J Braz Comput Soc (2013) 19:423-432
DOI 10.1007/s13173-013-0107-9

ORIGINAL PAPER

Terminating constraint set satisfiability and simplification
algorithms for context-dependent overloading

Rodrigo Ribeiro - Carlos Camarao -

Lucilia Figueiredo

Received: 24 August 2012 / Accepted: 4 March 2013 / Published online: 9 April 2013

© The Brazilian Computer Society 2013

Abstract Algorithms for constraint set satisfiability and
simplification of Haskell type class constraints are used dur-
ing type inference in order to allow the inference of more
accurate types and to detect ambiguity. Unfortunately, both
constraint set satisfiability and simplification are in general
undecidable, and the use of these algorithms may cause non-
termination of type inference. This paper presents algorithms
for these problems that terminate on any given input, based on
the use of a criterion that is tested on each recursive step. The
use of this criterion eliminates the need of imposing syntactic
conditions on Haskell type class and instance declarations in
order to guarantee termination of type inference in the pres-
ence of multi-parameter type classes, and allows program
compilation without the need of compiler flags for lifting
such restrictions. Undecidability of the problems implies the
existence of instances for which the algorithm incorrectly
reports unsatisfiability, but we are not aware of any practical
example where this occurs.

Keywords Haskell - Constraint set satisfiability -
Constraint set simplification - Termination

R. Ribeiro (X)) - C. Camarao

Instituto de Ciéncias Exatas, Departamento de Ciéncia
da Computagao, Universidade Federal de Minas Gerais,
Belo Horizonte, Brazil

e-mail: rodrigogribeiro @decea.ufop.br

C. Camario
e-mail: camaraorribeiro@dcc.ufmg.br

L. Figueiredo

Instituto de Ciéncias Exatas e Bioldgicas,
Departamento de Computag@o,

Universidade Federal de Ouro Preto, Ouro Preto, Brazil
e-mail: lucilia@iceb.ufop.br

1 Introduction

Haskell’s type class system [5,18] extends the Hindley-
Milner type system [16] with constrained polymorphic types,
in order to support overloading. Type class constraints may
occur in types of expressions involving overloaded names
(or symbols), and restrict the set of types to which quanti-
fied type variables may be instantiated, to those types for
which these type constraints are satisfied, according to types
of definitions that exist in a relevant context.

A type class declaration specifies the name and parameters
of the class, and the principal type of names which can then
be overloaded in instance definitions. For example:

class Egq a where
(==):: a - a — Bool

(/=) ::

a — a — Bool

is a declaration of type class Eq, with parameter a, that spec-
ifies the principal types of (==) and (/=) .Function (==)
has type Ya.Eq a = a — a — Bool, where constraint Eq
a indicates that type variable a cannot be instantiated to an
arbitrary type, but only to a type that has been defined as an
instance of class Eq.

An instance of a type class specifies instance types for
type class parameters, and gives definitions of the overloaded
names specified in the class. The type of each overloaded
name in an instance definition is obtained by substituting
type class parameters with corresponding instance types. For
example, the following instance declarations specify defini-
tions of the equality operator for types Int and for polymor-
phic lists, respectively:

instance EgqInt where
(==) = primEqlnt

@ Springer

424

J Braz Comput Soc (2013) 19:423-432

instance Eq a = Eq [a] where
[] == [] = True
(a:x) == (b:y) =a ==b && x ==Yy
== = False

For a base type, like Int, a corresponding predefined oper-
ation is provided. The definition of equality for lists of ele-
ments of an arbitrary type uses the equality test for elements
of this type. Constraint Eq a must be specified as the context
for the head Eq [a] of the instance declaration. A context is
a set of type class constraints, and constraint i is the head of
a qualified constraint P = mr, where P is a set of type class
constraints.

As an aside, type classes in Haskell may also contain
default definitions of the overloaded names, in order to avoid
repeating the same definitions in instances.

Class constraints introduced on the types of overloaded
symbols occur also on the types of expressions defined in
terms of these symbols. For example, consider the following
function that tests list membership:

False
a ==b || elem a x

elem a []
elem a (b:x)

The principal type of elem is Va. Eqa = a — [a] —
Bool. Constraint Eq a occurs in the type of elem due to the
use of the equality operator (==) in its definition.

Haskell restricts type classes to have a single parame-
ter but the extension to multi-parameter type classes, called
Haskell+mptcs in the sequel, is widely used.

Type inference for constrained type systems rely on con-
straint set simplification, which, for the case of type classes,
essentially amounts to performing (so-called) context reduc-
tion. Constraint set simplification yields equivalent constraint
sets, and are useful for providing simpler types for expres-
sions. Context reduction simplifies constraints by substitut-
ing constraints or removing resolved constraints according
to available instance definitions, besides removing duplicate
constraints or substituting constraints according to the class
hierarchy.

As an example, context Eq[t] is reduced to Eq ¢, for
any type ¢, in the presence of instance Eq [a] with context
Eqa.

Improvement [13] is also a process of simplification of
constrained types, but it is of a different nature, and is used in
type inference to avoid ambiguity and to infer more informa-
tive types. Improvement is fundamentally based on constraint
set satisfiability: it is a process of transforming a constraint
set P into a constraint set obtained by applying a substitution
S to P so that the set of satisfiable instances of P is preserved.

The mechanism of functional dependencies and other
alternatives have been proposed to deal with improvement
[7,4,10,11, 14], for detection of ambiguity and for specializa-

@ Springer

tion of constrained types in the presence of multi-parameter
type classes. We do not discuss improvement specifically in
this paper, but focus on constraint set satisfiability, which
is only used for the implementation of improvement or any
alternative approach.

Unfortunately, both constraint set satisfiability and sim-
plification are in general undecidable problems [6], and the
use of computable functions for solving these problems may
cause non-termination of type inference.

This paper presents algorithms for constraint set satis-
fiability and simplification that use a termination criterion
which is based on a measure of the sizes of types in type
constraints. The sequence of constraints that unify with a
constraint axiom in recursive calls of the function that checks
satisfiability or simplification of a type constraint is such that
either the sizes of types of each constraint in this sequence is
decreasing or there exists at least one type parameter position
with decreasing size.

The use of this criterion eliminates the need for imposing
syntactic conditions on Haskell type class and instance dec-
larations in order to guarantee termination of type inference
in the presence of multi-parameter type classes, and allows
program compilation without the need of compiler flags for
lifting such restrictions.

The use of a termination criterion implies that there
exist well-typed programs for which the presented algorithm
incorrectly reports unsatisfiability. However, practical exam-
ples where this occurs are expected to be very rare. The
algorithms have been implemented and tested by using a
prototype front-end for Haskell, available at the mptc github
repository. The algorithm works as expected when subjected
to examples mentioned in the literature, Haskell libraries that
use multi-parameter type classes and many tests, including
those used by the most commonly used Haskell compiler
[19], GHC, involving all pertinent GHC extensions.

Restrictions imposed on class and instance declarations
in Haskell, in Haskell+mptcs and in GHC, and GHC com-
pilation flags used to avoid these restrictions [20], are sum-
marized in Sect. 2. Section 3 reviews entailment and satis-
fiability relations on type class constraints. Section 4 gives
a definition of a computable function that returns the set of
satisfiable substitutions of a given constraint set P, when it
terminates. Subsection 4.1 defines a termination criterion and
redefines this computable function in order to use this crite-
rion. Section 5 defines a constraint set simplification com-
putable function, based on the same termination criterion.
Section 6 concludes.

2 Restrictions over class and instance declarations

This section summarizes the restrictions imposed on class
and instance declarations in Haskell, Haskell+mptcs and in

J Braz Comput Soc (2013) 19:423-432

425

GHC, and GHC compilation flags used to avoid these restric-
tions.

By default, GHC follows the Haskell language specifi-
cation (i.e., the Haskell 98 report [8]), which imposes the
following restrictions.

1. Each class declaration must have exactly one parameter.

2. The head of a qualified constraint in an instance declara-
tion must have the form C (T «), where C denotes a class
name, T a type constructor and o a sequence of distinct
type variables. Such overbar notation is used extensively
in this paper: X denotes a possibly empty sequence of
elements in the set {x1, ..., x,}, for some n > 0.

3. Each constraint in a context P of an instance declaration
P = C 7 must have the form C a, where a is a type
variable occurring in T.

Restriction 1 allows only single-parameter type classes,
but multi-parameter type classes are widely used by pro-
grammers and in Haskell libraries and are supported in many
Haskell implementations. For example, consider type class
Map parameterized by the key and element types, and the
type class Collection, parameterized by the type constructor
and the type of elements of the collection, partly sketched
below:

class Eq a = Collection ¢ a where
empty:: ¢ a
insert,
member:: a -> ¢ a -> Bool

delete:: a -> ¢c a -> ¢ a

instance Show (Tree Int) where .. 1is an example of
an instance declaration that does not follow restriction (2),
because the head of the constraint (which has an empty con-
text) consists of type constructor Tree applied to Int, not to a
type variable.

Flag -XFlexibleInstances can be used by GHC
users to avoid enforcing condition (2), i.e., to allow the head
of a constraint in an instance declaration to be arbitrarily
nested. The nextis an example that does not follow restriction
(3), since s a is not just a type variable: instance Show
(s a) = Show (Sized s a)...

Instances that do not follow these restrictions are com-
mon in Haskell programs, specially in the presence of multi-
parameter type classes.

Flag-XFlexibleContexts canbeused by GHC users
to avoid restriction (3). With the use of this flag, contexts are
restricted as follows:

1. No type variable can have more occurrences in a con-
straint of a context than in the head.

2. The sum of the number of occurrences of type variables
and type constructors in a context must be smaller than
in the head.

This restriction is known as the Paterson Condition. In
some cases, itis still over-restrictive. As an example, consider
the following code:

data Rose f a = Rose (f (Rose f a))

(Show (f (Rose f a)), Showa) =
Show (Rosefa) where

instance

This instance of Show is rejected by GHC because it has
more occurrences of type variable f in a constraint than in
the head. Flag-XUndecidableInstances, which lifts
all restrictions (including those related to the use of func-
tional dependencies), is needed to compile this code. With
this flag, termination is ensured by imposing a depth limit on
a recursion stack [20].

3 Constrained polymorphism and type class constraints

The Haskell type class system is based on the more general
theory of qualified types [12], which extends the Hindley-
Milner type system with constrained types.

The syntax of types with type class constraints is defined
in Fig. 1, where meta-variable usage is also indicated. For
simplicity, and following common practice, kinds are not
considered explicitly in type expressions, and type applica-
tions are assumed to be well kinded. Function types 71 — 12
are constructed as the curried application of the function type
constructor to two arguments, and are written as usual in infix
notation.

The union of constraint sets P and Q is denoted by P, Q
and a slight abuse of notation is made by writing simply &
for the singleton constraint set {m}.

Type constructor T
Class name C

Type variable a, 3

Type T s=a|T |77
Type constraint 7 n=C7
Constraint set QP =0 7mQ
Type scheme o =Va.Q=r1

Constraint axioms ©

=0 | VaQ=r 06

Fig. 1 Constrained types and context

@ Springer

426

J Braz Comput Soc (2013) 19:423-432

Qcp | O.PIFF 0,QrQ

6,PIFQ 6,P,QIFP,Q

O,PIFQ _ (Va.P=>meo

6,SPIF5Q 6,PIFx
6,PIFQ 6,Q IFQ

Trans

O,PIFQ

Fig. 2 Type class constraint entailment

Function v is overloaded, yielding the set of free type vari-
ables of types, constraints or constraint sets, and is defined
as usual. Sequence o used in the context of a set denotes of
course the set of type variables in the sequence. The set of
constraint axioms @ is induced by class and instance decla-
rations of a program. Each instance declaration instance
P = 7 where ..introducesanaxiomschemeVa. P = 7,
where @ = tv(P = m).

For simplicity and to avoid clutter, in this paper constraint
axioms introduced by type class declarations are not consid-
ered, since they add no additional problems with respect to
termination of constraint set satisfiability and simplification
algorithms.

The entailment relation for type class constraints is defined
in Fig. 2. Rule (Mono) expresses the property of monotonic-
ity, (Trans) of transitivity, (Subst) of closure under type
substitution (cf. [12]), (Inst) defines entailment according
to a constraint axiom and (Con3j) deals with sets with more
than one constraint.

A type substitution S is a (kind-preserving) function from
type variables to types, and extends straightforwardly to con-
straints, and to sets of types and sets of constraints. For con-
venience, a substitution is often written as a finite mapping
[— T1,...,0, — T,], which is also abbreviated as
[— T]. Juxtaposition S’S is used as a synonym for func-
tion composition, S’ o S, the domain of a substitution S is
defined by dom(S) = {« | S(«) # «} and the restriction of
Sto Vis given by S|y (¢) = S(«) if « € V, otherwise «.

3.1 Constraint set satisfiability

Constraint set satisfiability is central to the interpretation of
constrained types and is closely related to simplification and
improvement. Following [13], | P | e denotes the set of satis-
fiable instances of constraint set P, with respect to constraint
axioms ©:

lPlo ={SP | © I SP)

@ Springer

Equality of constraint sets is considered modulo type vari-
able renaming. That is, constraint sets P and Q are consid-
ered to be equal by considering also that a renaming sub-
stitution S can be applied to P so as to make S P and Q
equal. A substitution S is a renaming substitution if for all
a € dom(S) we have that S(a) = , for some type variable
B & dom(S).

If SP € |PJe then S is called a satisfying substitution
for P.

Subscript ® will not be used hereafter because satisfia-
bility is always considered with respect to a set of global
constraint axioms ©.

For any substitution S and constraint set P we have that
LSP] C |P]. The reverse inclusion, |P| < |SP], does
not always hold, and allow us to characterize improvement
of the set of constraints P to an equivalent but simpler or
more informative constraint set S P, such that |[SP| = | P].
Substitution § is called an improving substitution for P if
applying S to P preserves the set of satisfiable instances,
that is, if |[SP] = | P].

The next section presents constraint set satisfiability algo-
rithms, including an algorithm that uses a criterion for guar-
anteeing termination on any given input. This termination
criterion is used in Sect. 5, to define a constraint set simpli-
fication algorithm.

4 Computing constraint set satisfiability

Figure 3 presents a computable function that, given any con-
straint set P, returns, if it terminates, the set of satisfying
substitutions for P. The definition uses judgements of the
form © =2t P ~v S, meaning that S is the set of satisfying
substitutions for P, with respect to constraint axioms ®. The
following function is used:

sats(mw, ©) = { (Slwe), SP,mo) | Vo Pp = mp) € O,
ST = [a+— E], Efresh,
(P = n') =58 (Py = mo),
S =mgu(r =n')}

where function mgu gives a most general unifier for a pair of
constraints, written as an equality. That is, mgu(CT = CT')
gives a substitution S such that, ST = ST’ and, for any S’
such that S'T = S'7/, it holds that S’ = S” o S, for some
S”.l

Let S be the returned set of satisfying substitutions for a
given constraint P. Since S € S implies dom(S) < tv(P)
— because if S is in sats(;r, ®) then dom(S) C tv(wr)—the
only possible satisfying substitution to be returned for the
empty set of constraints is the identity substitution (id), as
defined by rule SEmpty. Rule SInst computes the set Sg

1 See, for example [2], for the general theory of unification and algo-
rithms for computing a most general unifier for a set of term equalities.

J Braz Comput Soc (2013) 19:423-432

427

O k53t P s §

—_ SEmpty
O 158t () s {id}
O 53ts 1 s §g

S={5'S | S€So, S’ €81, OF%2S SP 5§}
OFsAsS 1 P s §

SConj

A = sats(m, O)
S={8'S | (8,Q,7") € A, S’ €Sp, O 53t Q ~Sp}
O 1-83ts 1§

SInst

Fig. 3 Constraint set satisfiability

of satisfying substitutions S € Sy for a given constraint
by determining the set of constraint axioms V. Py = g in
® such that 7 unifies with 7y, and composing these substitu-
tions with those obtained by recursively computing the set of
satisfying substitutions for contexts S Pp. Rule SConj deals
with sets of constraints. The following examples illustrate
the use of these rules.

B, I and F are used in the sequel as abbreviations of Bool,
Int and Float, respectively.

Example 1 Consider P = {Aab, Db} and
®={AI[I],AI[B]L,CI,Vb.Cb= DI[b]}

Satisfiability of P with respect to ® yields a set of substi-
tutions S given by:

O 525 Agb ~ Sy
S={S'S| S€So, § €Sy, 0 S(Db) ~ S}
© Fsats Aab, {Db} ~ S

SConj

Then:

Ao ={(81,0, AT[I]), ($2.4, AT[B]D}
So={S'S|(S,0,7") e Ap, S’ €S,
® |_sats Q ~—s S/}

ST t
© F5ats Aab — So ne

where S; =[a+— I, b [I]],S2 =[a+— I, b [B]].

Then, by rule SCon j, the set of satisfying substitutions for
S1(D b) = D[I]and S>2(D b) = D [B] must be computed,
and are given respectively by:

A1 = {(S}lg, {C I}, D[b])}
Sl={§'S| (5. 0.7) e Ay, §' €S,
@ l_sats Q ~—s S/}
® p-sats D[I] ~ S%

SInst

where S| = [b| — I, by isafreshtype variable, S}|y = id,

and

Ay = {(S31p, {C B}, D [b])}

ST={8'S| (S, 0.n)e A, S €S,
® |-sats Q ~ g/}

SInst
© Fsats D[B] ~ §?

where Sé = [b2 — B], by is a fresh type variable, Sél@ =id.
Now, S} = {id} and S? = ¢. Thus, S = {S1}.

The example below, extracted from [3], illustrates non-
termination of the computation of the set of satisfying substi-
tutions by the function defined in Fig. 3. We use T2 7 to abbre-
viate T (T t) and similarly for other indices greater than 2.

Example 2 Let © = {Ya,b.{C a b} = C (T? a) b} and
consider computing satisfiability of # = C a (T a) with
respect to ®.

We have that 7 unifies with the head of constraint axiom
Ya,b.(Cab) = C(T?a)b, giving substitution § = [a >
T? aj, by — T3 a;]. We must then recursively compute
the set of satisfying substitutions of constraint S(C a; b1) =
Caj(T3ay). This constraint also unifies with Va, b. (Cab) =
C (T?a) b, giving substitution S = [a] +— (T2 ay), by —
(T3a; = T3 a)]. Again, we must recursively compute the
set of satisfying substitutions of constraint S;(C a> by) =
C a> (T? ay), and the process goes on forever.

The following theorems state, respectively, correctness
and completeness of the constraint set satisfiability algo-
rithms presented in Fig. 3, with respect to the entailment
relation.

Theorem 1 (Correctness of =°3%°) If @ 535 P ~s S then
OIFSP, forall S €S.

Proof By induction over the derivation of @ 53t P ~s S,
The only interesting case is for rule SInst. Letw = CT
and A = sats(w, ®). If A = ¢, the theorem holds trivially.
Thus, assume A # @ and let (S, Q,C7Tp) € A. By the
definition of sats, this means that Vo. Pp = C7p € O,
where @ = w(Pp = CTp),and P/ = CT = [a@ —
B1Py = CTo.Byrule Inst we have that ©, Py |- C T
is provable. We also have that ® F52%% Q ~» Sy, where
0 =Slam— E] Py, and thus, by the induction hypothesis,
we have that (1) ® |- S” Q holds for all §’ € Sy. Also, since
®, Py Ik C 7y is provable, we have, by rule Subst, that (2)
©, So Py IF Sy CTo, where Sy = S’ S[@ — B]. From
(1) and (2) we have, by rule Trans, that ® |- Sy C 7Ty
is provable. Since ST = S[o +— E]?o, this means that
® I $’ S CTisprovable. O

Theorem 2 (Completeness of =°2%°) If ® |- S P then there
exist S’ € Sand S” suchthat S” S' P = S P, where ® |-5ats
P~ S.

Proof Inductionover S P in ® |- S P.

@ Springer

428

J Braz Comput Soc (2013) 19:423-432

4.1 Termination

The algorithm presented in Fig. 3 is modified in this section
in order to ensure termination on any given input. The basic
idea is to associate a value to each constraint head of the set of
constraint axioms that is unified with some constraint in the
recursive process of computing satisfiability, and require that
the value associated to a constraint head always decreases in a
new unification that occurs during this process. Computation
stops if this requirement is not fulfilled, with no satisfying
substitution found for the original set of constraints. Values
in this decreasing chain are a measure of the size of types in
constraints that unify with each constraint head axiom: the
size of each constraint in this chain is decreasing or there
exists a position of a type argument in the constraint such
that the type’s size is decreasing.

Let the constraint value () of a constraint 7, which
gives the number of occurrences of type variables and type
constructors in 77, be defined as follows:

NCr 1) = D n(w)
i=l1
n(T) =1
n(e) =1
n(t1) = n(r1) +n(r2)

A finite constraint-head-value function @ is used to map
constraint heads o of ® to pairs (/, IT), as follows.

The first component [is a tuple (vo, ..., v,), where vg is
the least n(S7’) of all constraints 77’ that have unified with 7
during the satisfiability test for 77, where § = mgu(x}, 7’).
Each v;, 1 < i < n, is the least n(t;) where 7; is a type
belonging to some Sz’ that has unified with 7.

We let [.v; denote the i-th value of / and, similarly,
@ (7). and & (7rp).I1 denote respectively the first and sec-
ond components of ® ().

The second component IT of & (;p) contains constraints
7' that unify with 7 and have constraint values equal to vg.
This allows distinct constraints with equal constraint values
to unify with g (cf. Example 6 below).

Consider a recursive step in a test of satisfiability where a
constraint 77 unifies with a constraintheadmg = C 11 ... 1T,,
with S = mgu(mg, 7). Let ®(79) = ((vo, ..., vu), [T) and
n(Sm) = ng. ©(mo) is then updated as follows. If ng < vy
then only the value v is updated, to ng. In the case that ng =
vo and w ¢ I1, ® () is updated to ((vo, ..., v,), [TU{ST}),
i.e. we include S in the set of constraints that have the same
value vg. Finally, if ng > vg, we set vy to —1 and for each
7; such that n(t;) > v;, we update v; with —1, otherwise v;
is updated with 7(z;). In subsequent steps for constraints 7’
that unify with g, with S’ as a unifying substitution, it is
required that (S8’t;) < v;; if there’s no such i, a failure in
the termination criteria is detected.

@ Springer

O,pFtsat p s §

SFaily SEmptys

O, Fail Ft53t () ~ O, P 33t () s {id}

O,P 53t 1§y
S={5'S| S€So, S"€S1, ©,p3 SP 5§}
O, Fts3t 1 P s §

SConji

A = sats(m, O)
S={9'S | (5,Q,7") € A, S €8Sy, & =[x, S7],
@7@/ l_tsat Q WSO}
O,p -3t 1§

SInstq

Fig. 4 Terminating constraint set satisfiability

Let f[x — y] denote the usual function updating notation
for f/ given by f'(x’) = y if x’ = x, otherwise f(x).
We define ®[mg, 7] as updating of ®(m9) = (I, 1) as

follows, where I = (vg, v1,...,V,), T =C 1Ty --- Ty, np =
n(m):
®[np, 7] [0 = ((no, v1, ..., vy), ID]if no < L.vo;

=o
Do~ (I, 1T U {m]]ifng = L.vg, ® & I1;
Do — (I', TD]if ng > Ly, Ji. (I'.v; #—1)
where, fori =1, ...,n,
—1 if vy <n(tj)ori =0
n(t;) otherwise
Fail otherwise

I'v =

The computable function (tsat) for constraint satis-
fiability, defined in Fig. 4, uses judgements of the form
®,® a2t P ~» S, with constraint-head-value function
@ as additional parameter.

The set of satisfying substitutions for constraint set P with
respect to the set of constraint axioms ® is given by S, such
that ®, &y F2t P ~v S holds, where ®o(mg) = (I,)
for each constraint head 7p = C1y...7, in © and [y is a
tuple formed by n + 1 occurrences of a large enough integer
constant, represented by oo.

Consider the following.

Example 3 Consider computing satisfiability of 1 = Eq[[I]]
in® ={EqI, Va. Eqa = Eqlal}, letting 1y = Eqla]; we
have:

Ao = sats(, ©) = {(Slp, {EqII1}, m0)}

S =[a1 — [T]]

So={S10id| S €Sy, O, d| 2 Eg[I]~ S;}
O, Og 53t 1 s §

J Braz Comput Soc (2013) 19:423-432

429

where | = Op[mg, 7], Py (70).1 = (n(7) = 3, 00), ST =
7 and aj is a fresh type variable; then:
Ay = sats(Eq[T], ©) = {(S'lg, {Eq T}, 70))
S = [ar — I]
S1={S0id]| S €Sy, ©,Dy =2 EgT ~ Sy}
®, ®| Ftsat Eq[I] ~ S
where &, = ®[mg, Eq[I]] and n(Eq[I]) = 2 is less than
@ (mg).1.v9g = 3; then:
Ay =sats(Eq I,0) = {(id, @, Eq I)}
S, ={S30id]| S3€8S3, O, D32 @ s S3 = {id}}
O, Py Ftsat Eg T ~~ §)

where ®3 = Oy[Eq I, Eq I], Sz = {id} by (SEmpty).

Example 4 Consider again Example 2: we want to obtain the

set of satisfying substitutions for constraint 7 = C a (T a),

given ©® = {Ya,b.C ab = C (T? a) b} (computation with

input v by the function in Fig. 3 does not terminate). We

have, where 79 = C (T% a) b:

Ao = sats(, ©) = {(S lay, {1}, 70)}

S=[a—~T?ay, by — T3 a]

71 = C aq (T3 ap)

So={S1 0 [al—>T2 ail| S €Sy, ©, ® F52t 71~ Sy}
O, g Ftsat 1~ §y

where @ = @[, S, n(S7)=n(C (T* a1) (T* a1)) =
7 < ®g(mg).1.v9 = 00; then:

Ay = sats(my, ©) = {(S [jay}, {m2}. 70)}

S’ =lay+— T*ar, by > T3 a; = Tas]

m=Cay(T° ay)

S| ={Sofai>T?a] | $2 € S, O, Dy FE52E 715 s Sy}
O, &) Ftsat 1 ~» §

where ®, = ®[ng, S'm1], S'm1 = (C (T? ay) (T a2)
and, since n(§'m;) = 9 > ®1(mp).1.v9 = 7, we have that
(o)1 = (—1,n(T? ax) = 3, n(T° az) = 6); then:

Ay = sats(mz, ©) = {(8 |jay), {73}, 70)}

S" =lap > T? a3, by > T° ap = T'a3]

n3=Cas (T7 az)

Sz={S3o[a2+—>T2 az] | S3 € S3, ©, ®3 53 73~ S3}

O,) Ftsat 71~ Sy

where &3 = ®y[m, S"m2] = Fail, because n(S'mp) =
n(C (T3 a3) (T” a3)) = 12 > ®a(mp).1.vg = 9 and there’s
no i such that ®3(mp)./.v; # —1, meaning that no parameter
of $”m; has a decreasing n value.

The following illustrates an example of a satisfiable con-
straint for which computation of satisfiability involves com-
puting satisfiability of constraints 7z’ that unify with a con-
straint head 7o such that (") is greater than the upper bound
associated to .

Example 5 Consider satisfiabilityof 7 = C T (T3 I)in® =
{C(Ta)I,VYa,b.C (T?a)b= Ca(T b)}. We have, where
w9 = Ca (T Db):

Ao = sats(mr, ©) = {(S |g, {1}, 70)}
S=1[a;+— I,b+> T*1]
71 =C(T?>1)(T?*1)
So={S10id| S; €S, O, D 2 71 ~~ Sy}
O, &g FEsat 7~ §
where ®; = Og[mg, 7], n(w) = 5 < Dg(mg).1.v9 = 00,
S = m; then:
Ay = sats(my, ©) = {(8' |, {m2}. 70)}
S =lap > T?*I,by+> T I]
1 =C(T*1) (T I)
S ={Sola1 > T?a]| S €Sy, O, Py 528 715 S,
O, &) Ftsat g~ S

where ®, = ®([ng, m1], ®1(mg).I = (5, 00, 00), 'y =
. Since n(my) = 6 > 5 = ®D(mp).l.v9, we have that
@ (7p).1 becomes equal to (—1, 3, 3).

Then, considerthat 7» = Ctjty wheret; = T*I and) =
T I. Since n(m) > ®,(mg).1.vg = —1, there must exist i,
1 <i <2, such that n(t;) < ®2(mp).v;, and such condition
is satisfied for i = 2, updating &, (7).l to (—1, —1,2).
Satisfiability is then finally tested for 73 = C (T I)T, that
unifies with my = C (T a) I, which returns S3 = {[az +—
T3 I]lg} = {id}. Constraint 7 is thus satisfiable, with Sy =
{id}.

The following example illustrates the use of a set of con-
straints as a component of the constraint-head-value function.

Example 6 Let 1 = C(T?>I)F, n9p = C(Ta)b, ® =
{CI(T?F),Ya,b.Ca (T b)= C (T a)b):
Ao = sats(r, ©) = {(S |g, {71}, m0)}
S=[ay—~ (TI),by—F], mM;=C(TI)(TF)
So={Sioid]| S; €Sy, O, 2t 71 ~ Sy}

®, ®g 53t 7 ~s §y
where ®; = ®¢[mg, 7], ST = m; then:
Ay = sats(ry, ©) = {(S |g, {2}, 70)}
S =lay+> I,bp > TF], mp=CI(T*F)
S1 ={S0id]| S$2€S,;, O, D, 52 15 ~» Sy}

O, &) Ftsat 1~ §)
where ®, = & [, 1], n(m) = 4 = P(7p).1.vo
n(m), 7y = m and my is not in ®(mp).[; =
We have that S, = {id}, because sats(C I (T2 F), ®)
{(id, %, C I (T?F))}, and 7 is then satisfiable.

=l

Since satisfiability of type class constraints is in gen-
eral undecidable [6], there exist instances of this problem
for which our algorithm incorrectly reports unsatisfiabil-
ity. An example that exhibits an incorrect behavior, con-
structed by encoding a solvable post correspondence problem

@ Springer

430

J Braz Comput Soc (2013) 19:423-432

(PCP) instance by means of constraint set satisfiability, using
G. Smith’s scheme [6], is shown below. For all examples
mentioned in the literature [15,17] and numerous tests that
include those used by GHC involving pertinent GHC exten-
sions, the algorithm works as expected, without the need of
any compilation flag.

Example 7 This example uses a PCP instance taken from
[9]. A PCP instance can be defined as composed of pairs of
strings, each pair having a top and a bottom string, where
the goal is to select a sequence of pairs such that the two
strings obtained by concatenating top and bottom strings
in such pairs are identical. The example uses three pairs of
strings: p1 = (100, 1) (that is, pair 1 has string 100 as the
top string and 1 as the bottom string), p» = (0, 100) and
p3 = (1,00).

This instance has a solution: using numbers to represent
corresponding pairs (i.e., 1 represents pair 1 and analogously
for 2 and 3), the sequence of pairs 1311322 is a solution.

A satisfiability problem that has a solution if and only if the
PCP instance has a solution can be constructed by adapting
G. Smith’s scheme to Haskell’s notation. We consider for this
a two-parameter class C, and a constraint context such that
® = 01 UBO;, U B3, where 0O; is constructed from pair i, for
i=1,2,3:

O ={C(1—->0—0)1,
Va,b.Cab=C(1—-0—->0—-a)(1 > >b)}
G ={C0(1 —0—0),
Ya,b.Cab=CO—->a)(1>0—>0—b)}
O3 ={C1(0— 0),
VYa,b.Cab=C({1 —a)(0—0—b)}

We have that constraint C a a is satisfiable, with a solution
constructed from solution 1311322 of the PCP instance.
Computation by our algorithm terminates, erroneously
reporting unsatisfiability. The steps of the computation
are omitted. The error occurs because a constraint 7, =
C a, (1 — ap) unifies with mgy = C(1 —- 0 - 0 —
a) (1 — b) and n(Smy) is greater than @ (;p1).1.vo, where
S = mgu(my, mo1), and there’s no i € {1, 2} such that
®3(mp).1.v; # —1, meaning that no parameter of S, has a
decreasing 7 value.

To prove that the computation of the set of satisfying
substitutions for any given constraint set P by the func-
tion defined in Fig. 4 always terminates, consider that an
infinite recursion might only occur if an infinite number of
constraints unified with the head 7y of one constraint axiom
in ®, since there exist finitely many constraint axioms in ©.
This is avoided because, for any new constraint 7z that unifies
with g, we have, by the definition of ®[mg, 7], that ® (i)
is updated to a value distinct from the previous ones (other-
wise ®[mg, 7] yields Fail and computation is stopped). The
conclusion follows from the fact that ® (;rg) can have only

@ Springer

finitely many distinct values, for any . This can be seen by
considering that, for any mg such that ®(wg) = (I, IT), the
insertion of a new constraint in I'l decreases k —k’, where k is
the finite number of all possible values that can be inserted in
IT and k' is the cardinality of I1. Such a decrease causes then
a decrease of @ (since there exists only finitely many con-
straint heads g in ®). Similarly, at each step there must exist
some i such that /.v; decreases, and this can happen only a
finitely number of times. We conclude that computation on
any given input terminates.

The proposed termination criteria is related to the Paterson
Condition used in the GHC compiler (see Sect. 2). The con-
straint value is based on item 2 of this condition, but, instead
of using it as a syntactic restriction over constraint heads
and contexts in instance declarations, we use it in the defini-
tion of a finitely decreasing chain over recursively dependent
constraints.

In comparison to the use of a recursion depth limit,
our approach has the advantage that type-correctness is not
implementation dependent (a constraint is or is not satisfiable
with respect to a given set of constraint axioms). The use of
a recursion depth limit can make a constraint set satisfiable
in one implementation and unsatisfiable in another that uses
a lower limit. Incorrectly reporting unsatisfiability can occur
in both cases, but is expected to be extremely rare with our
approach. We are not aware of any practical example where
this occurs.

The main disadvantages of our approach are that it is not
syntactically possible to characterize such incorrect unsat-
isfiability cases and it is not very easy for programmers to
understand how type class constraints are handled in such a
case, if and when it occurs. However, we expect these cases
not to occur in practice.

The presented algorithm has been verified to behave cor-
rectly, without the need of any compilation flag, on all exam-
ples found in the literature [15], all GHC test cases, involving
flagsFlexibleInstances,FlexibleContexts and
UndecidableInstances, and on Haskell libraries that
use multi-parameter type classes, including the monad trans-
former library [1].

5 Constraint set simplification

The process of simplification of a constraint set, also called
context reduction, consists of reducing each constraint 7 in
this set to the context obtained by recursively reducing the
context P of the matching instance for in ®, if such match-
ing exists, until P = {J or there exists no instance in ® that
matches with 7. In the latter case 7 reduces to itself.

This recursive process may not terminate: as a simple
example, consider reduction of constraint C @ when ® =
{Va.Ca = Ca}.

J Braz Comput Soc (2013) 19:423-432

431

This section presents a computable function for constraint
set simplification, where computation is guaranteed to termi-
nate by using the same criterion used in Sect. 4.1.

Constraint set simplification is essentially based on
instance matching. We use function matches(w, ®), defined
below, in order to capture the relevant information of match-
ing constraint axioms in ® with a given constraint . Func-
tion matches is defined by using function sats (Sect. 4),
through skolemization of type variables that occur in the
given constraint argument (Skolem variables are non unifi-
able variables, that is, constants):

matches(, ®) = {(S P, 7'y | A = sats([@ — K]r, ©),
S, SP,7ye A, a=t(m),

K are fresh Skolem variables}

Function matches(rr, ®) returns either a singleton or an
empty set?.

Constraint set simplification uses a function defined in
Fig. 5 by means of judgements of the form ®, ® 1™ P
Q. This means that reduction of constraint set P under con-
straint axioms @ either give constraint set Q as a result or
fails. Failure is caused by the criterion used for ensuring ter-
mination, explained in Sect. 4.1. Using this function, context
reduction is defined as follows, where ®(is as defined in
Sect. 4.1:

o [m if®, @ FE s fail
fori =1,....n, Q’—{Q; if ©, @ 51 7; ~ Q]
O Fsimeo {7y o)~ O, ..., On

Ro

The rules of Fig. 5 are analogous to the ones in Fig. 4,
but now termination enforced by the termination criterion
is reported as a failure, which must be propagated back-
wards along the recursive calls of the computation. Thus,
reduction of a constraint 7 is now defined by two rules,
(RInst)) and (RInst;) and, analogously, two different
rules are used for specifying reduction of a non-singleton
set of constraints.

Rule (REmpty) specifies that an empty set of constraints
reduces to itself. Rule (RStop) specifies that a constraint
cannot be reduced if there is no instance in ® that matches
with 7. Rule (RFail) enforces termination, expressing that
reduction cannot be performed since updating of ® fails.

The process of constraint set simplification is illustrated
by the following example.

2 We do not consider overlapping instances [20], since the subject is
unrelated to termination of constraint set satisfiability and simplifica-
tion. Supporting overlapping instances would need a modification of
function matches so as to select a single instance if there exist overlap-
ping matching instances.

O Fsimp P s Q

0,9 -5 1 s P
o, FSimPQwQ’
@7¢'751mp 7T7Q ~ P?Ql

REmpty RConjq

@7q§ |-simp D ~s0

O,d FSimP 7 s fail

- RConjgy
0,0 S 1 Q ~ fail

matches(m,0) =0
O,P HsimP 1 s

RStop i RFail
O, Fail 3P 71~ fail

{(P,7")} = matches(m, O)
O, d[r’,w] F3iP P s Q

RInstq

O FSimP 1 s Q

{(P,7")} = matches(r,O)

O, d[r’, 7] FSIMP P s fail

RInsto

O SR 1 s fail

Fig. 5 Constraint set simplification

Example 8 Let ® = {Va.C(Ta) = Ca, DI} and P =

{D I, C a}. According to rule (Rg)reduction of P amounts

to independently reducing constraints D I and C a.
Reduction of D I is defined by rule (RInst):

{(@, D 1)} = matches(D 1, ®)
O, Pg[D I, DI 1™ F s B
O, D 51" DT~ ¢

Reduction of 1 = my = C a results in failure, as shown
below:

{(C (T ay), m9)} = matches(w, ®)
O, ®; 31" (C (T ay)) ~> fail
O,) Fsime 71~ fail
where ®; = ®g[m, 7], ®1(7mg).I = (n(@) = 1, 00). We
have that:
{(C(T? a2), m0)} = matches(C (T ay), ©)
0, &y F51™ (C (T? ap)) ~ fail
®, ®| Fsime (C (T ay)) ~ fail
where ®y = ®([C (T ay), mo] = fail because n(C (T ay))
7& CD[(]T()).I.U[=1. .
Byrule (Rp), we have that ® 50 {D I, Ca} ~~ {C a},

meaning that D I can be removed and C a cannot be further
reduced.

@ Springer

432

J Braz Comput Soc (2013) 19:423-432

The following theorem states the correctness of the con-
straint simplification function defined in Fig. 5.

Theorem 3 [Correctness of F5i™] [f @, ® F5i™ P s Q
holds, then ®, Q |- P is provable and Q cannot be further
simplified, i.e., ©, ® 51" Q s Q.

Proof Induction over ®, ® 3™ P s Q.

6 Conclusion

This paper presents a termination criterion and terminating
algorithms for constraint simplification and improvement,
based on the use of a value that always decreases on each
recursive step in these algorithms. The termination criterion
defined can be used in any form of constraint simplification
and improvement algorithm during type inference.

The use of this criterion eliminates the need for imposing
syntactic conditions on Haskell type class and instance decla-
rations and the need for using a recursion stack depth limit in
order to guarantee termination of type inference in the pres-
ence of multi-parameter type classes, in case these syntactic
conditions are chosen by programmers not to be enforced.

Since type class constraint satisfiability is in general unde-
cidable, there exist instances of this problem for which the
algorithm presented in this paper incorrectly reports unsatis-
fiability. However, practical examples where this occurs are
expected to be very rare. The algorithms have been imple-
mented and used in a prototype front-end for Haskell, avail-
able at http://github.com/rodrigogribeiro/mptc. For all exam-
ples mentioned in the literature, Haskell libraries that use
multi-parameter type classes and tests used by the Haskell
GHC compiler, involving all pertinent GHC extensions, the
algorithm works as expected without the need for any com-
pilation flag.

In comparison to the use of a recursion depth limit,
our approach has the advantage that type-correctness is not
implementation dependent (a constraint is or is not satisfiable
with respect to a given set of constraint axioms). The use of
a recursion depth limit can make a constraint set satisfiable
in one implementation and unsatisfiable in another that uses
a lower limit. Incorrectly reporting unsatisfiability can occur
in both cases, but is expected to be extremely rare with our
approach. We are not aware of any practical example where
this occurs.

The main disadvantages of our approach are that it is not
syntactically possible to characterize such incorrect unsat-
isfiability cases and it is not very easy for programmers to
understand how type class constraints are handled in such a
case, if and when it occurs.

@ Springer

Acknowledgments We would like to thank the anonymous review-
ers for their careful work, which has been very useful to improve the

paper.

References

1. Gill A (2006) MTL-The Monad Transformer Library. http:/
hackage.haskell.org/package/mtl

2. Baader F, Snyder W (2001) Unification theory. In: Robinson J.,
Voronkov A (eds) Handbook of Automated Reasoning, Elsevier
Science Publishers, vol. 1, pp 447-533

3. Camarao C, Figueiredo L, Vasconcellos C (2004) Constraint-set
Satisfiability for Overloading. In: Proc. of the 6th ACM SIGPLAN
International Conf. on Principles and Practice of Declarative Pro-
gramming (PPDP’04), pp 67-77

4. Camardo C, Ribeiro R, Figueiredo L, Vasconcellos C (2009)
A Solution to Haskell’s Multi-Parameter Type Class Dilemma.
In: Proc. of the 13th Brazilian Symposium on Programming Lan-
guages (SBLP’2009), pp 5-18. http://www.dcc.ufmg.br/camarao/
CT/solution-to-mptc-dilemma.pdf

5. Hall C, Hammond K, Jones SP, Wadler P (1996) Type Classes in
Haskell. ACM Trans Program Lang Syst 18(2):109-138

6. Smith G (1991) Polymorphic type inference for languages with
overloading and subtyping. Ph.D. thesis, Cornell Univ.

7. Jones M, Diatchki I (2008) Language and Program Design for
Functional Dependencies. In: ACM SIGPLAN Haskell, Workshop,
pp 87-98

8. Jones SP et al. (2003) The Haskell 98 Language and Libraries: The
Revised Report. J Func Prog 13(1):0-255. http://www.haskell.org/
definition/

9. Zhao L (2002) Solving and Creating Difficult Instances of
Posts Correspondence Problem. Department of Computer Science,
University of Alberta, Master’s thesis

10. Chakravarty M, Keller G, Jones SP (2005) Associated type syn-
onyms. In: Proc. of the 10th ACM SIGPLAN International Conf.
on Functional Programming (ICFP’05), pp 241-253

11. Chakravarty M, Keller G, Jones SP, Marlow S (2005) Associated
types withclass.In: Proc. of the ACM Symp. on Principles of Prog.
Languages (POPL’05), pp 1-13

12. Jones M (1994) Qualified Types. Cambridge University Press,
Cambridge

13. Jones M (1995) Simplifying and Improving Qualified Types.
In: Proc. of the ACM Conf. on Functional Prog. and Comp. Archi-
tecture (FPCA’95), pp 160-169

14. Jones M (2000) Type Classes with Functional Dependencies.
In: Proc. of the European Symp. on Programming (ESOP’2000).
LNCS 1782

15. Sulzmann M, Duck G, Jones SP, Stuckey P (2007) Understand-
ing functional dependencies via constraint handling rules. J Funct
Program 17(1):83-129

16. Milner R (1978) A theory of type polymorphism in programming.
J Comput Syst Sci 17:348-375

17. Stuckey P, Sulzmann M (2005) A Theory of Overloading. ACM
Trans Prog Lang Syst (TOPLAS) 27(6):1216-1269

18. Wadler P, Blott S (1989) How to make ad-hoc polymorphism less
ad-hoc. In: Proc. of the 16th ACM Symp. on Principles of Prog.
Lang. (POPL’89), pp 60-76. ACM Press, New York

19. Jones SP et al (1998) GHC-The Glasgow Haskell Compiler. http://
www.haskell.org/ghc/

20. Jones SP et al (2011) GHC-The Glasgow Haskell Compiler 7.0.4
User’s Manual. http://www.haskell.org/ghc/

http://github.com/rodrigogribeiro/mptc
http://hackage.haskell.org/package/mtl
http://hackage.haskell.org/package/mtl
http://www.dcc.ufmg.br/camarao/CT/solution-to-mptc-dilemma.pdf
http://www.dcc.ufmg.br/camarao/CT/solution-to-mptc-dilemma.pdf
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/ghc/
http://www.haskell.org/ghc/
http://www.haskell.org/ghc/

	Terminating constraint set satisfiability and simplification algorithms for context-dependent overloading
	Abstract
	1 Introduction
	2 Restrictions over class and instance declarations
	3 Constrained polymorphism and type class constraints
	3.1 Constraint set satisfiability

	4 Computing constraint set satisfiability
	4.1 Termination

	5 Constraint set simplification
	6 Conclusion
	Acknowledgments
	References

