objective data showing smoother and 
faster movements in physical environment than VR, con-
firms our initial hypothesis that movements in the physi-
cal environment are perceived as more natural than in 
VR. This indicates that using a physical instrumented 
task instead of a haptic VR-based task might help to fur-
ther increase the usability of a technology-aided assess-
ment platform.

Next to the assessment design, the definition and 
validation of suitable digital health metrics is of cru-
cial importance to enable clinical integration. Our work 
considered a large set of 10 metrics, which were identi-
fied from an initial set of 77 candidate metrics through 
a systematic selection procedure and deemed as most 
reliable and relevant for the VPIT [9, 10]. Hence, our 
analysis provides an understanding of the effect of task 
complexity and VR on a representative set of kinematic 
and kinetic metrics describing behavior during goal-
directed tasks. This serves as a foundation to further 
select and validate a single metric or a composite score 
that would be most meaningful to address specific clini-
cal research questions.

Limitations
Even though the different assessment tasks are based 
on the same device and have similar task dimensions 
and number of movements, there are still slight differ-
ences, for example, in terms of visual feedback related 

to the level of grasping force, the presence/absence of 
the wall requiring increased lifting during movements, 
and the difference between the haptic and actual physi-
cal feedback. These changes might have had an unde-
sired influence on the assessment outcomes. Clearly, 
the presented results are specific to the common use 
case of VR-environments presented on a 2D com-
puter screen and might not generalize to other setups 
using collocated VR or head mounted displays [7, 20, 
45]. Also, our definition of task complexity was derived 
from the concept of component complexity and focused 
especially on the number of available objects and the 
absence/presence of a predefined order in that the tasks 
needs to be completed, thereby capturing the level of 
motor and cognitive processing involved in a task [44]. 
It remains to be explored whether similar results would 
be obtained when manipulating other aspects of task 
complexity, for example in terms of the number of 
joints that are involved in a goal-directed movement. 
Additionally, it would have been interesting to explore 
a potential relationship between cognitive abilities and 
differences in performance between task conditions, 
but such data was not available in the context of this 
study. Lastly, the SRD values needed for the respon-
siveness analysis were based on a young able-bodied 
population that was not age-matched to the population 
of pwMS. While this does not affect the comparison of 
responsiveness across conditions, one should treat the 
magnitude of the number of pwMS exhibiting changes 
larger than the SRD with appropriate caution.

Conclusion
Our work provides evidence that both a technology-
based assessment in a physical environment with low 
task complexity and a haptic VR-based assessment with 
low or high task complexity provide digital health met-
rics with adequate clinimetric properties. However, the 
haptic VR-based assessment had superior responsive-
ness, thus being preferable when longitudinally assess-
ing pwMS. In contrast, the physical instrumented task 
had higher usability in pwMS, thus being potentially 
more suitable for clinical use. These findings emphasize 
that different clinical application might benefit from 
different technology-based assessments.

Also, our work highlights the importance of tak-
ing both intra-participant and inter-participant vari-
ability into account when designing technology-based 
assessments with optimal clinimetric properties, 
which should be considered jointly with the usability 
of an assessment platform. Overall, this work provides 
novel insights that can inform the design and choice of 
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technology-based assessments with optimal clinimet-
ric properties and usability. This is urgently needed to 
ensure digital health metrics fulfill their expectations in 
clinical research and practice.
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