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Abstract 

Background  Systems that capture motion under laboratory conditions limit validity in real-world environments. 
Mobile motion capture solutions such as Inertial Measurement Units (IMUs) can progress our understanding of "real" 
human movement. IMU data must be validated in each application to interpret with clinical applicability; this is par‑
ticularly true for diverse populations. Our IMU analysis method builds on the OpenSim IMU Inverse Kinematics toolkit 
integrating the Versatile Quaternion-based Filter and incorporates realistic constraints to the underlying biomechani‑
cal model. We validate our processing method against the reference standard optical motion capture in a case report 
with participants with transfemoral amputation fitted with a Percutaneous Osseointegrated Implant (POI) and with‑
out amputation walking over level ground. We hypothesis that by using this novel pipeline, we can validate IMU 
motion capture data, to a clinically acceptable degree.

Results  Average RMSE (across all joints) between the two systems from the participant with a unilateral trans‑
femoral amputation (TFA) on the amputated and the intact sides were 2.35° (IQR = 1.45°) and 3.59° (IQR = 2.00°) 
respectively. Equivalent results in the non-amputated participant were 2.26° (IQR = 1.08°). Joint level average RMSE 
between the two systems from the TFA ranged from 1.66° to 3.82° and from 1.21° to 5.46° in the non-amputated par‑
ticipant. In plane average RMSE between the two systems from the TFA ranged from 2.17° (coronal) to 3.91° (sagittal) 
and from 1.96° (transverse) to 2.32° (sagittal) in the non-amputated participant. Coefficients of Multiple Correlation 
(CMC) results between the two systems in the TFA ranged from 0.74 to > 0.99 and from 0.72 to > 0.99 in the non-
amputated participant and resulted in ‘excellent’ similarity in each data set average, in every plane and at all joint lev‑
els. Normalized RMSE between the two systems from the TFA ranged from 3.40% (knee level) to 54.54% (pelvis level) 
and from 2.18% to 36.01% in the non-amputated participant.
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Conclusions  We offer a modular processing pipeline that enables the addition of extra layers, facilitates changes 
to the underlying biomechanical model, and can accept raw IMU data from any vendor. We successfully validate 
the pipeline using data, for the first time, from a TFA participant using a POI and have proved our hypothesis.

Keywords  Gait analysis, Motion analysis, Prosthetic gait, Osseointegration, Transfemoral amputation gait, IMU motion 
capture, Inertial measurement unit, Joint kinematics, Motion capture validation, Orientation estimation algorithm

Background
Joint kinematics offer an indication of deviation from 
unimpaired gait [1]. Clinical evaluation and gait pathol-
ogy rehabilitation requires characterisation of gait (qual-
ity). Quantitative motion analysis is used to evaluate how 
an individual moves through space and is commonly 
performed using non-invasive, marker-based estimation 
techniques and optoelectronic motion capture systems 
have become the reference standard [2]. Despite appli-
cability across industries, the space and cost of gait labo-
ratories is often prohibitive and produces a vast data set 
which requires specialist knowledge, personnel and/or 
software to interpret and process. Moreover, gait qual-
ity is more accurately represented during real-world 
activities rather than under laboratory conditions that 
limit ecological validity [3]. Inertial Measurement Units 
(IMUs) are routinely used as mobile solutions to quan-
tify motion [4] and can progress our understanding of 
"real" human movement and its implications for diverse 
populations such as those with lower limb amputations. 
IMUs are small, do not require a clear line of sight to col-
lect data, and can be wirelessly affixed to an individual 
without obstructing movement. In both optoelectronic 
and inertial motion capture systems, the retroreflective 
markers or IMUs respectively feed to a biomechanical 
model where motions are transformed using rigid body 
kinematics into joint angles.

A challenge to the rigid body assumption, common 
to all marker based motion capture systems, is soft tis-
sue movement which introduces motion artefacts [2, 5], 
a potential source of error which can increase average 
RMSE joint kinematics by up to 6° in gait [6]. In lower 
limb amputation, markers are typically affixed to the 
external surface of the prosthetic socket which intro-
duces additional motion artefact due to socket piston-
ing (relative movement of residual limb and prosthetic 
socket). Several validation motion capture studies 
using both retroreflective markers and IMUs affix the 
retroreflective markers directly to the inertial mark-
ers in an effort to mitigate soft tissue (plus pistoning) 
artefacts on the measured joint angles [7–9]. However, 
these report a comparison between the measurement 
accuracy of the two systems, rather than between an 
optical or inertial gait analysis. Alternatively, placing 
the retroreflective markers on anatomical landmarks 

(the standard optical analysis method) [10–12] does 
not mitigate these motion artefacts but does provides a 
real-world methodological application of each system, 
e.g. the difference in the biomechanical models. Bony 
landmarks are not accessible along the length of the 
full residual limb of prosthetic socket users. However, 
an alternative to a prosthetic socket is a Percutaneous 
Osseointegrated Implant (POI), surgically connect-
ing the skeleton to the artificial limb. Connecting to 
the user in this way enables retroreflective markers to 
be attached to all bone landmarks of the residual limb 
soft tissue, obviating motion artefacts from prosthetic 
socket pistoning.

The surgical procedure of POI minimizes residual 
limb soft tissue [13], in contrast to amputation surgery, 
often planned for prosthetic socket use i.e., retention 
of distal soft tissues for comfort [14]. This leads us to 
expect kinematic data from a POI user will be more 
like non amputated kinematic data compared to pros-
thetic socket users. In fact connection by POI results 
in a more symmetrical coronal plane gait pattern [15]. 
Furthermore, we expect this to reduce soft tissue and 
socket pistoning artefacts compared to prosthetic 
socket data when considering the lower limb mark-
ers. Several studies have validated and deployed IMU 
motion analyses in participants with lower limb ampu-
tation using prosthetic sockets [9, 10, 12, 16, 17], how-
ever the results cannot be generalised to include POI 
users. To the best of the authors knowledge there is no 
validation of a mobile motion capture system against 
the reference standard from real-world activities in 
users of POI. In order to progress our understanding 
of "real" human movement there is a clinical need to 
quantify gait quality from real-world activities. An eco-
logical validity in this small but burgeoning population 
[18] will better inform POI design, surgical technique, 
and rehabilitation protocols.

There are several recent advances in orientation esti-
mation algorithms and open-source toolboxes enabling 
such a validation. To generate a nuanced understand-
ing of these advancements and their implications, we 
intend to provide an easy to use plug-and-play pro-
cessing pipeline that, for the first time, integrates the 
current state-of-the-art in orientation estimation (Ver-
satile Quaternion-based Filter) (VQF) [19] with the 
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OpenSim IMU inverse kinematics (IK) toolkit (v4.4, 
Stanford University, USA) [20] applied to a constrained 
biomechanical model for joint angle estimation.

The Gait Deviation Index (GDI) [21] is one of many 
measures [22–24] of gait quality with a clinical applica-
tion. We collected inertial and optical motion data from a 
participant with TFA implanted with a POI and one non-
amputated participant. We compared estimated joint 
kinematic sets between optical and inertial motion cap-
ture systems and produced metrics that are the inputs to 
enable the calculation of GDI in future work. In doing so, 
we provide a validation for the inertial system and fill the 
knowledge gap on this population using our novel pipe-
line processing methods. Our hypothesis was that there 
would be no differences, at a clinically acceptable degree 
[25], between the motion capture systems.

Methods
Participants
TFA: A 27-year-old male with a right-sided unilateral, 
traumatic transfemoral amputation at aged 17, was fit-
ted 2  years later with a POI (the Osseointegrated Pros-
thesis for the Rehabilitation of Amputees, OPRA), and 
took part in this study. The participant had good mobility 
(clinician assigned K Level 4) and used a microprocessor-
controlled C-Leg connected to a mechanical carbon fibre 
Taleo foot (both Ottobock, Duderstadt, Germany). He 
was 1.88  m in height and weighed 75  kg with a BMI of 
21.2 kg/m2.

Non amputated: A 48-year-old female with no amputa-
tions nor mobility restrictions participated in this study. 
She was 1.60 m in height and weighed 52 kg with a BMI 
of 20.3 kg/m2.

Optoelectronic system (reference)
An infrared camera system (Qualisys AB, Gothenburg, 
Sweden) comprising 10 cameras was used in the opto-
electronic motion capture. An experienced physiothera-
pist affixed 15 retroreflective markers to the participants 
using a modified version of the validated Sahlgrenska 
University Hospital (SUH) skin marker set [26]. For the 
TFA participant equivalent bony landmarks distal to the 
residual limb soft tissue on the artificial leg were used 
(Fig.  1). Prior to testing, calibration poses in a neutral 
standing position for both participants were recorded.

Inertial motion capture system (estimate)
An Xsens Awinda system (Movella Inc., California, 
USA) was used to capture three-axis accelerometer 
and gyroscope, and magnetometer measurements 
from seven IMUs on each participant. Prior to data 

collection the IMUs were affixed with supplied stretch 
bands according to the manufacturer’s recommended 
procedure [27], ensuring not to occlude the retroreflec-
tive markers which require a clear line of sight to the 
cameras. The position of the IMUs were unrestricted 
(since each trial begins with a calibration pose; see 
experimental protocol).

Data recording
Raw data were simultaneously recorded by the opto-
electronic and inertial motion capture systems at 
the maximum manufacturer’s recommended rates 
of 240  Hz and 60  Hz, respectively. The start and end 
of each trial was marked by a trigger pulse gener-
ated by the Xsens system. Hardware synchronization 

Y

Z
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Fig. 1  Retroreflective markers and IMUs (orange) mounted 
on stretch bands (black) while participants in calibration pose 
(note: IMUs hidden under stretch bands are indicated with a white 
dashed outline). The lower limb SUH marker set used: Sacrum, 
Anterior superior iliac spine, Lateral knee-joint line, Proximal 
to the superior border of the patella, Tibial tubercle, Heel, Lateral 
malleolus, and between the second and third Metatarsals. Laboratory 
and OpenSim biomechanical model coordinate systems shown
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was further validated and enhanced with software 
refinement via cross-correlation analysis and visual 
inspection.

Experimental protocol
Prior to data collection, participants underwent several 
gait trials for 10  min to familiarize themselves with the 
gait conditions. Participant data collection sessions were 
not conducted at the same time. A total of seven data col-
lection gait trials for the TFA participant and three tri-
als for the non-amputated participant were recorded in 
two sessions. Each trial preceded by the inertial motion 
capture calibration pose. To ensure secure attachment of 
the IMUs to the foot segment, participants were asked to 
perform the trials barefoot.

Inertial motion capture system calibration started 
with a standing pose (feet parallel and hip-width apart, 
hip and knee directly in line above the feet, and a neu-
tral spine alignment) followed by a six-meter straight line 
walk at a self-selected pace, a 180° turn and return walk 
repeatedly for 60 s.

Optoelectronic motion capture system calibration 
entailed one static reference recording while participants 
were standing aligned with the Z-axis of the global (lab) 
coordinate system (see Fig. 1).

Data processing and analysis
Optoelectronic system (reference)
Biomechanical models were created from participants 
static calibration pose in Visual3D Software (C-motion 
Inc., Germantown, USA), they had seven linked seg-
ments modeled as cylindrical rigid bodies with a mass 
and center of gravity. The models were scaled using par-
ticipant height and segments were linked with six socket 
joints. Retroreflective marker trajectory data was pro-
cessed and analyzed in Visual3D. A fourth-order 15  Hz 
Butterworth low-pass filter was applied, and a predic-
tion approach was used to calculate hip, knee, and ankle 
joint centers. Segment joint angles were calculated and 
reported as the relative orientation of the distal segment 
with respect to the proximal segment described in the 
X-Y-Z Cardan sequence (i.e., flexion/extension, adduc-
tion/abduction angles, and internal/external rotation). 
The orientation of the pelvis was calculated with respect 
to the global (laboratory) frame and is described in the 
Z-Y-X Cardan sequence. A custom Python script (v3.11) 
was used to identify and mark heel strikes based on heel 
marker vertical position data to be used for stride seg-
mentation in both systems.

Inertial motion capture system (estimate)
The raw accelerometer, gyroscope and magnetometer 
data were wirelessly transmitted to a PC in real-time and 

processed using the VQF algorithm to obtain sensor ori-
entations. For evaluation and error reporting purposes, 
the reference coordinate frames of the two systems were 
aligned by a transformation found by solving the robot-
world/hand-eye calibration problem using the Kronecker 
product [28]. Next, the IMU data were processed with 
the OpenSim IMU IK toolkit to calculate joint kinemat-
ics [20]. The OpenSim IMU IK toolkit uses the first 
frame of a trial, assuming the participant is in the cali-
bration pose, to compute sensor-to-segment calibration 
matrices. It then iterates through each time frame, find-
ing joint angles that minimize orientation errors between 
the model and the measured orientations. We modi-
fied OpenSim’s Gait 2354 physiological skeletal model 
[29] by simplifying the knee and ankle to a single hinge 
joint and locking the subtalar and metatarsophalangeal 
joints to represent the biomechanics of an artificial limb 
more accurately. The orientation of IMUs with respect 
to their underlying body segments was estimated in 
OpenSim using the initial pose of each trial. The time 
series obtained for each gait trial with both participants 
was parsed into individual strides using heel strike time 
marks. To minimize the influence of gait initiation (accel-
eration) or stopping (deceleration), we discarded the 
first and last full strides, as well as the strides during and 
immediately before and after each turn, as the change in 
direction during turns could introduce variability in gait 
dynamics. A total of 167 strides were included in the 
final comparison for the TFA participant and 111 strides 
for the non-amputated participant. For the calculation 
of foot progression angle we employed the methods in 
Wouda, Jaspar [30].

Data processing and reporting
For each joint, root mean square error (RMSE) and 
range of motion (ROM) were calculated for each stride. 
The normalized RMSE for each stride was calculated by 
dividing the RMSE by the ROM. Since the calculated 
RMSE, normalized (n)RMSE, and ROM values for each 
stride did not pass the Shapiro–Wilk test for normal-
ity we report joint angle central tendency (median) and 
Interquartile Range (IQR) estimates from both motion 
capture systems. We provide average ROM data for 
both systems and participants (Table 1) enabling calcu-
lation of the GDI (pelvis and hip in three planes, knee 
and ankle sagittal plane and foot progression angle). All 
non-amputated participant data is the sum of the right 
and left leg. We assess the similarity of the joint angle 
waveforms obtained through the two systems using 
Coefficients of Multiple Correlation (CMC) similar to 
Ferrari, Cutti [31] with a 95% CI calculated using non-
parametric bootstrapping. CMC is reported where all 
values are real numbers i.e., from 0 to 1. Similarity of 
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the joint angle waveforms was considered excellent if 
CMC > 0.75, fair-to-high if CMC 0.4–0.74, and poor if 
CMC < 0.39. We plotted the waveforms taking the n’th 
sample (n from 0 to 100) of each stride from each sys-
tem, which composes the two observation sets (one 
set for each system). Then we took the RMSE between 
the two sets, if RMSE > 5°, we marked the sample and 
shaded it in Fig.  2. The absolute RMSE data was nor-
malized (nRMSE) with respect to ROM obtained using 
the optical motion capture data on the same partici-
pant, similar to methods employed by Manz, Seifert 
[17].

Results
ROM data average over all gait cycles between both 
motion capture systems for all participants is presented 
in Table 1.

Average (combined) RMSE
TFA: Across all joints and spatiotemporal data, the 
amputated side was lower compared to the intact side; 
2.35° (IQR = 1.45°) and 3.59° (IQR = 2.00°) respectively. 
There were no RMSEs above 5.98° on either side. Com-
bined joint level average RMSE between the two sys-
tems ranged from 1.66° to 3.82° (foot progression and 
hip respectively). Combined in plane average RMSE 
ranged from 2.17° in the coronal plane to 3.91° in the 
sagittal plane.

Non amputated: Across all joints and spatiotemporal 
data average RMSE was 2.26° (IQR = 1.08°). There were 
no RMSEs above 5.46°. Joint level average RMSE between 
the two systems ranged from 1.21° to 5.46° (pelvis and 
ankle respectively). Average RMSE ranged from 1.96° in 
the transverse plane to 2.32° in the sagittal plane.

CMC
TFA: Results (considering only real numbers) ranged 
from 0.74 (intact side pelvis internal/external rotation) 
to > 0.99 (knee flexion/extension on both sides) equating 
to from fair-to-high to an excellent similarity between the 
joint angle waveforms with an average of > 0.92 and > 0.89 
on amputated and intact sides respectively (excellent 
similarity). Averaged in plane CMC data were lowest in 
transverse and highest in sagittal planes (0.81 and > 0.96 
respectively). Averaged joint level results ranged 
from > 0.84 at the pelvis to > 0.99 at the knee (excellent 
similarity).

Non amputated: Results (considering only real num-
bers) ranged from 0.72 (pelvis hike/drop) to > 0.99 (knee 
and hip flexion/extension) with an average of > 0.88 dem-
onstrating an excellent similarity between the joint angle 
waveforms. In plane CMC data was lowest in coronal and 
highest in sagittal planes (0.76 and > 0.98 respectively). 
Similar to the TFA results, averaged joint level results 
ranged from 0.79 at the pelvis to > 0.99 at the knee equat-
ing to excellent waveform similarity.

nRMSE
TFA: There were outliers in pelvis flexion/extension on 
both legs (nRMSE amputated = 113.14% (IQR = 73.77), 
nRMSE intact = 132.48 (IQR = 75.59)), and intact side hip 
adduction/abduction (nRMSE = 69.37% (IQR = 26.35)) 
otherwise all nRMSE was < 27.69%. Joint level average 
nRMSE across all joints on the amputated side was lower 
compared to the intact side; 18.87% and 30.51% respec-
tively. The combined joint level average nRMSE ranged 
from 3.40% at the knee joint level to 54.54% at the pel-
vis level. The combined in plane average nRMSE ranged 
from 22.59% in the transverse plane to 39.21% in the sag-
ittal plane.

Table 1  Average ROM (°) and foot progression angles across all gait cycles in TFA and non amputated participants

Joint/spatiotemporal measure Optical IMU

TFA amp IQR TFA intact IQR Without 
amputation

IQR TFA amp IQR TFA intact IQR Without 
amputation

IQR

Pelvis Flexion/Extension (tilt) 4.87 1.11 4.31 1.20 1.69 0.55 4.81 1.18 4.74 1.18 2.39 0.70

Pelvis Hike/Drop (list) 6.13 1.27 6.62 1.31 5.39 0.76 4.64 1.22 4.89 0.95 4.55 0.60

Pelvis Internal/External rotation 9.68 2.24 9.96 1.86 7.25 2.65 9.51 2.62 9.15 1.85 6.23 2.49

Hip Flexion/Extension 39.42 2.75 39.32 1.75 37.01 1.33 45.48 2.89 47.41 2.28 37.03 2.33

Hip Adduction/Abduction 8.70 1.74 8.62 2.25 10.67 1.64 9.32 2.39 10.43 2.36 14.37 2.57

Hip Internal/External Rotation 10.83 2.37 15.20 3.63 11.72 2.42 11.21 2.55 15.53 4.21 15.00 2.74

Knee Flexion/Extension 54.56 3.16 68.30 2.07 64.64 2.64 54.85 3.08 69.88 5.38 68.09 1.59

Ankle Dorsi/Plantarflexion 12.14 0.71 14.80 2.85 39.94 5.97 12.06 0.61 21.60 4.49 57.33 10.48

Foot progression 7.28 3.70 14.74 4.38 3.02 21.02 6.93 4.05 15.59 5.42 4.29 19.42
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Fig. 2  Joint angles averaged over all gait cycles. Blue = Inertial motion capture system ± IQR. Red = Optoelectronic system ± IQR. Shaded bands 
show regions where median RMSE > 5°. Gait cycle (%) horizontal axis is plotted against joint angles (°) on the vertical axis
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Fig. 2  continued
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Non amputated: Although nRMSE in pelvis flexion/
extension was higher than other non-amputated par-
ticipant results (nRMSE = 66.86% (IQR = 61.45)) it was 
approximately half of that obtained from the TFA data 
in the same DOF. The joint level average nRMSE ranged 
from 2.18% at the knee joint level to 36.01% at the pelvis 
level. In plane average nRMSE ranged from 19.47% in the 
transverse plane to 27.18% in the coronal plane.

Waveform plots in Fig.  2 illustrate the congruency 
between both motion capture data sets where grey over-
lay denotes regions where median RMSE > 5°, a threshold 
in literature deemed acceptable for many applications 
[25].

Discussion
Our novel signal processing pipeline has enabled the cal-
culation of joint kinematics from raw IMU data for the 
first-time using POI participants. TFA combined average 
RMSE was 2.97° (2.35° and 3.59°; amputated and intact 
sides respectively) and 2.26° from the non-amputated 
participant data, is in line with non-amputated partici-
pant and TFA literature [10, 17, 20, 32–35]. Joint kin-
ematic RMSE < 2° is considered to be excellent and < 5° 
is a clinically acceptable level of accuracy [25], errors 
greater than 5° could mislead clinical interpretation [36]. 
It is worth noting that these thresholds refer to the most 
common clinical situations and may not be suitable in all 
applications (for example in surgical decision making in 
children with Cerebral Palsy). Our non-amputated par-
ticipant results had very few regions with an RMSE > 5° 
(grey shading on waveform plots) except for small sec-
tions in hip adduction/abduction, hip internal/exter-
nal rotation, and ankle dorsi/plantar flexion just before 
and after the toe off phase of gait (~ 60% gait cycle). It 
has been previously suggested [10] that during toe off 
and heel contact gait phases one might expect the larg-
est deviations between optical and IMU motion capture 
angles due to the difference in inertial properties of soft 
tissues. Extending this logic; since markers are placed 
on the residual soft tissues of POI users unlike the rigid 
material of a prosthetic socket of a conventional TFA, one 
might expect a greater difference between the intact and 
amputated legs of a socket user compared to the intact 
and amputated legs of a POI user. Comparing knee flex-
ion/extension RMSE results from our study (1.59° ampu-
tated vs 2.66° intact, a multiple of 1.7) with the prosthetic 
socket data in Seel, Raisch [10] (0.71° amputated vs 3.30° 
intact, a multiple of 4.6) it seems that this could be the 
case although this should be followed up in future work 
with matched controls before deductions can be drawn.

The inertial motion capture system presented herein 
is subject to two primary sources of error when com-
pared to the optoelectronic system reference standard: 

calibration errors and errors from information process-
ing stages (i.e., IMU orientation and joint angle estima-
tion algorithms). Calibration errors occur when the 
participant does not hold the calibration pose perfectly, 
leading to an erroneous sensor-to-segment calibration 
matrix. Such errors result in an offset in the measured 
joint angles, evident in Fig.  2 plots depicting pelvis and 
hip flexion/extension in the TFA participant. By eliminat-
ing the offset between the time series, we can compute 
RMSE values that are not influenced by calibration errors. 
Offset-corrected RMSE values (Table 2a in brackets) for 
the TFA data segments are all less than 2°, whereas some 
segments in the TFA-intact and non-amputated partici-
pant data still exhibit relatively high errors. Notably, the 
participant without amputation displays high RMSE val-
ues at the ankle despite offset correction. This could be 
attributed to two factors: the constrained biomechani-
cal model offering a more accurate representation of the 
TFA participant ankle, and the absence of skin artefacts 
at both the foot and the shank, where the IMUs were 
installed, enhancing the accuracy of joint angle estima-
tion. Furthermore, the lower ankle angle RMSE for the 
TFA-intact compared to non-amputated participant 
data can be explained by the fact that the range of ankle 
motion is nearly three times greater without amputation 
compared to TFA-intact.

Soft tissue artefacts influence all planes of motion, with 
the sagittal and transverse planes often generating the 
most and least reliable motion data respectively (due also 
in part to locating an accurate hip joint center) [5, 37, 38]. 
In both participants we observed the highest CMC in 
the sagittal planes and the TFA data produced the lowest 
CMC in the transverse plane, reflecting the literature in 
terms of similarity of joint angle waveforms. Further work 
with more TFA participants using POI would be a use-
ful follow on from this study to confirm that it is echoed 
amongst this population. We obtained similar absolute 
RMSE at magnitude in hip flexion/extension to Manz, 
Seifert [17] who used TFA participants with prosthetic 
socket connections. Moreover, at the knee and ankle level 
our absolute RMSE results match an even greater pro-
portion of the literature [10, 17, 39]. The in plane com-
bined TFA and without amputation RMSEs resulted in a 
clinically acceptable level of accuracy at < 4.0° and < 2.5° 
respectively, with excellent average joint angle waveform 
similarity in each population (> 0.92, > 0.89, and > 0.88 
amputated, intact and without amputation respectively) 
(Table 3).

Most of the literature focuses on absolute RMSE and 
we consider that normalizing against joint ROM has 
been somewhat overlooked. The value of this added data 
dimension is highlighted in the radar plots in Tables 2b 
and 4b where absolute RMSE averages depict the ankle 
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and hip plane levels to be the most divergent between 
systems (largest errors). In fact, when considered as a 
ratio (nRMSE) of the overall ROM, the pelvis level ubiq-
uitously results in the greatest errors. This is driven 
predominantly by our result in pelvis flexion/extension 
RMSE (5.51° amputated and 5.71° intact) since ROM at 
the same joint level and degree of freedom is 4.87° and 
4.31° respectively. Otherwise our nRMSE results were 
similar to the literature with and without lower limb 
amputations; Manz, Seifert [17] obtained a nRMSE of 
0.75% and 11.67% at the knee and hip level respectively in 
TFAs. Our TFA amputated side equivalents were 2.91% 
and 14.37% respectively. Our methods enabled the place-
ment of IMUs in any position on each body segment for 
data collection, conversely Manz, Seifert [17] embedded 

IMU sensors inside the prosthetic leg and so the relative 
orientation of IMUs with respect to segments was known. 
This obviates the need to perform sensor-to-segment 
calibration and so drastically improves results. Teufl, Lor-
enz [40] observed an average joint angle nRMSE < 7%; 
our TFA data was under this threshold in three out of 
eight results (knee on both legs and ankle on the ampu-
tated side). Average joint angle nRMSE of 13.2%–29.3% 
were obtained by Lim, Kim [41], our equivalent results 
were within a similar range in the TFA amputated and 
non-amputated participant data (25.97% and 22.43% 
respectively) but outside this range in the TFA intact 
side (38.83%). It is likely that the increased accuracy we 
obtained on the amputated TFA leg compared to the 
intact leg were due to soft tissue artefacts. The waveform 

Table 2  a Absolute measure of fit. b Absolute measure of fit

Numbers in brackets reflect bias-corrected median and IQR RMSE values

Radar plot key: Green = TFA amputated side. Purple = TFA intact side. Black = TFA combined. Orange = without amputation

Median RMSE and IQR of joint angles between systems

Joint / spatiotemporal measure Absolute RMSE (°)

TFA Amputated IQR TFA Intact IQR Without amputation IQR

Pelvis Flexion/Extension (tilt) 5.51 (0.84) 3.13 (0.21) 5.71 (0.83) 3.49 (0.25) 1.13 (0.39) 0.99 (0.11)

Pelvis Hike/Drop (list) 0.89 (0.61) 0.41 (0.29) 0.88 (0.66) 0.32 (0.34) 1.43 (1.38) 0.15 (0.12)

Pelvis Internal/External rotation 2.68 (1.94) 0.87 (0.41) 2.60 (1.87) 0.88 (0.48) 1.06 (0.73) 0.86 (0.12)

Hip Flexion/Extension 5.23 (1.64) 3.38 (0.32) 5.89 (2.43) 4.55 (0.30) 1.27 (0.99) 0.45 (0.38)

Hip Adduction/Abduction 1.03 (0.79) 0.70 (0.37) 5.98 (2.83) 2.15 (1.11) 2.97 (2.50) 0.57 (0.49)

Hip Internal/External Rotation 1.95 (1.03) 1.36 (0.32) 2.82 (1.59) 1.73 (0.51) 2.85 (2.44) 1.23 (0.63)

Knee Flexion/Extension 1.59 (1.28) 0.48 (0.50) 2.66 (2.27) 0.55 (0.36) 1.41 (1.33) 0.21 (0.23)

Ankle Dorsi/Plantarflexion 0.78 (0.34) 0.73 (0.09) 3.93 (2.35) 1.88 (0.42) 5.46 (4.25) 2.48 (1.70)

Foot progression angle 1.48 2.01 1.84 2.46 2.73 2.80

Average 2.35 1.45 3.59 2.00 2.26 1.08

Plane and joint level median RMSE and radar plot between systems

Absolute RMSE (°)

TFA Amputated TFA Intact Combined Without ampu‑
tation

Plane Sagittal 3.28 4.55 3.91 2.32

Coronal 0.96 3.39 2.17 2.20

Transverse 2.32 2.71 2.51 1.96

Joint level Pelvis 3.03 3.06 3.05 1.21

Hip 2.74 4.90 3.82 2.36

Knee 1.59 2.66 2.13 1.41

Ankle 0.78 3.93 2.36 5.46

Foot 1.48 1.84 1.66 2.73
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similarity data has resulted in ‘excellent’ similarity in each 
data set average, in every plane and at all joint levels.

We acknowledge there was a potential for increased 
error in our methods arising from sensor-to-segment 
calibration error in addition to not mounting the retrore-
flective markers on the IMUs and not having a rigid pros-
thetic socket to attach sensors to. As a result, however we 
have been able to offer an unrestricted IMU placement 
and our methods have been sophisticated enough to pro-
duce results that are similar to the literature. We note 
that this may have been partly influenced by the soft tis-
sue surgery entailed in POI fixation and that our partici-
pants did not have a high BMI. Our processing pipeline 
enables the calculation of GDI, enabling the classifica-
tion of gait deviation which can potentially progress our 
understanding of ’real’ human movement and its implica-
tions for diverse populations. Finally, joint kinematics can 
provide valuable information that will better inform POI 
design, surgical technique, and rehabilitation protocols 
[42].

Strengths and limitations and future work
All modelling is a best approximation, and despite the 
modifications made to the OpenSim model, inaccura-
cies still remain in both models, such as participant 
geometry, calibration pose accuracy, and the imperfect 
representation of joints as hinge-like structures dur-
ing gait. Typically, gait compensation techniques in TFA 
lead to reduced thorax-pelvis rotational ROM and pel-
vic obliquity throughout the gait cycle [43, 44]. Despite 
POI purporting more symmetrical coronal plane gait, 
these deviations were not accounted for. Other potential 
sources of error include high intra and inter participant 
variability in the assessment of anatomical landmarks 
and joint center’s [5, 35, 37, 38]. Employing anatomical 
calibration procedures can mitigate this artefact to some 
extent however, the kinaesthetic ability of participants to 
reproduce calibration postures and motion is a potential 
source of error and subject effects may be generated. It 
is worth noting that there may also be an innate source 
of experimental error due to the weight and attachment 
band of the IMUs which may dampen higher-frequency 
perturbations that would otherwise affect the optical 

Table 3  a Relative measure of fit – correlation of waveforms. b Relative measure of fit–correlation of waveforms

Real numbers are reported for CMC (from 0 to 1)

CMC between systems

Joint / spatiotemporal measure CMC

TFA Amputated CI TFA Intact CI Without 
amputation

CI

Pelvis Flexion/Extension (tilt) nan – nan – nan –

Pelvis Hike/Drop (list) 0.93 (0.93–0.94) 0.94 (0.94–0.95) 0.72 (0.67–0.77)

Pelvis Internal/External rotation 0.76 (0.73–0.79) 0.74 (0.71–0.78) 0.86 (0.85–0.87)

Hip Flexion/Extension 0.96 (0.95–0.96) 0.94 (0.94–0.95)  > 0.99 (1.00–1.00)

Hip Adduction/Abduction 0.96 (0.96–0.96) nan – 0.80 (0.77–0.84)

Hip Internal/External Rotation 0.87 (0.86–0.89) 0.88 (0.87–0.90) 0.83 (0.82–0.85)

Knee Flexion/Extension  > 0.99 (1.00–1.00)  > 0.99 (1.00 -1.00)  > 0.99 (1.00–1.00)

Ankle Dorsi/Plantarflexion 0.98 (0.98–0.98) 0.86 (0.84–0.87) 0.95 (0.94–0.95)

Foot progression angle – – – – – –

Average  > 0.92  > 0.89  > 0.88

Plane and joint level CMC between systems

CMC

TFA Amputated TFA Intact Combined Without 
amputation

Plane Sagittal 0.98 0.93 0.96  > 0.98

Coronal 0.95 0.94 0.94 0.76

Transverse 0.82 0.81 0.81 0.85

Joint level Pelvis 0.85 0.84 0.84 0.79

Hip 0.93 0.91 0.92 0.82

Knee  > 0.99  > 0.99  > 0.99  > 0.99

Ankle 0.98 0.86 0.92 0.95
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motion capture markers. It should be noted that real 
world conditions may influence results and that there 
may be some unknowns associated with longer data col-
lection periods.

Another notable source of inaccuracy in IMU motion 
capture systems arises from drift error in IMU measure-
ments. In this study, we performed static single-pose cali-
bration before each trial to minimize the effect of drift 
error between trials. While this calibration method has 
shown high repeatability [45], performing calibration as 
frequently may not be feasible in real-world applications. 
However, previous studies have demonstrated that using 

model-based inverse kinematics can significantly reduce 
IMU drift error in joint angle estimation over extended 
recording periods [20]. Additionally, the VQF algorithm 
has been shown to be highly effective in eliminating drift 
by accurately estimating and compensating for gyroscope 
bias. Therefore, we consider it an important next step to 
evaluate the introduced pipeline in a real-world popula-
tion-specific application with less frequent calibration.

The strength of this study is in the easy-to-use plug-
and-play processing pipeline, the ability to freely place 
the IMUs and our novel processing method. These 
methods have generated a clinically acceptable [25], 

Table 4  a Relative measure of fit. b Relative measure of fit

Radar plot key: Green = TFA amputated side. Purple = TFA intact side. Black = TFA combined. Orange = without amputation

nRMSE and IQR of joint angles between systems

Joint / spatiotemporal measure nRMSE (%)

TFA Amputated IQR TFA Intact IQR Without 
amputation

IQR

Pelvis Flexion/Extension (tilt) 113.14 73.77 132.48 75.59 66.86 61.45

Pelvis Hike/Drop (list) 14.52 6.99 13.29 4.80 26.53 4.86

Pelvis Internal/External rotation 27.69 12.23 26.10 11.11 14.62 14.10

Hip Flexion/Extension 13.27 8.15 14.98 12.14 3.43 1.29

Hip Adduction/Abduction 11.84 7.36 69.37 26.35 27.84 8.22

Hip Internal/External Rotation 18.01 13.51 18.55 12.80 24.32 11.35

Knee Flexion/Extension 2.91 0.94 3.89 0.88 2.18 0.37

Ankle Dorsi/Plantarflexion 6.43 5.72 32.59 11.56 13.67 4.80

Foot progression angle – – – – – –

Average 25.97 16.08 38.83 19.40 22.43 13.31

Plane and joint level nRMSE and radar plot between systems

nRMSE (%)

TFA Amputated TFA Intact Combined Without 
amputation

Plane Sagittal 33.94 44.48 39.21 21.54

Coronal 13.18 41.33 27.26 27.18

Transverse 22.85 22.33 22.59 19.47

Joint level Pelvis 51.78 57.29 54.54 36.01

Hip 14.37 34.30 24.34 18.53

Knee 2.91 3.89 3.40 2.18

Ankle 6.43 26.55 16.49 13.67



Page 12 of 13Ahmed et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:128 

level of accuracy in data sets from two completely dif-
ferent participants in terms of mobility, kinematics and 
anthropomorphic features demonstrating the strength 
of these processing methods. We obtained 167 strides 
for the comparison; more strides from additional partici-
pants might allow us to perform interparticipant tests of 
significance.

Previous validations on participants with transfemoral 
amputation using prosthetic sockets has presumed that 
the socket mitigated effects of soft tissue artefacts on 
results [10]. We have offered a validated processing pipe-
line by which to calculate these effects since POI removes 
the influence of socket pistoning. Further work might 
exploit the advantages that POI offers whereby partici-
pants can ambulate either using adapted prosthetic sock-
ets or as intended, via their POI and a direct controlled 
study could be undertaken. Furthermore, it has been 
shown recently that POI markers affixed directly to the 
exoprosthetic portion rather than skin markers repre-
senting the same segment are a more accurate represen-
tation of the true femoral movement [46], this might aid 
in the development of accuracy in future work.

Conclusions
Our signal processing pipeline works out of the box and 
has a customizable extensible architecture enabling the 
easy addition of extra layers, such as more sophisticated 
calibration routines. The pipeline is based on the Open-
Sim IMU IK toolkit, extended to incorporate the highly 
customizable VQF algorithm. This addition allows the 
pipeline to directly accept raw IMU data from any vendor. 
Users can modify the underlying OpenSim biomechani-
cal model, for example, by adding more realistic con-
straints for a specific target group, changing joint types, 
and use in other limb level amputation applications. We 
have successfully demonstrated a clinically acceptable 
[25] level of accuracy between an optical and inertial 
motion capture system to support our hypothesis using 
our novel processing pipeline applied to participants with 
TFA using POI and without amputation data sets. This 
achievement signifies an important step towards real-
world evaluation of gait quality beyond laboratory set-
tings, with application in diverse populations.
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