
CONTRIBUTED RESEARCH ARTICLES 395

Explanations of Model Predictions with
live and breakDown Packages
by Mateusz Staniak and Przemysław Biecek

Abstract Complex models are commonly used in predictive modeling. In this paper we present R
packages that can be used for explaining predictions from complex black box models and attributing
parts of these predictions to input features. We introduce two new approaches and corresponding
packages for such attribution, namely live and breakDown. We also compare their results with
existing implementations of state-of-the-art solutions, namely, lime (Pedersen and Benesty, 2018)
which implements Locally Interpretable Model-agnostic Explanations and iml (Molnar et al., 2018) which
implements Shapley values.

Introduction

Predictive modeling is a very exciting field with a wide variety of applications. Lots of algorithms have
been developed in this area. As proven in many Kaggle competitions (Fogg, 2016), winning solutions
are often obtained with the use of elastic tools like random forest, gradient boosting or neural networks.
Many of them are implemented by R packages found in the CRAN Task View MachineLearning.

These algorithms have many strengths but they also share a major weakness, which is a deficiency
in interpretability of a model structure. A single random forest, an xgboost model or a neural network
may be parameterized with thousands of parameters which make these models hard to understand.
Lack of interpretability results in the lack of trust in model predictions. Lack of trust is a major obstacle
when one thinks about applications in regulated areas such as personalized medicine or similar fields.
An interesting example of a situation in which trust issues are fully justified is presented in Ribeiro
et al. (2016). Authors compare two classifiers that were trained to recognize whether a text describes
Christianity or Atheism. After explanations were provided, it turned out that the model with superior
performance in the test set often based its prediction on irrelevant words, for example, prepositions. To
overcome this problem, the interpretability of complex machine learning models has been a subject of
much research, devoted partially also to model visualization (Štrumbelj and Kononenko, 2011; Tzeng
and Ma, 2005; Zeiler and Fergus, 2014).

The general approach to interpretability is to identify important variables (features) in the model
and then learn the expected model response for a single variable. A description of a general framework
of permutation-based variable importance rankings may be found in Altmann et al. (2010). An
interesting and widely adopted tool for estimation of marginal model response is Partial Dependency
Plot (Friedman, 2001), that presents the marginal relationship between the variable of interest and a
single variable from the model. An effective and very elastic implementation of this method is available
in the pdp package (Greenwell, 2017). This method has many extensions such as for example Individual
Conditional Expectations (Goldstein et al., 2015). The ICE method allows for tracing predictions for
individual variables and it is very useful for the identification of interactions. On the other hand, ALE
plots (Apley, 2016) were proposed as a superior tool for handling strongly correlated predictors by
describing the conditional distribution of predicted values. This method can be used to assess both
main effects and interactions between predictors. All these methods are focused on the effect of a
single variable or small set of variables within the black box model.

A different approach is presented by Ribeiro et al. (2016). While methods such as PDP and ALE
plot aim to describe model behavior globally, it is also possible to explain individual predictions as in
ICE. We will focus on such methods. The authors propose LIME (Locally Interpretable Model agnostic
Explanations) as a method for explaining black box predictions by fitting an interpretable model locally
around a prediction of interest. This methodology was illustrated with examples from image and
text classification areas. Later, it was extended by Puri et al. (2017) to MAGIX methodology (Model
Agnostic Globally Interpretable Explanations) and modified by the authors of the original article to aLIME
(anchor-LIME) by Tulio Ribeiro et al. (2016).

So far, two implementations of the method have been found. Python library was developed by the
authors of the original article and it is available on GitHub at https://github.com/marcotcr/lime. It
works for any text or image classifier as well as for tabular data. Regression models can be explained
using simple linear regression. The R package lime is a port to the original Python package. This
package works with tabular and text data and handles all models supported by either caret (Kuhn,
2018) or mlr (Bischl et al., 2016) package and it can be easily extended to work with other models. An
implementation of the sp-LIME algorithm proposed in the original article to choose representative
observations that would explain the behavior of the model globally is available for Python.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/view=MachineLearning
https://CRAN.R-project.org/package=pdp
https://github.com/marcotcr/lime
https://CRAN.R-project.org/package=lime
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=mlr

CONTRIBUTED RESEARCH ARTICLES 396

In addition to packages that implement single methods, in R we have also two packages with a
consistent collection of explainers: DALEX (Biecek, 2018) and iml.

In this article, we give a short overview of methods for explaining predictions made by complex
models. We also introduce two new methods implemented in R packages live and breakDown.
Examples presented in this paper were recorded with the archivist package (Biecek and Kosinski,
2017). They can be accessed and restored with a single R instruction listed in footnotes.

Related work

In this section we present two of the most recognized methods for explanations of a single prediction
from a complex black box model (so-called instance-level explanations).

Locally Interpretable Model-agnostic Explanations (LIME)

Ribeiro et al. (2016) proposed LIME method for explaining prediction for a single observation. The
algorithm is designed to explain predictions of any classifier and it works primarily for image and
text data. First, original observation of interest is transformed into simplified input space of binary
vectors (for example presence or absence of words). Then a dataset of similar observations is created
by sampling features that are present in the representation of the explained instance. The closeness
of these observations to the original observations is measured via a specified similarity kernel. This
distance is taken into account while the explanation model is fitted to the new dataset. The interpretable
model can be penalized to assure that it does not become too complex itself. In mathematical terms,
LIME explanation for observation x is a model g which approximates complex model f by solving the
following optimization problem

g(·) = arg min
h∈G

[
L(f , h, πx(z)) + Ω(h)

]
,

where z is the interpretable (binary) representation of x, πx(z) is a measure of closeness of z and x
(the kernel), L is a loss function that measures local faithfulness of the explanation and Ω is a model
complexity measure, that serves as a regularization term.

Shapley values (SHAP)

In 2017 Lundberg and Lee (2017) introduced a general framework for explaining machine learning
models that encompasses LIME among other methods. The method is associated with some specific
visualization techniques that present how predictors contribute to the predicted values. In this
framework, observations are transformed into the space of binary variables called simplified inputs.
Explanation models are restricted to the so-called additive feature attributions methods, what means
that values predicted by the explanation model are linear combinations of these binary input vectors.
Formally, if z = (z1, . . . , zp) is a binary vector in simplified inputs space and g is the explanation
model, then

g(z) = φ0 +
M

∑
j=1

φjzj,

where φj, j = 0, . . . , M are weights. These weights measure how each feature contributes to the
prediction. Authors prove that in this class of explanation models Shapley values provide unique
solutions to the problem of finding optimal weights φj that assure that the model has desirable
properties of local accuracy and consistency. For formal treatment and examples, please refer to the
original article of Lundberg and Lee (2017). In particular, you will find there a proof that for certain
choices of parameters in the LIME method, coefficients of the fitted local linear model are Shapley
values. The Python implementation of this method is available at https://github.com/slundberg/
shap. In R Shapley values can be found in few packages. For tree based models they are implemented
in xgboost package (Chen et al., 2018). An independent model agnostic implementation is available in
the iml package. A development version of a package dedicated entirely to Shapley values can be
found at https://github.com/redichh/ShapleyR.

Local Interpretable Visual Explanations (LIVE)

The next two sections introduce two new approaches to explaining model prediction, implemented in
R packages live and breakDown, respectively. Both of these methods describe locally (at an instance

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=DALEX
https://CRAN.R-project.org/package=iml
https://CRAN.R-project.org/package=live
https://CRAN.R-project.org/package=breakDown
https://CRAN.R-project.org/package=archivist
https://github.com/slundberg/shap
https://github.com/slundberg/shap
https://CRAN.R-project.org/package=xgboost
https://github.com/redichh/ShapleyR

CONTRIBUTED RESEARCH ARTICLES 397

level) how features contribute to a model prediction.

Motivation

live is an alternative implementation of LIME for regression problems, which emphasizes the role of
model visualization in the understanding of complex models. In comparison with the original LIME,
both the method of local exploration and handling of interpretable inputs are changed. A dataset for
local exploration is simulated by perturbing the explained instance one feature at a time. The process
is described in section 54.3.2. By default, the Gaussian kernel is used to measure distances between
simulated observation and the observation of interest, but other kernels can also be used, too. Original
variables are used as interpretable inputs, so numerical features are used in the explanation model.
Interpretability of the local explanation comes from a tractable relationship between inputs and the
predicted response. Variable selection is optional for linear regression when sparsity is required.

One of the main purposes of live is to provide tools for model visualization, which is why in this
package emphasis is put on models that are easy to visualize. For linear models, waterfall plots can be
drawn to present how predictors contribute to the overall model score for a given prediction, while
forest plots (Kennedy, 2017) can be drawn to summarize the structure of local linear approximation.
Examples clarifying both techniques are given in section 54.5. Other interpretable models that are
equipped with generic plot function can be visualized, too. In particular, decision trees which can be
plotted using party package (Strobl et al., 2008) are well suited for this task, as they can help discover
interactions. An example is given in section 54.5. The package uses the mlr interface to handle machine
learning algorithms, hence any classifier or regression method supported by mlr can be used as an
interpretable model, though in practice simple models will be preferred. The most common choice is a
sparse linear model.

Methodology

live package uses a two-step procedure to explain prediction of a selected black box model in the
point x. First, an artificial dataset X′ is created around point x. Then, the white box model is fitted to
the model predictions for points in X′.

The first step is described by the Algorithm 1.

1: p← number of predictors
2: m← number of observations to generate
3: Duplicate the given observation m times
4: for i in {1, . . . , m} do
5: Draw number k ∈ {1, . . . , p} uniformly. Replace the value of k-th variable in i-th

duplicate with a random draw from the empirical distribution of this variable in the
original dataset

6: end for
Algorithm 2: Simulating X′ - surroundings around the selected x.

In other words, the procedure amounts to iterating over the set of m observations identical to a
given instance and changing the value of one random variable at each step. Alternatively, in live
package new dataset can be sampled from a multivariate normal distribution and using permutations
of each column. Details can be found in the manual. Current implementation of this algorithm relies
on data.table package for performance (Dowle and Srinivasan, 2017). The choice of the number of
instances to sample is an open problem both in LIME and LIVE methods.

Model agnostic greedy explanations of model predictions (breakDown)

Motivation

live package approximates the local structure of the black box model around a single point in the
feature space. The idea behind the breakDown is different. In the case of that package, the main
goal is to decompose model predictions into parts that can be attributed to particular variables. It is
straightforward for linear (and more generally: additive) models. Below we present a model agnostic
approach that works also for nonlinear models.

Let us use the following notation: x = (x1, x2, ..., xp) ∈ X ⊂ Rp is a vector in feature space X.
f : X → R is a scoring function for the model under consideration, that may be used for regression of

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=party
https://CRAN.R-project.org/package=data.table

CONTRIBUTED RESEARCH ARTICLES 398

classification problems. Xtrain is a training dataset with n observations.

For a single observation xnew the model prediction is equal to f (xnew). Our goal is to attribute
parts of this score to variables (dimensions) in the X space.

The lm-break: version for additive models

For linear models (and also generalized linear models) the scoring function (e.g. link function) may be
expressed as a linear combination of feature vectors.

f (xnew) = (1, xnew)(µ, β)T = µ + xnew
1 β1 + . . . + xnew

p βp. (1)

In this case it is easy to attribute the impact of feature xi to prediction f (xnew). The most straightfor-
ward approach would be to use the xnew

i βi as the attribution. However, it is easier to interpret variable
attributions if they are invariant to scale-location transformations of xi, such as change of the units or
origin. Centering addresses location changes and scaling also changes the scales of β parameters. This
is why for linear models the lm-break variable attributions are defined as (xnew

i − x̄i)βi. The equation
1 may be rewritten as follows:

f (xnew) = (1, xnew)(µ, β)T = baseline + (xnew
1 − x̄1)β1 + ... + (xnew

p − x̄p)βp (2)

where
baseline = µ + x̄1β1 + ... + x̄pβp.

Components (xnew
i − x̄i)βi are all expressed in the same units. For lm and glm models these values

are calculated and plotted by the generic broken() function from the breakDown package.

The ag-break: model agnostic approach

Interpretation of lm-break attributions is straightforward but limited only to additive models. In this
section, we present an extension for non-additive models. This extension uses additive attributions
to explain predictions from non-additive models thus some information about the model structure
will be lost. Still, for many models, such attribution may be useful. For additive models the ag-break
approach gives the same results as lm-break approach.

The intuition behind ag-break approach is to identify components of xnew that cannot be changed
without a significant change in the prediction f (xnew). In order to present this approach in a more
formal way, we first need to introduce some definitions.

Definition 54.4.1 (Relaxed model prediction). Let f IndSet(xnew) denote an expected model prediction
for xnew relaxed on the set of indexes IndSet ⊂ {1, . . . , p}.

f IndSet(xnew) = E[f (x)|xIndSet = xnew
IndSet]. (3)

Thus f IndSet(xnew) is an expected value for model response conditioned on variables from set IndSet
in such a a way, that ∀i∈IndSetxi = xnew

i .

The intuition behind relaxed prediction is that we are interested in an average model response for
observations that are equal to xnew for features from IndSetC set and follow the population distribution
for features from IndSet set. Clearly, two extreme cases are

f {1,...,p}(xnew) = f (xnew), (4)

which is the case of no relaxation, and

f∅(xnew) = E[f (x)]. (5)

which corresponds to full relaxation. We will say that a variable was relaxed when we do not fix its
value and we let it follow the population distribution. This will play a crucial part in the algorithm
presented in this section.

Since we do not know the joint distribution of x, we will use its estimate instead.

̂f IndSet(xnew) =
1
n

n

∑
i=1

f (xi
−IndSet, xnew

IndSet). (6)

We will omit the dashes to simplify the notation.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 399

Definition 54.4.2 (Distance to relaxed model prediction). Let us define the distance between model
prediction and relaxed model prediction for a set of indexes IndSet.

d(xnew, IndSet) := | f IndSet(xnew)− f (xnew)|. (7)

It is the difference between model prediction for observation xnew and observation relaxed on
features indSet. The smaller the difference, the less important are variables in the indSet set.

Definition 54.4.3 (Added feature contribution). For j-th feature we define its contribution relative to a
set of indexes IndSet (added contribution) as

contributionIndSet(j) = f IndSet∪{j}(xnew)− f IndSet(xnew). (8)

It is the change in model prediction for xnew after relaxation on j.

The model agnostic feature contribution is based on distances to relaxed model predictions. In
this approach, we look for a series of variables that can be relaxed in such a way so as to move model
prediction from f (xnew) to a fully relaxed prediction E[f (x)] (expected value for all model predictions).
The order of features in this series is important. But here we use a greedy strategy in which we add
features to the indSet iteratively (one feature per iteration) and minimize locally the distance to relaxed
model prediction.

This approach can be seen as an approximation of Shapley values where feature contribution is
linked with the average effect of a feature across all possible relaxations. These approaches are identical
for additive models. For non-additive models, the additive attribution is just an approximation in both
cases, yet the greedy strategy produces explanations that are easier to interpret. It is worth noting that
similar decomposition of predictions and measures of contribution for classifiers have been examined
in Robnik-Šikonja and Kononenko (2008).

The greedy search can start from a null set of indexes (then in each step a single feature is being
relaxed) or it can start from a full set of relaxed features (then in each step a single feature is removed
from the set). The above approaches are called step-up and step-down, respectively. They are presented
in algorithms 3 and 4.

The algorithm 3 presents the procedure that generates a sequence of variables with increasing
contributions. This sequence corresponds to variables that can be relaxed in such a way so as to
minimize the distance to the original prediction. The resulting sequence of Contributions and Variables
may be plotted with Break Down Plots, see an example in Figure 2. Figure 1 summarizes the idea
behind algorithm 3. By relaxing consecutive variables one finds a path between single prediction and
average model prediction.

One can also consider an opposite strategy - instead of starting from IndSet = {1, . . . , p} one can
start with IndSet = ∅. That strategy is called step-up approach and it is presented in Algorithm 4.

Note that the Break Down method is also available for Python in the pyBreakDown library.1

1: p← number of variables
2: IndSet← {1, . . . , p} set of indexes of all variables
3: for i in {1, . . . , p} do
4: Find new variable that can be relaxed with small loss in relaxed distance to f (xnew)
5: for j in IndSet do
6: Calculate relaxed distance with j removed
7: dist(j)← d(xnew, IndSet \ {j})
8: end for
9: Find and remove j that minimizes loss

10: jmin ← arg minj dist(j)
11: ContributionIndSet(i)← f IndSet(xnew)− f IndSet\{jmin}(xnew)
12: Variables(i)← jmin
13: IndSet← IndSet \ {jmin}
14: end for

Algorithm 3: Model agnostic break down of model predictions. The step-down approach.

1https://github.com/MI2DataLab/pyBreakDown/

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 400

all data

+ alcohol = 9.4

+ volatile_acidity = 0.7

+ sulphates = 0.56

+ pH = 3.51

+ residual_sugar = 1.9

+ density = 0.9978

+ chlorides = 0.076

+ total_sulfur_dioxide = 34

+ free_sulfur_dioxide = 11

+ fixed_acidity = 7.4

+ citric_acid = 0

5 6 7

Figure 1: An illustration of algorithm 3. Each row in this plot correspond to a distribution of model
scores f (x)|xIndSet = xnew

IndSet for different sets of IndSet indexes. Initially IndSet = {1, . . . , p} and in
each step single variable is removed from this set. Labels on the left-hand side of the plots show which
variable is removed in a given step. Red dots stand for conditional average - an estimate of relaxed
predictions f IndSet(xnew). Violin plots summarize conditional distributions of scores while gray lines
show how model predictions change for particular observations between consecutive relaxations. This
plot is based on wine dataset described in section 54.5.

0
−0.318

−0.193
−0.068

−0.083
−0.035

−0.031
−0.021

−0.003
0.004

0.024
0.144

−0.581

(Intercept)

+ alcohol = 9.4

+ volatile_acidity = 0.7

+ sulphates = 0.56

+ pH = 3.51

+ residual_sugar = 1.9

+ density = 0.9978

+ chlorides = 0.076

+ total_sulfur_dioxide = 34

+ free_sulfur_dioxide = 11

+ fixed_acidity = 7.4

+ citric_acid = 0

final_prognosis

4.75 5.00 5.25 5.50 5.75

Figure 2: Break Down Plot for decomposition identified in Figure 1. Beginning and end of each
rectangle corresponds to relaxed prediction (red dot in Figure 1) with and without a particular feature.
This plot is based on wine dataset described in section 54.5.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 401

1: p← number of variables
2: IndSet← ∅ empty set
3: for i in {1, . . . , p} do
4: Find new variable that can be relaxed with large distance to f∅(xnew)
5: for j in {1, . . . , p} \ IndSet do
6: Calculate relaxed distance with j added
7: dist(j)← d(xnew, IndSet ∪ {j})
8: end for
9: Find and add j that maximize distance

10: jmax ← arg maxj dist(j)
11: ContributionIndSet(i)← f IndSet∪{jmax}(xnew)− f IndSet(xnew)
12: Variables(i)← jmax
13: IndSet← IndSet ∪ {jmax}
14: end for

Algorithm 4: Model agnostic break down of model predictions. The step-up approach.

Case study: How good is this red wine?

Wine quality data (Cortez et al., 2009) is a well-known dataset which is commonly used as an example
in predictive modeling. The main objective associated with this dataset is to predict the quality of
some variants of Portuguese Vinho Verde on the basis of 11 chemical properties. A single observation
from the dataset can be found in Table 1. According to the results from the original article, the Support
Vector Machine (SVM) model performs better than other models including linear regression, neural
networks and others.

In this section we will show how live package can be used to fit linear regression model locally and
generate a visual explanation for the black box model as well as how breakDown package can be used
to attribute parts of the final prediction to particular features. This example will focus on a regression
problem, but since both methods are supposed to be model-agnostic, classification problems are
treated in the same way by using scores (probabilities) rather than predicted classes.

fixed
acidity

volatile
acidity

citric
acid

res.
sugar Cl− free

SO2

total
SO2

D pH SO2−
4 alcohol

7.40 0.70 0.00 1.90 0.08 11.00 34.00 1.00 3.51 0.56 9.40

Table 1: The fifth observation in wine quality dataset. D denotes density, Cl− stands for chlorides,
"res." for residual and SO2−

4 for sulphates.

The SVM model2 used in this example is trained with the use of e1071 package (Meyer et al., 2018).
We do not perform hyperparameter’s tuning as the model performance is not relevant in this use-case.

library("e1071")
data(wine, package = "live")
wine_svm_model <- svm(quality~., data = wine)

Different approaches for explaining single predictions are illustrated on the basis of the prediction
for the fifth wine from this dataset, the one presented in table 1. The actual quality of this wine is 5,
while the quality predicted by the SVM model is 5.03.

predict(wine_svm_model, wine[5,])
1
5.032032

The live package

The live package approximates black box model (here SVM model) with a simpler white box model
(here linear regression model) to explain the local structure of a black box model and in consequence
to assess how features contribute to a single prediction.

To do this, we first need to generate artificial observations around the selected observation xnew

for local exploration. We use sample_locally function from live package.

2Access this model with archivist::aread("MI2DataLab/live/arepo/1025d")

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=e1071

CONTRIBUTED RESEARCH ARTICLES 402

library("live")
library("mlr")
wine_sim <- sample_locally(data = wine,

explained_instance = wine[5,],
explained_var = "quality",
size = 2000,
seed = 17)

wine_sim_svm <- add_predictions(wine_sim, wine_svm)
nc <- which(colnames(wine) == "quality")

If multiple models are to be explained, there is no need to generate multiple artificial datasets.
Predictions of each model on a single simulated dataset can be added with the use of add_predictions
function. A different object should be created for each model, but the same result of a call to
sample_locally function should be used as the to_explain argument. Black box model can be
passed as a model object or as a name of mlr learner. While the object created by sample_locally
function stores the dataset, name of the response variable and other metadata, the object returned by
add_predictions function also stores the fitted black box model. The result of applying sample_locally
functions does not contain the response but the result of add_predictions contains a column with
model predictions, which has the same name as the response in the original dataset. The seed ar-
gument is passed to set.seed function to ensure reproducibility, though our experience with this
approach shows that the results are stable.

Once the artificial data points around xnew are generated, we may fit the white box model to them.
In this example we fit a linear regression model using fit_explanation function3.

wine_expl_live <- fit_explanation(wine_sim_svm)

This function returns a native mlr object. The model object (for example, lm object) can be extracted
with the use of getLearnerModel function.

The white box model wine_expl approximates the black box model wine_svm_model around xnew.
Coefficients of this model can be presented graphically with the generic plot function for class
live_explainer. See the corresponding Forest Plot in Figure 3 and the corresponding Waterfall Plot
in Figure 4.

plot(wine_expl, type = "forest")
plot(wine_expl, type = "waterfall")

In case of datasets with larger number of variables, we could obtain sparse results by setting
selection = TRUE in the fit_explanation function. This option allows for performance of variable
selection based on LASSO implemented in glmnet (Friedman et al., 2010; Simon et al., 2011). When
using Generalized Linear Model or Elastic Net as a white box model it is possible to set family
argument to one of the distribution families available in glm and glmnet functions via response_family
argument to fit_explanation.

As mentioned, other interpretable models are suitable as local explanations, too. In particular,
decision trees can be used to visualization interactions between variables. It is enough to select a
different white box model while calling fit_explanation function.

wine_expl_tree <- fit_explanation(wine_sim_svm, "regr.ctree", kernel = identity_kernel,
hyperpars = list(maxdepth = 2))

Kernel is set to identity, because trees built by party package cannot handle non-integer weights. The
result is the following decision tree in Figure 5.

The lime package

The LIME method is implemented in the R package lime. It produces sparse explanations by default.
In the first step a lime object is created for a specified dataset and a fitted black box model.

library("lime")
set.seed(17)
wine_expl_lime <- lime(wine[5,], wine_svm_model)

Then we use the explain function, which in case of regression takes the observation of interest, lime
object and the number of top features to be used for explanation4. In this case data is low dimensional,
hence we can use all predictors. Alternatively, we could set feature_select to none to skip the
selection part.

3Access this model with archivist::aread("MI2DataLab/live/arepo/eebe6")
4Access this object with archivist::aread("MI2DataLab/live/arepo/878d5")

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=glmnet

CONTRIBUTED RESEARCH ARTICLES 403

fixed_acidity
volatile_acidity
citric_acid
residual_sugar
chlorides
free_sulfur_dioxide
total_sulfur_dioxide
density
pH
sulphates
alcohol
(Intercept)

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

0.14 (0.14, 0.15)
−1.43 (−1.46, −1.40)
−0.66 (−0.69, −0.63)
0.00 (−0.00, 0.01)
−2.57 (−2.71, −2.43)
0.00 (0.00, 0.00)
0.00 (0.00, 0.00)
−25.69 (−28.09, −23.30)
−0.82 (−0.85, −0.79)
2.56 (2.53, 2.60)
0.20 (0.19, 0.20)
30.32 (27.93, 32.71)

<0.001
<0.001
<0.001

0.9
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

Variable N Estimate p

−20−100 102030

Figure 3: Forest plot for a linear white box model that approximates the black box model.

−0.022

−0.02

−0.019

−0.017

0.016

−0.011

0.004

−0.003

−0.001

−0.001

0

−0.073

sulphates = 0.56

volatile_acidity = 0.7

alcohol = 9.4

pH = 3.51

citric_acid = 0

fixed_acidity = 7.4

chlorides = 0.076

density = 0.9978

free_sulfur_dioxide = 11

total_sulfur_dioxide = 34

residual_sugar = 1.9

final_prognosis

5.0 5.1 5.2 5.3

Figure 4: Waterfall plot for additive components of linear model that approximates the black box
model around xnew.

alcohol
p < 0.001

1

≤ 10.6 > 10.6

volatile_acidity
p < 0.001

2

≤ 0.54 > 0.54

Node 3 (n = 94)

4.5

5

5.5

6
Node 4 (n = 1837)

4.5

5

5.5

6

alcohol
p < 0.001

5

≤ 11.6 > 11.6

Node 6 (n = 44)

4.5

5

5.5

6
Node 7 (n = 25)

4.5

5

5.5

6

Figure 5: Decision tree that approximates the black box model around xnew.

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 404

model_type.svm <- function(x, ...) "regression"
svm_explained <- explain(wine[5,], wine_expl_lime, n_features = 11)
plot_explanation(svm_explained)

Results produced by the plot_explanation function are presented in Figure 6.

Case: 1

Prediction: 5.03203209683436

Explanation Fit: 0.12

−0.15 −0.10 −0.05 0.00 0.05

0.070 < chlorides <= 0.079
quality <= 5

7 < free_sulfur_dioxide <= 14
citric_acid <= 0.09

0.997 < density <= 0.998
0.55 < sulphates <= 0.62

residual_sugar <= 1.9
22 < total_sulfur_dioxide <= 38

3.40 < pH
0.64 < volatile_acidity

alcohol <= 9.5

Weight

F
ea

tu
re

Supports Contradicts

Figure 6: Contributions of particular features to the prediction calculated with SVM model assessed
with LIME method.

Note that here, the explanation is presented in terms of discretized variables rather than original
continuous predictors.

The breakDown package

The breakDown package directly calculates variable attributions for a selected observation. It does
not use any surrogate model.

The broken() function is used to calculate feature attributions5. Generic functions print() and
plot() show feature attributions as texts or waterfall plots. The baseline argument specifies the
origin of a waterfall plot. By default, it is 0. Use baseline = "intercept" to set the origin to average
model prediction.

library("breakDown")
explain_bd <- broken(wine_svm, new_observation = wine[5, -nc],

data = wine[, -nc],
baseline = "Intercept",
keep_distributions = TRUE)

explain_bd
contribution
baseline 5.613
+ alcohol = 9.4 -0.318
+ volatile_acidity = 0.7 -0.193
+ sulphates = 0.56 -0.068
+ pH = 3.51 -0.083
+ residual_sugar = 1.9 -0.035
+ density = 0.9978 -0.031
+ chlorides = 0.076 -0.021
+ total_sulfur_dioxide = 34 -0.003
+ quality = 5 0.000
+ free_sulfur_dioxide = 11 0.004
+ fixed_acidity = 7.4 0.024
+ citric_acid = 0 0.144
final_prognosis 5.032

plot(explain_bd)

Figure 7 shows variable contributions for step-up and step-down strategy. Variable ordering is
different but the contributions are consistent across both strategies.

5Access example attributions with archivist::aread("MI2DataLab/live/arepo/1f320")

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 405

0
−0.318

−0.193
−0.068

−0.083
−0.035

−0.031
−0.021

−0.003
0.004

0.024
0.144

−0.581

(Intercept)

+ alcohol = 9.4

+ volatile_acidity = 0.7

+ sulphates = 0.56

+ pH = 3.51

+ residual_sugar = 1.9

+ density = 0.9978

+ chlorides = 0.076

+ total_sulfur_dioxide = 34

+ free_sulfur_dioxide = 11

+ fixed_acidity = 7.4

+ citric_acid = 0

final_prognosis

4.75 5.00 5.25 5.50 5.75

0
−0.318

−0.193
−0.068

−0.007
0.063
−0.058

−0.035
0.063
−0.011

−0.01
−0.007

−0.581

(Intercept)

− alcohol = 9.4

− volatile_acidity = 0.7

− sulphates = 0.56

− fixed_acidity = 7.4

− citric_acid = 0

− pH = 3.51

− density = 0.9978

− free_sulfur_dioxide = 11

− residual_sugar = 1.9

− chlorides = 0.076

− total_sulfur_dioxide = 34

final_prognosis

5.0 5.2 5.4 5.6 5.8

Figure 7: ag-break feature attributions for SVM model calculated for the 5th wine. The upper plot
presents feature attributions for the step-up strategy, while the bottom plot presents results for the
step-down strategy. Attributions are very similar even if the ordering is different. Vertical black line
shows the average prediction for the SVM model. The 5th wine gets final prediction of 5.032 which is
below the average for this model by 0.581 point.

Find more examples for classification and regression models created with caret, mlr, randomForest
(Liaw and Wiener, 2002) and other frameworks in package vignettes6.

6https://pbiecek.github.io/breakDown/

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://CRAN.R-project.org/package=randomForest

CONTRIBUTED RESEARCH ARTICLES 406

alcohol=9.4

volatile_acidity=0.7

sulphates=0.56

fixed_acidity=7.4

pH=3.51

density=0.9978

residual_sugar=1.9

chlorides=0.076

free_sulfur_dioxide=11

total_sulfur_dioxide=34

citric_acid=0

−0.3 −0.2 −0.1 0.0 0.1
phi

fe
at

ur
e.

va
lu

e

Figure 8: Visualization of Shapley values.

Shapley values (SHAP)

Authors of the original article about Shapley values maintain a Python package which implements
several methods of computing these values. Also, it provides visual diagnostic tools that help
understand global behavior of the black box model such as plotting variable contributions for all
instances in the dataset.

The iml package can be used to compute Shapley values for any model. Other tools are more
restricted in this regard, for example, the shapleyR package only works with mlr models. First, we
need to create a Predictor object for the model, then it is enough to apply the Shapley function for
a specified instance. This implementation samples permutation of variables to take into account
different orders in which conditioning can be done and the number of permutations to be used is a
parameter of this function. Details can be found in the documentation for the package.

model_svm = Predictor$new(model = wine_svm, data = wine[, -nc], y = wine$quality)
set.seed(17)
shapley_iml = Shapley$new(model_svm, x.interest = wine[5, -nc])
plot(shapley_iml)

Calculated Shapley values7 are presented in Table 2 and compared to results of Break Down method.
Shapley values can be also visualized on a plot similar to waterfall plot, which can be created using
generic plot function. An example is shown in Figure 8.

feature Shapley value breakDown score
1 alcohol -0.31 -0.32
2 volatile_acidity -0.23 -0.19
3 sulphates -0.19 -0.07
4 citric_acid 0.17 0.14
5 fixed_acidity -0.06 0.02
6 pH -0.04 -0.08
7 density -0.03 -0.03
8 residual_sugar -0.01 -0.03
9 total_sulfur_dioxide 0.00 -0.00

10 chlorides -0.00 -0.02
11 free_sulfur_dioxide 0.00 0.00

Table 2: Comparison of feature attributions calculated with iml and breakDown packages.

Discussion

In this paper, we presented four approaches and four R packages that can be used for explanations of
predictions from complex black box models. Two of them have already been introduced in literature,
while live and breakDown were introduced in this article for the first time.

7Access this object with archivist::aread("MI2DataLab/live/arepo/50f5f")

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 407

All four approaches are model agnostic in a sense that, the method does not depend on any
particular structure of black box model. Yet there are also some differences between these approaches.

1. Surrogate models vs. conditional expected responses. live and lime packages use surrogate
models (the so-called white box models) that approximate local structure of the complex black
box model. Coefficients of these surrogate models are used for explanations. Unlike them,
breakDown and shapleyR construct feature attributions on the basis of conditional responses
of a black box model.

2. live and lime packages differ in terms of the manner in which the surrounding of xnew is defined.
This task is highly non-trivial especially for mixed data with continuous and categorical features.
live does not use interpretable input space (and so does not fall under the additive feature attribution
methods category), but approximates the black box model directly in the data space, what can
be considered a more effective use of data. It comes with no theoretical guarantees that are
provided for Shapley values, but apart from being very intuitive, it offers several tools for visual
inspection of the model.

3. Computations required to obtain LIME and LIVE explanations are relatively simple. For large
datasets, sampling can be easily parallelized. Shapley values and Break Down Plots, on the other
hand, are more computationally demanding, but the current implementation of breakDown
computes additive explanations in linear time.

4. shapleyR and breakDown take conditional expectation of the predictor function with respect
to explanatory features. They differ in terms of the manner in which conditioning is applied to
calculating feature attributions. shapleyR is based on results from game theory; in this package
contribution of a single feature is averaged across all possible conditionings. breakDown uses
a greedy approach in which only a single series of nested conditionings is considered. The
greedy approach is easier to interpret and faster to compute. Moreover, exact methods of com-
puting Shapley values exist only for linear regression and tree ensemble models. Approximate
computations are also problematic, as they require the choice of the number of samples of
subsets of predictors which will be used. These two methods produce nearly identical results
for linear models (see table Table 2), but for more complex models the estimated contributions
can be very different, even pointing in opposite directions. An advantage of Shapley values are
proven theoretical properties, though they are restricted to explanation models that belong to
the additive feature attribution methods class.

5. When parameters (kernel and regularization term) are chosen as in Lundberg and Lee (2017),
lime produces estimates of Shapley values, while other choices of kernel and penalty term lead
to inconsistent results. The fact that the suggested penalty term is equal to 0 can be considered
a huge limitation of LIME and SHAP, because in this setting they will not produce sparse
explanations.

6. All presented methods decompose final prediction into additive components attributed to
particular features. This approach will not work well for models with heavy components related
to interactions between features.

7. Evaluation of human-readability of discussed methods will be a subject of future research.
It will help in making comparisons between different approaches to individual prediction
explanations.

8. Authors of SHAP and LIME proposed methods of combining explanations calculated for
different observations into global explanations. Such aggregation methods for Break Down and
LIVE will also be a subject of future research.

Comparison of the methods presented in the previous section is far from being comprehensive.
More research is needed to better understand the differences between these approaches and new
approaches are needed to overcome the constraints listed above. Nevertheless, the availability of the
mentioned packages creates an opportunity for further studies on model exploration.

Acknowledgements

Work on this article is financially supported by the NCN Opus grant 2017/27/B/ST6/01307.

Bibliography

A. Altmann, L. Toloşi, O. Sander, and T. Lengauer. Permutation importance: a corrected feature
importance measure. Bioinformatics, 26(10):1340–1347, 2010. ISSN 1460-2059, 1367-4803. [p395]

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 408

D. W. Apley. Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models.
ArXiv e-prints, 2016. [p395]

P. Biecek. DALEX: Explainers for complex predictive models. ArXiv e-prints, 2018. [p396]

P. Biecek and M. Kosinski. archivist: An R Package for Managing, Recording and Restoring Data
Analysis Results. Journal of Statistical Software, 82(11):1–28, 2017. URL https://doi.org/10.18637/
jss.v082.i11. [p396]

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, and Z. M. Jones. mlr:
Machine learning in r. Journal of Machine Learning Research, 17(170):1–5, 2016. [p395, 574]

T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, R. Mitchell, I. Cano, T. Zhou,
M. Li, J. Xie, M. Lin, Y. Geng, and Y. Li. Xgboost: Extreme Gradient Boosting, 2018. URL https:
//CRAN.R-project.org/package=xgboost. R package version 0.71.2. [p396]

P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine preferences by data mining
from physicochemical properties. Decis. Support Syst., 47(4):547–553, 2009. ISSN 0167-9236. URL
https://doi.org/10.1016/j.dss.2009.05.016. [p401]

M. Dowle and A. Srinivasan. Data.table: Extension of ‘data.frame‘, 2017. URL https://CRAN.R-project.
org/package=data.table. R package version 1.10.4-3. [p397]

A. Fogg. Anthony Goldbloom Gives You the Secret to Winning Kaggle Competitions, 2016. [p395]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL https://doi.org/10.18637/
jss.v033.i01. [p402]

J. H. Friedman. Greedy function approximation: A gradient boosting machine. Ann. Statist., 29(5):
1189–1232, 2001. URL https://doi.org/10.1214/aos/1013203451. [p395]

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking Inside the Black Box: Visualizing Statistical
Learning With Plots of Individual Conditional Expectation. Journal of Computational and Graphical
Statistics, 24(1):44–65, 2015. ISSN 1061-8600, 1537-2715. URL https://doi.org/10.1080/10618600.
2014.907095. [p395]

B. M. Greenwell. Pdp: An r package for constructing partial dependence plots. The R Journal, 9(1):
421–436, 2017. URL https://doi.org/10.32614/rj-2017-016. [p395]

N. Kennedy. Forestmodel: Forest Plots from Regression Models, 2017. URL https://CRAN.R-project.
org/package=forestmodel. R package version 0.4.3. [p397]

M. Kuhn. Caret: Classification and Regression Training, 2018. URL https://CRAN.R-project.org/
package=caret. R package version 6.0-80. [p395]

A. Liaw and M. Wiener. Classification and regression by randomforest. R News, 2(3):18–22, 2002.
[p405]

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems 30, pages 4765–4774. Curran Associates, Inc., 2017. [p396, 407]

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. E1071: Misc Functions of the
Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien, 2018. URL https:
//CRAN.R-project.org/package=e1071. R package version 1.7-0. [p401]

C. Molnar, B. Bischl, and G. Casalicchio. Iml: An r package for interpretable machine learning. JOSS, 3
(26):786, 2018. URL https://doi.org/10.21105/joss.00786. [p395]

T. L. Pedersen and M. Benesty. Lime: Local Interpretable Model-Agnostic Explanations, 2018. URL
https://CRAN.R-project.org/package=lime. R package version 0.4.1. [p395]

N. Puri, P. Gupta, P. Agarwal, S. Verma, and B. Krishnamurthy. MAGIX: Model Agnostic Globally
Interpretable Explanations. ArXiv e-prints, 2017. [p395]

M. T. Ribeiro, S. Singh, and C. Guestrin. "why should i trust you?": Explaining the predictions of any
classifier. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’16, pages 1135–1144, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2.
URL https://doi.org/10.1145/2939672.2939778. [p395, 396]

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://doi.org/10.18637/jss.v082.i11
https://doi.org/10.18637/jss.v082.i11
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=xgboost
https://doi.org/10.1016/j.dss.2009.05.016
https://CRAN.R-project.org/package=data.table
https://CRAN.R-project.org/package=data.table
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.32614/rj-2017-016
https://CRAN.R-project.org/package=forestmodel
https://CRAN.R-project.org/package=forestmodel
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
https://doi.org/10.21105/joss.00786
https://CRAN.R-project.org/package=lime
https://doi.org/10.1145/2939672.2939778

CONTRIBUTED RESEARCH ARTICLES 409

M. Robnik-Šikonja and I. Kononenko. Explaining classifications for individual instances. IEEE
Transactions on Knowledge and Data Engineering, 20(5):589–600, 2008. ISSN 1041-4347. URL https:
//doi.org/10.1109/tkde.2007.190734. [p399]

N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for cox’s proportional
hazards model via coordinate descent. Journal of Statistical Software, 39(5):1–13, 2011. URL https:
//doi.org/10.18637/jss.v039.i05. [p402]

C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. Conditional variable importance for
random forests. BMC Bioinformatics, 9(307), 2008. [p397]

M. Tulio Ribeiro, S. Singh, and C. Guestrin. Nothing Else Matters: Model-Agnostic Explanations By
Identifying Prediction Invariance. ArXiv e-prints, 2016. [p395]

F. Y. Tzeng and K. L. Ma. Opening the black box - data driven visualization of neural networks. In VIS
05. IEEE Visualization, 2005., pages 383–390, 2005. URL https://doi.org/10.1109/visual.2005.
1532820. [p395]

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Computer
Vision – ECCV 2014, pages 818–833. Springer-Verlag, 2014. ISBN 978-3-319-10590-1. URL https:
//doi.org/10.1007/978-3-319-10590-1_53. [p395]

E. Štrumbelj and I. Kononenko. A general method for visualizing and explaining black-box regression
models. In Proceedings of the 10th International Conference on Adaptive and Natural Computing Algorithms
- Volume Part II, ICANNGA’11, pages 21–30, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-
642-20266-7. URL https://doi.org/10.1007/978-3-642-20267-4_3. [p395]

Mateusz Staniak
Faculty of Mathematics and Information Science
Warsaw University of Technology
Poland
m.staniak@mini.pw.edu.pl

Przemysław Biecek
Faculty of Mathematics and Information Science
Warsaw University of Technology
Faculty of Mathematics, Informatics and Mechanics
University of Warsaw
Poland
ORCiD: 0000-0001-8423-1823
przemyslaw.biecek@gmail.com

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://doi.org/10.1109/tkde.2007.190734
https://doi.org/10.1109/tkde.2007.190734
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1109/visual.2005.1532820
https://doi.org/10.1109/visual.2005.1532820
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-642-20267-4_3
mailto:m.staniak@mini.pw.edu.pl
mailto:przemyslaw.biecek@gmail.com

