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Summary

QXTools is a framework for simulating quantum circuits using tensor network methods. Weak
simulation is the primary use case where given a quantum circuit and input state QXTools
will efficiently calculate the probability amplitude of a given output configuration or set of
configurations. Given this ability one can sample from the output distribution using random
sampling approaches. QXTools is intended to be used by researchers interested in simulating
circuits larger than those possible with full wave-function simulators or those interested in
research and development of tensor network circuit simulation methods. See Brennan et al.
(2021) for more complete background and scaling results and Brayford et al. (2021) for details
about deploying in containerised environments.
QXTools is written in Julia (Bezanson et al., 2017) and is designed to run on large distributed
compute clusters and to support GPU accelerators. The simulation workflow is broken down
into a number of stages, each of which is managed by a special purpose package which can be
used independently or as part of the QXTools framework. To find efficient contraction orders
for tensor networks, an algorithm called FlowCutter (Hamann & Strasser, 2018) is used to
construct tree decompositions with optimal treewidth of the network’s line graph by iteratively
partitioning it using maximal flows on the graph. A domain specific language (DSL) is used
to express the simulation as a set of tensor network operations. This separates the high level
index accounting and contraction planning from the low level implementation of the tensor
network operations and makes it easier to support new hardware and network architectures.

Statement of need

As quantum processing devices continue to scale and the algorithms and experiments being run
on them grow in complexity, simulations of these systems become much more computationally
demanding. To reduce the turnaround time and allow larger systems to be simulated it is
necessary to move beyond single workstations and use distributed compute clusters. QXTools
provides a flexible, extensible open source framework for performing these simulations. The
use of Julia (Bezanson et al., 2017) makes it easy for the code to be understood, modified
and extended while not sacrificing performance compared to compiled languages.

Background

Classical simulation of quantum circuits is essential for debugging and validating the accuracy
of quantum computing devices and algorithms. This is a very computationally demanding
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problem owing to the exponential growth in the state space as the number of qubits is in-
creased. Up until recently it has been possible to simulate the largest prototype universal
quantum computers using direct evolution of the quantum state (where the full wave-function
is stored in memory, or on disk) using modest personal computing resources. With the recent
emergence of Noisy Intermediate Scale Quantum (NISQ) devices, it has become intractable to
use this approach to simulate devices of this size on even the largest supercomputers. These
advances have necessitated the development of new circuit simulation methods that can sim-
ulate large systems without requiring the memory to store the full wave-function. Tensor
network methods have been demonstrated to achieve state of the art performance in simu-
lating Random Quantum Circuits (RQC) as part of the quantum sumpremacy experiments
(Villalonga et al., 2019). Despite the impressive results achieved with these methods to date
they are not suitable for all types of circuits and in many cases full wave-function methods are
preferable. For example for highly entangled circuits, the tensor network representation will
consume the same memory as full wave-function methods but will incur additional overhead.
However, for circuits with moderate entanglement and cases where one is not interested in
exact results, but in results up to a particulary fidelity, tensor network approaches can offer
significant advantages.
Tensor networks refer to networks of interconnected tensors, the use of which originated in the
condensed matter physics and quantum information communities as a means of simulating
strongly correlated many body quantum systems. Expressing a quantum circuit as a tensor
network is very straightforward and involves replacing each gate with a tensor and registers
with sets of interconnected tensors. Single qubit Hadamard gates remain unchanged from
their matrix representation, while two qubit gates can be expressed as a single rank 4 tensor
or two connected rank 3 tensors. Once the quantum circuit is expressed as a network of
interconnected tensors operations can be performed by contracting tensors together. For
further details there are many excellent resources on tensor networks and their use in quantum
information, see Biamonte & Bergholm (2017), Bridgeman & Chubb (2017), and Wood et
al. (2015).
This is a very active area of research with many packages available offering quantum circuit
simulation capabilities using tensor network methods, each with different capabilities. These
include the quimb package (Gray, 2018), ExaTN (McCaskey et al., 2019), Koala (Pang et al.,
2020), PastaQ (Torlai & Fishman, 2020) and Jet (Vincent et al., 2021). Some of the more
distinctive features of QXTools is the use of the Flowcutter algorithm for contraction path
finding, the focus on distributed simulation, the use of Julia, and the modular design.

Functionality and design

QXTools consists of a number of Julia packages available under the JuliaQX organization
(“JuliaQX,” 2021) and registered in the Julia package registry. The QXTools.jl package ties
these together to enable circuit simulation workflows. The individual packages and their roles
are:

• QXTns.jl: Provides data structures representing tensor networks and tensor network
circuits along with functionality for contracting these and keeping track of tensor indices
and hyper-indices.

• QXGraphDecompositions.jl: Provides specialised graph algorithms for optimizing tensor
network calculations and finding edges to slice to decompose computations. Here,
FlowCutter (Hamann & Strasser, 2018) is used to find good contraction orderings for
a network.

• QXContexts.jl: Provides computation tree data structures to represent computations
and the ability to execute these compute graphs on different hardware platforms.

• QXZoo.jl: Quantum circuit representations and manipulation functionality.
• YaoQX.jl: Enables QXTools to be used as a backend for Yao.jl (Luo et al., 2020).
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