Optimization Models for Fairness

John Hooker Carnegie Mellon University

Monash University FIT Seminar May 2014

Modeling Fairness

- Why represent fairness in an optimization model?
 - In many applications, equitable distribution is an objective. How to formulate it mathematically?
 - Optimization models may provide **insight** into the consequences of ethical theories.

Modeling Equity

- Some applications
 - Single-payer health system.
 - Facility location (e.g., emergency services).
 - Taxation (revenue vs. progressivity).
 - Relief operations.
 - Telecommunications (lexmax, Nash bargaining solution)

Outline

- Optimization models and their implications
 - Utilitarian
 - Rawlsian (lexmax)
- Axiomatics
 - Deriving utilitarian and Rawlsian criteria
- Measures of inequality
- An allocation problem
- Bargaining solutions
 - Nash
 - Raiffa-Kalai-Smorodinsky
- Combining utility and equity
 - Health care example

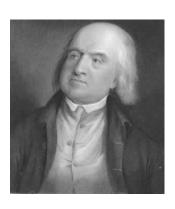
Optimization Models and Their Implications

• Utilitarianism

- The optimization problem
- Characteristics of utilitarian allocations
- Arguments for utilitarianism
- Rawlsian difference principle
 - The social contract argument
 - The lexmax principle
 - The optimization problem
 - Characteristics of lexmax solutions

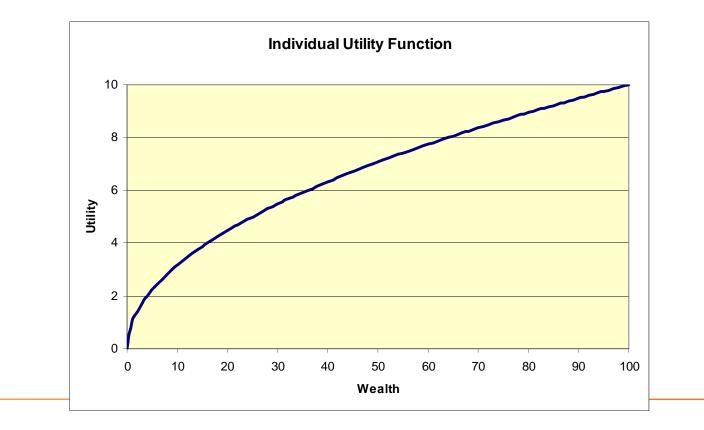
Efficiency vs. Equity

- Two classical criteria for distributive justice:
 - Utilitarianism (efficiency)
 - Difference principle of John Rawls (equity)
- These have the must studied philosophical underpinnings.



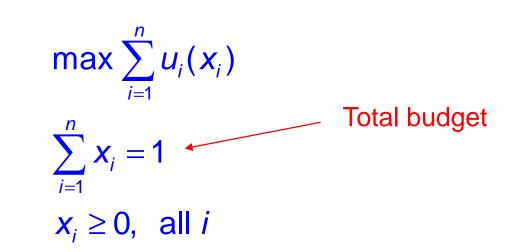
Utilitarian Principle

• We assume that every individual has a utility function v(x), where x is the wealth allocation to the individual.



Utilitarian Principle

- A "just" distribution of wealth is one that maximizes total expected utility.
- Let x_i = wealth initially allocated to person i
 U_i(x_i) = utility eventually produced by person i



• Elementary analysis yields the optimal solution:

$$u'_1(x_1) = \cdots = u'_n(x_n)$$

Marginal productivity

Distribute wealth so as to equalize marginal productivity.

• Elementary analysis yields the optimal solution:

$$u'_1(x_1) = \cdots = u'_n(x_n)$$

Marginal productivity

Distribute wealth so as to equalize marginal productivity.

• If we index persons in order of marginal productivity, i.e., $u'_{i}(\cdot) \le u'_{i+1}(\cdot)$, all *i*

Then less productive individuals receive less wealth.

• Elementary analysis yields the optimal solution:

$$u'_1(x_1) = \cdots = u'_n(x_n)$$

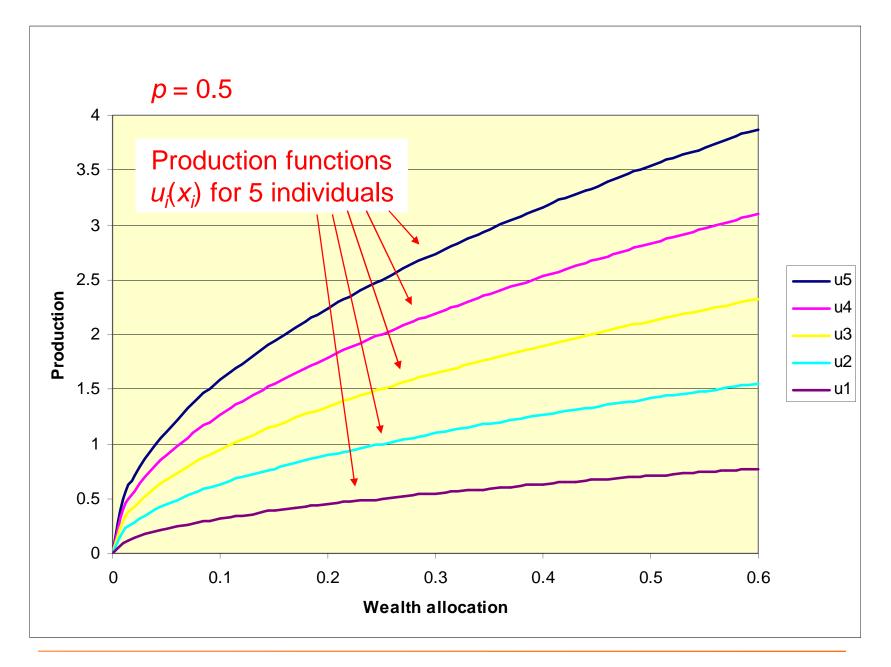
Marginal productivity

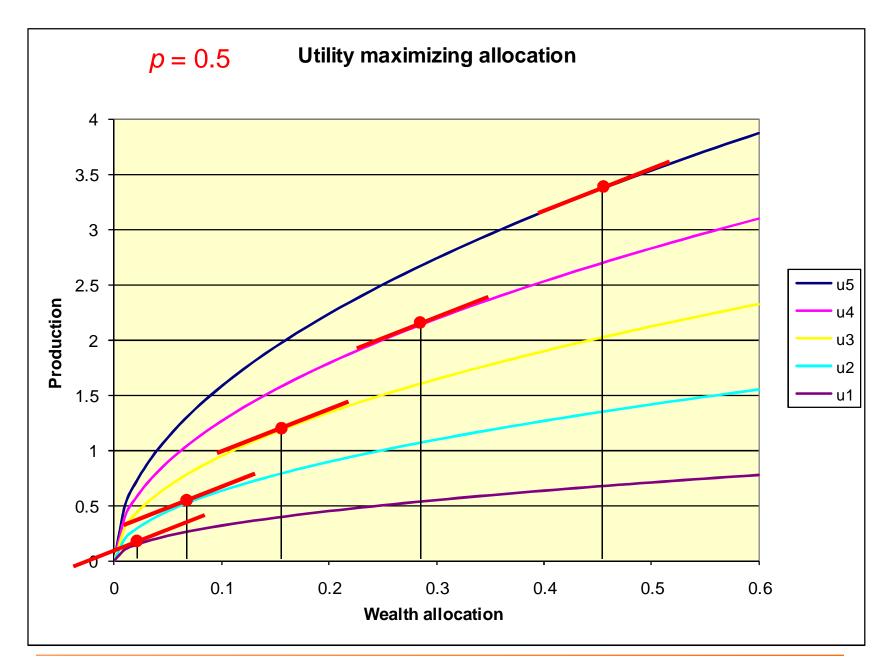
Distribute wealth so as to equalize marginal productivity.

• If we index persons in order of marginal productivity, i.e., $u'_{i}(\cdot) \le u'_{i+1}(\cdot)$, all *i*

Then less productive individuals receive less wealth.

• For convenience assume $u_i(x_i) = c_i x_i^p$





• Classical utilitarian argument: concave utility functions tend to make the utilitarian solution more **egalitarian**.

- Classical utilitarian argument: concave utility functions tend to make the utilitarian solution more **egalitarian**.
- A **completely** egalitarian allocation $x_1 = \dots = x_n$ is optimal only when $u'_1(1/n) = \dots = u'_n(1/n)$
- So, equality is optimal only when everyone has the same marginal productivity in an egalitarian allocation.

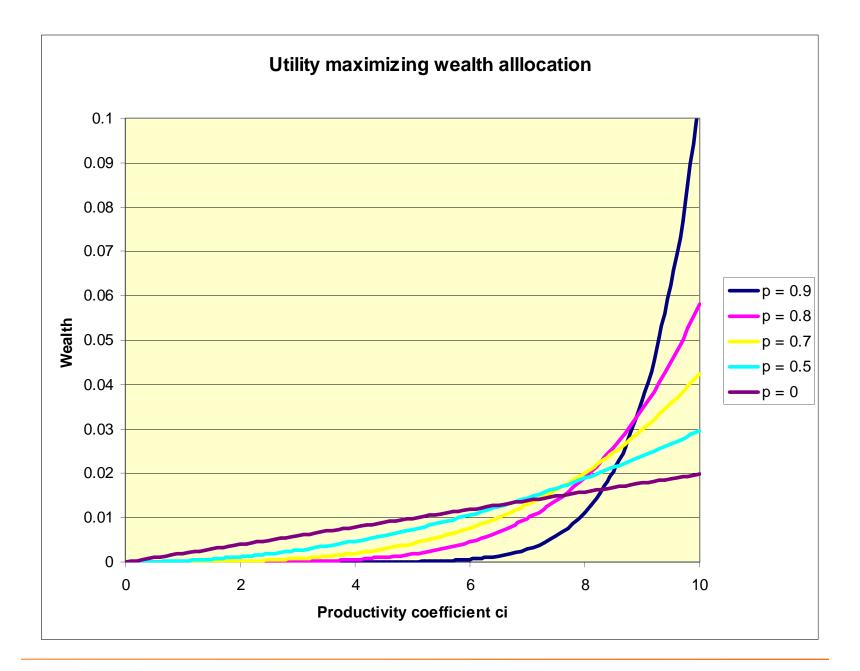
- Recall that $U_i(x_i) = C_i x_i^p$ where $p \ge 0$
- The optimal wealth allocation is

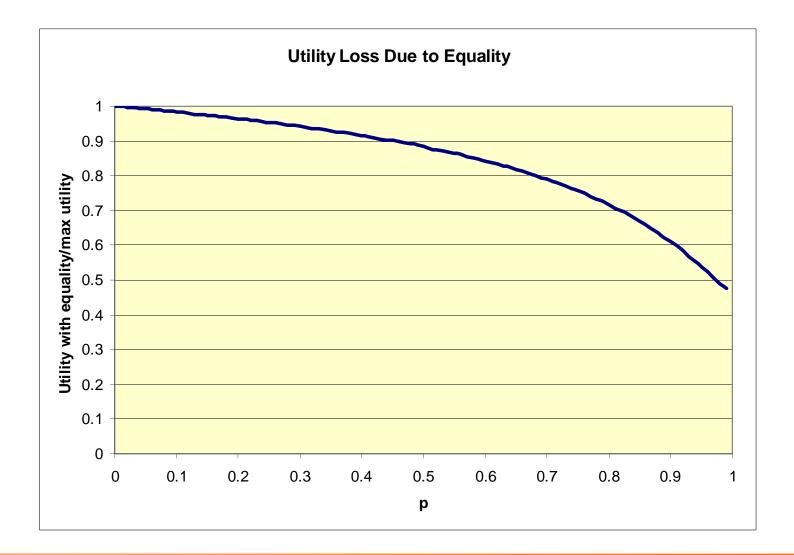
$$\boldsymbol{X}_{i} = \boldsymbol{C}_{i}^{\frac{1}{1-p}} \left(\sum_{j=1}^{n} \boldsymbol{C}_{j}^{\frac{1}{1-p}} \right)^{-1}$$

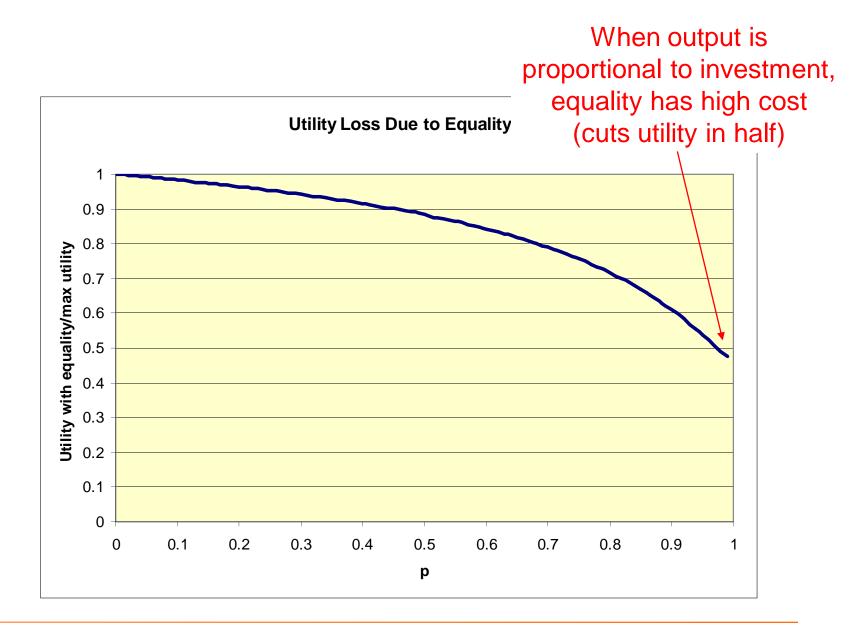
- When *p* < 1:
 - Allocation is **completely egalitarian** only if $c_1 = \cdots = c_n$
 - Otherwise the most egalitarian allocation occurs when $p \rightarrow 0$: X

$$\boldsymbol{r}_i = \frac{\boldsymbol{c}_i}{\sum_j \boldsymbol{c}_j}$$

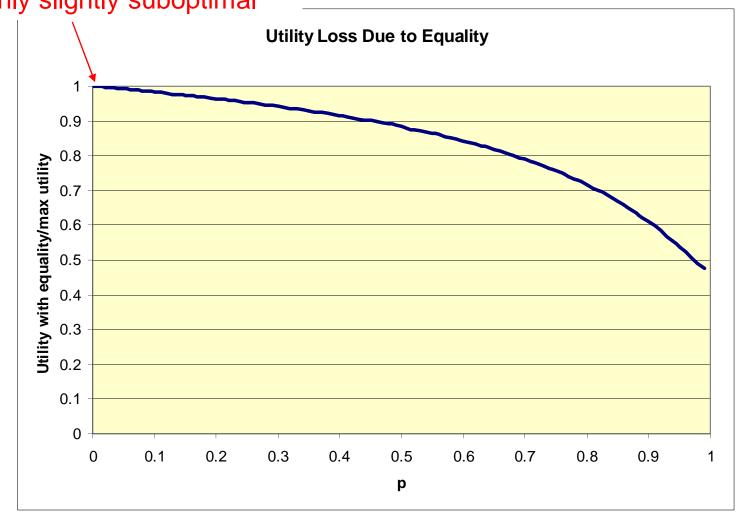
- The most egalitarian optimal allocation: people receive wealth in proportion to productivity c_i.
 - And this occurs only when productivity very insensitive to investment ($p \rightarrow 0$).
- Allocation can be **very unequal** when *p* is closer to 1.







As $p \rightarrow 0$, optimal utility requires highly unequal allocation, but equal allocation is only slightly suboptimal



22

- More fundamentally, an egalitarian defense of utilitarianism is based on contingency, not principle.
 - If we evaluate the fairness of utilitarian distribution, then there must be another standard of equitable distribution.
- Utilitarianism can endorse:.
 - Neglect of disabled or nonproductive people.
 - Meager wage for less talented people who work hard.
 - Fewer resources for people with less productive jobs. Not all jobs can be equally productive.
- if this results in greater total utility.

- Rawls' **Difference Principle** seeks to maximize the welfare of the worst off.
 - Also known as **maximin** principle.
 - Another formulation: inequality is permissible only to the extent that it is necessary to improve the welfare of those worst off.

 $\max \min_{i} \{ u_i(x_i) \}$ $\sum_{i} u_i(x_i) = 1$ $x_i \ge 0, \text{ all } i$

- The root idea is that when I make a decision for myself, I make a decision for **anyone** in similar circumstances.
 - It doesn't matter who I am.
- Social contract argument
 - I make decisions (formulate a social contract) in an original position, behind a veil of ignorance as to who I am.
 - I must find the decision acceptable after I learn who I am.
 - I cannot rationally assent to a policy that puts me on the bottom, unless I would have been even worse off under alternative policies.
 - So the policy must **maximize** the welfare of the **worst off**.

- Applies only to **basic goods**.
 - Things that people want, no matter what else they want.
 - Salaries, tax burden, medical benefits, etc.
 - For example, salary differentials may satisfy the principle if necessary to make the poorest better off.
- Applies to smallest groups for which outcome is predictable.
 - A lottery passes the test even though it doesn't maximize welfare of worst off the loser is unpredictable.
 - unless the lottery participants as a whole are worst off.

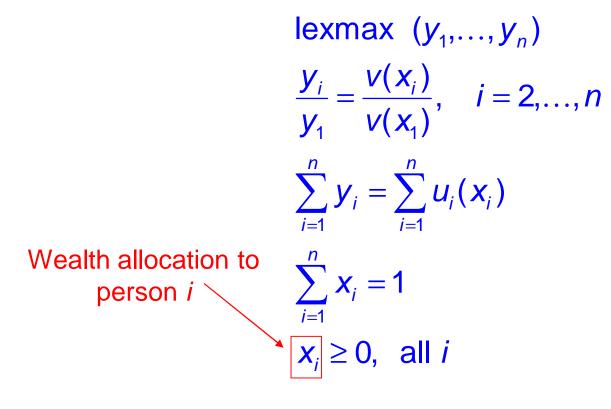
The difference rule implies a lexmax principle.
If applied recursively.

• Lexmax (lexicographic maximum) principle:

- Maximize welfare of least advantaged class
- then next-to-least advantaged class
- and so forth.

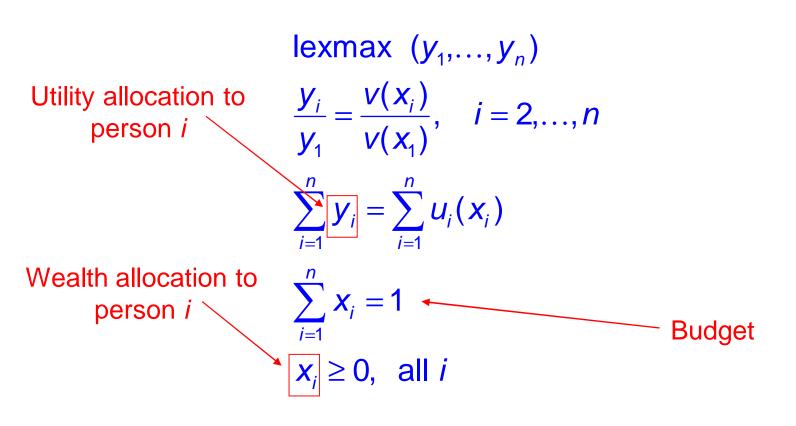
- Applications
 - **Production planning** Allocate scarce components to products to minimize worst-case delay to a customer.
 - Location of fire stations Minimize worst-case response time.
 - Workforce management Schedule rail crews so as to spread delays equitably over time. Similar for call center scheduling.
 - **Political districting** Minimize worst-case deviation from proportional representation.
 - **Social planning** Build a Rawlsian society.

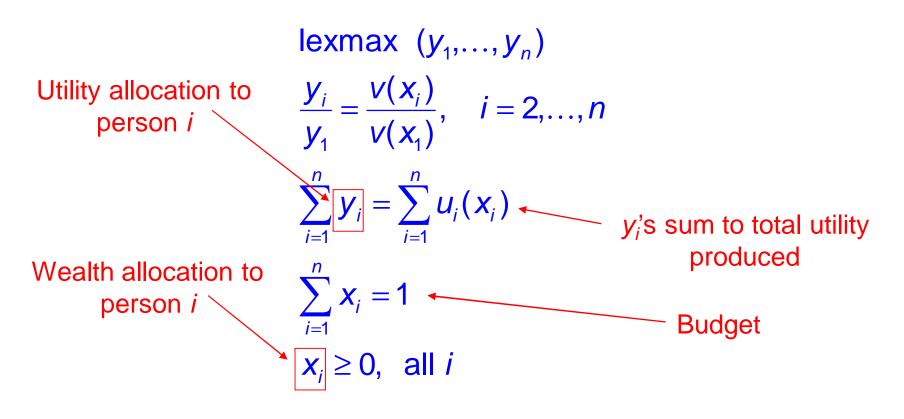
- Assume each person's share of total utility is proportional to the utility of his/her initial wealth allocation.
 - Thus individuals with more education, salary have greater access to social utility.
- Assume productivity functions $u_i(x_i) = c_i x_i^{p}$
 - Larger *p* means productivity more sensitive to investment.
- Assume personal utility function $v(x_i) = x_i^q$
 - Larger *q* means people care more about getting rich.

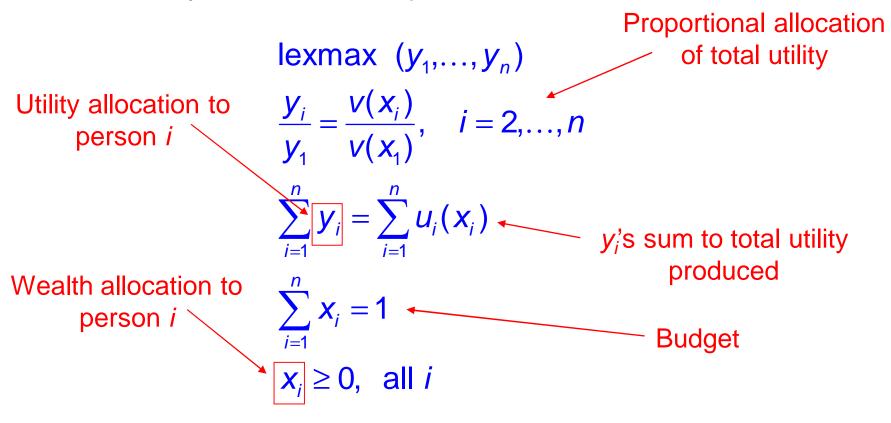


• The utility maximization problem:

 $\begin{array}{ll} \text{lexmax} & (y_1, \dots, y_n) \\ \text{Utility allocation to} & \underbrace{y_i}{y_1} = \frac{v(x_i)}{v(x_1)}, & i = 2, \dots, n \\ & & \sum_{i=1}^n y_i = \sum_{i=1}^n u_i(x_i) \\ \text{Wealth allocation to} & & \sum_{i=1}^n x_i = 1 \\ & & & x_i \ge 0, & \text{all } i \end{array}$







• The utility maximization problem:

$$\frac{\operatorname{lexmax} (y_1, \dots, y_n)}{\sum_{i=1}^{n} y_i} = \frac{v(x_i)}{v(x_1)}, \quad i = 2, \dots, n$$

$$\sum_{i=1}^{n} y_i = \sum_{i=1}^{n} u_i(x_i)$$

$$\sum_{i=1}^{n} x_i = 1$$

$$x_i \ge 0, \quad \operatorname{all} i$$

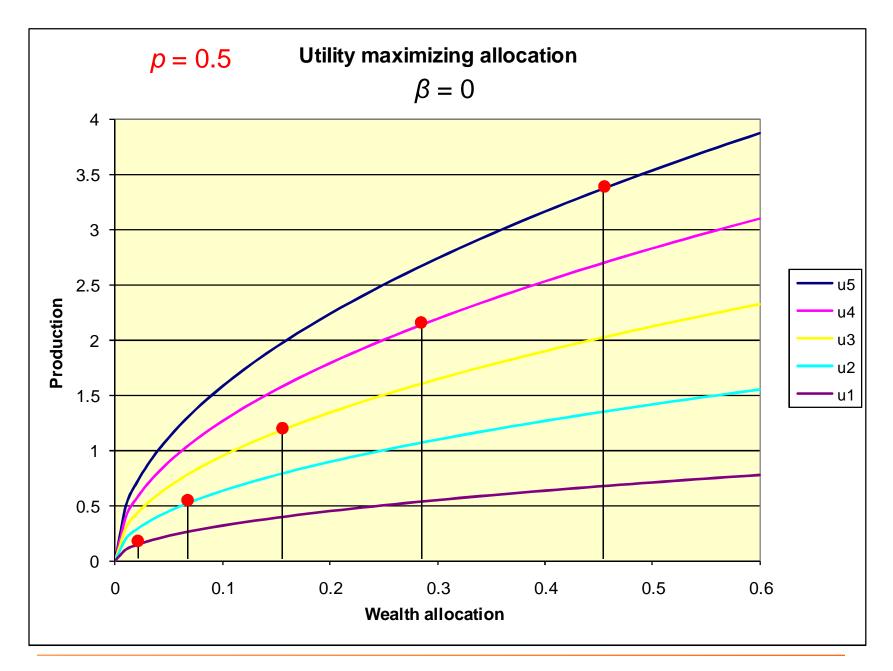
Theorem. If $u'_{i}(\cdot) \leq u'_{i+1}(\cdot)$ and $v(\cdot)$ is nondecreasing, -this has an optimal solution in which $y_{1} \leq \cdots \leq y_{n}$

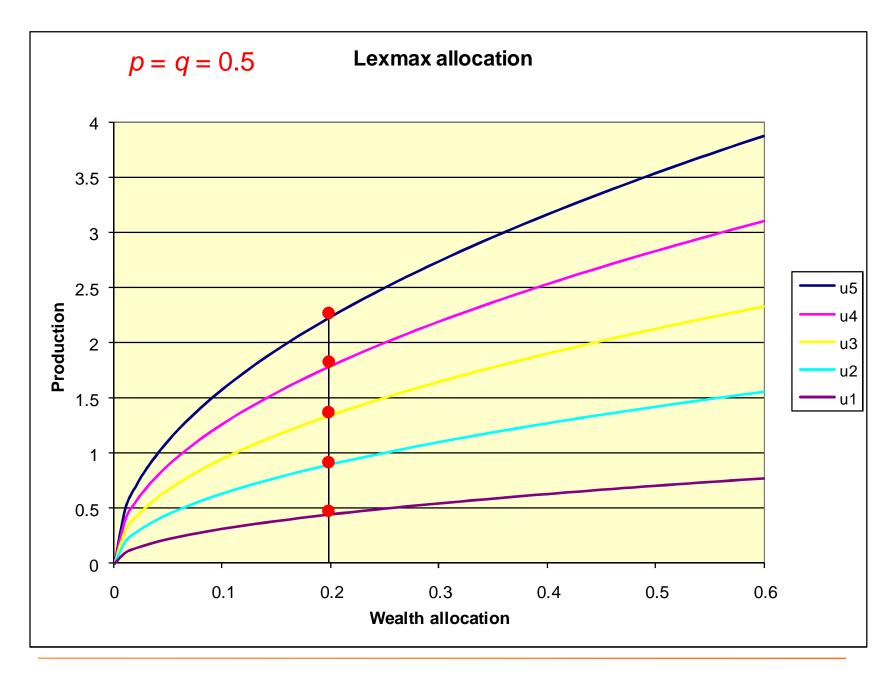
• The utility maximization problem:

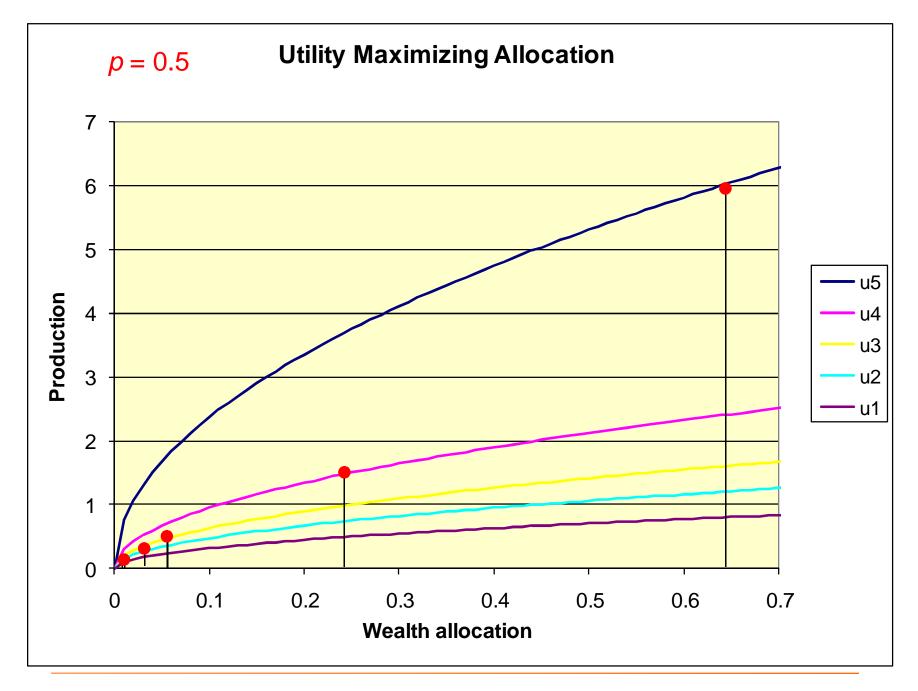
$$\begin{vmatrix} \text{lexmax } (y_1, \dots, y_n) \\ \frac{y_i}{y_1} = \frac{v(x_i)}{v(x_1)}, & i = 2, \dots, n \\ \sum_{i=1}^n y_i = \sum_{i=1}^n u_i(x_i) \\ \sum_{i=1}^n x_i = 1 \\ x_i \ge 0, & \text{all } i \end{vmatrix}$$
The and the set of the set

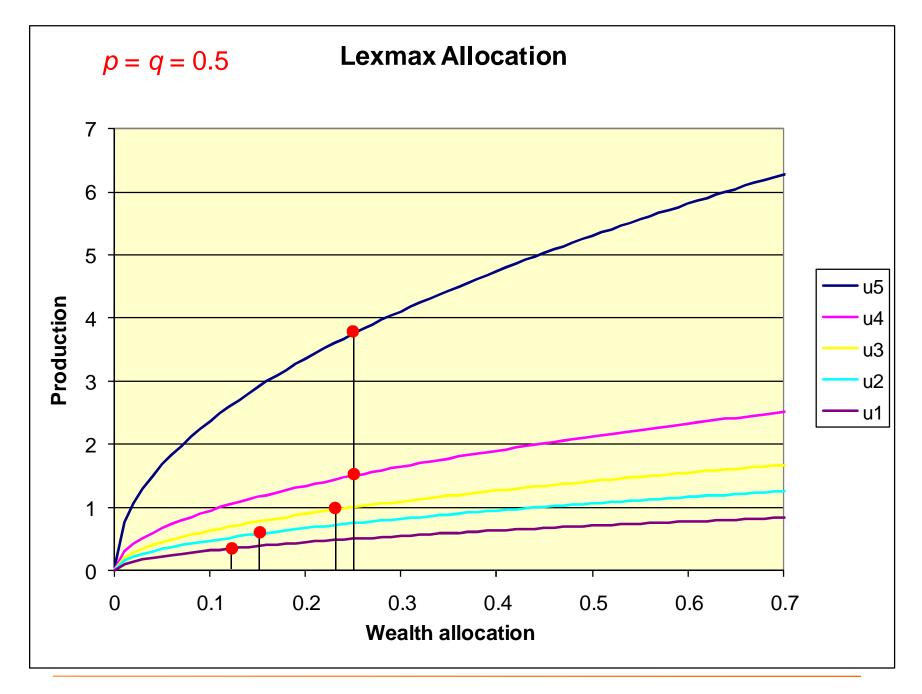
Theorem. If $u'_{i}(\cdot) \leq u'_{i+1}(\cdot)$ and $v(\cdot)$ is nondecreasing, -this has an optimal solution in which $y_{1} \leq \cdots \leq y_{n}$

Model now simplifies.









- When does the Rawlsian model result in equality?
 - That is, when do we have $x_1 = \cdots = x_n$ in the solution of the lexmax problem?

• Conditions for equality at optimality:

$$2\mu_{1} - \mu_{2} = d_{1}$$

$$\mu_{1} + \mu_{i} - \mu_{i+1} = d_{i}, \quad i = 2, \dots, n-2$$

$$\mu_{1} + \mu_{n-1} = d_{n-1}$$

• with RHS's:

$$d_{i} = v(x_{i}) \frac{\sum_{i} c_{i} u_{i}(x_{i})}{\sum_{i} v(x_{i})} \left(\frac{v'(x_{1})}{v(x_{1})} - \frac{u_{i+1}'(x_{i+1}) - u_{1}'(x_{1})}{\sum_{i} c_{i} u_{i}(x_{i})} + \frac{v'(x_{i+1}) - v'(x_{1})}{\sum_{i} v(x_{i})} \right)$$

• Remarkably, these can be solved in closed form, yielding

• Theorem. The lexmax distribution is egalitarian only if

$$\frac{1}{n-k}\sum_{i=k+1}^{n} c_{i} - \frac{1}{k}\sum_{i=1}^{k} c_{i} \leq \frac{q}{p} \cdot \frac{n-k}{k}\sum_{i=1}^{n} c_{i}$$

for k = 1, n - 1.

• Theorem. The lexmax distribution is egalitarian only if

$$\frac{1}{n-k}\sum_{i=k+1}^{n}c_{i} - \frac{1}{k}\sum_{i=1}^{k}c_{i} \le \frac{q}{p} \cdot \frac{n-k}{k}\sum_{i=1}^{n}c_{i}$$
for $k = 1$, $n-1$.
Average of $n-k$ largest c_{i} 's Average of k smallest c_{i} 's

• Theorem. The lexmax distribution is egalitarian only if

$$\frac{1}{n-k}\sum_{i=k+1}^{n}c_{i}-\frac{1}{k}\sum_{i=1}^{k}c_{i}\leq \frac{q}{p}\cdot \frac{n-k}{k}\sum_{i=1}^{n}c_{i}$$

for k = 1, , n - 1.

- Equality is **more likely** to be required when *p* is small.
 - When investment in an individual yields rapidly decreasing marginal returns.

• Theorem. The lexmax distribution is egalitarian only if

$$\frac{1}{n-k}\sum_{i=k+1}^{n}c_{i}-\frac{1}{k}\sum_{i=1}^{k}c_{i}\leq \frac{q}{p}\cdot\frac{n-k}{k}\sum_{i=1}^{n}c_{i}$$

for k = 1, n - 1.

- Equality test is **more sensitive** at upper end (large *k*).
 - Equality is **unlikely** to be required when there is a long upper tail (individuals at the top are very productive).
 - Equality may be required even when there is a long lower tail (individuals at the bottom are very unproductive).

• Theorem. The lexmax distribution is egalitarian only if

$$\frac{1}{n-k}\sum_{i=k+1}^{n}c_{i}-\frac{1}{k}\sum_{i=1}^{k}c_{i}\leq \frac{q}{p}\cdot \frac{n-k}{k}\sum_{i=1}^{n}c_{i}$$

for
$$k = 1$$
, $n - 1$.

- Equality is **more likely** to be required when *q* is large.
 - That is, when greater wealth yields rapidly increasing marginal utility.
 - That is, when people want to get rich.

- Social welfare functions
- Interpersonal comparability
- Deriving the utilitarian criterion
- Deriving the maximin/minimax criterion

- The economics literature derives social welfare functions from axioms of rational choice.
 - Some axioms are strong and hard to justify.
 - The social welfare function depends on degree of interpersonal comparability of utilities.
 - Arrow's impossibility theorem was the first result, but there are many others.
- Social welfare function
 - A function $f(u_1, ..., u_n)$ of individual utilities.
 - Objective is to maximize $f(u_1, ..., u_n)$.

- Social Preferences
 - Let $u = (u_1, ..., u_n)$ be the vector of utilities allocated to individuals.
 - A social welfare function ranks distributions: u is preferable to u' if f(u) > f(u').

Interpersonal Comparability

- Unit comparability
 - Suppose each individual's utility u_i is changed to $\beta u_i + \alpha_i$.
 - This doesn't change the utilitarian ranking:

$$\sum_{i} u_{i}(x) > \sum_{i} u_{i}(y) \text{ if and only if}$$

$$\sum_{i} (\beta u_{i}(x) + \alpha_{i}) > \sum_{i} (\beta u_{i}(y) + \alpha_{i})$$

- This is unit comparability.
- That is, changing units of measure and giving everyone a different zero point has no effect on ranking.

Interpersonal Comparability

- Unit comparability
 - Unit comparability is enough to make utilitarian calculations **meaningful**.
 - Given certain axioms, along with unit comparability, a utilitarian social welfare function is **necessary**

Axioms

- Anonymity
 - Social preferences are the same if indices of us are permuted.
- Strict pareto
 - If u > u', then u is preferred to u'.
- Independence of irrelevant alternatives
 - The preference of *u* over *u*' depends only on *u* and *u*' and not on what other utility vectors are possible.
- Separability of unconcerned individuals
 - Individuals *i* for which $u_i = u'_i$ don't affect the ranking of u and u'.

Theorem

Given **unit comparability**, any social welfare function *f* that satisfies the axioms has the form $f(u) = \sum_i a_i u_i$ (**utilitarian**).

Interpersonal Comparability

- Level comparability
 - Suppose each individual's utility u_i is changed to φ(u_i), where φ is a monotone increasing function.
 - This doesn't change the maximin ranking:

 $\min_{i} \{u(x_{i})\} > \min_{i} \{u(y_{i})\} \text{ if and only if}$ $\min_{i} \{\phi(u(x_{i}))\} > \min_{i} \{\phi(u(y_{i}))\}$

• This is level comparability.

- Level comparability
 - Level comparability is enough to make maximin comparisons **meaningful**.

Theorem

Given **level comparability,** any social welfare function that satisfies the axioms leads to a **maximin** or **minimax** criterion.

- Problem with utilitarian theorem
 - The assumption of unit comparability implies **no more than unit comparability**.
 - This is almost the same as assuming utilitarianism.
 - It rules out a maximin criterion from the start, because the "worst-off" is a meaningless concept.
- Problem with maximin theorem
 - The assumption of level comparability implies **no more than** level comparability.
 - This rules out utilitarianism from the start.

Measures of Inequality

- An example
 - Utilitarian, maximin, and lexmax solution
- Inequality measures
 - Relative range, max, min
 - Relative mean deviation
 - Variance, coefficient of variation
 - McLoone index
 - Gini coefficient
 - Atkinson index
 - Hoover index
 - Theil index

Measures of Inequality

- Assume we wish to minimize inequality.
 - We will survey several measures of inequality.
 - They have different strengths and weaknesses.
 - Minimizing inequality may result in less total utility.
- **Pigou-Dalton** condition.
 - One criterion for evaluating an inequality measure.
 - If utility is transferred from one who is worse off to one who is better off, inequality should increase.

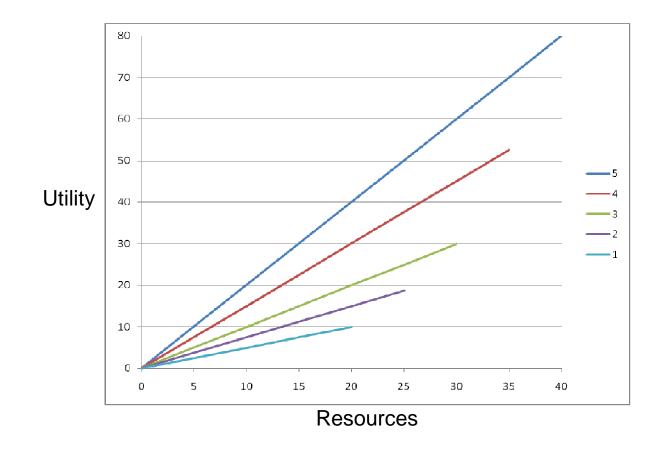
Measures of Inequality

• Applications

- Tax policy
- Disaster recovery
- Educational funding
- Greenhouse gas mitigation
- Ramp metering on freeways

Example

Production functions for 5 individuals



Utilitarian

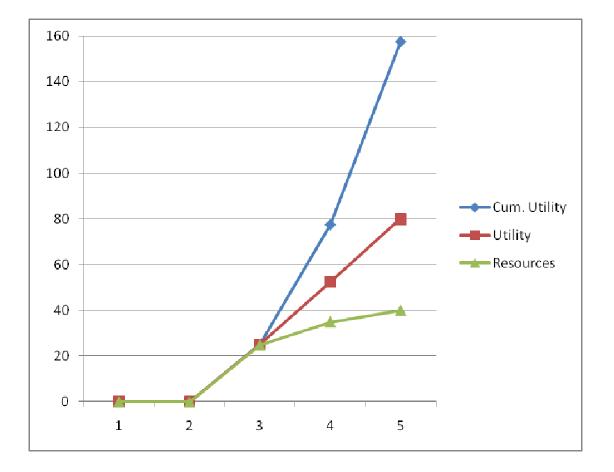
$$\max \sum_{i} u_{i}$$
LP model:
$$\max \sum_{i=1}^{5} u_{i}$$

$$u_{i} = a_{i} x_{i}, \ 0 \le x_{i} \le b_{i}, \text{ all } i, \quad \sum_{i} x_{i} = B$$

where
$$(a_1, \dots, a_5) = (0.5, 0.75, 1, 1.5, 2)$$

 $(b_1, \dots, b_5) = (20, 25, 30, 35, 40)$
 $B = 100$

Utilitarian

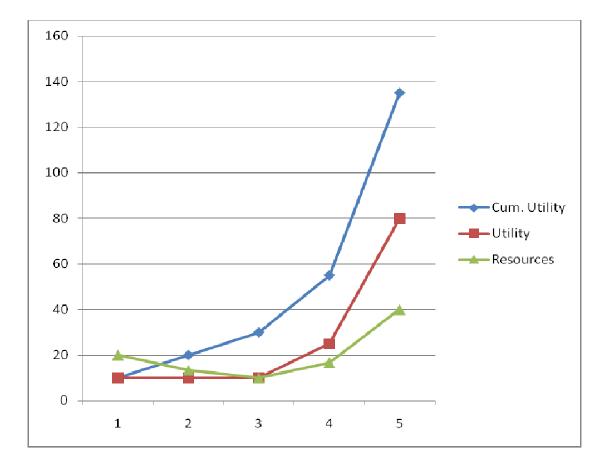


Rawlsian

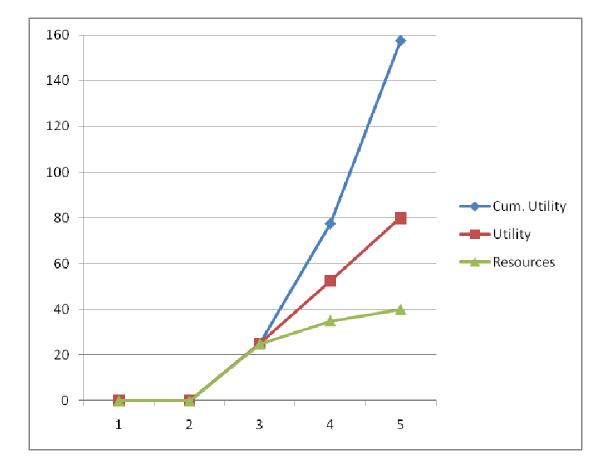
$$\max \left\{ \min_{i} \left\{ u_{i} \right\} \right\}$$



Rawlsian

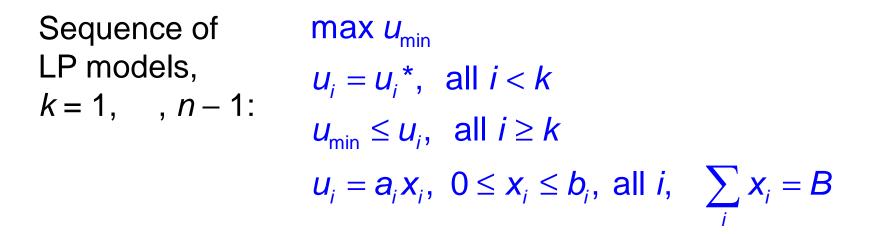


Utilitarian



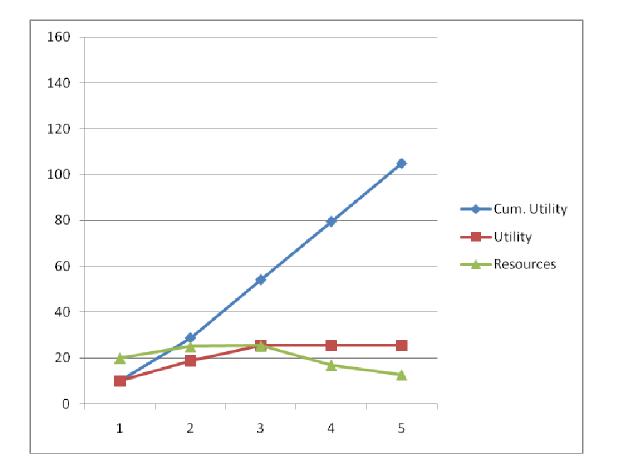
Lexmax

lexmax
$$\{u_1,\ldots,u_n\}$$

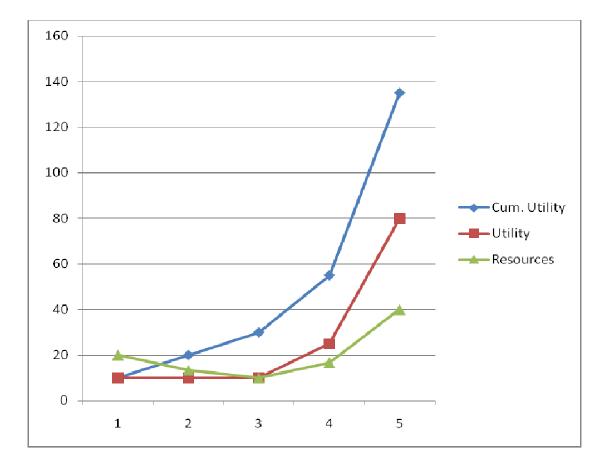


Re-index for each k so that u_i for i < k were fixed in previous iterations.

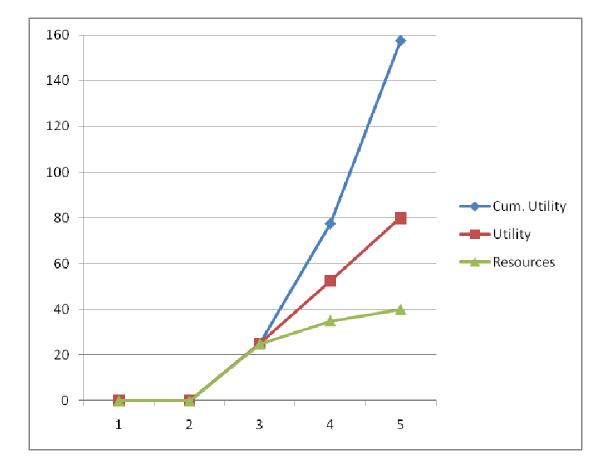
Lexmax



Rawlsian



Utilitarian



Relative Range

$$\frac{U_{\max} - U_{\min}}{\overline{U}}$$

where $u_{\max} = \max_{i} \{u_i\}$ $u_{\min} = \min_{i} \{u_i\}$ $\overline{u} = (1 / n) \sum_{i} u_i$

Rationale:

- Perceived inequality is relative to the best off.
- A distribution should be judged by the position of the worst-off.
- Therefore, minimize gap between top and bottom.

Problems:

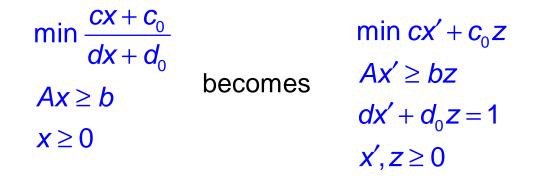
- Ignores distribution between extremes.
- Violates Pigou-Dalton condition

Relative Range

$$\frac{U_{\text{max}} - U_{\text{min}}}{\overline{U}}$$

This is a **fractional linear programming** problem.

Use Charnes-Cooper transformation to an LP. In general,



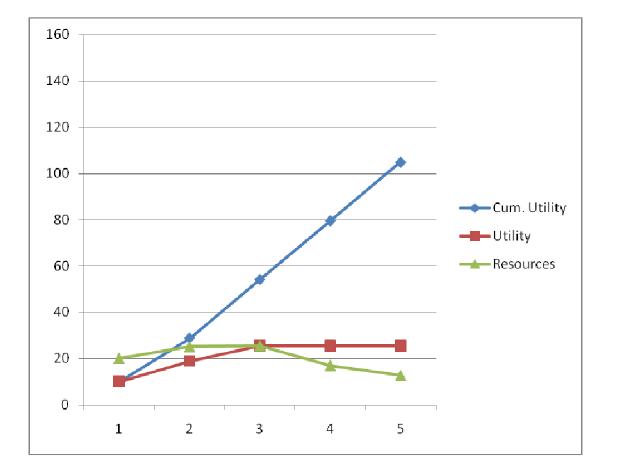
after change of variable x = x'/z and fixing denominator to 1.

Relative Range

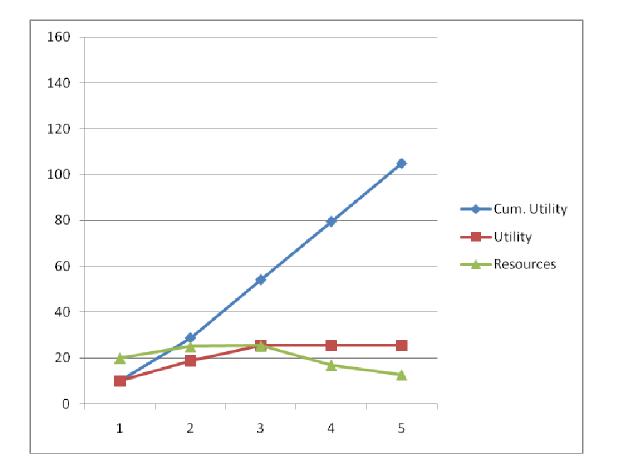
$$\begin{split} \frac{U_{\max} - U_{\min}}{\overline{U}} \\ \text{Fractional LP model:} & \min \frac{U_{\max} - U_{\min}}{(1/n)\sum_{i}^{j} u_{i}} \\ & u_{\max} \geq u_{i}, \ u_{\min} \leq u_{i}, \ \text{all } i \\ & u_{i} = a_{i}x_{i}, \ 0 \leq x_{i} \leq b_{i}, \ \text{all } i, \ \sum_{i} x_{i} = B \end{split}$$

LP model: & \min u_{\max} - u_{\min} \\ & u_{\max} \geq u'_{i}, \ u_{\min} \leq u'_{i}, \ \text{all } i \\ & u'_{i} = a_{i}x'_{i}, \ 0 \leq x'_{i} \leq b_{i}z, \ \text{all } i, \ \sum_{i} x'_{i} = Bz \\ & (1/n)\sum_{i}^{j} u'_{i} = 1 \end{split}

Relative Range



Lexmax



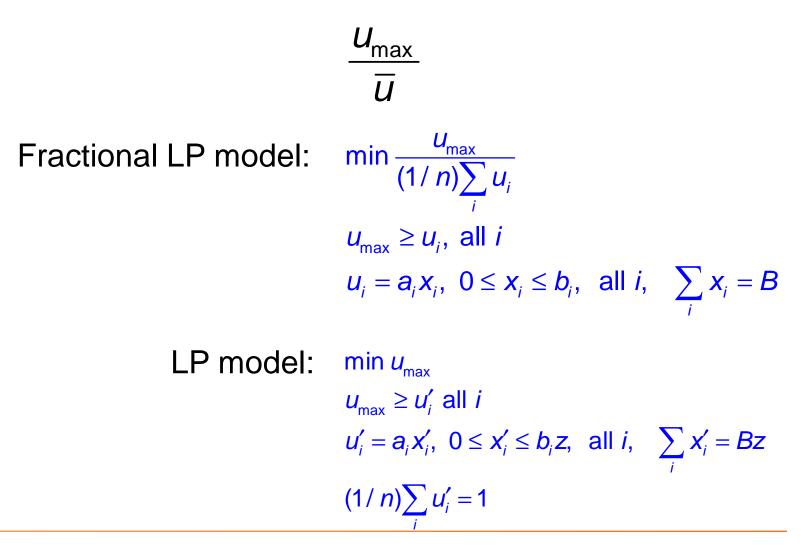
 $\frac{u_{\max}}{\overline{u}}$

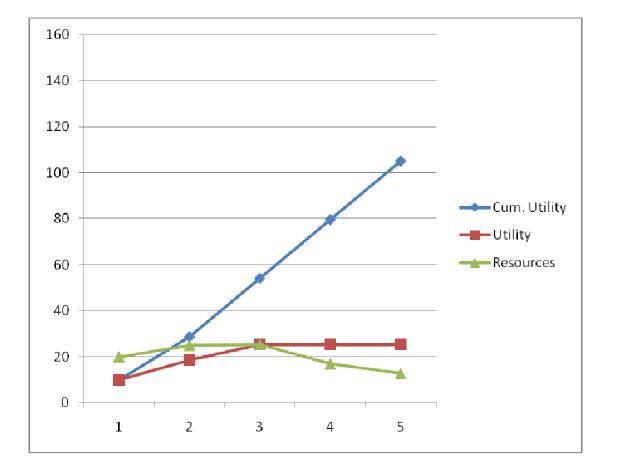
Rationale:

- Perceived inequality is relative to the best off.
- Possible application to salary levels (typical vs. CEO)

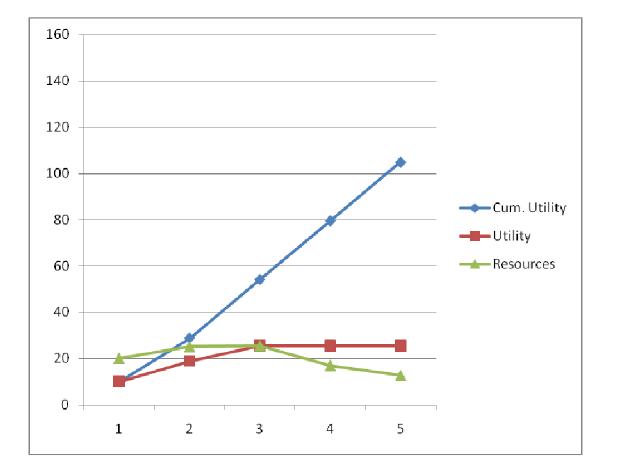
Problems:

- Ignores distribution below the top.
- Violates Pigou-Dalton condition





Relative Range

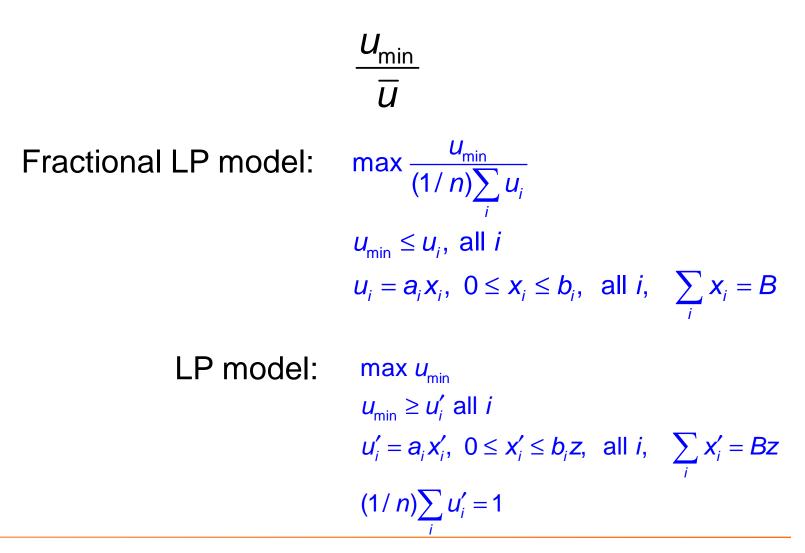


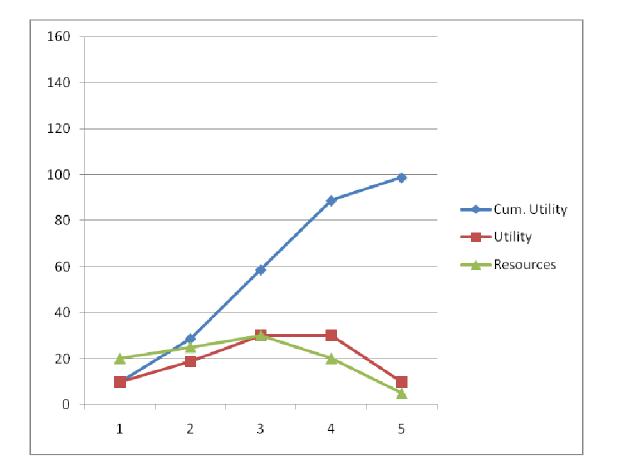
Rationale:

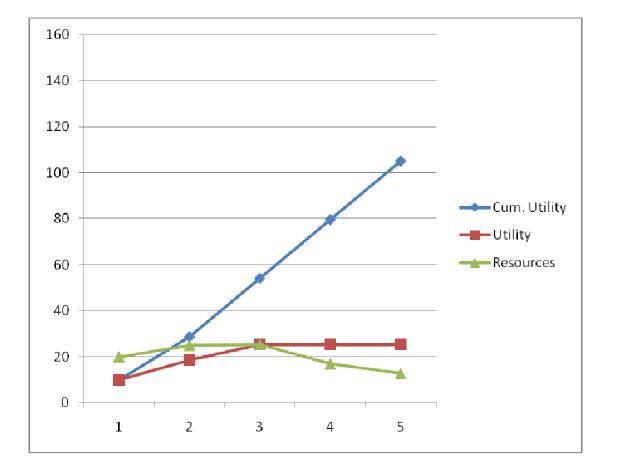
- Measures adherence to Rawlsian Difference Principle.
- relativized to mean

Problems:

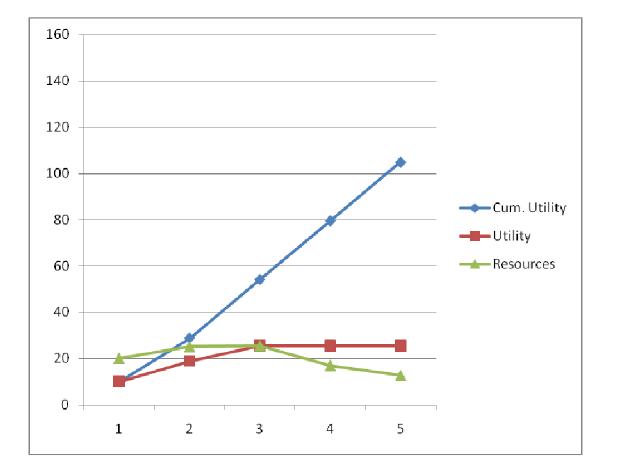
- Ignores distribution above the bottom.
- Violates Pigou-Dalton condition







Relative Range



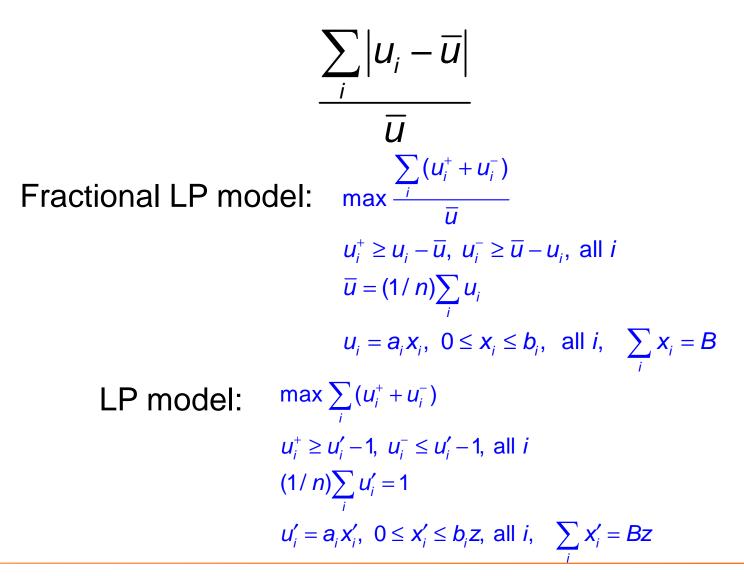
$$\frac{\sum_{i} \left| u_{i} - \overline{u} \right|}{\overline{u}}$$

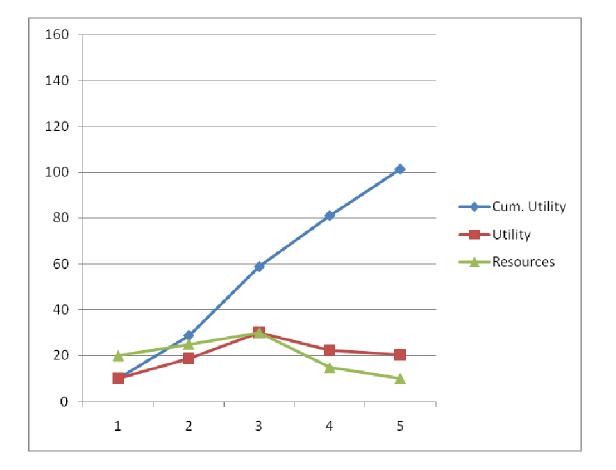
Rationale:

- Perceived inequality is relative to average.
- Entire distribution should be measured.

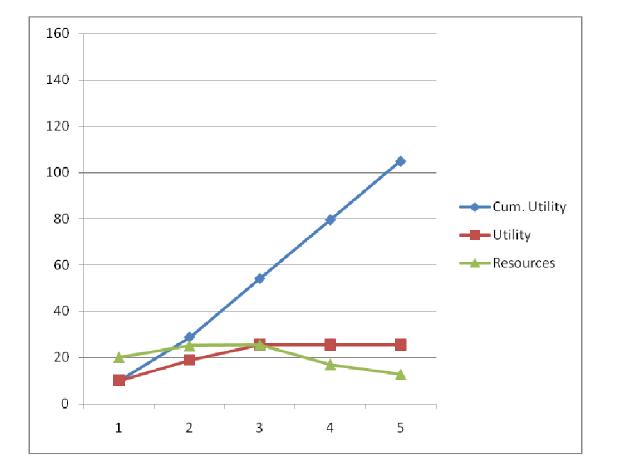
Problems:

- Violates Pigou-Dalton condition
- Insensitive to transfers on the same side of the mean.
- Insensitive to placement of transfers from one side of the mean to the other.





Relative Range



$$(1/n)\sum_i (u_i - \overline{u})^2$$

Rationale:

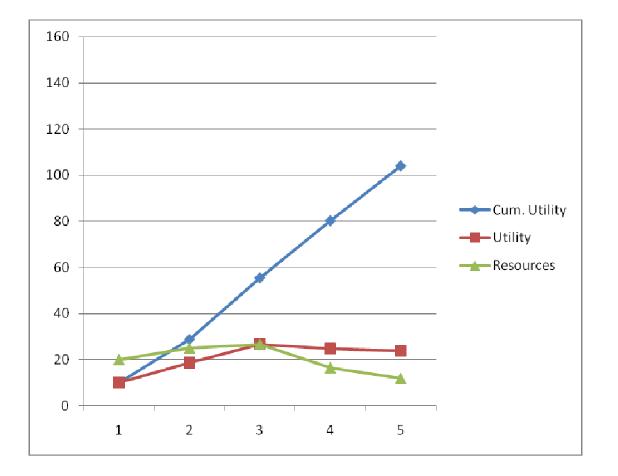
- Weight each utility by its distance from the mean.
- Satisfies Pigou-Dalton condition.
- Sensitive to transfers on one side of the mean.
- Sensitive to placement of transfers from one side of the mean to the other.

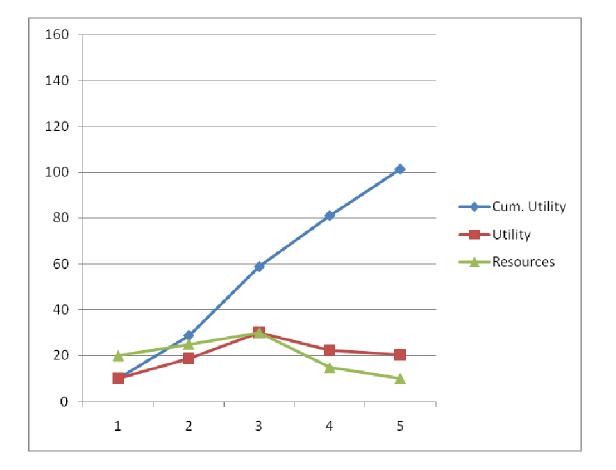
Problems:

- Weighting is arbitrary?
- Variance depends on scaling of utility.

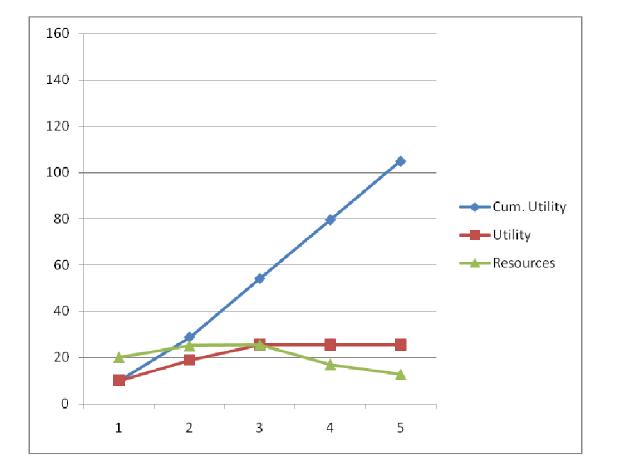
$$(1/n)\sum_i (u_i - \overline{u})^2$$

Convex nonlinear model: $\min(1/n)\sum_{i}(u_{i}-\overline{u})^{2}$ $\overline{u} = (1/n)\sum_{i}u_{i}$ $u_{i} = a_{i}x_{i}, \ 0 \le x_{i} \le b_{i}, \ \text{all } i, \ \sum_{i}x_{i} = B$





Relative Range



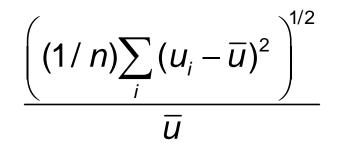
$$\frac{\left((1/n)\sum_{i}(u_{i}-\overline{u})^{2}\right)^{1/2}}{\overline{u}}$$

Rationale:

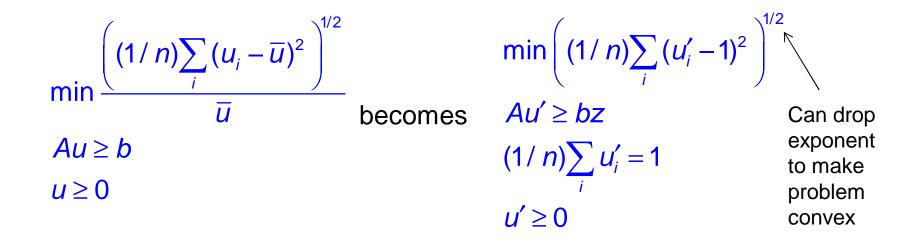
- Similar to variance.
- Invariant with respect to scaling of utilities.

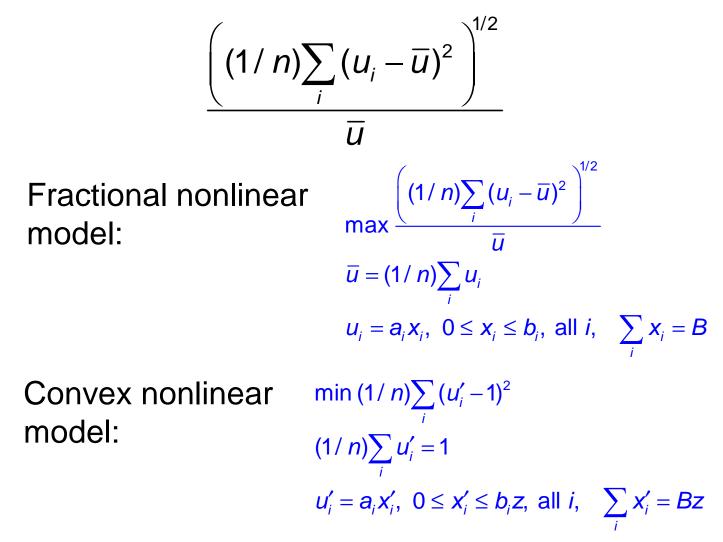
Problems:

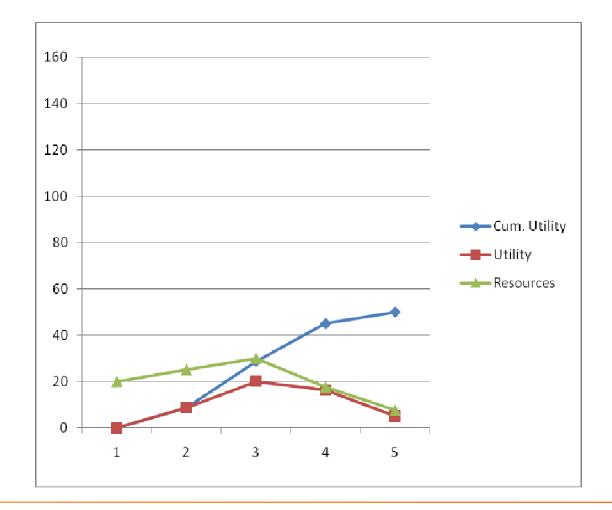
- When minimizing inequality, there is an incentive to reduce average utility.
- Should be minimized only for fixed total utility.

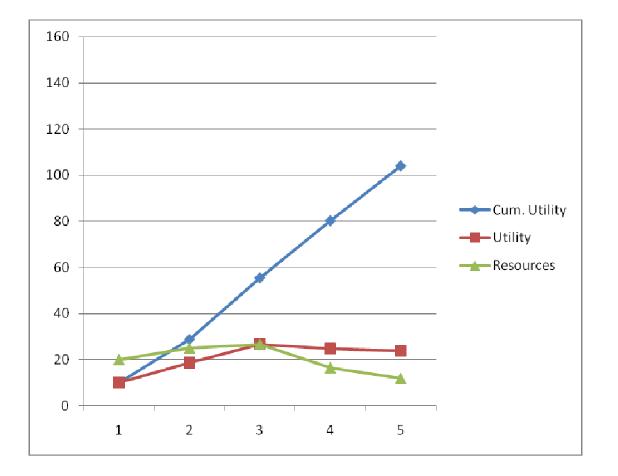


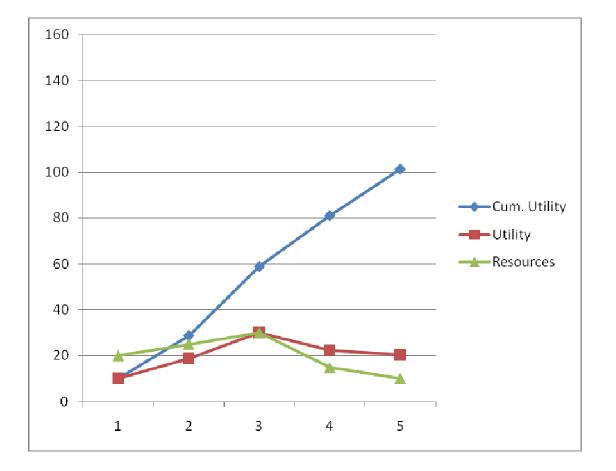
Again use change of variable u = u'/z and fix denominator to 1.



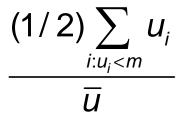








McLoone Index

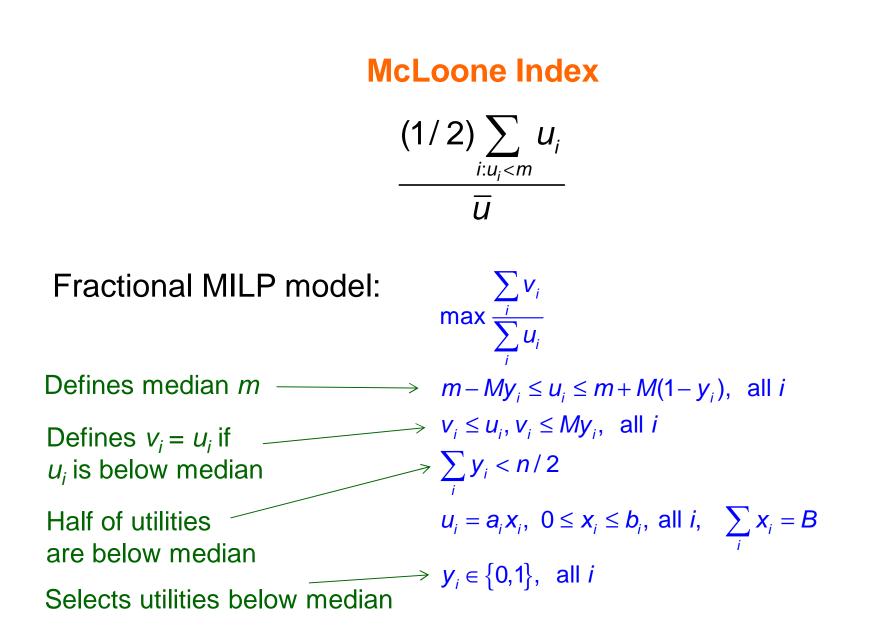


Rationale:

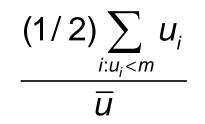
- Ratio of average utility below median to overall average.
- No one wants to be "below average."
- Pushes average up while pushing inequality down.

Problems:

- Violates Pigou-Dalton condition.
- Insensitive to upper half.

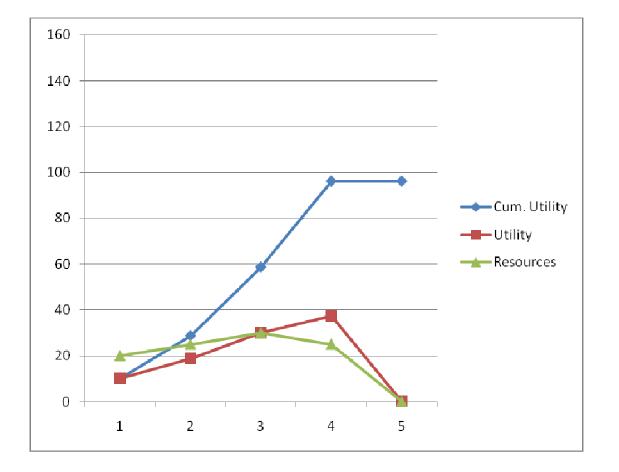


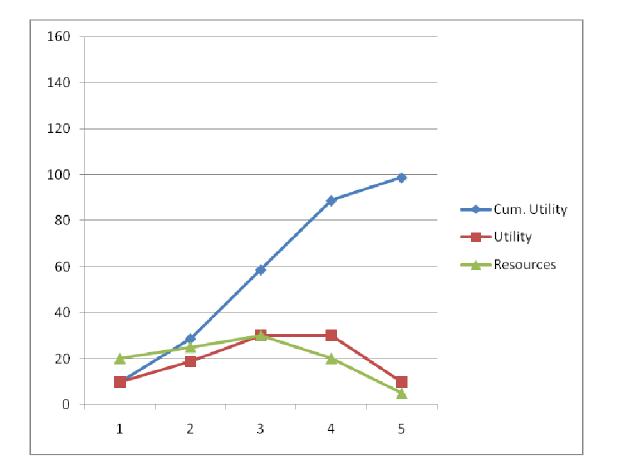
McLoone Index



$$\begin{split} \text{MILP model:} & \max \sum_{i} v'_{i} \\ & m' - My_{i} \leq u'_{i} \leq m' + M(1 - y_{i}), \text{ all } i \\ & v'_{i} \leq u'_{i}, v'_{i} \leq My_{i}, \text{ all } i \\ & \sum_{i} y_{i} < n/2 \\ & u'_{i} = a_{i}x'_{i}, \ 0 \leq x'_{i} \leq b_{i}z, \text{ all } i, \quad \sum_{i} x'_{i} = Bz \\ & y_{i} \in \{0,1\}, \text{ all } i \end{split}$$

McLoone Index





Gini Coefficient

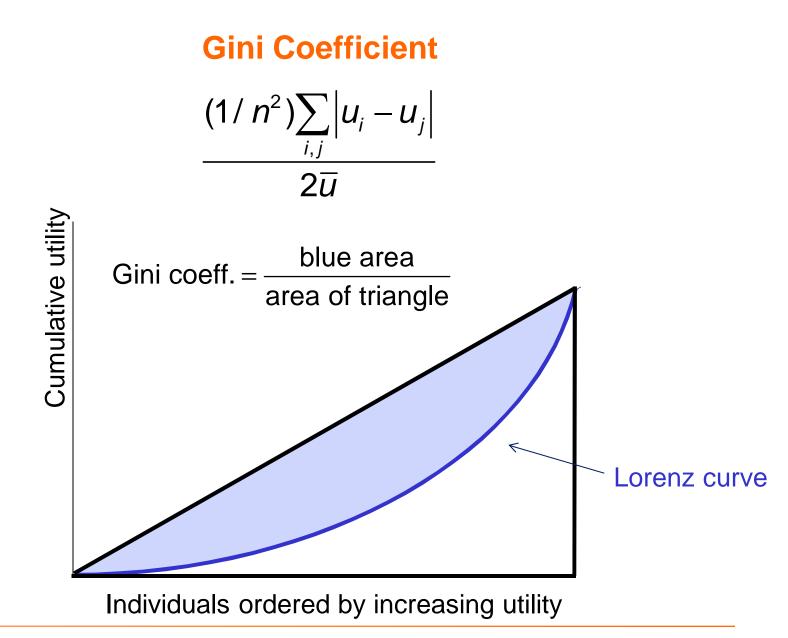
$$\frac{(1/n^2)\sum_{i,j} \left| u_i - u_j \right|}{2\overline{u}}$$

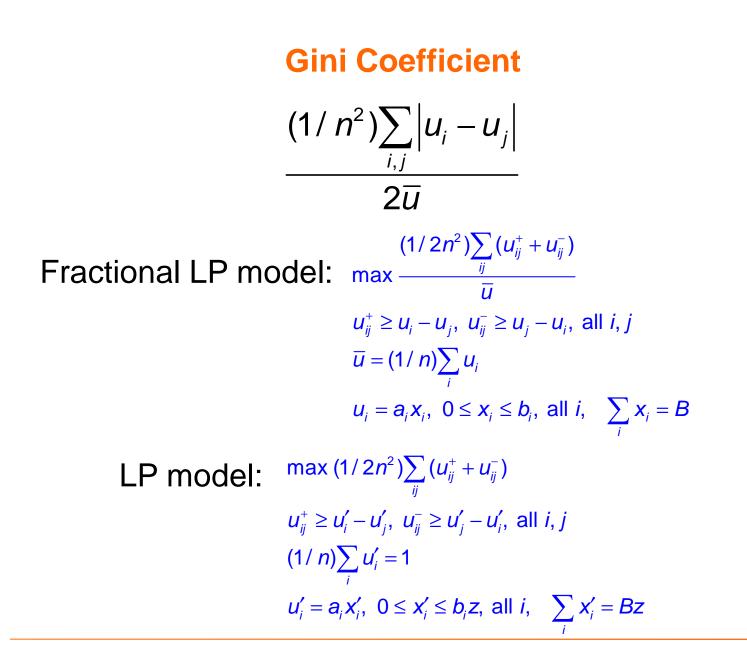
Rationale:

- Relative mean difference between all pairs.
- Takes all differences into account.
- Related to area above cumulative distribution (Lorenz curve).
- Satisfies Pigou-Dalton condition.

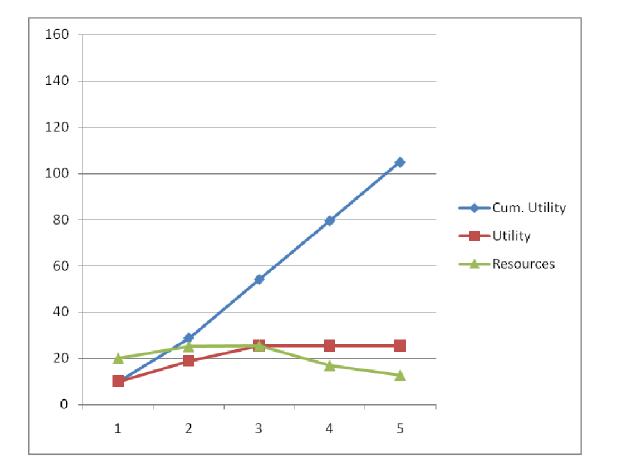
Problems:

• Insensitive to shape of Lorenz curve, for a given area.

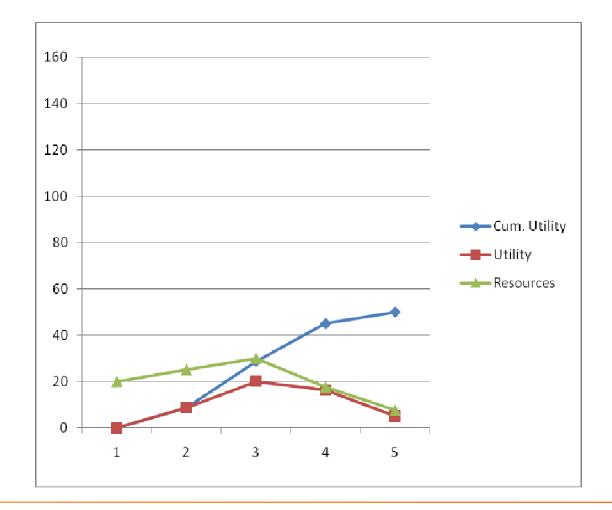




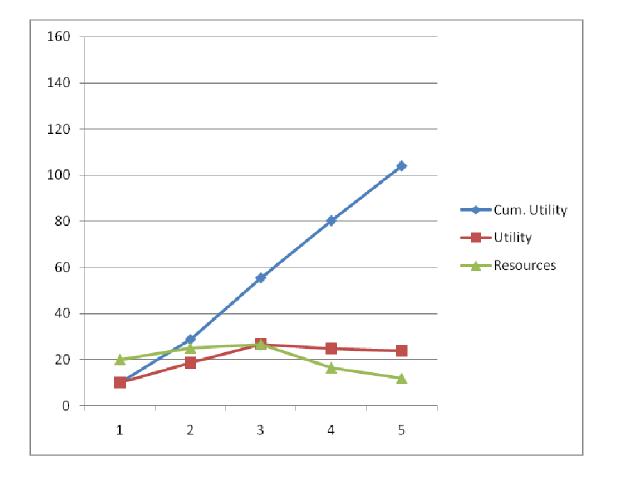
Gini Coefficient



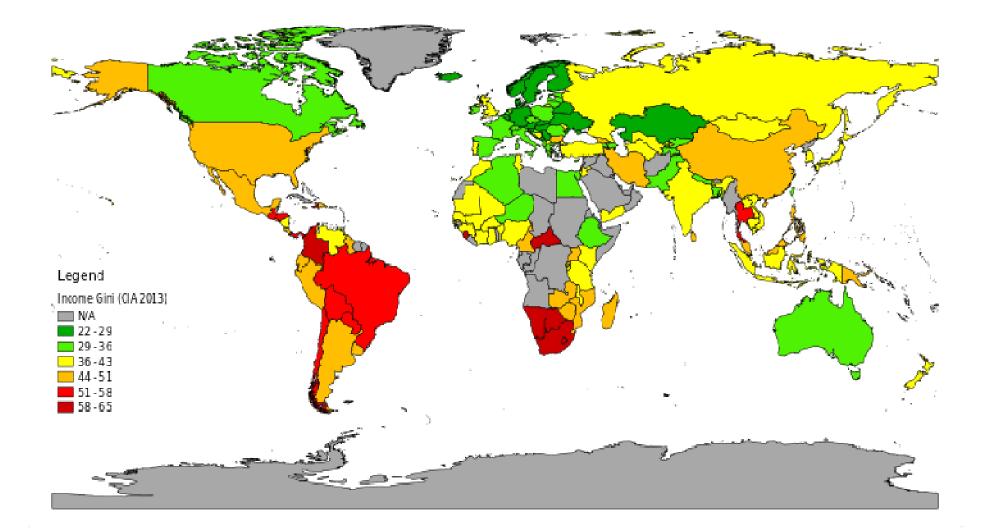
Coefficient of Variation



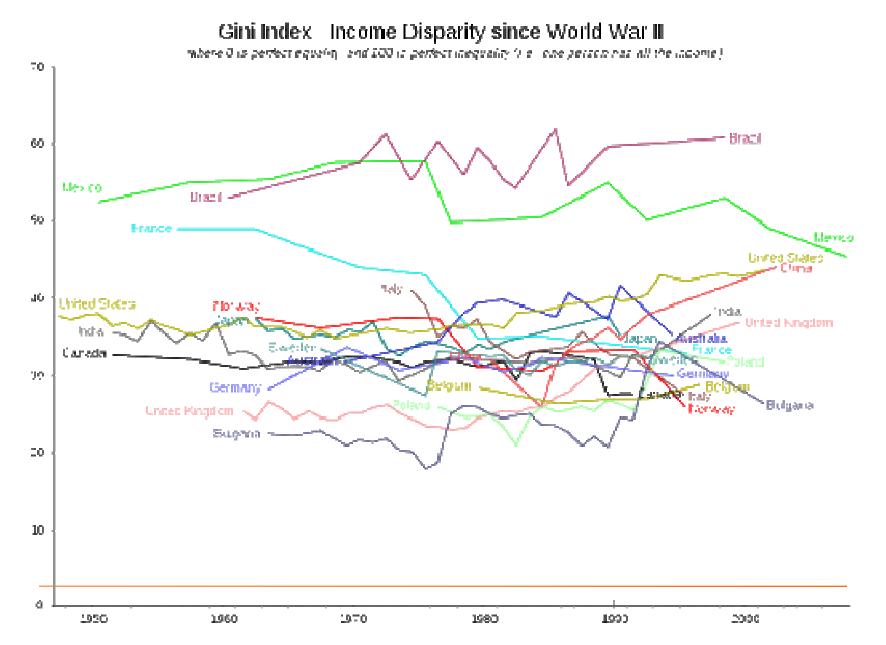
Variance



Gini Coefficient by Country (2013)



Historical Gini Coefficient, 1945-2010



$$1 - \left((1/n) \sum_{i} \left(\frac{\mathbf{x}_{i}}{\overline{\mathbf{x}}} \right)^{p} \right)^{1/p}$$

Rationale:

- Best seen as measuring inequality of **resources** x_{i} .
- Assumes allotment y of respurces results in utility y^p
- This is average utility per individual.

$$1 - \left((1/n) \sum_{i} \left(\frac{\mathbf{x}_{i}}{\overline{\mathbf{x}}} \right)^{p} \right)^{1/p}$$

Rationale:

- Best seen as measuring inequality of **resources** x_{i} .
- Assumes allotment y of resources results in utility y^p
- This is average utility per individual.
- This is equal resource allotment to each individual that results in same total utility.

$$1 - \left((1/n) \sum_{i} \left(\frac{\mathbf{x}_{i}}{\overline{\mathbf{x}}} \right)^{p} \right)^{1/p}$$

Rationale:

- Best seen as measuring inequality of **resources** x_i .
- Assumes allotment y of resources results in utility y^p
- This is average utility per individual.
- This is equal resource allotment to each individual that results in same total utility.
- This is additional resources per individual necessary to sustain inequality.

$$1 - \left((1/n) \sum_{i} \left(\frac{\mathbf{x}_{i}}{\overline{\mathbf{x}}} \right)^{p} \right)^{1/p}$$

Rationale:

- *p* indicates "importance" of equality.
- Similar to L_p norm
- p = 1 means inequality has no importance
- p = 0 is Rawlsian (measures utility of worst-off individual).

Problems:

- Measures utility, not equality.
- Doesn't evaluate distribution of utility, only of resources.
- *p* describes utility curve, not importance of equality.

$$1 - \left((1/n) \sum_{i} \left(\frac{x_i}{\overline{x}} \right)^p \right)^{1/p}$$

To minimize index, solve fractional problem After change of variable $x_i = x'_i/z$, this becomes

$$\max \sum_{i} \left(\frac{x_{i}}{\overline{x}}\right)^{p} = \frac{\sum_{i} x_{i}^{p}}{\overline{x}^{p}}$$
$$Ax \ge b, \ x \ge 0$$

$$\max \sum_{i} x_{i}^{\prime p}$$
$$(1 / n) \sum_{i} x_{i}^{\prime} = 1$$
$$Ax^{\prime} \ge bz, \ x^{\prime} \ge 0$$

$$1 - \left((1/n) \sum_{i} \left(\frac{x_{i}}{\overline{x}} \right)^{p} \right)^{1/p}$$

Fractional nonlinear model:

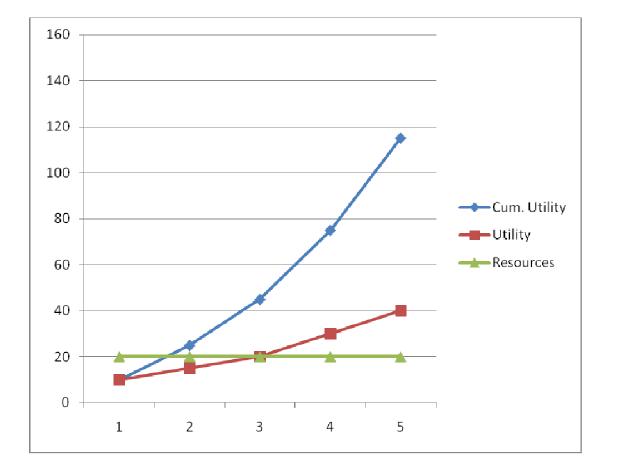
$$\max \frac{\sum_{i} x_{i}^{p}}{\overline{x}^{p}}$$
$$\overline{x} = (1/n) \sum_{i} x_{i}$$
$$\sum_{i} x_{i} = B, \ x \ge 0$$

Concave nonlinear model:

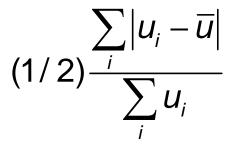
$$\max \sum_{i} x_{i}^{\prime p}$$

$$(1 / n) \sum_{i} x_{i}^{\prime} = 1$$

$$\sum_{i} x_{i}^{\prime} = Bz, \quad x^{\prime} \ge 0$$



Hoover Index



Rationale:

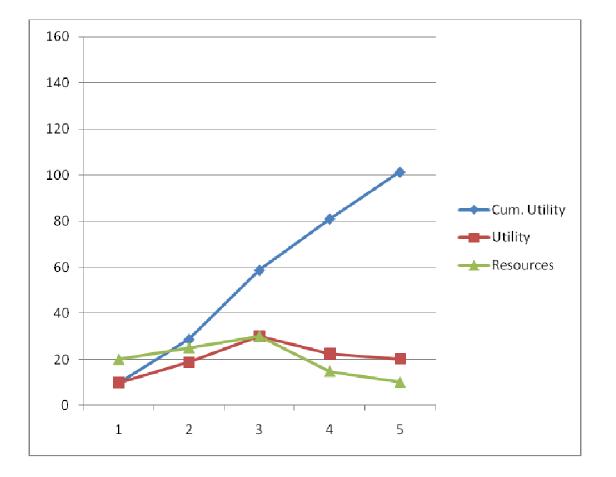
- Fraction of total utility that must be redistributed to achieve total equality.
- Proportional to maximum vertical distance between Lorenz curve and 45° line.
- Originated in regional studies, population distribution, etc. (1930s).
- Easy to calculate.

Problems:

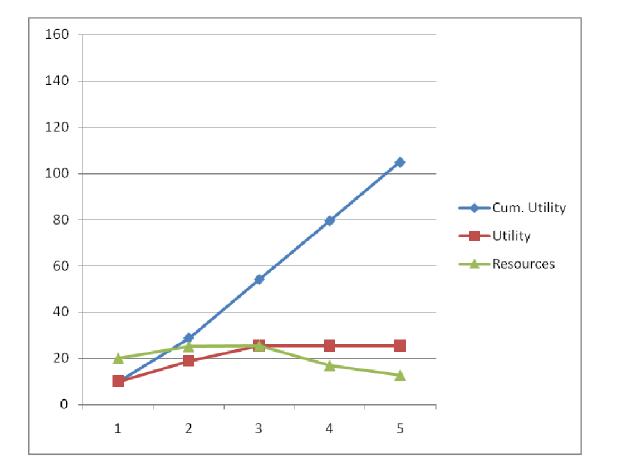
• Less informative than Gini coefficient?

Hoover Index $\frac{\sum_{i} \left| u_{i} - \overline{u} \right|}{\sum_{i} u_{i}}$ Cumulative utility Hoover index = max vertical distance Total utility = 1Lorenz curve Individuals ordered by increasing utility

Hoover Index



Gini Coefficient



Theil Index

 $(1/n)\sum_{i}\left(\frac{u_{i}}{\overline{u}}\ln\frac{u_{i}}{\overline{u}}\right)$

Rationale:

- One of a family of entropy measures of inequality.
- Index is zero for complete equality (maximum entropy)
- Measures nonrandomness of distribution.
- Described as stochastic version of Hoover index.

Problems:

- Motivation unclear.
- A. Sen doesn't like it.

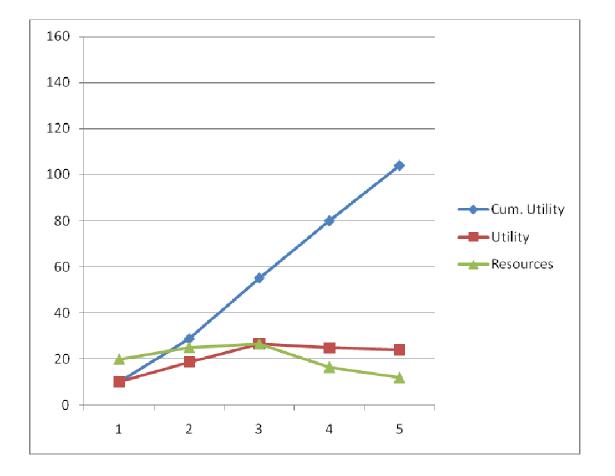
Theil Index

$$(1/n)\sum_{i}\left(rac{u_{i}}{\overline{u}}\lnrac{u_{i}}{\overline{u}}
ight)$$

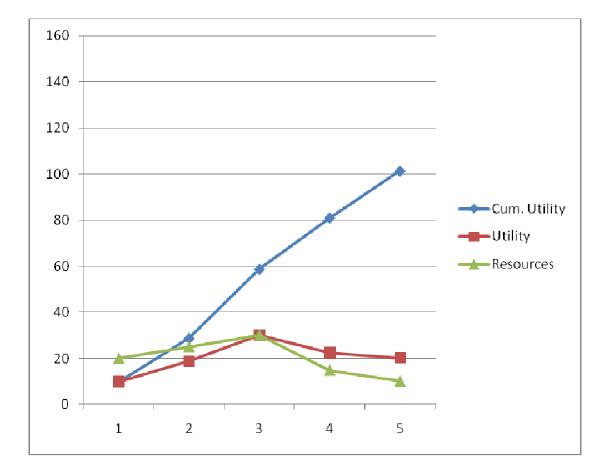
Nasty nonconvex model:

$$\min (1/n) \sum_{i} \left(\frac{u_{i}}{\overline{u}} \ln \frac{u_{i}}{\overline{u}} \right)$$
$$\overline{u} = (1/n) \sum_{i} u_{i}$$
$$u_{i} = a_{i} x_{i}, \ 0 \le x_{i} \le b_{i}, \ \text{all } i, \quad \sum_{i} x_{i} = B$$

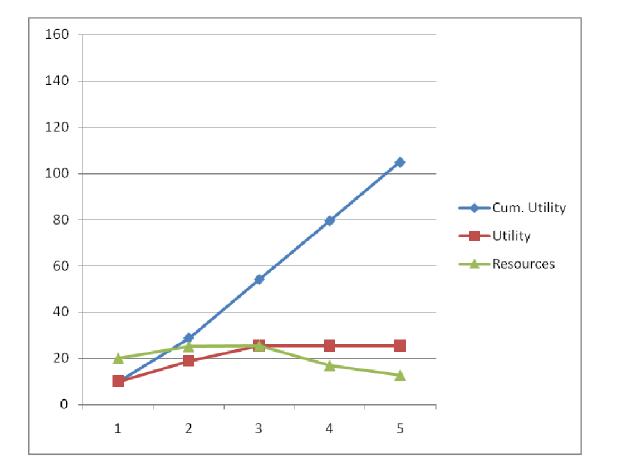
Theil Index



Hoover Index



Gini Coefficient



An Allocation Problem

- From Yaari and Bar-Hillel, 1983.
- 12 grapefruit and 12 avocados are to be divided between Jones and Smith.
- How to divide justly?

Utility provided by one fruit of each kind

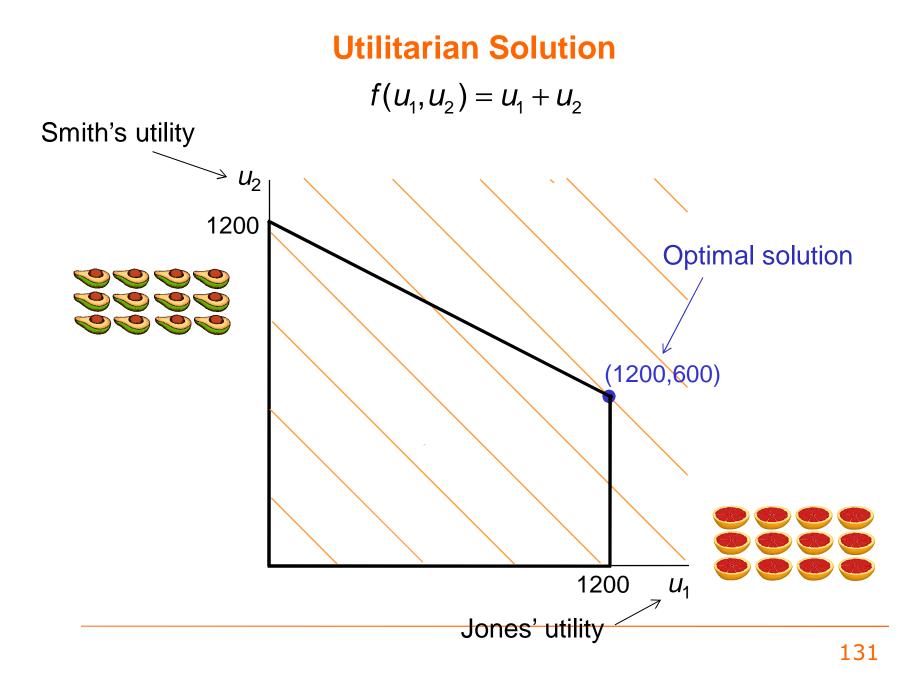
Jones	Smith
100	50
0	50

An Allocation Problem

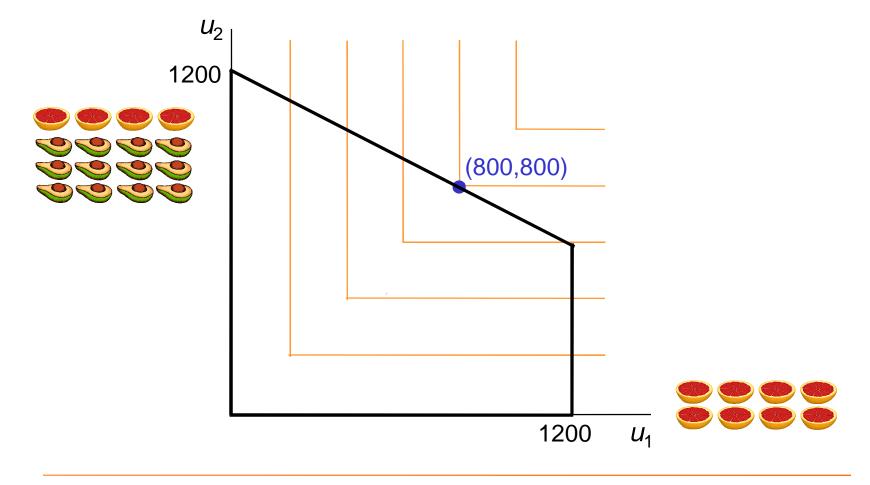
The optimization problem:

Social welfare function max $f(u_1, u_2)$ $u_1 = 100 x_{11}, u_2 = 50 x_{12} + 50 x_{22}$ $x_{i1} + x_{i2} = 12, i = 1, 2$ $x_{ij} \ge 0, \text{ all } i, j$

where u_i = utility for person *i* (Jones, Smith) x_{ij} = allocation of fruit *i* (grapefruit, avocados) to person *j*



Rawlsian (maximin) solution $f(u_1, u_2) = \min\{u_1, u_2\}$



Bargaining Solutions

- Nash Bargaining Solution
 - Example
 - Axiomatic justification
 - Bargaining justification
- Raiffa-Kalai-Smorodinsky Solution
 - Example
 - Axiomatic justification
 - Bargaining jusification

Bargaining Solutions

- A **bargaining solution** is an equilibrium allocation in the sense that none of the parties wish to bargain further.
 - Because all parties are "satisfied" in some sense, the outcome may be viewed as "fair."
 - Bargaining models have a **default** outcome, which is the result of a failure to reach agreement.
 - The default outcome can be seen as a **starting point**.

Bargaining Solutions

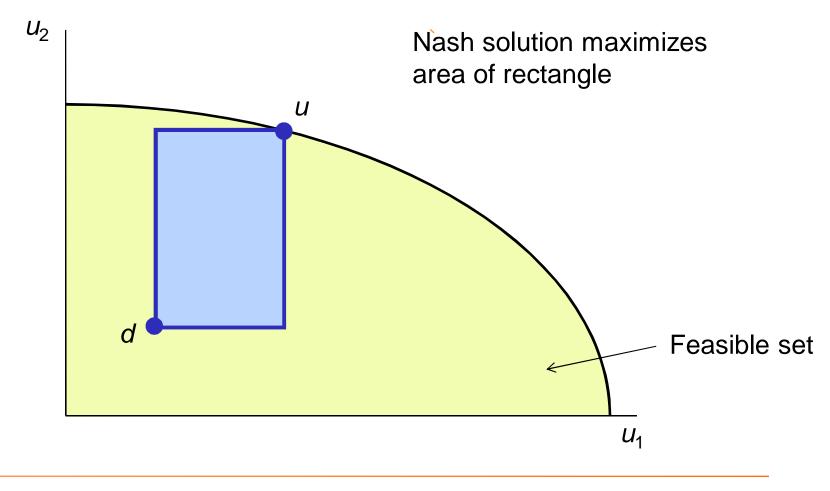
- Several proposals for the default outcome (starting point):
 - Zero for everyone. Useful when only the resources being allocated are relevant to fairness of allocation.
 - Equal split. Resources (not necessarily utilities) are divided equally. May be regarded as a "fair" starting point.
 - Strongly pareto set. Each party receives resources that can benefit no one else. Parties can always agree on this.

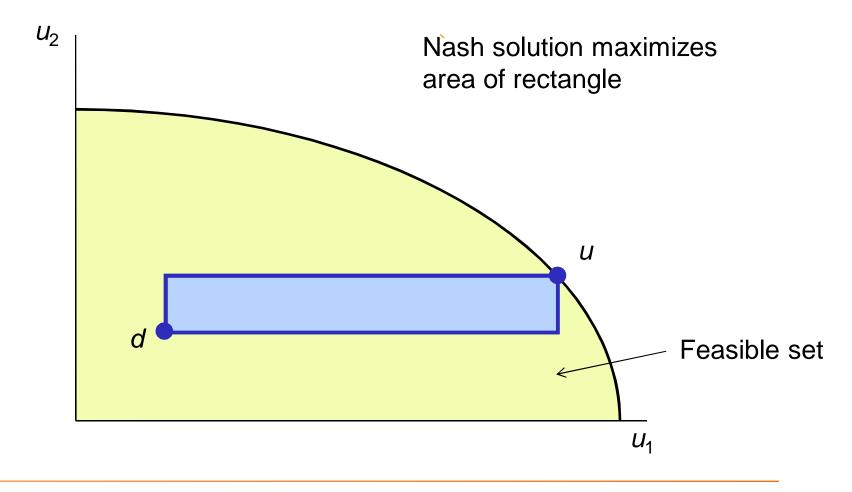
The Nash bargaining solution maximizes the social welfare function

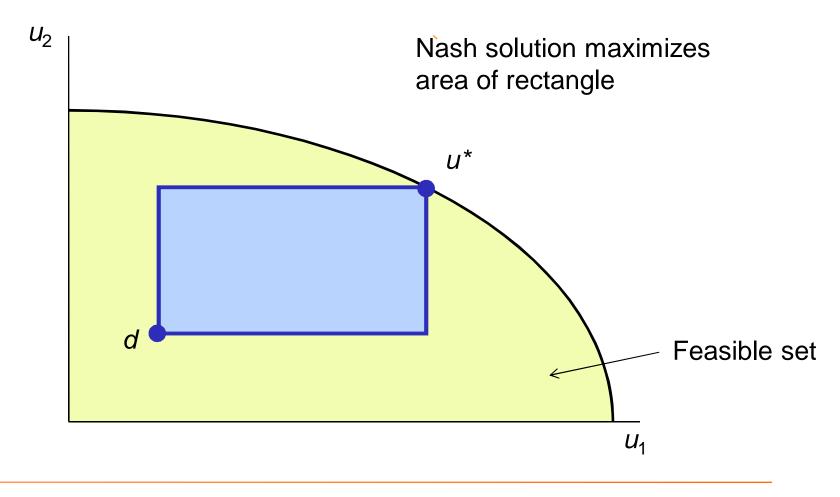
$$f(u) = \prod_i (u_i - d_i)$$

where *d* is the default outcome.

- Not the same as Nash equilibrium.
- It maximizes the **product of the gains** achieved by the bargainers, relative to the fallback position.
- Assume feasible set is **convex**, so that Nash solution is unique (due to strict concavity of *f*).







- Major **application** to telecommunications.
 - Where it is known as proportional fairness
 - *u* is proportionally fair if for all feasible allocations *u*'

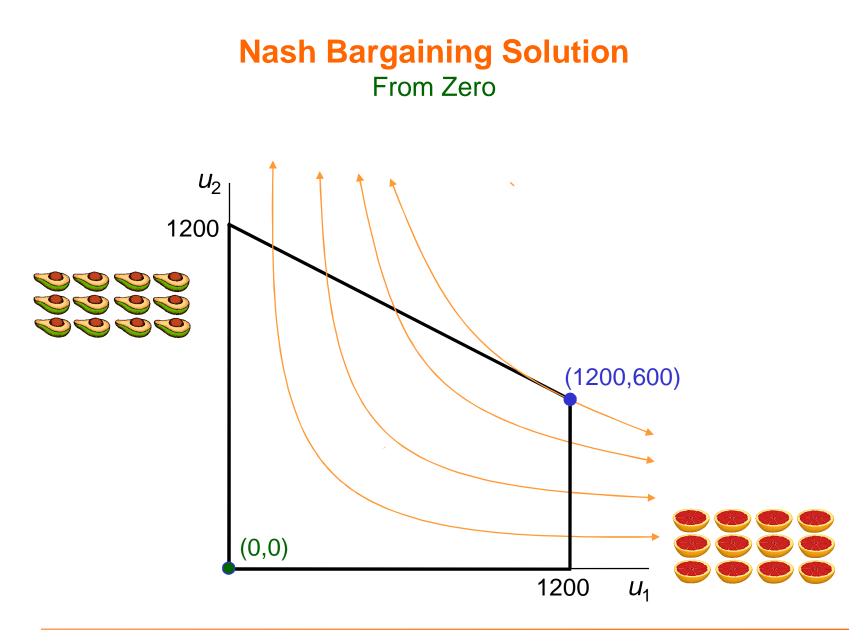
 $\sum_{i} \frac{u_i' - u_i}{u_i} \leq 0$

- Here, *u_i* is the utility of the packet flow rate assigned user *i*.
- Maximin criterion also used.

• The **optimization problem** has a concave objective function if we maximize log *f*(*u*).

$$\max \log \prod_{i} (u_i - d_i) = \sum_{i} \log(u_i - d_i)$$
$$u \in S$$

• Problem is relatively easy if feasible set S is convex.



Nash Bargaining Solution From Equality

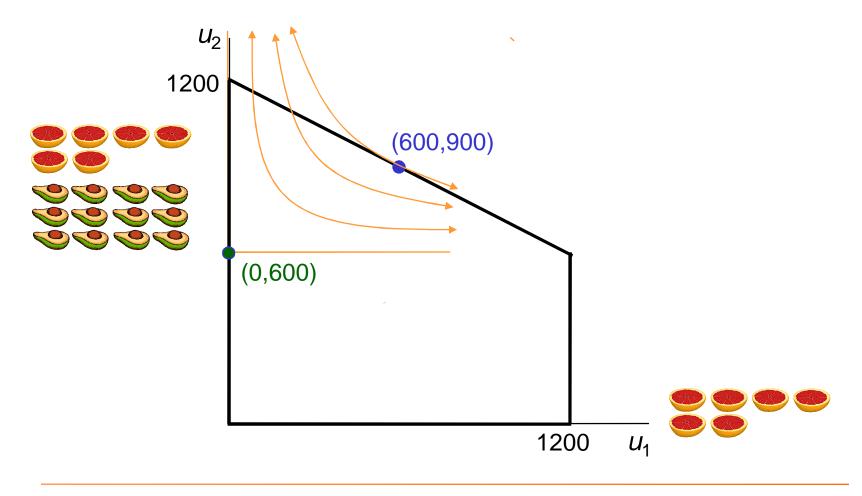


- Strongly pareto set gives Smith all 12 avocados.
 - Nothing for Jones.
 - Results in utility $(u_1, u_2) = (0,600)$

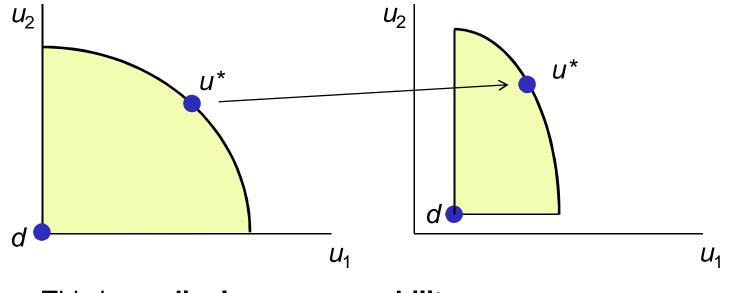
Utility provided by one fruit of each kind

Jones	Smith
100	50
0	50

Nash Bargaining Solution From Strongly Pareto Set

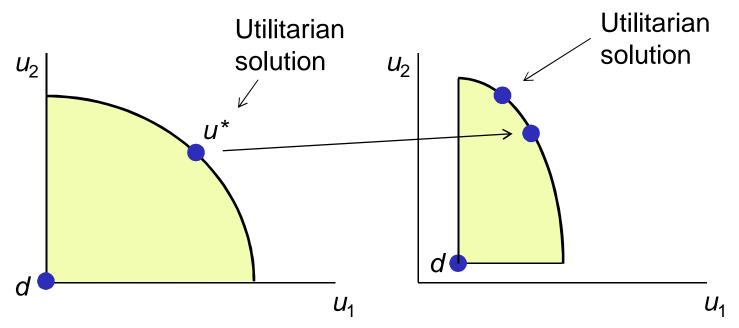


- Axiom 1. Invariance under translation and rescaling.
 - If we map $u_i \rightarrow a_i u_i + b_i$, $d_i \rightarrow a_i d_i + b_i$, then bargaining solution $u_i^* \rightarrow a_i u_i^* + b_i$.



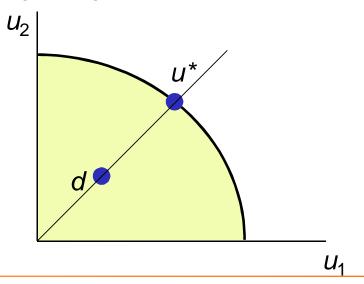
This is cardinal noncomparability.

- Axiom 1. Invariance under translation and rescaling.
 - If we map $u_i \rightarrow a_i u_i + b_i$, $d_i \rightarrow a_i d_i + b_i$, then bargaining solution $u_i^* \rightarrow a_i u_i^* + b_i$.

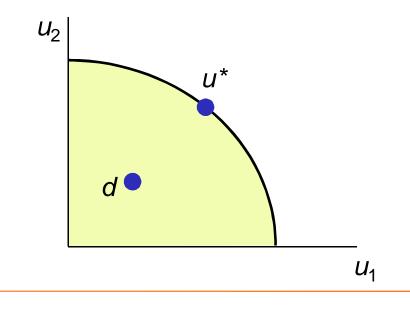


• Strong assumption – failed, e.g., by utilitarian welfare function

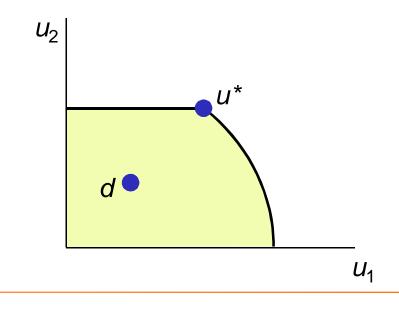
- Axiom 2. Pareto optimality.
 - Bargaining solution is pareto optimal.
- Axiom 3. Symmetry.
 - If all *d_i*s are equal and feasible set is symmetric, then all *u_i**s are equal in bargaining solution.



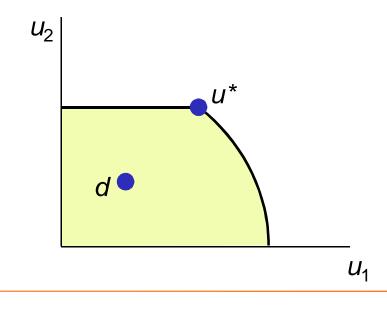
- Axiom 4. Independence of irrelevant alternatives.
 - Not the same as Arrow's axiom.
 - If *u*^{*} is a solution with respect to *d*



- Axiom 4. Independence of irrelevant alternatives.
 - Not the same as Arrow's axiom.
 - If *u*^{*} is a solution with respect to *d*, then it is a solution in a smaller feasible set that contains *u*^{*} and *d*.



- Axiom 4. Independence of irrelevant alternatives.
 - Not the same as Arrow's axiom.
 - If *u*^{*} is a solution with respect to *d*, then it is a solution in a smaller feasible set that contains *u*^{*} and *d*.
 - This basically says that the solution behaves like an **optimum**.



Theorem. Exactly one solution satisfies Axioms 1-4, namely the Nash bargaining solution.

Proof (2 dimensions).

First show that the Nash solution satisfies the axioms.

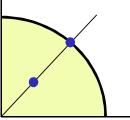
Axiom 1. Invariance under transformation. If

$$\prod_{i} (u_{i}^{*} - d_{1}) \geq \prod_{i} (u_{i} - d_{1})$$

then
$$\prod_{i} ((a_{i}u_{i}^{*} + b_{i}) - (a_{i}d_{i} + b_{i})) \geq \prod_{i} ((a_{i}u_{i} + b_{i}) - (a_{i}d_{i} + b_{i}))$$

Axiom 2. Pareto optimality. Clear because social welfare function is strictly monotone increasing.

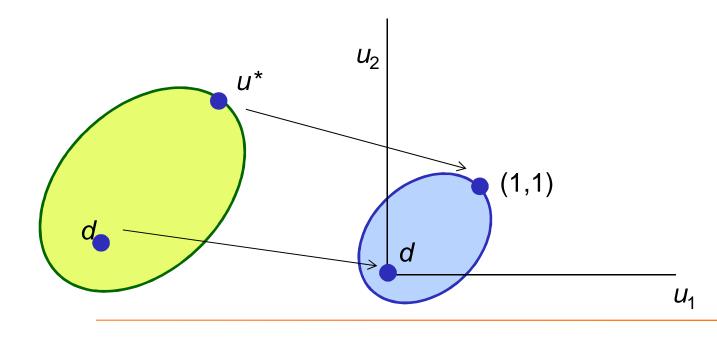
Axiom 3. Symmetry. Obvious.



Axiom 4. Independence of irrelevant alternatives. Follows from the fact that u^* is an optimum.

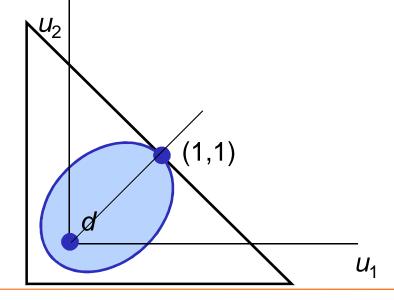
Now show that **only** the Nash solution satisfies the axioms

Let u^* be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$ The transformed problem has Nash solution (1,1), by Axiom 1:



Let u^* be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$ The transformed problem has Nash solution (1,1), by Axiom 1:

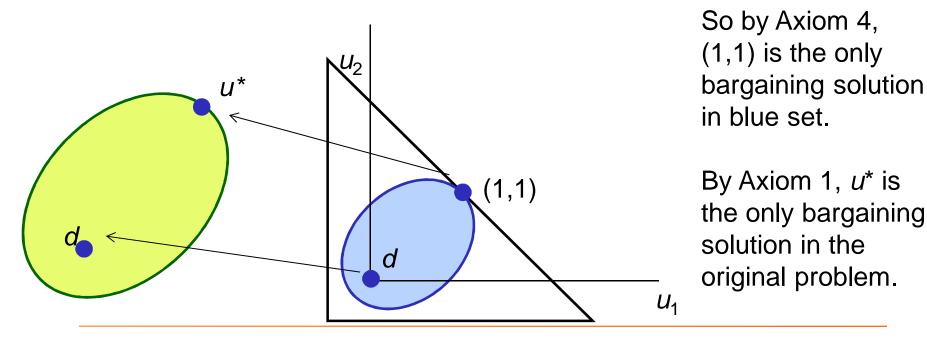
By Axioms 2 & 3, (1,1) is the **only** bargaining solution in the triangle:



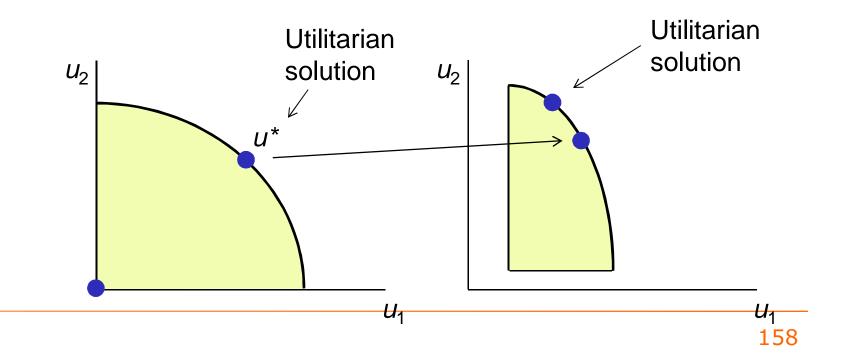
Let u^* be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$ The transformed problem has Nash solution (1,1), by Axiom 1:

By Axioms 2 & 3, (1,1) is the **only** bargaining solution in the triangle: u_1 So by Axiom 4, (1,1) is the only bargaining solution in blue set.

Let u^* be the Nash solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(u_1, u_2) \rightarrow (1, 1), \quad (d_1, d_2) \rightarrow (0, 0)$ The transformed problem has Nash solution (1,1), by Axiom 1:

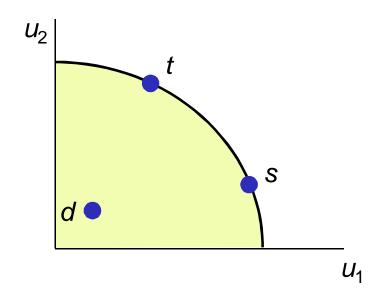


- Problems with axiomatic justification.
 - Axiom 1 (invariance under transformation) is very strong.
 - Axiom 1 denies interpersonal comparability.
 - So how can it reflect moral concerns?

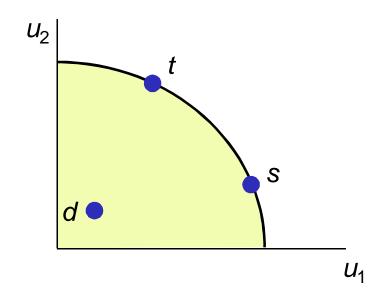


- **Problems** with axiomatic justification.
 - **Axiom 1** (invariance under transformation) is very strong.
 - Axiom 1 denies interpersonal comparability.
 - So how can it reflect moral concerns?
- Most attention has been focused on **Axiom 4** (independence of irrelevant alternatives).
 - Will address this later.

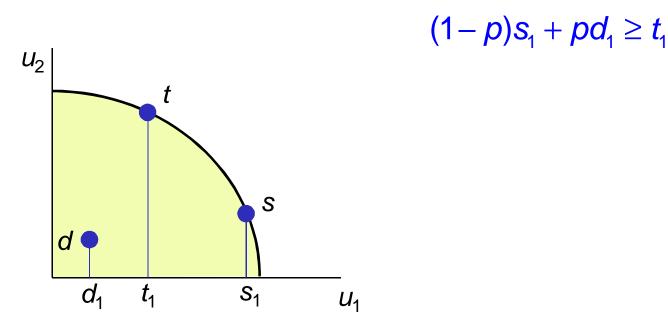
Players 1 and 2 make offers s, t.



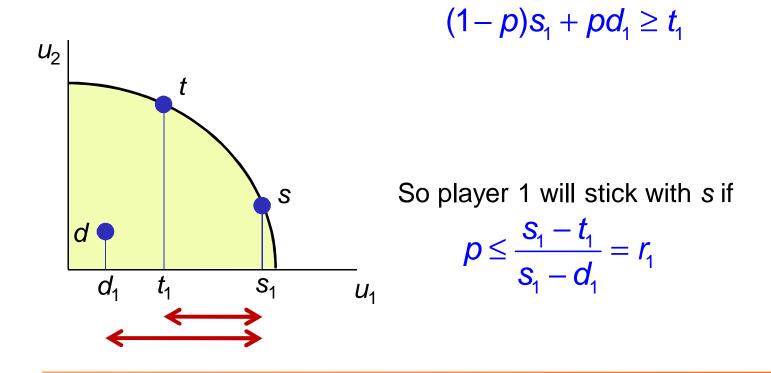
Players 1 and 2 make offers *s*, *t*. Let p = P(player 2 will reject s), as estimated by player 1.



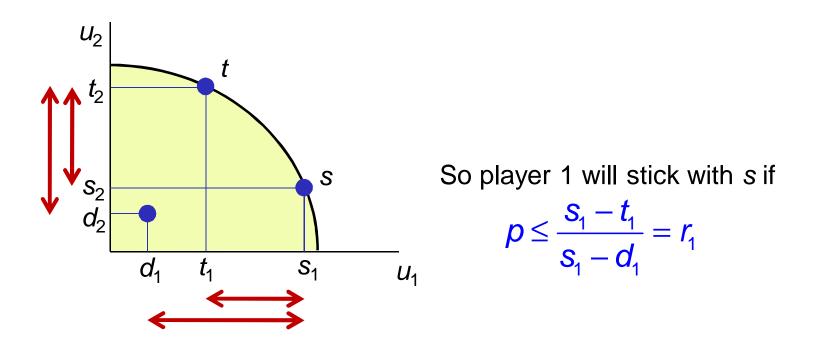
Players 1 and 2 make offers *s*, *t*. Let p = P(player 2 will reject s), as estimated by player 1. Then player 1 will stick with *s*, rather than make a counteroffer, if



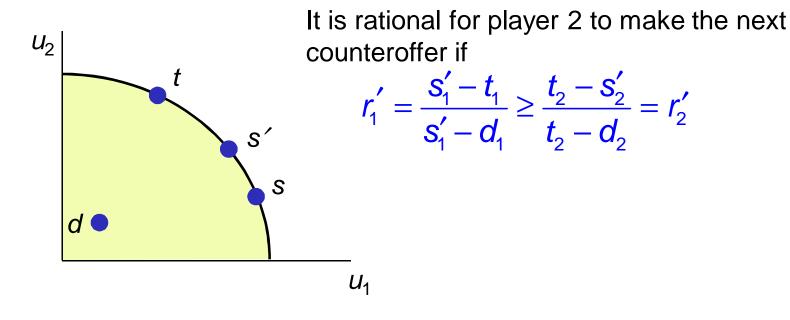
Players 1 and 2 make offers *s*, *t*. Let p = P(player 2 will reject s), as estimated by player 1. Then player 1 will stick with *s*, rather than make a counteroffer, if



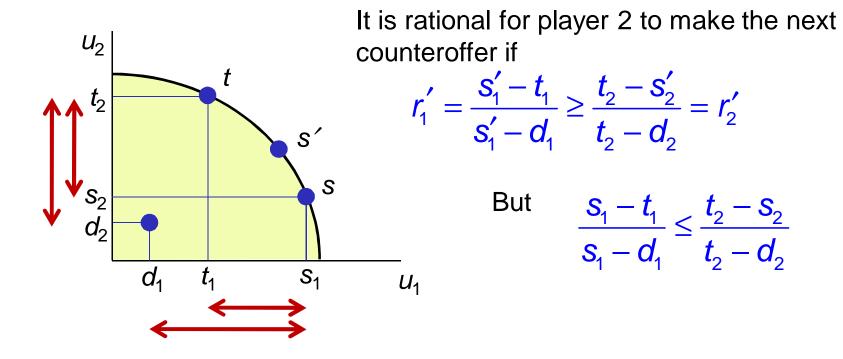
$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$



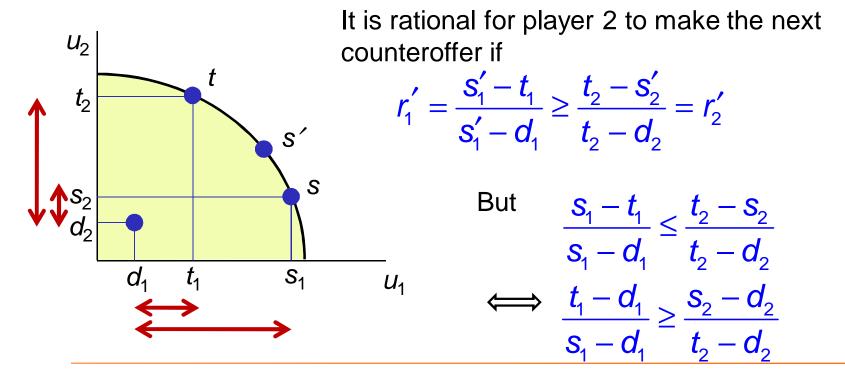
$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$



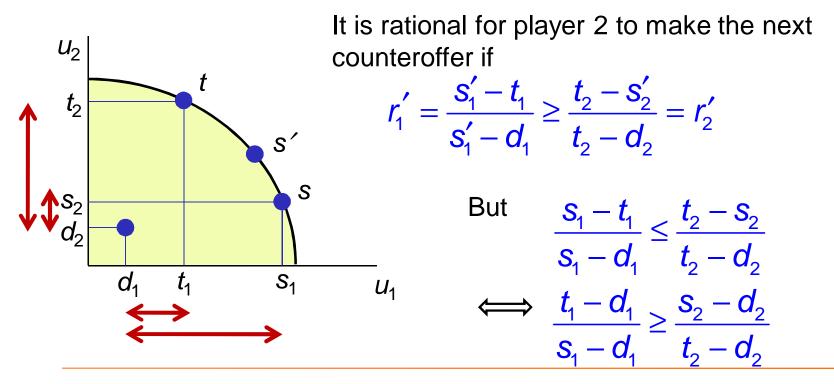
$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$



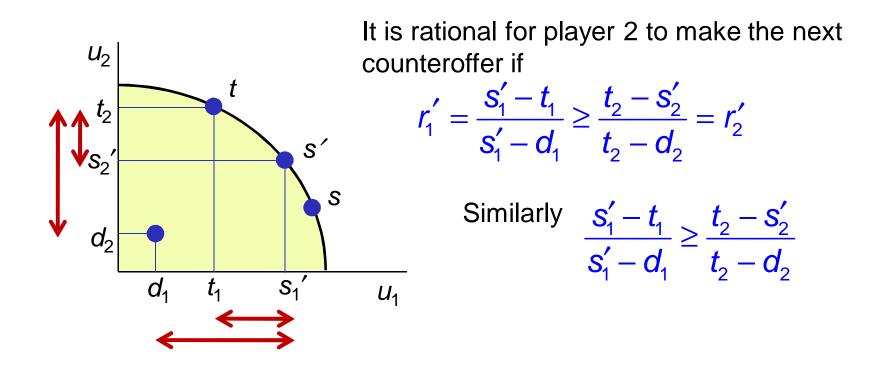
$$r_1 = \frac{s_1 - t_1}{s_1 - d_1} \le \frac{t_2 - s_2}{t_2 - d_2} = r_2$$



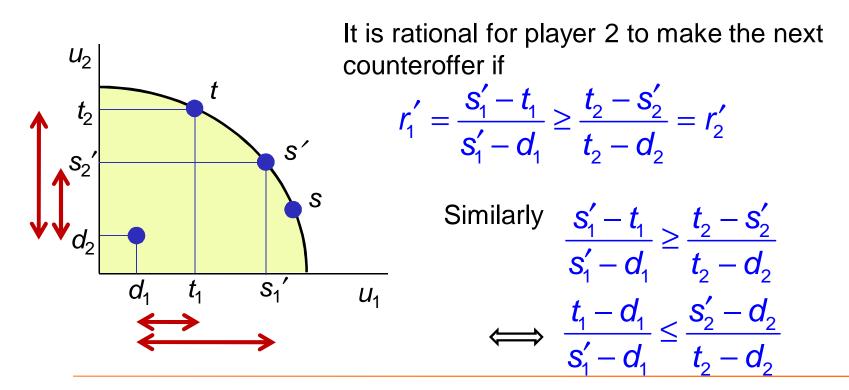
So we have
$$(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$$

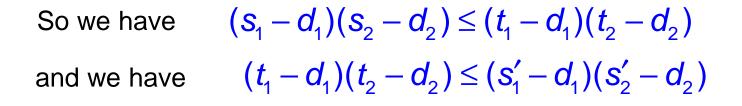


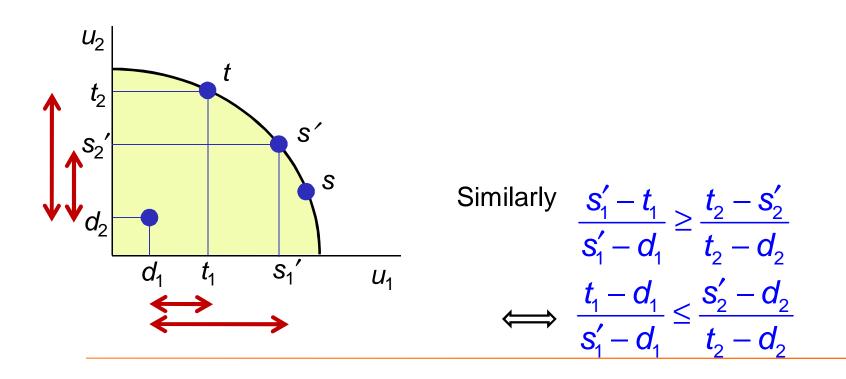
So we have
$$(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$$



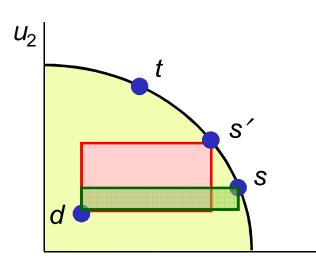
So we have
$$(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$$







So we have $(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$ and we have $(t_1 - d_1)(t_2 - d_2) \le (s_1' - d_1)(s_2' - d_2)$

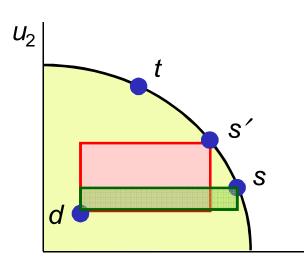


This implies an improvement in the Nash social welfare function

So we have and we have

$$(s_1 - d_1)(s_2 - d_2) \le (t_1 - d_1)(t_2 - d_2)$$

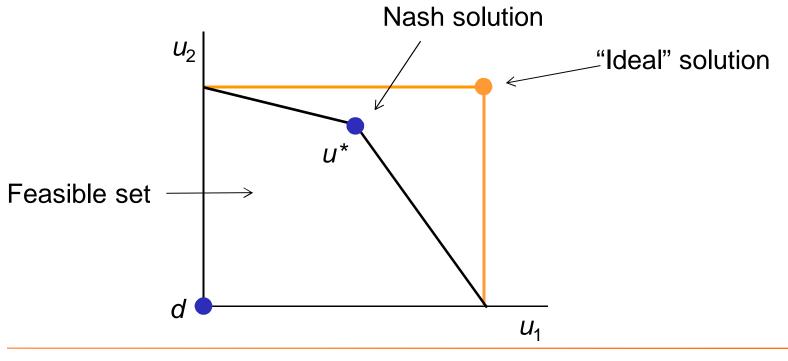
 $(t_1 - d_1)(t_2 - d_2) \le (s_1' - d_1)(s_2' - d_2)$



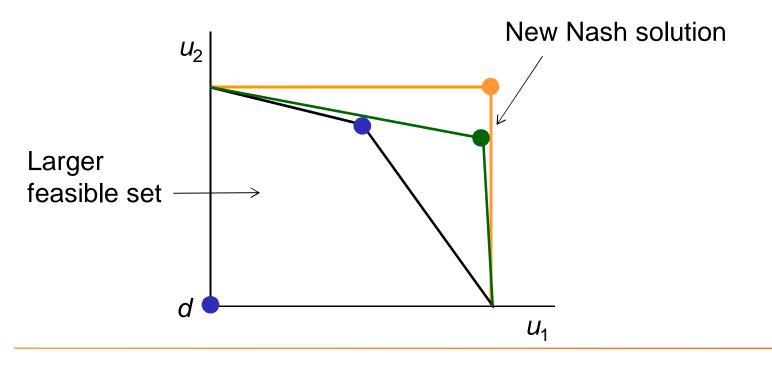
This implies an improvement in the Nash social welfare function.

Given a minimum distance between offers, continued bargaining converges to Nash solution.

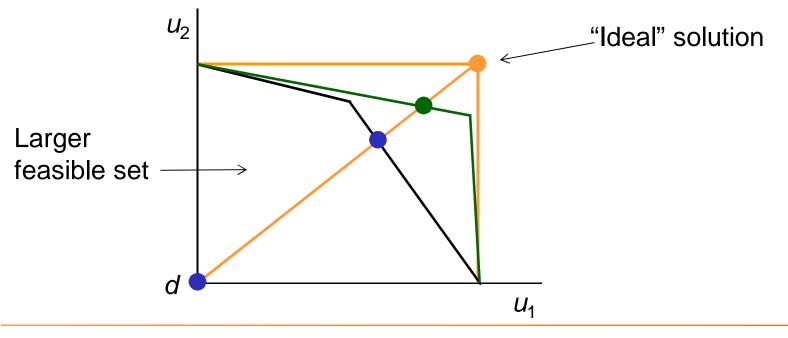
• This approach begins with a critique of the Nash bargaining solution.



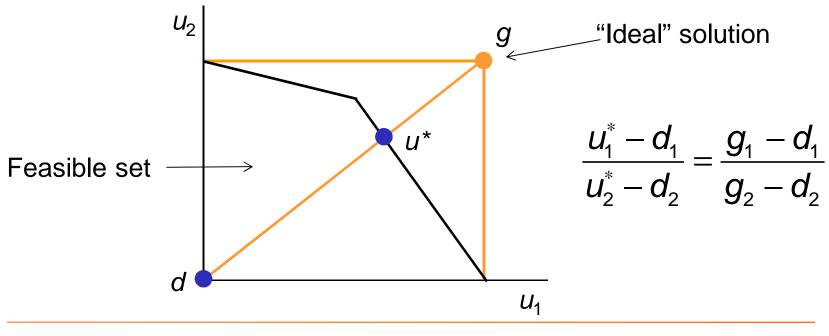
- This approach begins with a critique of the Nash bargaining solution.
 - The new Nash solution is worse for player 2 even though the feasible set is larger.



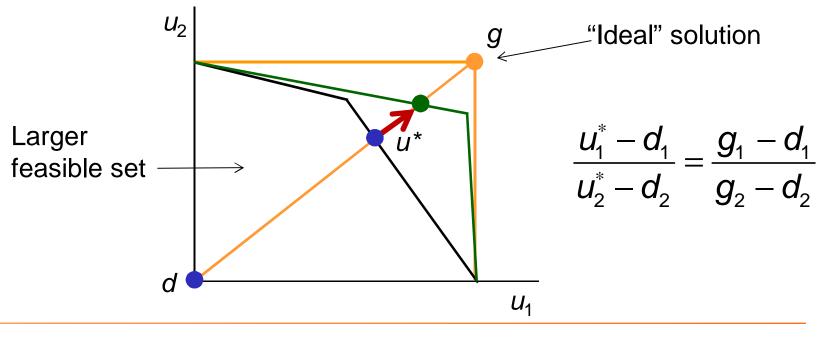
• **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.



- **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.
 - The players receive an equal fraction of their possible utility gains.



- **Proposal**: Bargaining solution is pareto optimal point on line from *d* to ideal solution.
 - Replace Axiom 4 with **Axiom 4' (Monotonicity)**: A larger feasible set with same ideal solution results in a bargaining solution that is better (or no worse) for all players.



• Applications

- Allocation of wireless capacity.
- Allocation of cloud computing resources.
- Datacenter resource scheduling (also dominant resource fairness)
- Resource allocation in visual sensor networks
- Labor-market negotiations

• Optimization model.

- Not an optimization problem over original feasible set (we gave up Axiom 4).
- But it is an optimization problem (pareto optimality) over the line segment from *d* to ideal solution.

$$\max \sum_{i} u_{i}$$

 $(g_{1} - d_{1})(u_{i} - d_{i}) = (g_{i} - d_{i})(u_{1} - d_{1}), \text{ all } i$
 $u \in S$

$$\frac{u_{1}^{*} - d_{1}}{u_{2}^{*} - d_{2}} = \frac{g_{1} - d_{1}}{g_{2} - d_{2}}$$

Raiffa-Kalai-Smorodinsky Bargaining Solution

• Optimization model.

- Not an optimization problem over original feasible set (we gave up Axiom 4).
- But it is an optimization problem (pareto optimality) over the line segment from *d* to ideal solution.

constants

$$\begin{array}{c}
\max \sum_{i} u_{i} \\
(g_{1} - d_{1})(u_{i} - d_{i}) = (g_{i} - d_{i})(u_{1} - d_{1}), \text{ all } i \\
u \in S
\end{array}$$

Raiffa-Kalai-Smorodinsky Bargaining Solution

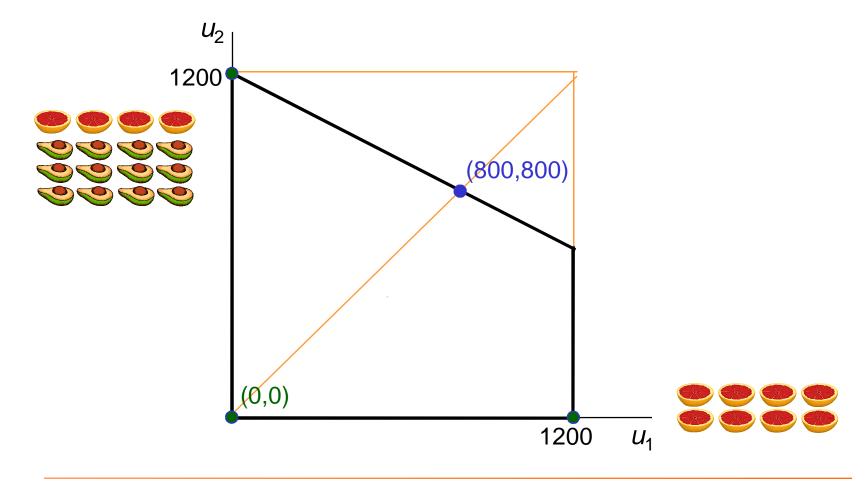
• Optimization model.

- Not an optimization problem over original feasible set (we gave up Axiom 4).
- But it is an optimization problem (pareto optimality) over the line segment from *d* to ideal solution.

constants

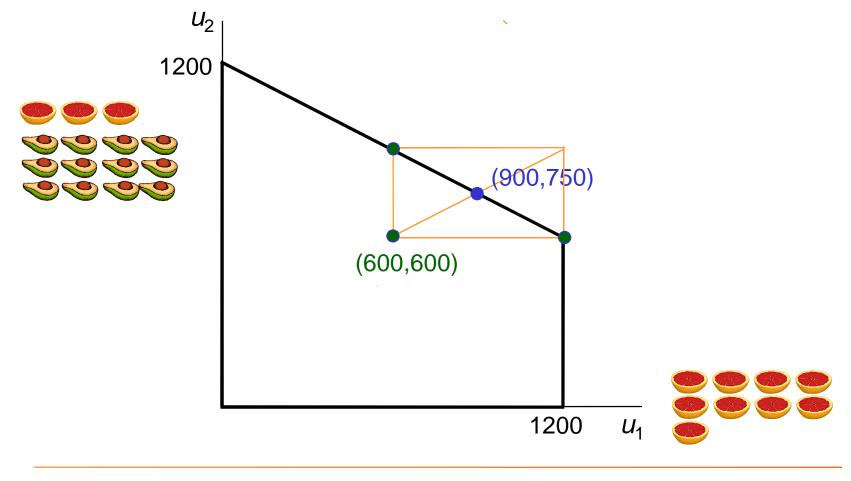
$$\begin{array}{c}
\max \sum_{i} u_{i} \\
(g_{1} - d_{1})(u_{i} - d_{i}) = (g_{i} - d_{i})(u_{1} - d_{1}), \text{ all } i \\
u \in S
\end{array}$$
Linear constraint

Raiffa-Kalai-Smorodinsky Bargaining Solution

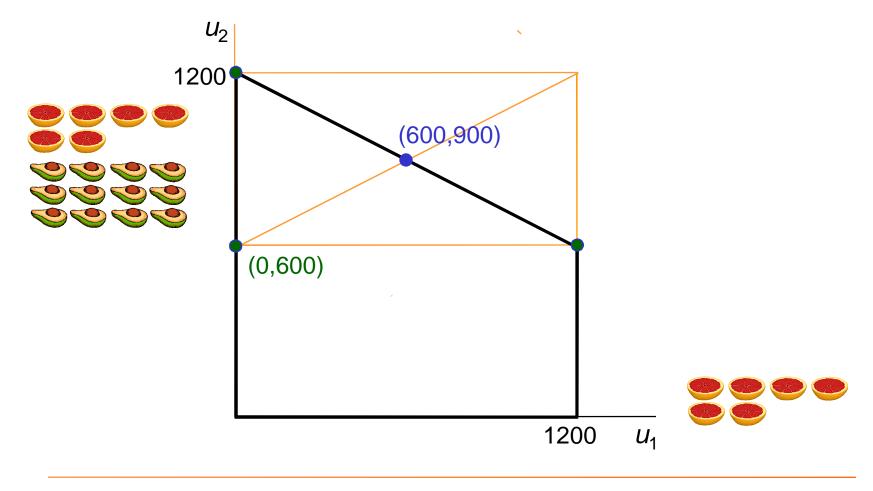


183

Raiffa-Kalai-Smorodinsky Bargaining Solution From Equality



Raiffa-Kalai-Smorodinsky Bargaining Solution From Strong Pareto Set



- Axiom 1. Invariance under transformation.
- Axiom 2. Pareto optimality.
- Axiom 3. Symmetry.
- Axiom 4'. Monotonicity.

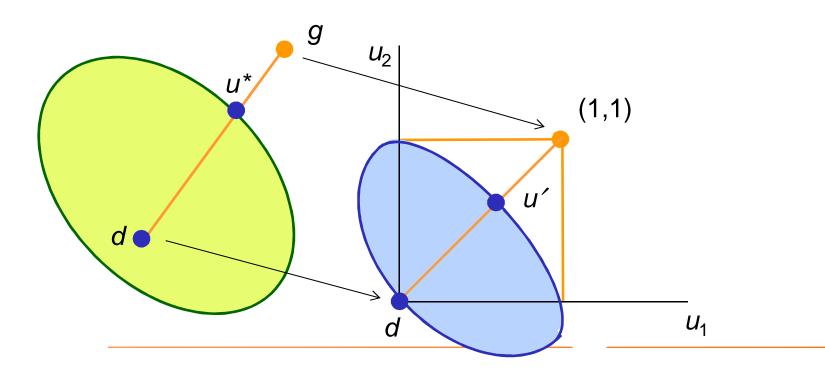
Theorem. Exactly one solution satisfies Axioms 1-4', namely the RKS bargaining solution.

Proof (2 dimensions).

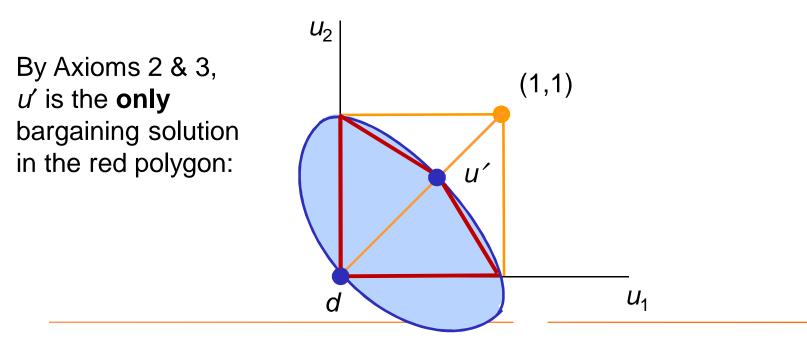
Easy to show that RKS solution satisfies the axioms.

Now show that **only** the RKS solution satisfies the axioms.

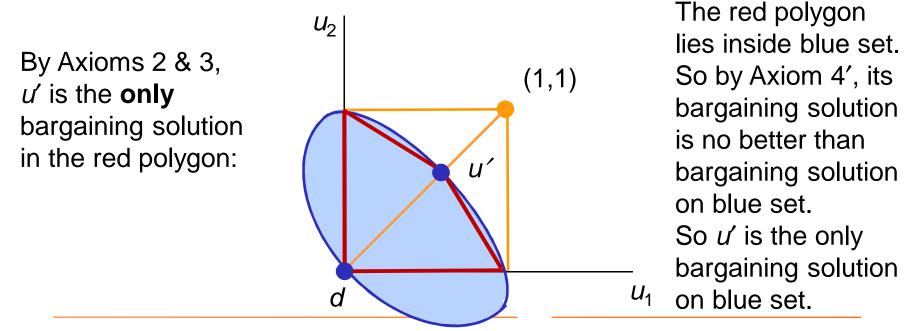
Let u^* be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(g_1,g_2) \rightarrow (1,1), \quad (d_1,d_2) \rightarrow (0,0)$ The transformed problem has RKS solution u', by Axiom 1:



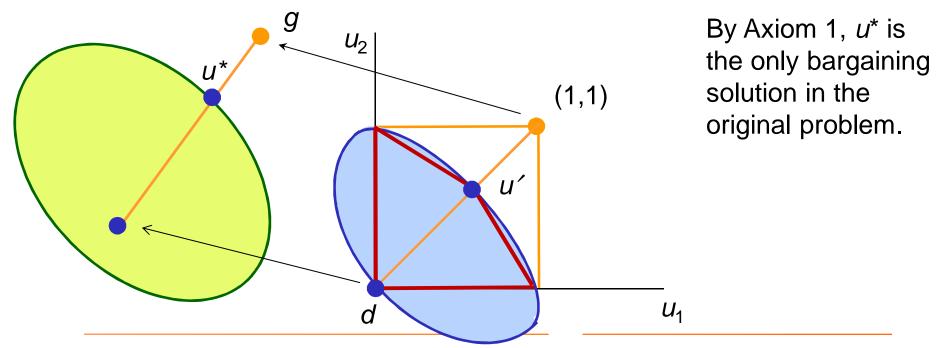
Let u^* be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(g_1,g_2) \rightarrow (1,1), \quad (d_1,d_2) \rightarrow (0,0)$ The transformed problem has RKS solution u', by Axiom 1:



Let u^* be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(g_1,g_2) \rightarrow (1,1), \quad (d_1,d_2) \rightarrow (0,0)$ The transformed problem has RKS solution u', by Axiom 1:

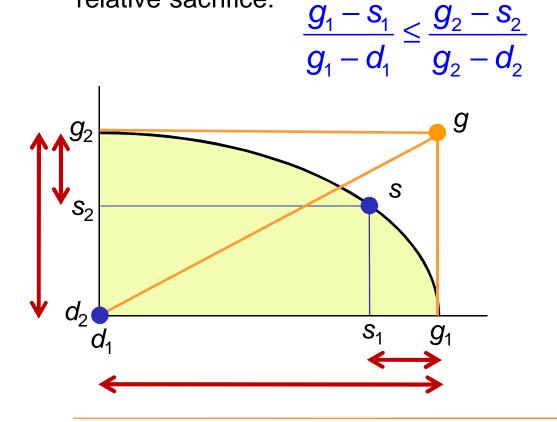


Let u^* be the RKS solution for a given problem. Then it satisfies the axioms with respect to d. Select a transformation that sends $(g_1,g_2) \rightarrow (1,1), \quad (d_1,d_2) \rightarrow (0,0)$ The transformed problem has RKS solution u', by Axiom 1:



- Problems with axiomatic justification.
 - Axiom 1 is still in effect.
 - It denies interpersonal comparability.
 - Dropping Axiom 4 sacrifices optimization of a social welfare function.
 - This may not be necessary if Axiom 1 is rejected.
 - Needs modification for > 2 players (more on this shortly).

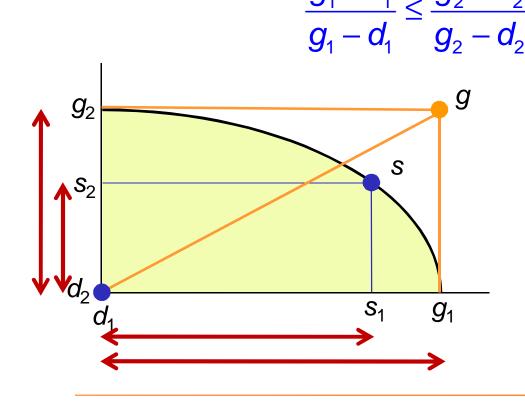
Resistance to an agreement *s* depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:



Minimizing resistance to agreement requires minimizing

$$\max_{i} \left\{ \frac{g_{i} - s_{i}}{g_{i} - d_{i}} \right\}$$

Resistance to an agreement *s* depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:



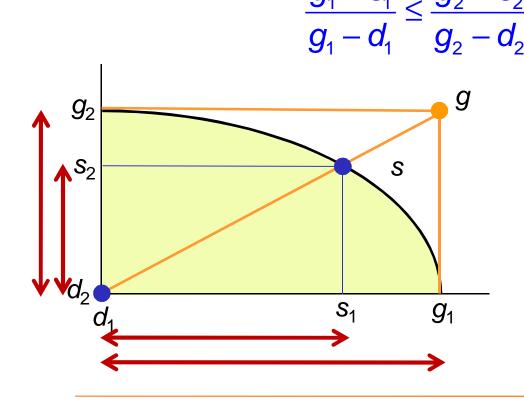
 $\frac{g_1 - s_1}{g_1 - d_1} \le \frac{g_2 - s_2}{g_2 - d_2}$ Minimizing resistance to agreement requires minimizing

$$\max_{i} \left\{ \frac{g_{i} - s_{i}}{g_{i} - d_{i}} \right\}$$

or equivalently, maximizing

 $\min_{i} \left\{ \frac{s_i - d_i}{g_i - d_i} \right\}$

Resistance to an agreement *s* depends on sacrifice relative to sacrifice under no agreement. Here, player 2 is making a larger relative sacrifice:



 $\frac{g_1 - s_1}{g_1 - d_1} \le \frac{g_2 - s_2}{g_2 - d_2}$ Minimizing resistance to agreement requires minimizing

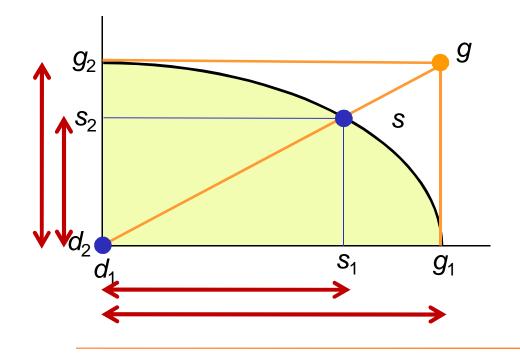
 $\max_{i} \left\{ \frac{g_{i} - s_{i}}{g_{i} - d_{i}} \right\}$

or equivalently, maximizing

 $\min_{i} \left\{ \frac{s_i - d_i}{g_i - d_i} \right\}$

which is achieved by RKS point.

This is the **Rawlsian social contract** argument applied to **gains relative to the ideal**.



Minimizing resistance to agreement requires minimizing

 $\max_{i} \left\{ \frac{g_{i} - s_{i}}{g_{i} - d_{i}} \right\}$

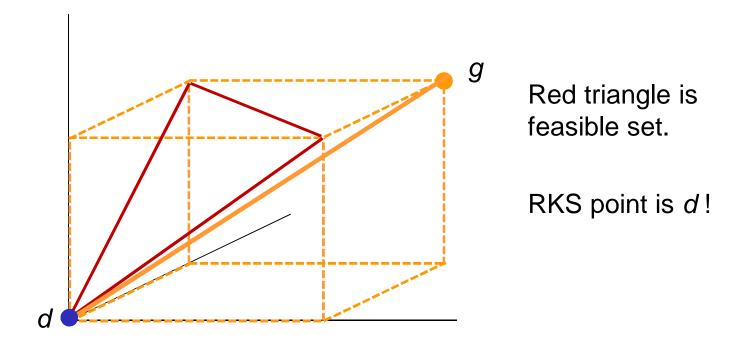
or equivalently, maximizing

 $\min_{i} \left\{ \frac{s_i - d_i}{g_i - d_i} \right\}$

which is achieved by RKS point.

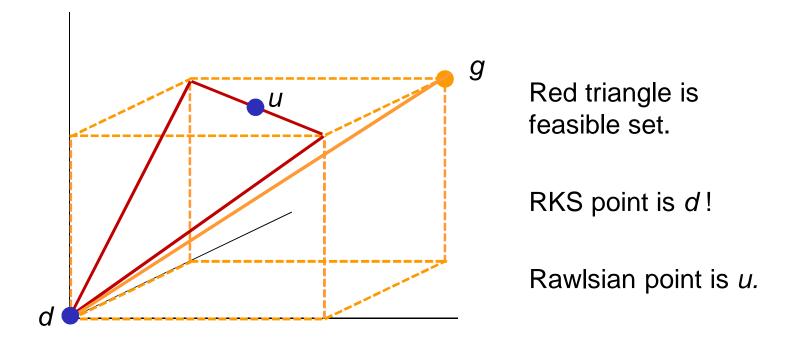
Problem with RKS Solutioon

- However, the RKS solution is Rawlsian only for 2 players.
 - In fact, RKS leads to counterintuitive results for 3 players.

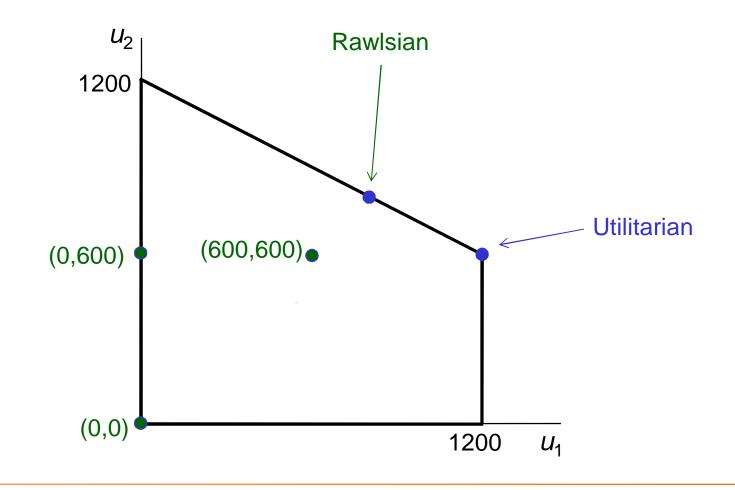


Problem with RKS Solutioon

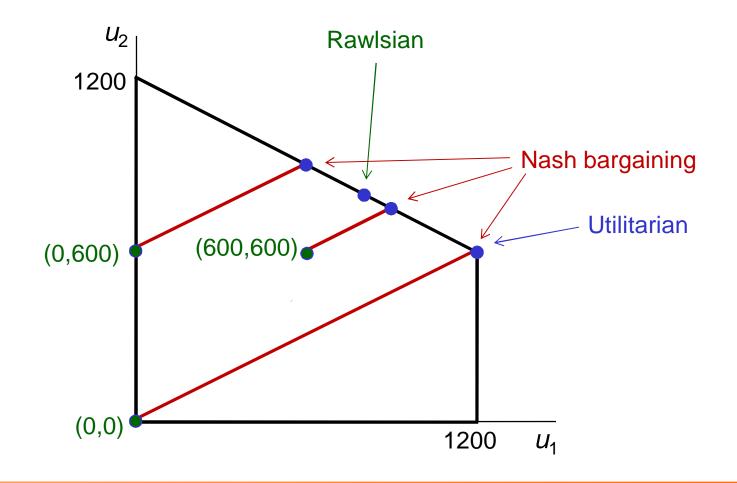
- However, the RKS solution is Rawlsian only for 2 players.
 - In fact, RKS leads to counterintuitive results for 3 players.



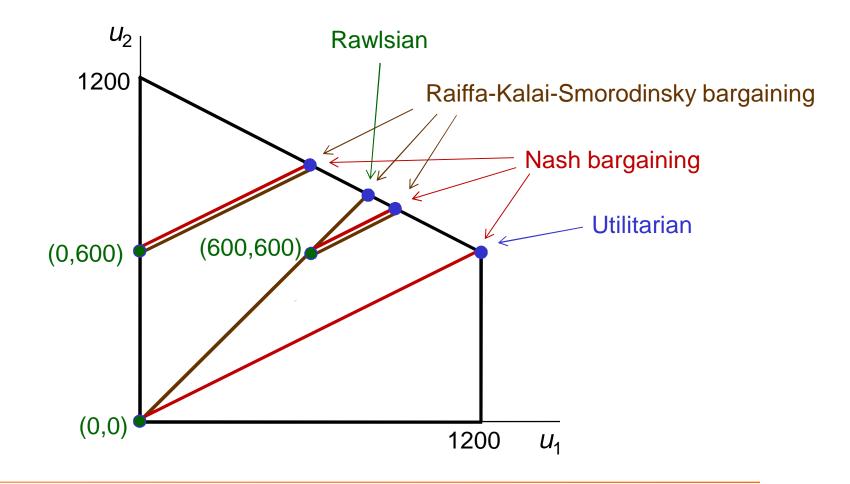
Summary



Summary



Summary



- A proposed model
- Health care application

- Utilitarian and Rawlsian distributions seem **too extreme** in practice.
 - How to combine them?

• One proposal:

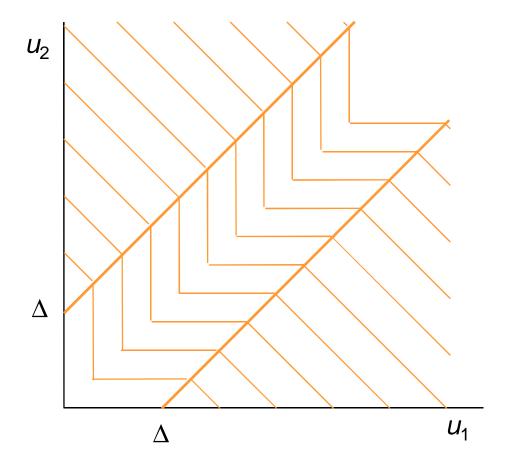
- Maximize welfare of **worst off** (Rawlsian)...
- until this requires **undue sacrifice** from others
- Seems appropriate in health care allocation.

- In particular:
 - Switch from Rawlsian to utilitarian when inequality exceeds Δ .

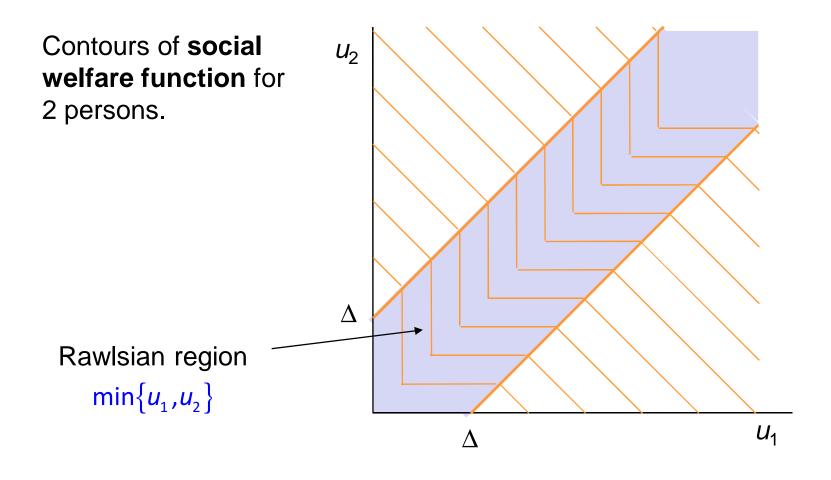
- In particular:
 - Switch from Rawlsian to utilitarian when inequality exceeds Δ .
 - Build mixed integer programming model.
 - Let u_i = utility allocated to person *i*
- For 2 persons:
 - Maximize $\min_i \{u_1, u_2\}$ (Rawlsian) when $|u_1 u_2| \le \Delta$
 - Maximize $u_1 + u_2$ (utilitarian) when $|u_1 u_2| > \Delta$

Two-person Model

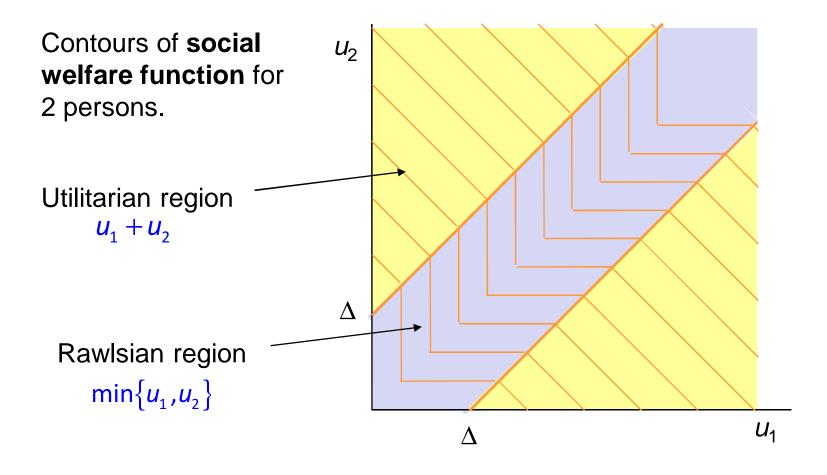
Contours of **social welfare function** for 2 persons.

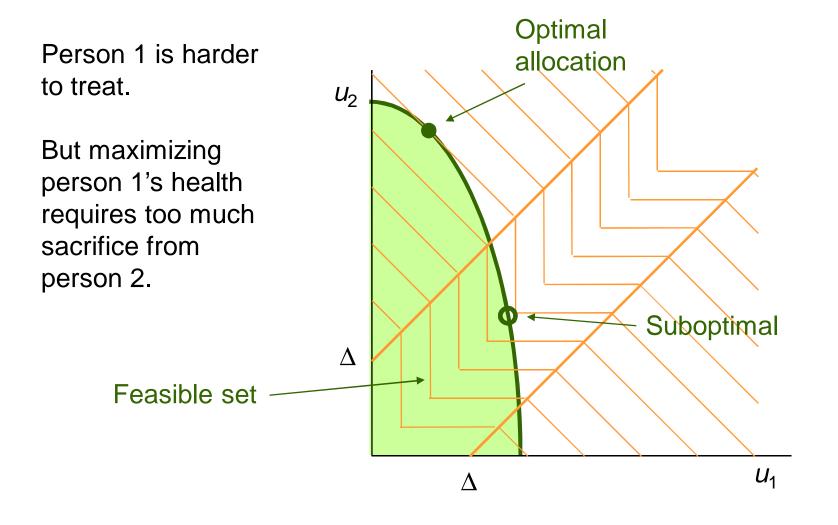


Two-person Model



Two-person Model

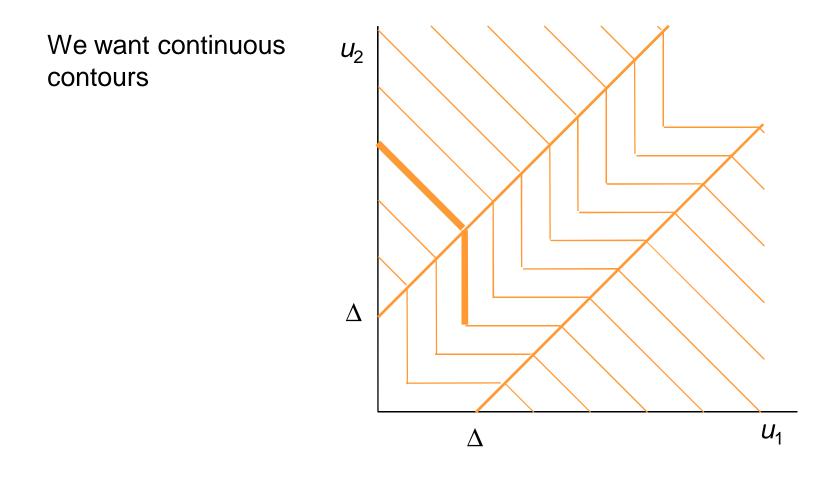




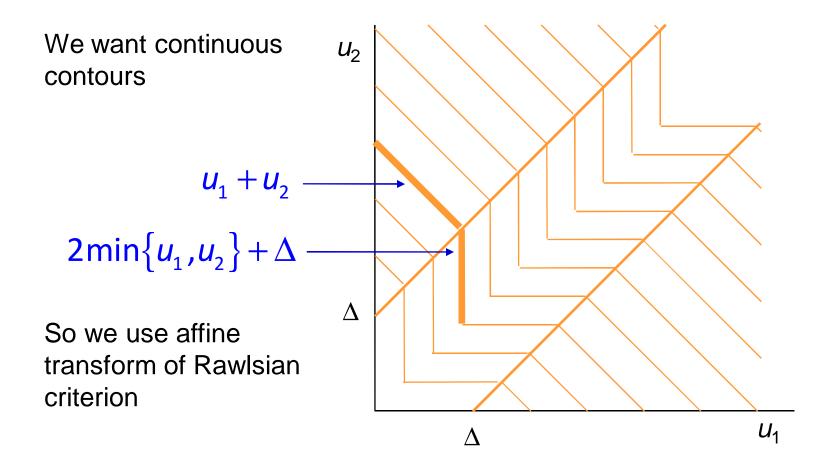
Advantages

- Only one parameter Δ
 - Focus for debate.
 - Δ has **intuitive meaning** (unlike weights)
 - Examine **consequences** of different settings for Δ
 - Find least objectionable setting
 - Results in a **consistent** policy

Social Welfare Function



Social Welfare Function



Social Welfare Function

The social welfare problem becomes

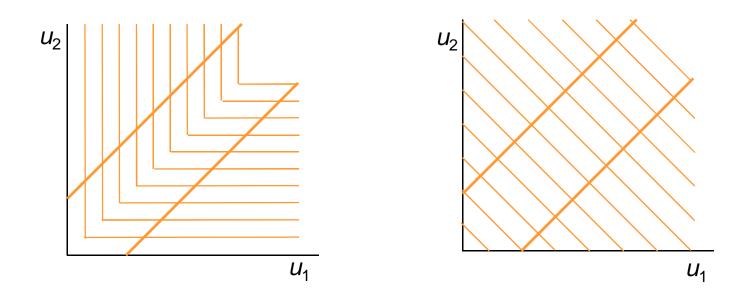
max z

$$z \leq \begin{cases} 2\min\{u_1, u_2\} + \Delta, & \text{if } |u_1 - u_2| \leq \Delta \\ u_1 + u_2, & \text{otherwise} \end{cases}$$

constraints on feasible set

MILP Model

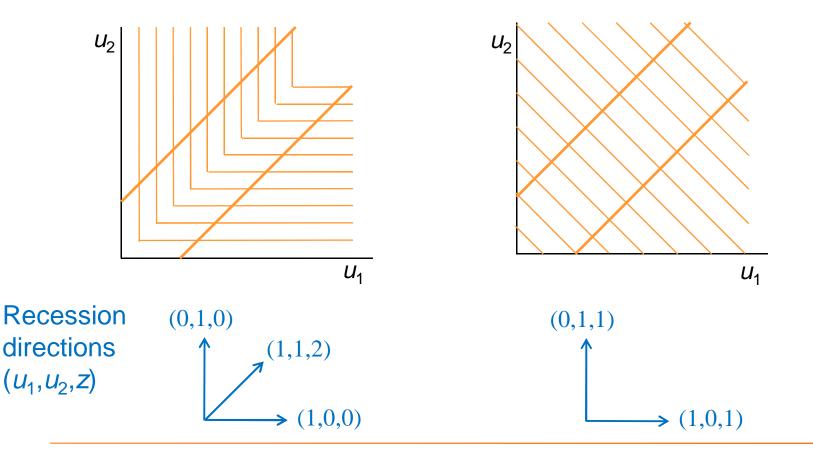
Epigraph is union of 2 polyhedra.



MILP Model

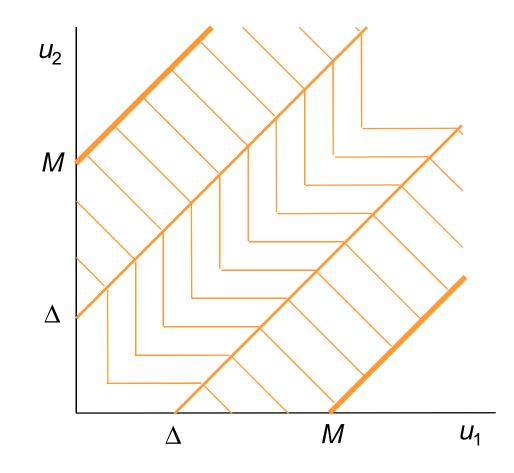
Epigraph is union of 2 polyhedra.

Because they have different recession cones, there is no MILP model.



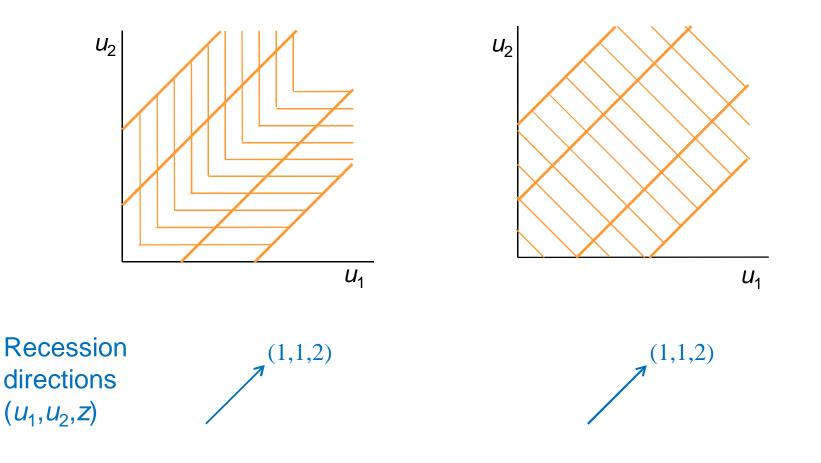
MILP Model

Impose constraints $|u_1 - u_2| \le M$



MILP Model

This equalizes recession cones.



MILP Model

We have the model

 $\begin{array}{l} \max \ z \\ z \leq 2u_i + \Delta + (M - \Delta)\delta, \quad i = 1, 2 \\ z \leq u_1 + u_2 + \Delta(1 - \delta) \\ u_1 - u_2 \leq M, \quad u_2 - u_1 \leq M \\ u_1, u_2 \geq 0 \\ \delta \in \{0, 1\} \\ \text{ constraints on feasible set} \end{array}$

MILP Model

We have the model

 $\max z$ $z \le 2u_i + \Delta + (M - \Delta)\delta, \quad i = 1,2$ $z \le u_1 + u_2 + \Delta(1 - \delta)$ $u_1 - u_2 \le M, \quad u_2 - u_1 \le M$ $u_1, u_2 \ge 0$ $\delta \in \{0, 1\}$

*u*₁

This is a **convex hull** formulation.

n-person Model

Rewrite the 2-person social welfare function as

$$\frac{\Delta + 2u_{\min} + (u_1 - u_{\min} - \Delta)^+ + (u_2 - u_{\min} - \Delta)^+}{\alpha^+ = \max\{0, \alpha\}}$$

n-person Model

Rewrite the 2-person social welfare function as

$$\Delta + 2u_{\min} + (u_1 - u_{\min} - \Delta)^+ + (u_2 - u_{\min} - \Delta)^+$$

$$\alpha^+ = \max\{0, \alpha\}$$

This can be generalized to *n* persons:

$$(n-1)\Delta + nu_{\min} + \sum_{j=1}^{n} (u_j - u_{\min} - \Delta)^+$$

n-person Model

Rewrite the 2-person social welfare function as

$$\Delta + 2u_{\min} + (u_1 - u_{\min} - \Delta)^+ + (u_2 - u_{\min} - \Delta)^+$$

$$\min\{u_1, u_2\} \qquad \qquad \alpha^+ = \max\{0, \alpha\}$$

This can be generalized to *n* persons:

$$(n-1)\Delta + nu_{\min} + \sum_{j=1}^{n} (u_j - u_{\min} - \Delta)^+$$

Epigraph is a union of *n*! polyhedra with same recession direction (u,z) = (1, ..., 1, n) if we require $|u_i - u_j| \le M$

So there is an MILP model

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w_{ii}

 $\begin{array}{l} \max \ z \\ z \leq u_i + \sum_{j \neq i} w_{ij}, \ \text{all } i \\ w_{ij} \leq \Delta + u_i + \delta_{ij} (M - \Delta), \ \text{all } i, j \text{ with } i \neq j \\ w_{ij} \leq u_j + (1 - \delta_{ij})\Delta, \ \text{all } i, j \text{ with } i \neq j \\ u_i - u_j \leq M, \ \text{all } i, j \\ u_i \geq 0, \ \text{all } i \\ \delta_{ii} \in \{0, 1\}, \ \text{all } i, j \text{ with } i \neq j \end{array}$

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w_{ii}

$$\begin{array}{l} \max \ z \\ z \leq u_i + \sum_{j \neq i} w_{ij}, \ \text{all} \ i \\ w_{ij} \leq \Delta + u_i + \delta_{ij} (M - \Delta), \ \text{all} \ i, j \ \text{with} \ i \neq j \\ w_{ij} \leq u_j + (1 - \delta_{ij})\Delta, \ \text{all} \ i, j \ \text{with} \ i \neq j \\ u_i - u_j \leq M, \ \text{all} \ i, j \\ u_i \geq 0, \ \text{all} \ i \\ \delta_{ij} \in \{0, 1\}, \ \text{all} \ i, j \ \text{with} \ i \neq j \end{array}$$

Theorem. The model is correct (not easy to prove).

n-person MILP Model

To avoid n! 0-1 variables, add auxiliary variables w_{ii}

$$\begin{array}{l} \max \ z \\ z \leq u_i + \sum_{j \neq i} w_{ij}, \ \text{all} \ i \\ w_{ij} \leq \Delta + u_i + \delta_{ij} (M - \Delta), \ \text{all} \ i, j \ \text{with} \ i \neq j \\ w_{ij} \leq u_j + (1 - \delta_{ij})\Delta, \ \text{all} \ i, j \ \text{with} \ i \neq j \\ u_i - u_j \leq M, \ \text{all} \ i, j \\ u_i \geq 0, \ \text{all} \ i \\ \delta_{ij} \in \{0, 1\}, \ \text{all} \ i, j \ \text{with} \ i \neq j \end{array}$$

Theorem. The model is correct (not easy to prove).

Theorem. This is a convex hull formulation (not easy to prove).

n-group Model

In practice, funds may be allocated to groups of different sizes

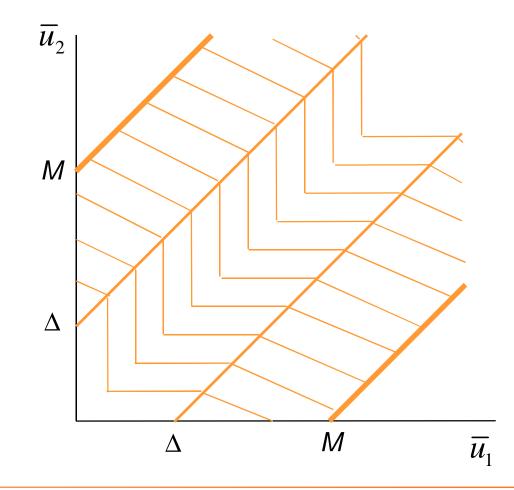
For example, disease/treatment categories.

Let \overline{u} = average utility gained by a person in group *i*

 $n_i = \text{size of group } i$

n-group Model

2-person case with $n_1 < n_2$. Contours have slope $-n_1/n_2$



n-group MILP Model

Again add auxiliary variables w_{ij}

 $\begin{array}{l} \max \ z \\ z \leq (n_i - 1)\Delta + n_i \overline{u_i} + \sum_{j \neq i} w_{ij}, \ \text{all } i \\ w_{ij} \leq n_j (\overline{u_i} + \Delta) + \delta_{ij} n_j (M - \Delta), \ \text{all } i, j \ \text{with } i \neq j \\ w_{ij} \leq \overline{u_j} + (1 - \delta_{ij}) n_j \Delta, \ \text{all } i, j \ \text{with } i \neq j \\ \overline{u_i} - \overline{u_j} \leq M, \ \text{all } i, j \\ \overline{u_i} \geq 0, \ \text{all } i \\ \delta_{ii} \in \{0, 1\}, \ \text{all } i, j \ \text{with } i \neq j \end{array}$

Theorem. The model is correct.

Theorem. This is a convex hull formulation.

Health Example

Measure utility in QALYs (quality-adjusted life years).

QALY and cost data based on Briggs & Gray, (2000) etc.

Each group is a disease/treatment pair.

Treatments are discrete, so group funding is all-or-nothing.

Divide groups into relatively homogeneous subgroups.

Health Example

Add constraints to define feasible set

max z $z \leq (n_i - 1)\Delta + n_i \overline{u}_i + \sum_{i \neq i} w_{ij}$, all i $w_{ii} \leq n_i (\overline{u}_i + \Delta) + \delta_{ii} n_i (M - \Delta)$, all i, j with $i \neq j$ $w_{ii} \leq \overline{u}_i + (1 - \delta_{ii})n_i \Delta$, all i, j with $i \neq j$ $\overline{u}_i - \overline{u}_i \leq M$, all i, j $\overline{u}_i \ge 0$, all *i* $\delta_{ii} \in \{0,1\}, \text{ all } i, j \text{ with } i \neq j$ y_i indicates $\overline{u}_{i} = q_{i}y_{i} + \alpha_{i}$ $\sum_{i} n_{i}c_{i}y_{i} \leq \text{budget}$ $y_{i} \in \{0,1\}, \text{ all } i$ whether group *i* is funded

Intervention	$\begin{array}{c} \text{Cost} \\ \text{per person} \\ c_i \\ (\pounds) \end{array}$	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY (£)	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ \alpha_i \end{array}$	$\begin{array}{c} \text{Subgro} \\ \text{size} \\ n_i \end{array}$
Pacemaker for atriove	entricular hear	rt block			
Subgroup A	3500	3	1167	13	35
Subgroup B	3500	5	700	10	45
Subgroup C	3500	10	350	5	35
Hip replacement					
Subgroup A	3000	2	1500	3	45
Subgroup B	3000	4	750	4	45
Subgroup C	3000	8	375	5	45
Valve replacement for	aortic stenos	is			
Subgroup A	4500	3	1500	2.5	20
Subgroup B	4500	5	900	3	20
Subgroup C	4500	10	450	3.5	20
$CABG^1$ for left main	disease				
Mild angina	3000	1.25	2400	4.75	50
Moderate angina	3000	2.25	1333	3.75	55
Severe angina	3000	2.75	1091	3.25	60
CABG for triple vesse	el disease				
Mild angina	3000	0.5	6000	5.5	50
Moderate angina	3000	1.25	2400	4.75	55
Severe angina	3000	2.25	1333	3.75	60
CABG for double vess	el disease				
Mild angina	3000	0.25	12,000	5.75	60
Moderate angina	3000	0.75	4000	5.25	65
Severe angina	3000	1.25	2400	4.75	70

QALY & cost data

Part 1

	Intervention	$\begin{array}{c} \text{Cost} \\ \text{per person} \\ \begin{array}{c} c_i \\ (\pounds) \end{array}$	$\begin{array}{c} \text{QALYs} \\ \text{gained} \\ q_i \end{array}$	Cost per QALY (£)	$\begin{array}{c} {\rm QALYs} \\ {\rm without} \\ {\rm intervention} \\ \alpha_i \end{array}$	$\begin{array}{c} {\rm Subgroup} \\ {\rm size} \\ n_i \end{array}$
		22,500	4.5	5000	1.1	2
	Kidney transplant					
• • • • • •	Subgroup A	15,000	4	3750	1	8
QALY	Subgroup B	15,000	6	2500	1	8
& cost	Kidney dialysis					
ατοσι	Less than 1 year su			NO 000		-
data	Subgroup A	5000	0.1	50,000	0.3	8
	1-2 years survival	10.000	0.4	20,000	0.0	0
	Subgroup B	12,000	0.4	30,000	0.6	6
Part 2	2-5 years survival	20,000	1.0	10 007	0 5	4
	Subgroup C	20,000 28,000	$1.2 \\ 1.7$	$16,667 \\ 16,471$	$0.5 \\ 0.7$	$\frac{4}{4}$
	Subgroup D Subgroup E	36,000	2.3	15,471 15,652	0.8	4
	5-10 years survival	*	2.0	15,052	0.0	4
	Subgroup F	46,000	3.3	13,939	0.6	3
	Subgroup G	56,000	3.9	14,359	0.8	2
	Subgroup H	66,000	4.7	14,043	0.9	2
	Subgroup I	77,000	5.4	14,259	1.1	2
	At least 10 years su			,		
	Subgroup J	88,000	6.5	13,538	0.9	2
	Subgroup K	100,000	7.4	13,514	1.0	1
	Subgroup L	111,000	8.2	13,537	1.2	1

Total budget £3 million

Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	idney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5-10	> 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 – 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Utilitarian solution

$\Delta ightarrow ightar$	Pace- maker	Hip repl.	Aortic valve	L L	CABO 3	G 2		Kidney trans.	< 1			dialy 5-10	
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Rawlsian solution

Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	idney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5-10	> 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3–15.4 ↓	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5–up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Fu	nd for a	all Δ											
	\bigvee		7										
Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	dney	[,] dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Results More dialysis with larger Δ , beginning with longer life span Aortic CABG Heart Kidney Pace-Hip Kidney dialysis Δ L $< 1 \ 1-2 \ 2-5 \ 5-10 \ > 10$ maker repl. valve trans. trans. range 0 - 3.3000 0000 111 111 000 0000 3.4 - 4.0111 111 000 0000/ 4.0 - 4.4111 111 000 0000 4.5 - 5.015.02 - 5.55111 111 111 000 0001 5.56 - 5.58111 011 000 0001 000 0001 5.595.60 - 13.1111 1111 13.2 - 14.2111 1111 14.3 - 15.4101 1111 011 1111 15.5–up

Abrupt change at $\Delta = 5.60$

Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	idney	dialy	sis
range	\mathbf{maker}	repl.	valve	L	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0–3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56–5.58 \checkmark	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

			Come and go together										
									\mathbf{n}				
Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	idney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5-10	> 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

In-out-in													
Δ range	Pace- maker	Hip repl.	Aortic valve	L	CABC 3	G 2	\	Kidney trans.	< 1			dialy 5-10	
0-3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Most rapid change. Possible range for politically acceptable compromise

Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	dney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0–3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5-5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

32 groups, 1089 integer variables Solution time (CPLEX 12.2) is negligible

Δ	Pace-	Hip	Aortic	(CABO	3	Heart	Kidney		Ki	dney	dialy	sis
range	maker	repl.	valve	\mathbf{L}	3	2	trans.	trans.	< 1	1-2	2-5	5 - 10	> 10
0 - 3.3	111	111	111	111	111	111	1	11	0	0	000	0000	000
3.4 - 4.0	111	111	111	111	111	111	0	11	1	0	000	0000	000
4.0 - 4.4	111	111	111	111	111	111	0	01	1	0	000	0000	001
4.5 - 5.01	111	011	111	111	111	111	1	01	1	0	000	0000	011
5.02 - 5.55	111	011	011	111	111	111	0	01	1	0	000	0001	011
5.56 - 5.58	111	011	011	111	111	011	0	01	1	0	000	0001	111
5.59	111	011	011	110	111	111	0	01	1	0	000	0001	111
5.60 - 13.1	111	111	111	101	000	000	1	11	1	0	111	1111	111
13.2 - 14.2	111	011	111	011	000	000	1	11	1	1	111	1111	111
14.3 - 15.4	111	111	111	011	000	000	1	11	1	1	101	1111	111
15.5-up	111	011	111	011	001	000	1	11	1	0	011	1111	111

Table 3: Solution times in seconds for m groups and different values of Δ . Instances with more than a few hundred groups seem very unlikely to occur in practice.

					Δ			
m	0	1	2	3	4	5	6	∞
330	0.02	1.2	0.67	0.56	0.50	0.30	0.03	0.02
660	0.03	4.1	1.6	1.6	0.92	0.80	0.05	0.02
990	0.02	5.2	3.1	3.6	1.5	1.5	0.08	0.02
1320	0.00	15	4.3	4.2	2.7	3.0	0.09	0.02
1980	0.02	24	11	11	11	5.4	0.14	0.02
2640	0.00	32	19	14	8.6	8.8	0.19	0.02
3300	0.17	51	43	44	34	13	0.25	0.02