
CONTRIBUTED RESEARCH ARTICLES 451

Distance Measures for Time Series in R:
The TSdist Package
by Usue Mori, Alexander Mendiburu and Jose A. Lozano

Abstract The definition of a distance measure between time series is crucial for many time series data
mining tasks, such as clustering and classification. For this reason, a vast portfolio of time series
distance measures has been published in the past few years. In this paper, the TSdist package is
presented, a complete tool which provides a unified framework to calculate the largest variety of
time series dissimilarity measures available in R at the moment, to the best of our knowledge. The
package implements some popular distance measures which were not previously available in R, and
moreover, it also provides wrappers for measures already included in other R packages. Additionally,
the application of these distance measures to clustering and classification tasks is also supported
in TSdist, directly enabling the evaluation and comparison of their performance within these two
frameworks.

Introduction

In recent years, the increase in data collecting technologies has triggered the creation of time series
databases, where each instance consists of an entire time series. The main features of this type of data
are its high dimensionality, dynamism, auto-correlation and noisy nature, all which complicate the
study and pattern extraction to a large extent. However, in the past few years, tasks such as regression,
classification, clustering or segmentation have been extended and modified successfully for time series
databases (Fu, 2011; Bagnall et al., 2016). In many cases, these tasks require the definition of a distance
measure, which will indicate the level of similarity between time series. Because of this, understanding
suitable measures for this specific type of data has become a crucial area of study.

R is a popular programming language and a free software environment for statistical comput-
ing, data analysis and graphics (R Core Team, 2014), which can be extended by means of packages,
contributed by the users themselves. A few of these R packages, such as dtw (Giorgino, 2009), pdc
(Brandmaier, 2015), proxy (Meyer and Buchta, 2015), longitudinalData (Genolini, 2014) and TSclust
(Montero and Vilar, 2014) provide implementations of some time series distance measures. However,
many of the most popular distances reviewed by Esling and Agon (2012); Wang et al. (2012) and
Bagnall et al. (2016) are not available in these R packages.

In this paper, the TSdist package (Mori et al., 2015) for the R statistical software is presented. In
addition to providing wrapper functions to all the distance measures implemented in the previously
mentioned packages, TSdist implements another 9 distance measures designed for univariate numeri-
cal time series. These distance measures have been selected based on their prevalence, and because
they are mentioned in recent reviews on the topic (Liao, 2005; Esling and Agon, 2012; Wang et al.,
2012). In this manner, and to the best of our knowledge, this package provides the most up-to-date
coverage of the published time series distance measures in R.

Design and implementation of the package

As can be seen in Figure 1, the core of the TSdist package consists of three types of functions. To begin
with, in the lowest level, the functions of the type MethodDistance conform the basis of the package,
and can be used to calculate distances between pairs of numerical and univariate vectors. Of course,
Method must be substituted by the name of a specific distance measure. Most of them are implemented
exclusively in R language but, the internal routines of a few of them are implemented in C language,
for reasons of computational efficiency.

In the next level, the wrapper function called TSDistances enables the calculation of distance
measures between univariate time series objects of type ts, zoo and xts, the latter two defined in
their respective packages: zoo (Zeileis and Grothendieck, 2005) and xts (Ryan and Ulrich, 2013). All
these objects are specific for temporal data and the corresponding packages provide a complete set of
methods to work with them. However, there are slight differences between them. Objects of type ts
are the most basic and are exclusively addressed for regularly sampled time series. The zoo objects
incorporate the possibility of dealing with irregularly sampled time series. Finally, the xts package
further extends the zoo package to provide a uniform handling of all the time series data types in R.
To calculate the distance measure between two objects of one of these types, the TSDistances function
just takes care of the conversion of data types and then makes use of the desired MethodDistance

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=TSdist
https://CRAN.R-project.org/package=dtw
https://CRAN.R-project.org/package=pdc
https://CRAN.R-project.org/package=proxy
https://CRAN.R-project.org/package=longitudinalData
https://CRAN.R-project.org/package=TSclust
https://CRAN.R-project.org/package=zoo
https://CRAN.R-project.org/package=xts

CONTRIBUTED RESEARCH ARTICLES 452

MethodDistance(x, y, ...)

TSDistances(x, y, method, ...)

TSDatabaseDistances(X, Y, method, ...)

Figure 1: Structure and organization of the TSdist package.

function. Note that, in addition to ts, xts and zoo objects, we can also introduce basic numeric vectors
into the TSdistances function. In this sense, it generalizes and unifies the calculation of all the distance
measures in one function.

Finally, on some occasions, it is necessary to calculate the distance between each pair of series
in a given database of series (X = {X1, X2, ..., XN}). This will result in a distance matrix such as the
following:

D(X) =


d(X1, X1) d(X1, X2) · · · d(X1, XN)
d(X2, X1) d(X2, X2) · · · d(X2, XN)

...
...

. . .
...

d(XN , X1) d(XN , X2) · · · d(XN , XN)


The TSDatabaseDistances function is specifically designed to build distance matrices from time

series databases saved in matrices, mts objects, zoo objects, xts objects or lists. Upon loading the
TSdist package, the TSDistances function is automatically included in the pr_DB database, which is
a list of similarity measures defined in the proxy package. This directly enables the use of the dist
function, the baseline R function to calculate distance matrices, with the dissimilarity measures defined
in the TSdist package. This is the general strategy followed by the TSDatabaseDistances function
and, only for a few special measures, the distance matrix is calculated in other ad-hoc manners for
efficiency purposes.

As an additional capability of the TSDatabaseDistances function, the distance matrices can not
only be calculated for a single database, but also for two separate databases. In this second case, all
the pairwise distances between the series in the first database and the second database are calculated:

D(X, Y) =


d(X1, Y1) d(X1, Y2) · · · d(X1, YN)
d(X2, Y1) d(X2, Y2) · · · d(X2, YN)

...
...

. . .
...

d(XM, Y1) d(XM, Y2) · · · d(XM, YN)


This last feature is especially useful for classification tasks where train/test validation frameworks

are frequently used.

Summary of distance measures included in TSdist

In Table 1, a summary of the distance measures included in TSdist is presented. Since the package
includes wrapper functions to distance measures hosted in other packages, the original package is
also cited in the table.

Based on the literature, we have divided the distance measures into four groups. Shape-based
distances compare the overall shape of the time series by measuring the closeness of the raw-values of
the time series (Esling and Agon, 2012). Within this category, we separate the (i) lock-step measures,
which compare the i-th point of one time series to the i-th point of another, and the (ii) elastic measures,
which are more flexible and allow one-to-many points and one-to-none point matchings (Wang et al.,
2012). Feature-based distances are based on comparing certain features extracted from the series, such
as Fourier or wavelet coefficients, autocorrelation values, etc. Next, structure-based distances include
(i) model-based approaches, where a model is fit to each series and the comparison is made between
models, and (ii) complexity-based models, where the similarity between two series is measured based
on the quantity of shared information. Finally, prediction-based distances analyze the similarity of the
forecasts obtained for different time series.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 453

proxy longitudinal
Data TSclust dtw pdc TSdist

Shape based distances
Lock-step measures

Lp distances X
DISSIM X
Short Time Series Distance (STS) X
Cross-correlation based X
Pearson correlation based X
CORT distance X

Elastic measures
Frechet distance X
Dynamic Time Warping (DTW) X
Keogh_LB for DTW X
Edit Distance for Real Sequences (EDR) X
Edit Distance with Real Penalty (ERP) X
Longest Common Subsequence (LCSS) X

Feature-based distances
(Partial) Autocorrelation based X
Fourier Decomposition based X
TQuest X
Wavelet Decomposition based X
(Integrated) Periodogram based X
SAX representation based X
Spectral Density based X

Structure-based distances
Model based

Piccolo distance X
Maharaj distance X
Cepstral based distances X

Compression based
Compression based distances X
Complexity invariant distance X
Permutation distribution based distance X

Prediction based
Non Parametric Forecast based X

Table 1: Summary of distance measures for time series implemented in R.

As can be seen in Table 1, the distance measures implemented specifically in TSdist complement
the set of measures already included in other packages, contributing to a more thorough coverage
of the existing time series distance measures. As the most notable example, edit based distances for
numeric time series (EDR, ERP and LCSS) have been introduced, which were completely overlooked
in previous R packages.

For more extensive explanations on each of the distance measures, the readers can access the
documentation of the TSdist package, where more details or suitable references are provided.

User interface by example

The TSdist package is available from the CRAN repository, where the source files for Unix platforms
and the binaries for Windows and some OS-X distributions can be downloaded. For more information
on software pre-requisites and detailed instructions on the installation process of TSdist, please see
the README file included in the inst/doc directory of the package.

Note that, in the following sections, we will use several time series and time series databases
included in TSdist. These databases are all synthetic, and have been chosen and designed specifically
because of their simplicity and because they allow us to provide straightforward examples which
clearly illustrate the usage of the different functions included in the package, and can be easily
analyzed, replicated and visualized by the reader. However, once the practitioner becomes familiar
with the examples provided in the following sections, it is straightforward to download any real
dataset, such as those included in the UCR archive (Keogh et al.), and work on it.

Examples of distance calculations between numeric vectors

The example.series1 and example.series2 objects (see Figure 2) included in the TSdist package are
two numeric vectors that represent two different synthetic series which were generated based on the
shapes that define the Two Patterns synthetic database of series (Geurts, 2002).

Additionaly, example.series3 and example.series4 (see Figure 3) represent two ARMA(3,2)
series of coefficients AR=(1, -0.24, 0.1) and MA=(1, 1.2) generated with different random seeds and
with different lengths, 100 and 120, respectively.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 454

0 20 40 60 80 100

(a) example.series1.

0 20 40 60 80 100

(b) example.series2.

Figure 2: The two example series of the same length included in the TSdist package.

0 20 40 60 80 100

(a) example.series3.

0 20 40 60 80 100 120

(b) example.series4.

Figure 3: The two example series of different length included in the TSdist package.

As mentioned previously, the basic calculation of the distance between two series, such as
example.series1 and example.series2, is done by using the MethodDistance functions and replacing
Method with the reference name of the distance measure of choice (for a complete list of reference
names, the user can access the help pages of TSdist):

> CCorDistance(example.series1, example.series2)

[1] 1.192903

> CorDistance(example.series1, example.series2)

[1] 1.399347

Many of the distance measures require the definition of a parameter, which must be included in
the call to the corresponding function:

> EDRDistance(example.series1, example.series2, epsilon=0.1)

[1] 80

> ERPDistance(example.series1, example.series2, g=0)

[1] 98.29833

Additionally, each distance measure has some characteristics which can impose some constraints
on the input time series. For example, some distance measures such as the Euclidean distance can not
deal with time series of different lengths. As such, if the conditions are not fulfilled, the distance can
not be computed and the function will return NA together with the corresponding error message:

> EuclideanDistance(example.series3, example.series4)

Error : Both series must have the same length.
[1] NA

> EDRDistance(example.series3, example.series4, epsilon=0.1, sigma=105)

Error : The window size exceeds the length of the first series
[1] NA

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 455

Finally, note that all these distance calculations can be carried out by using the TSdistances
wrapper function as follows:

> TSDistances(example.series1, example.series2, distance="ccor")

[1] 1.192903

> TSDistances(example.series1, example.series2, distance="cor")

[1] 1.399347

> TSDistances(example.series1, example.series2, distance="edr", epsilon=0.1)

[1] 80

> TSDistances(example.series1, example.series2, distance="erp", g=0)

[1] 98.29833

As can be seen, the distance of choice must be specified within the distance argument, followed
by the necessary parameters.

We must emphasize that each distance measure is scaled differently and so, distance values
obtained from different distance measures are not directly comparable, even when comparing the
two same time series. As such, completely different values can be obtained from different distance
measures, as can be seen in the previous example.

Examples of distance calculations between time series objects

The zoo.series1 and zoo.series2 time series included in the package are replicas of the example.
series1 and example.series2 objects introduced previously but saved as zoo objects with a specific
time index. A basic distance calculation between two series like these is done using the TSDistances
function exactly as shown in the previous section:

> TSDistances(zoo.series1, zoo.series2, distance="cor")

[1] 1.399347

> TSDistances(zoo.series1, zoo.series2, distance="dtw", sigma=10)

[1] 123.8757

The distance calculation between ts or xts objects is done in the same manner.

Examples of distance matrix calculations

The example.database object included in the package is a matrix that represents a database with
6 ARMA(3,2) series of coefficients AR=(1, -0.24, 0.1) and MA=(1, 1.2), but generated with different
random seeds. Each time series corresponds to a row of the matrix. Additionally, the zoo.database
object included in the package is a multivariate zoo object that saves the series of example.database
with a specific time index.

The dist function calculates the pairwise distance between all the rows in a matrix so, the cal-
culation of the distance matrix can be done easily for the example.database object in the following
manner:

> dist(example.database, method="TSDistances", distance="tquest",
+ tau=mean(example.database), diag=TRUE, upper=TRUE)

series1 series2 series3 series4 series5 series6
series1 0.00000000 0.10310669 0.06460465 0.05345349 0.08355246 0.04768702
series2 0.10310669 0.00000000 0.05260503 0.07685220 0.12273356 0.03049604
series3 0.06460465 0.05260503 0.00000000 0.02003566 0.09874005 0.01984044
series4 0.05345349 0.07685220 0.02003566 0.00000000 0.04998743 0.02302477
series5 0.08355246 0.12273356 0.09874005 0.04998743 0.00000000 0.06191323
series6 0.04768702 0.03049604 0.01984044 0.02302477 0.06191323 0.00000000

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 456

When using the dist function with the distances included in TSdist, the method argument will
always be left as "TSDistances", and the selected distance measure must be introduced in the distance
argument, followed by its parameters. The diag and upper options are used to specify if the diagonal
and upper triangle of the matrix should be shown. In any case, this calculation can also be done more
directly by using the TSDatabaseDistances function:

> TSDatabaseDistances(example.database, distance="tquest",
+ tau=mean(example.database))

When the database is not saved as a matrix, such as with zoo.database, the distance matrix
calculation can not be done by using the dist function directly. In this case, the calculation must
necessarily be carried out by using TSDatabaseDistances:

> TSDatabaseDistances(zoo.database, distance="tquest",
+ tau=mean(zoo.database))

series1 series2 series3 series4 series5
series2 0.10310669
series3 0.06460465 0.05260503
series4 0.05345349 0.07685220 0.02003566
series5 0.08355246 0.12273356 0.09874005 0.04998743
series6 0.04768702 0.03049604 0.01984044 0.02302477 0.06191323

Note that, by default, the TSDatabaseDistances function does not show the diagonal and upper
triangle of the computed distance matrix. If we want the whole matrix to appear, we must include the
options diag=TRUE and upper=TRUE as with the dist function.

Finally, as previously stated, an additional capability of the TSDatabaseDistances function is that
it is capable of calculating distances between the time series in two separate databases:

> TSDatabaseDistances(example.database, zoo.database, distance="tquest",
+ tau=mean(zoo.database))

series1 series2 series3 series4 series5 series6
series1 0.00000000 0.10310669 0.06460465 0.05345349 0.08355246 0.04768702
series2 0.10310669 0.00000000 0.05260503 0.07685220 0.12273356 0.03049604
series3 0.06460465 0.05260503 0.00000000 0.02003566 0.09874005 0.01984044
series4 0.05345349 0.07685220 0.02003566 0.00000000 0.04998743 0.02302477
series5 0.08355246 0.12273356 0.09874005 0.04998743 0.00000000 0.06191323
series6 0.04768702 0.03049604 0.01984044 0.02302477 0.06191323 0.00000000

Note that the two databases do not have to be provided in identical formats.

Time series classification and clustering with the TSdist package

The most common usage of time series distance measures is within clustering and classification tasks,1

and all the measures included in this package can be useful within these two frameworks. As a
support for these two tasks, the TSdist package includes two well-known functions.

The first function (OneNN) implements the 1NN classifier. This classifier is commonly used to
evaluate the performance of different distance measures, due to the influence the distance measure
has on its performance together with its reduced number of parameters (Wang et al., 2012). Given a
pair of train/test time series datasets and the class values of the series in the training set, the oneNN
function outputs the predicted class values for the test series. Additionally, if the ground truth class
values of the series in the testing set are provided by the user, the error obtained in the classification
process is also calculated.

As an example of usage, suppose we want to classify the series in the example.database2 database
(included in TSdist), which contains 100 series from 6 classes. In order to simulate a typical classifi-
cation framework, we divide the database into two sets by randomly selecting 30% of the series for
training purposes and 70% for testing.2 Then, we apply the 1-NN classifier to the testing set with any
distance measure of choice:

1Beware when using these distance measures within kernel based classifiers. Some of them, such as DTW, do
not necessarily issue positive definite Gram matrices when inserted directly into common kernel functions, such as
the Gaussian RBF. More information and some possible solutions can be found in (Cuturi, 2011; Pree et al., 2014;
Gaidon et al., 2011; Marteau and Gibet, 2014).

2The code to load and prepare the data is available in the documentation of the OneNN function.

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 457

> OneNN(train, trainclass, test, "euclidean")

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4
[39] 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6

Additionally, if the selected distance measure requires the definition of any parameters, these
should be included at the end of the call:

> OneNN(train, trainclass, test, "tquest", tau=85)

[1] 1 3 3 3 2 3 3 3 5 1 2 3 3 3 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 6 4 4
[39] 4 6 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 6 4 6 6 4 4 6 4 6 6 6 6

If we also provide the true class labels of the test instances, we can obtain the classification
error obtained by the 1NN algorithm and the distance measure of choice:

> OneNN(train, trainclass, test, testclass, "euclidean")$error

[1] 0

> OneNN(train, trainclass, test, testclass, "acf")$error

[1] 0.4142857

> OneNN(train, trainclass, test, testclass, "tquest", tau=85)$error

[1] 0.3285714

> OneNN(train, trainclass, test, testclass, "dtw", sigma=20)$error

[1] 0

For clustering tasks, the k.medoids function can be used, which, given the data and the
number of clusters, outputs the clustering result together with the F evaluation measure
(Wagner and Wagner, 2007), if the ground truth clustering is provided by the user. In the
following example, the popular k-medoids algorithm is applied to the example.database3
database, (which contains series from 5 classes obtained from ARMA processes), using
different distance measures and setting the number of clusters to 5:

> KMedoids(data, 5, "euclidean")

[1] 1 1 1 2 1 2 3 2 1 2 2 4 1 4 5 1 4 1 4 1 5 2 5 5 5 5 2 4 2 4 3 3 2
[34] 3 2 2 3 2 3 2 5 5 2 5 1 2 5 2 5 2

> KMedoids(data, 5, "tquest",tau=0)

[1] 1 1 1 2 1 2 3 1 1 1 2 2 4 2 4 4 2 4 2 4 3 3 3 2 3 3 2 2 3 2 3 3 2
[34] 3 2 2 3 2 3 2 3 5 2 5 1 2 5 2 5 2

As mentioned, if we provide the ground truth clustering result, we can also obtain the F
measure of the obtained clustering:

> KMedoids(data, 5, ground.truth, "euclidean")$F

[1] 0.5154762

> KMedoids(data, 5, ground.truth, "acf")$F

[1] 0.9799499

> KMedoids(data, 5, ground.truth, "tquest", tau=0)$F

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 458

[1] 0.594479

> KMedoids(data, 5, ground.truth, "dtw", sigma=20)$F

[1] 0.8933333

As can be seen, the best results are provided by the Euclidean distance and DTW when
we classify the example.database2 database, and the autocorrelation distance is the best
performing measure from the selected options when clustering the example.database3
database.

In this line, previous experiments show that there is no “best” distance measure which is
suitable for all databases and all tasks, (Wang et al., 2012). In this context, a specific distance
measure must be selected, in each case, in order to obtain satisfactory results (Mori et al.,
2016). The large number of distance measures included in TSdist and the simple design
of this package allows the user to try different distance measures directly, simplifying the
distance measure selection process considerably.

Summary and conclusions

The TSdist package enables the calculation of distances between time series and time series
databases, by using a large variety of measures available in the literature. By including
wrapper functions for time series distances already available in R, and implementing other
unavailable popular measures reviewed in the literature, this package provides the largest
selection of time series distance measures available at R at the moment, to the best of our
knowledge. Additionally, it also simplifies the evaluation of these measures and their
application in classification and clustering contexts by providing several ad-hoc functions.

For more detailed information on the databases and functions included in the TSdist
package, and a more complete set of examples, the reader can consult the help pages or the
manual of the TSdist package and the vignette included within.

Bibliography

A. Bagnall, A. Bostrom, J. Large, and J. Lines. The great time series classification bake off:
An experimental evaluation of recently proposed algorithms. Extended version. ArXiv
e-prints, Feb. 2016. [p451]

A. M. Brandmaier. pdc: An "R" package for complexity-based clustering of time series.
Journal of Statistical Software, 67(1):1–23, 2015. ISSN 1548-7660. doi: 10.18637/jss.v067.i05.
URL https://www.jstatsoft.org/index.php/jss/article/view/v067i05. [p451]

M. Cuturi. Fast Global Alignment Kernels. In Proceedings of the 28th International Conference
on Machine Learning, pages 929–936, 2011. [p456]

P. Esling and C. Agon. Time-series data mining. ACM Computing Surveys, 45(1):1–34, Nov.
2012. [p451, 452]

T.-C. Fu. A Review on Time Series Data Mining. Engineering Applications of Artificial
Intelligence, 24(1):164–181, Feb. 2011. [p451]

A. Gaidon, Z. Harchaoui, and C. Schmid. A time series kernel for action recognition. In
BMVC 2011 - British Machine Vision Conference, pages 63.1–63.11, 2011. [p456]

C. Genolini. longitudinalData: Longitudinal Data, 2014. URL http://CRAN.R-project.org/
package=longitudinalData. R package version 2.2. [p451]

P. Geurts. Contributions to decision tree induction: bias/variance tradeoff and time series classifica-
tion. PhD thesis, University of Liege, Belgium., 2002. [p453]

T. Giorgino. Computing and visualizing dynamic time warping alignments in R: the dtw
package. Journal of Statistical Software, 31(7), 2009. [p451]

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

https://www.jstatsoft.org/index.php/jss/article/view/v067i05
http://CRAN.R-project.org/package=longitudinalData
http://CRAN.R-project.org/package=longitudinalData

CONTRIBUTED RESEARCH ARTICLES 459

E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, and C. Ratanamahatana. The UCR Time Se-
ries Classification/Clustering Homepage. URL www.cs.ucr.edu/~eamonn/time_series_
data/. [p453]

T. W. Liao. Clustering of time series data: a survey. Pattern Recognition, 38(11):1857–1874,
Nov. 2005. [p451]

P.-F. Marteau and S. Gibet. On recursive edit distance kernels with applications to time
series classification. IEEE Transactions on Neural Networks and Learning Systems, PP(6):1–13,
2014. [p456]

D. Meyer and C. Buchta. proxy: Distance and Similarity Measures, 2015. URL http://CRAN.R-
project.org/package=proxy. R package version 0.4-14. [p451]

P. Montero and J. A. Vilar. TSclust: An R package for time series clustering. Journal of
Statistical Software, 62(1):1–43, 2014. [p451]

U. Mori, A. Mendiburu, and J. A. Lozano. TSdist: Distance Measures for Time Series data., 2015.
URL http://CRAN.R-project.org/package=TSdist. [p451]

U. Mori, A. Mendiburu, and J. Lozano. Similarity measure selection for clustering time
series databases. Knowledge and Data Engineering, IEEE Transactions on, 28(1):181–195, Jan
2016. ISSN 1041-4347. [p458]

H. Pree, B. Herwig, T. Gruber, B. Sick, K. David, and P. Lukowicz. On general purpose time
series similarity measures and their use as kernel functions in support vector machines.
Information Sciences, 281:478–495, Oct. 2014. [p456]

R Core Team. R: A Language and Environment for Statistical Computing, 2014. URL
http://www.r-project.org/. [p451]

J. A. Ryan and J. M. Ulrich. xts: eXtensible Time Series, 2013. URL http://cran.r-project.
org/package=xts. [p451]

S. Wagner and D. Wagner. Comparing Clusterings - An Overview. Technical Report
2006-04, Universität Karlsruhe (TH), 2007. URL http://digbib.ubka.uni-karlsruhe.
de/volltexte/1000011477. [p457]

X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, and E. Keogh. Experimental
comparison of representation methods and distance measures for time series data. Data
Mining and Knowledge Discovery, 26(2):275–309, 2012. [p451, 452, 456, 458]

A. Zeileis and G. Grothendieck. zoo: S3 Infrastructure for Regular and Irregular Time Series.
Journal of Statistical Software, 14(6):1–27, 2005. [p451]

Usue Mori
Department of Applied Mathematics, Statistics and Operational Research
University of the Basque Country, UPV/EHU
20018, Donostia/San Sebastian (Spain)
usue.mori@ehu.eus

Alexander Mendiburu
Department of Computer Architecture and Technology
University of the Basque Country, UPV/EHU
20018, Donostia/San Sebastian (Spain)
alexander.mendiburu@ehu.eus

Jose A. Lozano
Department of Computer Science and Artificial Intelligence
University of the Basque Country, UPV/EHU
20018, Donostia/San Sebastian (Spain)
ja.lozano@ehu.eus

The R Journal Vol. 8/2, December 2016 ISSN 2073-4859

www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
http://CRAN.R-project.org/package=proxy
http://CRAN.R-project.org/package=proxy
http://CRAN.R-project.org/package=TSdist
http://www.r-project.org/
http://cran.r-project.org/package=xts
http://cran.r-project.org/package=xts
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000011477
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000011477
mailto:usue.mori@ehu.eus
mailto:alexander.mendiburu@ehu.eus
mailto:ja.lozano@ehu.eus

