
Collaborative Container Modules with Singularity
Registry HPC
Vanessa Sochat1 and Alec Scott2

1 Lawrence Livermore National Lab, Livermore, CA, USA 2 University of Arizona Research
Computing, Tuscon, AZ, USA

DOI: 10.21105/joss.03311

Software
• Review
• Repository
• Archive

Editor: Patrick Diehl
Reviewers:

• @rcannood
• @zbeekman
• @ArangoGutierrez

Submitted: 24 April 2021
Published: 20 July 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Summary

Portability and reproducibility of complex software stacks is essential for researchers to perform
their work. High Performance Computing (HPC) environments add another level of complexity,
where possibly conflicting dependencies must co-exist. Although container technologies like
Singularity (Kurtzer et al., 2017) make it possible to “bring your own environment,” without
any form of central strategy to manage containers, researchers who seek reproducibility via
using containers are tasked with managing their own container collection, often not taking
care to ensure that a particular digest or version is used. The reproducibility of the work is at
risk, as they cannot easily install and use containers, nor can they share their software with
others.
Singularity Registry HPC (shpc) is the first of its kind to provide an easy means for a researcher
to add their research software for sharing and collaboration with other researchers to an existing
collection of over 200 popular scientific libraries Gorgolewski et al. (2017). The software
installs containers as environment modules (McLay et al., 2011) that are easy to use and read
documentation for, and exposes aliases for commands in the container that the researcher
can add to their pipeline without thinking about complex interactions with a container. The
simple addition of an entry to the registry maintained by shpc comes down to adding a yaml
file, and after doing this, another researcher can easily install the same software, down to the
digest, to reproduce the original work.

Statement of Need

Using environment modules (McLay et al., 2011) on HPC clusters is common. Although
writing the recipes can be complex, it’s a fairly common practice for cluster administrators to
provide a set of natively installed recipes for their users (An Introduction to Writing Modulefiles
— Lmod 8.4.30 Documentation, 2021), or for researchers to develop and deploy their own
software via containers. Even well-known package managers like Spack (Spack Modules,
2015) and EasyBuild (EasyBuild Modules, 2021) expose software as modules. However, these
package manager approaches don’t always ensure reproducibility, or ease of development for
the researcher. They typically require relying on some subset of system software, the underlying
operating system, or even making changes to the system, which is not under the researcher’s
control. Although using containers in this context has been discussed previously (Community
Collections, 2020; Software Containers, 2021), the majority of these approaches and tools do
not make the process of developing and installing container modules easy. The single researcher
must either convince a cluster administrator to install dependencies needed for their software,
or build a container and manually move and interact with it on the cluster. All of these small
challenges come together to make it harder for a researcher to develop and manage their own
software, and subsequently to share their approach to reproduce the work. Using Singularity,

Sochat et al., (2021). Collaborative Container Modules with Singularity Registry HPC. Journal of Open Source Software, 6(63), 3311.
https://doi.org/10.21105/joss.03311

1

https://doi.org/10.21105/joss.03311
https://github.com/openjournals/joss-reviews/issues/3311
https://github.com/singularityhub/singularity-hpc
https://doi.org/10.5281/zenodo.5116598
http://www.diehlpk.de
https://github.com/rcannood
https://github.com/zbeekman
https://github.com/ArangoGutierrez
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.03311

Podman, or other container technologies installed via Singularity Registry HPC offers a solution
to this challenge. The only requirement is the container technology software, and writing a
simple configuration file for the registry. By clearly defining commands, and pinning exact
versions of scientific software, researchers on high performance computing clusters can have
more confidence in the reproducibility of their work (Boettiger, 2014; Santana-Perez & Pérez-
Hernández, 2015; Wandell et al., 2015).

Usage

Installing shpc is as easy as cloning the repository and installing in place:

$ git clone https://github.com/singularityhub/singularity-hpc
$ cd singularity-hpc
$ pip install -e .

While the defaults are suitable for most, the researcher can customize the location of registry
metadata files, the module directory to which modules are installed, and the directory to which
containers are installed. The user can then use shpc show to see readily available recipes, or
browse the library for an easily searchable interface. Installation comes down to installing a
chosen module, loading it, and using it:

$ shpc install biocontainers/samtools
$ module load biocontainers/samtools
$ samtools

The samtools command would be an alias for a much more complicated command that the
researcher would not need to remember, including global options, command options, the full
path to the container, and the path to the executable inside the container. The container
pulled would also be a specific digest, making it easier to reproduce the researcher’s workflow.
Finally, although containers typically only provide one entrypoint, there is no limit to the
number of aliases that can be exposed for easy usage.

Collaborative Registry for Reproducible Science

Creating a registry entry for a scientific container comes down to writing a simple contai
ner.yaml file with basic metadata and description, the definition of any and all important
entrypoints, and the digests to pull. As soon as a researcher puts their container in an online
registry and adds the entry, new versions of the container are automatically discovered by
shpc, and can be installed by the researcher when they choose. The user does not need to
look in advance for a version if they want the latest provided by the registry. Software is easy
to search for, and with a simple command, the user can quickly see complete documentation
and commands available:

$ module spider samtools

Every module includes a help section with a description, a complete list of commands that
map to interactions with the container, and a list of environment variables also available.
The module system also provides command line completion, so the user can use tabs to
autocomplete the module names. Along with the expected commands to use the container
primary software (e.g., samtools) commands to shell, the software automatically generates
alias to inspect, run, shell, or inspect container metadata. E.g., here is the shell command:

Sochat et al., (2021). Collaborative Container Modules with Singularity Registry HPC. Journal of Open Source Software, 6(63), 3311.
https://doi.org/10.21105/joss.03311

2

https://singularityhub.github.io/singularity-hpc/
https://doi.org/10.21105/joss.03311

$ samtools-shell

Another compelling example is using a notebook provided by Jupyter Stacks (Cook, 2017).
Running notebooks that can be exposed via networking ports tends to be very complicated.
A full interaction might look like the following:

pull the latest container, a moving target
$ singularity pull docker://jupyter/minimal-notebook

$ singularity exec --home ${HOME} --bind ${HOME}/.local:/home/joyvan/.local \
minimal-notebook_latest.sif \
jupyter notebook --no-browser --port=12345 --ip 0.0.0.0

With Singularity Registry HPC, the interaction to run the notebook can be figured out and
written down once, and provided as a community recipe. In this case, it’s exposed as the
command “run-notebook”:

$ run-notebook

which automatically selects a random port, binds the expected directories, and starts the
notebook. The registry recipes are collaborative in nature because anyone can open a pull
request with a new recipe, or request a container be added by opening an issue. Automation
also ensures that adding and testing new containers, or working on the code base is easy.
Once a container is added, no further work is needed to update versions for it. By way of
a GitHub bot (Scott, 2021), both the latest version and newly available tags are updated
automatically, following any filters that the recipe creator has provided for which tags should
be added. Finally, on merge to the main branch, the documentation and library are also
automatically updated.

Conclusion

Singularity Registry HPC is the first local container registry that supports reproducibility, easy
of use, and portability of research software. You can read more about it on the GitHub
repository (https://github.com/singularityhub/singularity-hpc) or the main documentation
site (https://singularity-hpc.readthedocs.io).

References

An introduction to writing modulefiles — Lmod 8.4.30 documentation. (2021). https://
lmod.readthedocs.io/en/latest/015_writing_modules.html.

Boettiger, C. (2014). An introduction to Docker for reproducible research, with examples
from the R environment. https://doi.org/10.1145/2723872.2723882

Community collections. (2020). https://community-collections.github.io/.
Cook, J. (2017). The opinionated Jupyter stacks. In Docker for Data Science (pp. 119–135).

Springer. https://doi.org/10.1007/978-1-4842-3012-1_7
EasyBuild modules. (2021). https://wiki.fysik.dtu.dk/niflheim/EasyBuild_modules.
Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., Supinski, B. R. de, &

Futral, S. (2015). The Spack package manager: Bringing order to HPC software chaos.

Sochat et al., (2021). Collaborative Container Modules with Singularity Registry HPC. Journal of Open Source Software, 6(63), 3311.
https://doi.org/10.21105/joss.03311

3

https://github.com/singularityhub/singularity-hpc
https://singularity-hpc.readthedocs.io
https://lmod.readthedocs.io/en/latest/015_writing_modules.html
https://lmod.readthedocs.io/en/latest/015_writing_modules.html
https://doi.org/10.1145/2723872.2723882
https://community-collections.github.io/
https://doi.org/10.1007/978-1-4842-3012-1_7
https://wiki.fysik.dtu.dk/niflheim/EasyBuild_modules
https://doi.org/10.21105/joss.03311

SC’15: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 1–12.

Gorgolewski, K. J., Alfaro-Almagro, F., Auer, T., Bellec, P., Capotă, M., Chakravarty, M.
M., Churchill, N. W., Cohen, A. L., Craddock, R. C., Devenyi, G. A., & others. (2017).
BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data
analysis methods. PLoS Computational Biology, 13(3), e1005209. https://doi.org/10.
1371/journal.pcbi.1005209

Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers for
mobility of compute. PLoS One, 12(5), e0177459. https://doi.org/10.1371/journal.pone.
0177459

McLay, R., Schulz, K. W., Barth, W. L., & Minyard, T. (2011). Best practices for the
deployment and management of production HPC clusters. State of the Practice Reports,
1–11. https://doi.org/10.1145/2063348.2063360

NVIDIA NGC. (2018). https://ngc.nvidia.com/catalog.
Santana-Perez, I., & Pérez-Hernández, M. S. (2015). Towards reproducibility in scientific

workflows: An infrastructure-based approach. Sci. Program., 2015. https://doi.org/10.
1155/2015/243180

Scott, A. (2021). binoc. GitHub; https://github.com/autamus/binoc.
Software containers. (2021). https://www.rc.virginia.edu/userinfo/rivanna/software/

containers/.
Spack modules. (2015). https://spack.readthedocs.io/en/latest/module_file_support.html.
The Autamus registry. (2021). https://github.com/orgs/autamus/packages.
Veiga Leprevost, F. da, Grüning, B. A., Alves Aflitos, S., Röst, H. L., Uszkoreit, J., Barsnes, H.,

Vaudel, M., Moreno, P., Gatto, L., Weber, J., & others. (2017). BioContainers: An open-
source and community-driven framework for software standardization. Bioinformatics,
33(16), 2580–2582.

Wandell, B. A., Rokem, A., Perry, L. M., Schaefer, G., & Dougherty, R. F. (2015). Data
management to support reproducible research. http://arxiv.org/abs/1502.06900

Sochat et al., (2021). Collaborative Container Modules with Singularity Registry HPC. Journal of Open Source Software, 6(63), 3311.
https://doi.org/10.21105/joss.03311

4

https://doi.org/10.1371/journal.pcbi.1005209
https://doi.org/10.1371/journal.pcbi.1005209
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1145/2063348.2063360
https://ngc.nvidia.com/catalog
https://doi.org/10.1155/2015/243180
https://doi.org/10.1155/2015/243180
https://github.com/autamus/binoc
https://www.rc.virginia.edu/userinfo/rivanna/software/containers/
https://www.rc.virginia.edu/userinfo/rivanna/software/containers/
https://spack.readthedocs.io/en/latest/module_file_support.html
https://github.com/orgs/autamus/packages
http://arxiv.org/abs/1502.06900
https://doi.org/10.21105/joss.03311

	Summary
	Statement of Need
	Usage
	Collaborative Registry for Reproducible Science
	Conclusion

	References

