
The Transformer Model in Equations

John Thickstun

Abstract

This document presents a precise mathematical definition of the transformer model intro-
duced by Vaswani et al. [2017], along with some discussion of the terminology and intuitions
commonly associated with the transformer. We also draw some connections between the trans-
former and lstm, based on observations by Levy et al. [2018].

1 Introduction

A transformer block is a parameterized function class fθ : Rn×d → Rn×d. If x ∈ Rn×d then
fθ(x) = z where

Q(h)(xi) = W T
h,qxi, K(h)(xi) = W T

h,kxi, V (h)(xi) = W T
h,vxi, Wh,q,Wh,k,Wh,v ∈ Rd×k, (1)

α
(h)
i,j = softmaxj

(
〈Q(h)(xi),K

(h)(xj)〉√
k

)
, (2)

u′i =

H∑
h=1

W T
c,h

n∑
j=1

α
(h)
i,j V

(h)(xj), Wc,h ∈ Rk×d, (3)

ui = LayerNorm(xi + u′i; γ1, β1), γ1, β1 ∈ Rd, (4)

z′i = W T
2 ReLU(W T

1 ui), W1 ∈ Rd×m,W2 ∈ Rm×d, (5)

zi = LayerNorm(ui + z′i; γ2, β2), γ2, β2 ∈ Rd. (6)

The notation softmaxj indicates we take the softmax (defined in Equation 9) over the d-dimensional
vector indexed by j. The LayerNorm function [Lei Ba et al., 2016] is defined for z ∈ Rk by

LayerNorm(z; γ, β) = γ
(z− µz)

σz
+ β, γ, β ∈ Rk. (7)

µz =
1

k

k∑
i=1

zi, σz =

√√√√1

k

k∑
i=1

(zi − µz)2. (8)

The parameters θ consist of the entries of the weight matrices W , along with the LayerNorm
parameters γ and β indicated on the right-hand side. The input x ∈ Rn×d should be interpreted as a
collection of n objects, each with d features (often, but not always, a length-n sequence of d-vectors).
Observe that the output z ∈ Rn×d has the same structure as the input x ∈ Rn×d; a transformer
is a composition of L transformer blocks, each with their own parameters: fθL ◦ · · · ◦fθ1(x) ∈ Rn×d.
The hyper-parameters of the transformer are d, k, m, H, and L. Common settings of these hyper-
parameters are d = 512, k = 64, m = 2048, H = 8. The original paper set L = 6, but more recent
work seems to stack these blocks much deeper.

1

2 Discussion

The “transformer” nomenclature can be motivated by the function family’s automorphic structure:
a transformer fθ : Rn×d → Rn×d “transforms” a collection of n objects in Rd to another collection of
n objects in Rd. Observe that this is a transformation of a collection of objects, not a transformation
of a sequence. The transformer equations are oblivious to any structure–sequential or otherwise–
between its n inputs. If this structure exists, it must be explicitly encoded in the input vectors;
we will discuss this in the Section 3. Transformers were initially applied to sequential data in the
context of NLP, but because they encode relational structure as data they admit straightforward
application to data with non-linear relational structure [Parmar et al., 2018, Huang et al., 2019].

Transformers are typically used to parameterize a probabilistic model p(y|x). We like to write
down models pθ(y|z = fθ(x)) that are log-linear in a learned latent representation z:

ŷ = softmax(W T
z z) =

exp(W T
z z)∑m

k=1 exp(W T
z z)k

, Wz ∈ Rd×o. (9)

We can parameterize z with a transformer fθ(x) ∈ Rn×d. While the output of a transformer is
n × d dimensional, language applications typically use a single output z ≡ fθ(x)n ∈ Rd, relying
on end-to-end training to concentrate relevant information in the n’th element of the transformed
data. This practice is loosely analogous to–and probably inspired by–the common practice of using
the final latent state of a recurrent or lstm model as a representation.

For large conditional values x, classical parameterizations fθ involving random features or fully
connected networks are prone to overfitting. Transformers, like recurrent or convolutional models,
attempt to mitigate overfitting by controlling the expressivity of the parameterized function class.
From a parameter counting perspective, the number of parameters in a fully connected network
scales linearly in the dimensionality of x. In contrast, the number of parameters in a transformer
is independent of the number of inputs n. The transformer shares this property with the recurrent
neural network, while achieving this independence from a very different modeling perspective.

We’ll now relate Equations 1 through 6 to the language that the community typically uses to
talk about transformers. We’ll discuss some of the intuitions behind these equations, and how the
structure of these networks can capture expressive dependencies without horribly overfitting. Take
this discussion with a grain of salt: a transformer is completely described by the equations above
and the comments that follow are not based in rigorous theory or sound empirical science.

Before diving into the details of each equation, let’s take a broad perspective. The inventors
of the transformer view a transformer block as consisting of two distinct “layers:” multi-headed
self-attention defined by Equations 1, 2, and 3, and a per-object fully connected layer defined
by equation 5. Equations 4 and 6 consist of layer normalization [Lei Ba et al., 2016] and residual
connections [He et al., 2016] between attention layers and fully connected layers, motivated by
empirical observations about effectively optimizing of deep models.

Let’s drill down into the self-attention defined by Equations 1, 2, 3. First, observe that Equations
1, 2 are really H sets of equations, indexed by h = 1, . . . ,H. We refer to the set of equations and
parameters for each index h as an attention head, and the indices collectively define multi-
headed self-attention. The weights αhi,j are referred to as attention weights, which control
how much element xi “attends” xj in head h. This is a self-attention mechanism in the sense
that elements of x attend to each other. We can contrast this form of attention with, for example,
the attention commonly used in visual question answering, which construct attention mechanisms

2

that relate question words to image pixels [Fukui et al., 2016]. Observe that interaction between
objects xi and xj only occurs in Equation 3, which has no explicit parameters.

One interpretation of the self-attention layer (Equations 1, 2, 3) is as a learned, differentiable
lookup table. The functions Q, K, and V are described by the inventors [Vaswani et al., 2017] as
“queries,” “keys,” and “values” respectively, which seem to invoke such an interpretation (although
their paper does not explicitly mention lookup tables). For notational simplicity, we now set
H = 1 and suppress the head indices. Each object xi has a query Q(xi) that it will use to test
“compatibility” with the key K(xj) of each object xj . Compatibility of xi with xj is defined by
the inner product 〈Q(xi),K(xj)〉; if this inner product high, then xi’s query matches xj ’s key and
so we look up xj ’s value V (xj). We construct ui as a soft lookup of values compatible with xi’s
key: we sum up the value of each object xj proportional to the compatibility of xi with xj .

3 Positional encoding

Recall that a transformer model is oblivious to relational structure between its n inputs xi ∈ Rd.
Contrast this to fully connected models, in which unique weights are assigned to each position, or
to recurrent models, in which position is represented implicitly by the order in which data is fed
into the network. A transformer is fundamentally a bag of features model, operating on a collection
of n unordered, d-dimensional features.

To model positions in a transformer, we need to express these positional relationships as data.
The easiest way to do this is to encode positions as 1-hot features. Suppose x ∈ Rn×d is sequentially
ordered data along the n-dimensional axis. Let ek denote the k’th standard basis vector in Rn; we
extend x to a new sequence x′ ∈ Rn×(n+d) where x′i = (xi, ei).

One way to proceed from here is to learn a combined representation z ∈ Rn×d defined by

zk = W T
z ReLU(W T

x xk +W T
e ek) ∈ Rd, Wx ∈ Rd×m,We ∈ Rn×m,Wz ∈ Rm×d. (10)

Another approach proposed by Gehring et al. [2017] builds distinct representations of inputs and
positions:

zk = W T
zxReLU(W T

x xk) +W T
zeReLU(W T

e ek) Wx ∈ Rdim(x)×m,We ∈ Rn×m,Wzx,Wze ∈ Rm×d.
(11)

The original transformers paper [Vaswani et al., 2017] takes a more obscure approach to positional
encoding based on sinusoidal position embeddings p ∈ Rn×d:

pk,2i = sin

(
k

100002i/d

)
, pk,2i+1 = cos

(
k

100002i/d

)
.

From here, they proceed like Gehring et al. [2017] using these fixed representations of position:

z = W T
zxReLU(W T

x x1) + p. (12)

Vaswani et al. [2017] claim that the sinusoidal representation works as well as a learned one, and
that it generalizes better to sequences that are longer than the training sequences.

3

4 Connections to LSTM

Let’s compare the transformer to the lstm. Recall that an lstm is a parameterized function class
gθ : Rn×d → Rn×d. If x ∈ Rn×d then gθ(x) = h where

c̃t = σ(Wchht−1 +Wcxxt), Wch,Wcx ∈ Rd×d, (13)

it = σ(Wihht−1 +Wixxt), Wih,Wix ∈ Rd×d, (14)

ft = σ(Wfhht−1 +Wfxxt), Wfh,Wfx ∈ Rd×d, (15)

ct = it ◦ c̃t + ft ◦ ct−1, (16)

ot = σ(Wohht−1 +Woxxt), Woh,Wox ∈ Rd×d, (17)

ht = ot ◦ σ(ct). (18)

The lstm was originally envisioned as an augmentation of a simple rnn, defined by equation 13.
The lstm was designed to address the notorious difficulty of optimizing rnns [Bengio et al., 1994,
Hochreiter et al., 2001]. The lstm nomenclature was introduced by Hochreiter and Schmidhuber
[1997], which augmented the simple rnn (Equation 13) with input and output gates (Equations 14
and 17 respectively). The forget gate, and the full form of the lstm as described by Equations 13
through 18 was first presented by Gers et al. [1999].

To analyze the lstm equations, consider the quantities

wt,s = is

t∏
k=s+1

fk.

As observed by Levy et al. [2018], unrolling the definition of ct allows us to write

ct =
t∑

s=1

(
is ◦

t∏
k=s+1

fk

)
◦ c̃s =

t∑
s=1

wt,s ◦ c̃s. (19)

This invites us to think of an lstm as an element-wise weighted sum of the rnn states c̃t.
Levy et al. [2018] demonstrate that we can make some dramatic simplifications to the lstm

without sacrificing empirical performance on a wide variety of language processing tasks. Strikingly,
they show that we can sever the recurrent connections in the underlying rnn (Equation 13) and in
the gates (Equations 14,15, and 17). Furthermore, we can eliminate the output gate entirely. This
leave us with the following ablated lstm equations:

c̃t = σ(Wcxxt), it = σ(Wixxt), ft = σ(Wfxxt), Wcx,Wix,Wfx ∈ Rd×d, (20)

ct = it ◦ c̃t + ft ◦ ct−1, ht = σ(ct). (21)

In this case, Equation 19 allows us to interpret the ablated lstm is an element-wise weighted sum
of featurized inputs.

We invite the reader to contemplate an analogy between the transformer’s attention weights
αi,j and lstm weights wt,s. For an extended discussion of this analogy, see Section 4 of Levy et al.
[2018]. We can distinguish the transformer and lstm by highlighting the symmetry the transformer
equations, in contrast to the fundamental asymmetry of lstm. In the context of this analogy,
attention weights αi,j are computed for all i, j ∈ [n], whereas lstm weights wt,s are only evaluated

4

for s ≤ t. This implicitly places zero weight on sequence elements larger than t when computing the
value ct; in the language of transformers, item t only attends to elements s such that s ≤ t. Another
way to think about this is that lstm is fundamentally causal: if you want two-sided context you
need to augment it with e.g. a bi-lstm. In contrast, the transformer is acausal, and its inputs must
be masked in order to apply it to sequential learning tasks such as language modeling. Furthermore,
because fk ≤ 1 for all k, if r < s then wt,r ≤ wt,s. It follows that, in the lstm, item t’s attention to
previous elements is monotonically decreasing; if the values fk are bounded away from 1 then this
attention will decay at an exponential rate. Contrast this to the transformer, which can attend
equally well to all items.

References

Yoshua Bengio, Patrice Simard, Paolo Frasconi, et al. Learning long-term dependencies with
gradient descent is difficult. In IEEE Transactions on neural networks, 1994. 4

Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach.
Multimodal compact bilinear pooling for visual question answering and visual grounding. In
Conference on Empirical Methods in Natural Language Processing, 2016. 2

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In International Conference on Machine Learning, 2017. 3, 3

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction
with lstm. 1999. 4

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE conference on computer vision and pattern recognition, 2016. 2

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997. 4

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient flow in
recurrent nets: the difficulty of learning long-term dependencies, 2001. 4

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Curtis Hawthorne,
Andrew M Dai, Matthew D Hoffman, and Douglas Eck. Music transformer: Generating music
with long-term structure. International Conference on Learning Representations, 2019. 2

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. 1, 2

Omer Levy, Kenton Lee, Nicholas FitzGerald, and Luke Zettlemoyer. Long short-term memory as
a dynamically computed element-wise weighted sum. In Annual Meeting of the Association for
Computational Linguistics, 2018. (document), 4, 4, 4

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. International Conference on Machine Learning, 2018. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, 2017. (document), 2, 3, 3

5

	Introduction
	Discussion
	Positional encoding
	Connections to LSTM

