

International Journal of Computing and Digital Systems
ISSN (2210-142X)

Int. J. Com. Dig. Sys. 5, No.1 (Jan-2016)

E-mail address: off@fhdw.de, mbo@fhdw.de

http://journals.uob.edu.bh

Non-native Mobile Porting and Multi-platform

Benchmarking of Blind Source Separation Algorithms

Marvin Chibuzo Offiah and Markus Borschbach

 Competence Center “Optimized Systems”, University of Applied Sciences (FHDW), Bergisch Gladbach, Germany

Received 12 May 2015, Revised 20 July 2015, Accepted 2 Oct. 2015, Published 1 Jan. 2016

Abstract: The human daily and the professional life demand a high amount of communication ability, but every fourth adult

above 50 is hearing-impaired, a fraction that steadily increases in an aging society. For an autonomous, self-confident and long

productive life, a good speech understanding in everyday life situations is necessary to reduce the listening effort. For this pur-

pose, an app-based assistance system is required that makes every day acoustic scenarios more transparent by the opportunity of

an interactive focusing on the preferred sound source. The key component of this assistance system is the blind source separation

algorithm. Developing such an app in the context of a short-term research project with limited time and limited human time to

realize this goal statement raises a lot of challenges. One of the key challenges is the porting of PC-based source separation algo-

rithms to a mobile device without the need for native implementation, and integrating these ported algorithms into the mobile

graphical user interface (GUI) app. At the same time, it raises the question about the size of the penalty paid in terms of loss in

runtime performance due to such porting. This paper explains the realized porting and integration method and provides a runtime

performance benchmark that compares the PC-based algorithms to the ported algorithms in different computing environments. It

then draws a conclusion about the practicability of the porting method proposed.

Keywords: signal processing, blind source separation, REPET, PARAFAC, real-time, mobile device, smartphone, Google

Nexus, mobile app, graphical user interface, porting, computer architecture, ARM, compiler, programming languages,

MATLAB, GNU Octave, operating systems, emulation, Linux, Ubuntu, benchmarking, runtime performance

1. INTRODUCTION

The coping of the everyday working life demands a
high level of the acoustic perception caused by a constant
sensory overload: Communication plays an important
role in the performance-orientated working life in terms
of conferences, working in an open-plan office and
meetings. A permanent listening effort reduces the
working productivity. Furthermore, the listening ability is
reduced with aging. The aging society and the longer
working life results in an increasing number of hearing-
impaired people, which also have difficulties in coping
with their daily life. This leads to the consequences of
social isolation. Despite using a digital hearing aid, the
ability of the selective listening experience is lost and
cannot be re-learned. [1] These facts require the
development of an assistance system that is able to record
acoustic scenarios, to separate the sources and provide an
opportunity to listen to the preferred sound source. Such
an app-based assistance system as an artificial simulation
has been presented as the goal-statement of the SMART-

NAVI research project. The key point of this app is the
Blind Source Separation (BSS) algorithm. In the ideal
case, the BSS algorithm executes on the mobile platform
in real-time (online). However, a non-real-time (offline)
processing also benefits the user to a large extend.

This requires that a state-of-the-art algorithm that is
suited for real-world convolutive audio data and that was
originally written for a PC platform is ported to a mobile
device and integrated into a running graphical user
interface (GUI) app. Due to limited budget and time
resources for the research project, this needs to be done
without native reimplementation of the algorithm for the
mobile platform. A time-saving porting method is
required. Furthermore, there is a need to assess the actual
online capabilities on the target platform, which creates
the need for appropriate experiments.

http://dx.doi.org/10.12785/ijcds/050102

12 M. C. Offiah & M. Borschbach: Non-native Mobile Porting and Multi-platform …

http://journals.uob.edu.bh

This paper first provides an overview of the state of
the art: It introduces the BSS algorithms in question and
explains the existing gap between the related PC
environments for those algorithms on the one hand and
mobile processors running a GUI app on the other, in
order to derive the challenges faced. It then explains a
solution to the challenges of porting BSS algorithms to
the mobile platform and integrating them into a GUI app
without the need for manual native reimplementation of
the source code. It then provides a runtime performance
benchmark of the two algorithms in their offline and
online versions running on the PC and on the mobile
device in different environments. This is intended to
demonstrate the real-time capabilities and runtime losses
or gains of the chosen porting and/or integration method.
A conclusion is given at the end.

2. STATE OF THE ART

A. The BSS Algorithms REPET and PARAFAC

BSS has been of immense interest in the area of
digital signal processing during the past decades. Various
methods for separating mixed audio signals have been
proposed, but the development is still in progress due to
the complexity of the problem. In many situations, there
is a need to recover original signals from the observed
mixture of signals, for example, to recover a single voice
in a noisy environment. Regarding the development of
the assistance system, an important topic of our research
project is the separation of sound signals using BSS. The
goal of the separation process is to recover the best
estimate (estimated sources) of the original signals
(sources) from mixed observations (mixtures) recorded
by microphones (sensors) without – or with only a little –
information about the mixed signals or the mixing
process. A typical example of BSS is the Cocktail-Party
Problem [2]. For example, at a party, the person is
surrounded by a variety of different sounds like human
voices, music or other background noises. If the sounds
are recorded with microphones at different positions in
the room, every microphone captures a mixture of the
sound signals with different weighting. BSS algorithms
allow the separation of a sound mixture into its single
sources, which enables the user to listen to the preferred
single sound source. As a consequence, the selection of a
BSS algorithm as a part of a smartphone application for
the hearing impaired is in the focus. The BSS enables
recovering or separation of unknown signals (sources)
from observed mixtures through unknown propagation
channels. It is not necessarily the goal to recover the
original sources from the mixture, but to recover model
sources without disturbing interferences from other
sources. [3][4]

A lot of BSS algorithms exist and are explained in
detail in literature [3][4][5][6]. They have been
experimented with in the course of the project to assess
the quality performance of these algorithms with
different setups. These comparative experiments have

come to the result, that the REPET (Repeating Pattern
Extraction Technique) [5] and PARAFAC (PARallel
FACtor analysis) [6] algorithms perform best in terms of
objective and subjective quality metrics. They are
therefore to be used for the assistance system. For
REPET, the versions of the algorithm implemented in the
MATLAB scripts “repet_sim.m” (offline) and
“repet_sim_online.m” (online) [7] by Zafar Rafii and
Bryan Pardo are used; for PARAFAC, Dimitri Nion’s
MATLAB script “sobi_conv_cp3.m” [8]. The algorithms
are referred to here in this paper as REPET offline,
REPET online and PARAFAC offline. In current work,
only the separation of two audio sources from a two-
channel microphone input is experimented with. But in
future experiments, we intend to consider further cases as
well, using more and external microphones.

B. The Bridge between the MATLAB Environment and

ARM Processors and GUI Apps

The most important challenge in realizing the mobile
assistance system is to port an existing online BSS
algorithm to the mobile device: Mobile devices typically
use a Reduced Instruction Set (RISC) CPU design
(mostly ARM [9]) optimized for the mobile context, as
opposed to the Complex Instruction Set (CISC) design
typically found in PCs (mostly Intel and AMD [10][11])
[12]. ARM processors are the most widely used
processors on mobile devices [13]. For these reasons, a
source code program written and compiled for a PC
cannot necessarily be compiled and executed on a mobile
device without major and time-consuming adjustments to
it and recompiling the source code itself. This holds for
all languages which are not compiled to a virtual machine
like Java.

In the context of computer science research in signal
processing, source code is often written, exchanged and
re-used in a 4th-generation and domain-specific scripting
language such as Matlab. The corresponding MATLAB
environment by MathWorks is proprietary commercial
software and was initially released in 1984. It therefore
can look back to a 30-year period of user experience,
development and improvement. Ingle and Proakis
describe MATLAB as “an interactive, matrix-based
system for scientific and engineering numeric
computation and visualization”. It is particularly efficient
for rapid development, since complex numerical
problems can be solved with just a few commands, where
other, 3rd-generation, languages such as C would require
much more effort. MATLAB is available for all major
PC platforms and uses a command line for typing or
reading instructions that are then executed immediately.
[14][15][16] As many scientific publications in signal
processing such as [4][5][6] and [17], and the personal
experience of this paper’s authors hint at, Matlab stands
out as the most likely language in which to find templates
for a given task. Matlab’s important role as a key player
in the market of numerical analysis software languages is
further substantiated by the TIOBE index as of June

 Int. J. Com. Dig. Sys. 5, No.2, 11-19 (Jan-2016) 13

http://journals.uob.edu.bh

2015, when ignoring all – in this case irrelevant –
general-purpose and non-mathematical programming
languages listed.

Matlab’s source code is executed not directly by the
underlying OS, but by the appropriate runtime
environment software (i.e. the MATLAB environment).
The MATLAB environment exists only for PCs, no
equivalent ARM version of MATLAB exists to this day
(currently MATLAB 2015a). Without any workaround to
this problem, this means that the REPET and PARAFAC
scripts have to be completely reimplemented in a native
programming language for the smartphone, and using
native libraries. This is a very time-consuming task and
then needs to be repeated every time the BSS algorithm
or the system architecture changes. A workaround, i.e. an
efficient way of smartphone porting is necessary, and it
needs to be realized and tested in runtime performance,
which is the purpose of this paper. Runtime performance
tests are critical in particular for the online algorithms
like REPET online, since the real-time capability needs
to be demonstrably maintained.

Our target operating system platform of choice is an
Android 5 due to a higher degree of flexibility in open
systems and its widespread use [18]. Android is an open
source mobile operating system with a multi-touch GUI
by Google based on the Linux kernel. As a mobile
operating system, it also runs on an ARM processor. [19]
It currently dominates the market of mobile operating
systems for smartphones by almost 80%, as evidenced by
Gartner [20]. GUI apps in Android are run by the
Android Runtime Environment (see figure 1), which
consists of a virtual machine (VM) called Dalvik VM and
certain core libraries. Programs for the Dalvik VM are
written in Java and the compiled Java bytecode is
translated to the memory and processor-speed optimized
Dalvik bytecode (.dex or .odex files). [19][21] All apps
are executed by the Dalvik VM. There is a common basic
application framework used by all Android apps (see
figure 1): Most app components are objects of custom
classes inheriting from – or using – the Activity, Intent,
Service or ContentProvider classes, among others. Each
of these classes has a particular role to fulfill: E.g., an
Activity represents a graphical screen, i.e. a “running
app” from the user’s perspective and the entry point of
the app. An Intent stands for “an intent to do something”,
for example starting a second Activity, and it is also able
to store messages or other kinds of data created by the
first Activity in the form of key-value pairs. The second
Activity extracts these values from the Intent that started
it. Through this and other mechanisms within the
application framework, communication between multiple
launched and running Android apps is possible. [22][23]

In the assistance system, the GUI app on the Android
5 device performs the recording, playback and graphical
display, while the algorithm ported to the device
performs the BSS. These two components do not
necessarily have to be realized as a single Android

process. It depends on the porting method chosen. So
besides the porting of the BSS algorithm, integrating it
into the GUI app so that both can exchange data and
instructions between them, is potentially an additional
challenge of its own.

3. METHODS

A. Excluded Approaches

There is a number of approaches that look like a
solution at first sight, but prove non-feasible on closer
inspection:

As already mentioned, there is no MATLAB for
ARM CPUs. The MATLAB Mobile app for Android
only works as a client to connect from the Android
device to an existing MATLAB session on a Desktop
Server or on the MathWorks Cloud, but not as a stand-
alone smartphone-only solution [24].

The transcoding tool MATLAB Coder only supports
a subset of the toolboxes needed and still requires a lot of
Matlab code editing (only fixed-size variable and
parameter inputs supported) before auto-transcoding to
native C/C++ code [25][26][27]. A combination with the
Android NDK to compile and integrate the transcoded
C/C++ libraries into the Java GUI app [28] is therefore
still impractical.

Another tool, the MATLAB Compiler, – although
also capable of creating Java (i.e. platform-independent)
executables – still requires the PC-only MATLAB
Compiler Runtime libraries for the executable to function
[29][30].

There has also been an inspection of Open Source
alternatives to MATLAB. GNU Octave, together with its
toolbox clones from the Octave Forge project, [31], is an
Open Source clone of MATLAB that is mostly
compatible with MATLAB [32][33] and also exists as an
Android app [34]. But some experiments show that
running the BSS scripts on the Octave app leads to
unpredictable errors (the Android command line freezes
without feedback, hence a bug in the app’s
implementation is to be deduced from that).

B. Realized Approach

1) GNU Octave on a Linux Emulation for Android
The realized approach is an emulation [35] of a Linux

OS for Android ARM devices that runs in parallel with
the native GUI app and executes a GNU Octave on that
OS (see figure 1). Emulators for other Desktop OS’s are
either still a work in progress (Wine for Windows [36])
or simply non-existing (Mac OSX) to this date. There is
an app called “Complete Linux Installer” that guides the
user through the steps of installing ARM Linux
distributions on top of the existing Android OS as an
emulation and performs the booting of such an emulated
OS (root access to the phone is required). In this case, the
Ubuntu Linux distribution is used. After installing

14 M. C. Offiah & M. Borschbach: Non-native Mobile Porting and Multi-platform …

http://journals.uob.edu.bh

Ubuntu this way, the emulation is launched and a GNU
Octave version packaged for this Linux distribution is
installed via Linux command line. The same emulated
Linux command line is then used for launching the GNU
Octave for ARM Ubuntu. The Matlab BSS scripts are
copied to the Android phone’s file system. The emulated
Linux has its own file system, but is also able to mount
parts of the hosting Android Linux’s file system onto
dedicated mount points of the emulated Linux’ file
system (see figure 1). Hence the GNU Octave on the
Ubuntu is also able to access the Matlab scripts copied to
the Android’s file system. [37]

2) Data Exchange
Once ported this way, the other challenge, also

discussed in [2] is the successful integration of the ported
algorithm (Octave-compatible MATLAB script) into the
running GUI app: Inter-process communication between
the app running natively on the OS and the Octave
process running on the emulated Ubuntu on the same
device is necessary so that unprocessed and processed
audio data frames and instructions can be exchanged
between the two systems. In our solution, this data
exchange is realized through data files in the commonly
accessible file system (see “disk-storage-based data
exchange chain” in figure 1): Certain files are polled by
both the GUI app and the Octave process and used as

control instructions, other files contain the objects of data
exchange. So all inter- process communication works
through the file system, meaning through secondary
storage.

A direct in-memory solution for communication
actually requires bridging the gap between the two OS’s
(i.e. between the hosting Android and the emulated
Ubuntu). This gap is bridged most easily through a
channel that uses the network interfaces: Note that the
emulated Linux – just like any standalone OS – provides
a network interface, and that it is mapped to the hosting
Android system’s network interface. See “in-memory
data exchange chain” in figure 1. So what is required is
using and/or implementing an appropriate network
protocol on each side, i.e. between the Android OS using
one port and the emulated Linux OS using another port.
Our experiments, however, demonstrate that the data
exchange time through secondary storage is still very
marginal and thus acceptable. Communication through
secondary storage is therefore sufficient for this
application.

Figure 2. Realized porting method Figure 1. Realized porting method

 Int. J. Com. Dig. Sys. 5, No.2, 11-19 (Jan-2016) 15

http://journals.uob.edu.bh

4. MULTI-PLATFORM BENCHMARK

A. Test Environments

What is tested is the runtime performance of each
algorithm version on a particular platform. Testing is
performed both on an Intel Windows 7 Desktop PC (Intel
Ceon X5650 CPU of 2.66 Ghz and 12.0 GB of RAM)
and on a Google Nexus 5 phone (Quad-core 2.3 GHz
Krait 400 CPU, 2 GB RAM). These are the two base
platforms or devices. Each of these base platforms is
subdivided into more specific ones, when including the
execution environments (MATLAB, Octave, GUI app):
On the PC platform, all algorithms are executed in
MATLAB and in Octave. On the Nexus phone, all
algorithms are basically executed on the Octave that runs
on the emulated Ubuntu system. But for REPET online,
in one case the test is run with the GUI app running in
parallel, and in the other case without the GUI app
running. This is done to better analyse existing runtime
volatilities during execution: Tracing big differences in
execution times either to the porting architecture or to
multiprocessing with the GUI app.

Each algorithm is tested for 8000 Hz and 16000 Hz
data to represent the minimum audio quality still
tolerable for basic speech intelligibility (as in telephone
conferences) and a common frequency slightly above that
[38], in order to show where the real-time threshold
(processing time must be below the length of the data
frame processed) is broken.

So each test case is defined by a particular
combination of the algorithm version (REPET offline,
REPET online, PARAFAC offline), the audio sample
rate (8000 Hz or 16000 Hz) and the platform (PC with
Octave, PC with MATLAB, Nexus with Octave and
GUI, Nexus with Octave and without GUI). Not all
combinations are feasible (e.g. REPET offline with 8000
Hz on the Nexus with Octave and GUI), but the
selectable ones are depicted in figures 2 to 6.

Each test case – with the exception of REPET online
on the smartphone (only 5 test runs) – is executed 10
times (i.e. 10 test runs per test case), and each test run
processes 60 seconds of stereo audio data to identify
possible volatilities in runtime performance that occur
particularly on the smartphone. The offline algorithms
are tested by handing over the entire block of 60 seconds
of unseparated audio data to the appropriate Matlab
function in one single call. Online tests without the GUI
app are performed by separating the 60 seconds offline
audio file into 1 second (= 1000 milliseconds) audio data
frames, each of which is handed over to the appropriate
online function separately, as they would be handed over
live by the GUI app. This is to be short enough for
sufficient real-time experience, but also long enough to
provide the online algorithm with sufficient data. Shorter
data frames for the online algorithm are of course
intended in the future, as the development and
sophistication of the algorithm increases. It is not

possible to use the same 1000 ms frame size also for
offline algorithms, because this leads to
disproportionately longer runtimes: Processing 60 frames
of 1000 ms with PARAFAC offline one-by-one took
much longer than processing just one 60 seconds frame
with PARAFAC offline in one step. Hence the offline
algorithms are generally not suited for vast amounts of
extremely short audio data frames. But to nevertheless
allow for a better comparison between the runtime
performance of offline and online algorithms, the offline
runtime for the 60 seconds audio data is divided by 60
before averaging across the test runs. A per-second-
average is therefore depicted in the offline plots.

B. REPET and PARAFAC Offline

As seen in figure 2 for REPET offline, there is an
enormous, almost 5-fold increase in execution time
(independent of sample rate) within the PC-based
platform alone, that is, only because of switching from
MATLAB to Octave. This already demonstrates the high
runtime penalty paid for using an Open Source clone of
the mathematical computing environment. The penalty is
almost equally high with a 4-fold increase when moving
from Octave on the PC to Octave on the smartphone.
This hints at a high penalty paid in general for using the
attempted porting method as a workaround to avoid
native reimplementation. Judging by the expectations
raised by this offline figure alone, the ratio between
runtime performance in MATLAB and an audio frame
length for online processing is not allowed to be greater
than 1:20. In other words: Already if it takes just 50 ms
for an online algorithm to process one second of audio
data in MATLAB, it is expected to take 20 times as long,
i.e. a full second, on the smartphone. So only the most
highly efficient online algorithms are expected to stand a
chance on the smartphone with this porting method.

Figure 2. REPET offline

8
0

0
0

 H
z

8
0

0
0

 H
z

8
0

0
0

 H
z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z
REPET offline: Execution time per audio data frame á 1000 ms

Audio sample rate and processing platform

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

0

1000

2000

3000

4000

5000

8
0

0
0

 H
z

8
0

0
0

 H
z

8
0

0
0

 H
z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z
REPET offline: Execution time per audio data frame á 1000 ms

Audio sample rate and processing platform

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

0

1000

2000

3000

4000

5000

Per-second average from 10 test runs á 60 seconds per audio sample rate and processing platform

MATLAB on a Windows 7 Intel Desktop PC (Intel Ceon X5650 CPU of 2.66 Ghz, 12.0 GB RAM)

Octave on a Windows 7 Intel Desktop PC (Intel Ceon X5650 CPU of 2.66 Ghz, 12.0 GB RAM)

Octave on an Android 5 Nexus 5 smartphone (Quad-core 2.3 GHz Krait 400 CPU, 2 GB RAM)

16 M. C. Offiah & M. Borschbach: Non-native Mobile Porting and Multi-platform …

http://journals.uob.edu.bh

Figure 3 adds not much to what is already expressed
by the REPET offline values of figure 2, except that the
same conclusions are drawn for PARAFAC offline.

Figure 3. PARAFAC offline

C. REPET Online

The expectations raised by the offline performance is
clearly met for the online version of REPET, when com-
paring only the average or median values in the boxplots
of figures 4 and 5 (the star symbols indicate the
averages). At the same time, figure 4 confirms the real-
time capabilities of REPET online promised by the
authors when executing on a PC. This also holds for
Octave as a PC-based environment.

Figure 5 illustrates how volatile the execution times
are on the mobile platform: With a wide interval of
processing time differences at roughly a third of a second
(8000 Hz) or at a fifth (16000 Hz) for half of the values
in each case, and with an average surpassing of the 1000
ms threshold – all when running with the GUI – the
runtime performance is not only quite unpredictable but
also makes the porting method inadequate for REPET
(see first and fourth plot). A less volatile picture is drawn
when running without the GUI app (see third and sixth
plot): There are very insignificant inter-quartile-ranges
independent of sample rate, and at 8000 Hz the runtime is
clearly below the real-time threshold for most frames.
But what is still observable is the large number of outliers
above 1100 ms for both mobile platforms at 16000 Hz
(fourth and sixth plot), and frequent data exchange time
outliers between the app and Octave (second and fifth
plot) that range up to a quarter of a second (although
otherwise in most cases in a very narrow inter-quartile
range somewhere between 0 and 50 ms).

Figure 4. REPET online on a PC platform

Figure 5. REPET online on a mobile platform

Figure 6 further demonstrates the volatility of the
system by plotting the average amount of milliseconds it
took to process a data frame of 1000 ms on the phone
over time at an audio sample rate of 8000 Hz. This is
plotted both for the algorithm running together with the
GUI and without the GUI. Dashed lines below and above
the graphs indicate the minimum and maximum
execution times among the test runs. First of all, the plot
indicates an extremity in the first frame of each graph,
which is potentially due to initialization problems. But
what is seen for the entire interval after the first second,

8
0

0
0

 H
z

8
0

0
0

 H
z

8
0

0
0

 H
z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

PARAFAC offline: Execution time per audio data frame á 1000 ms

Audio sample rate and processing platform

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

0

1000

2000

3000

4000

5000

8
0

0
0

 H
z

8
0

0
0

 H
z

8
0

0
0

 H
z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

PARAFAC offline: Execution time per audio data frame á 1000 ms

Audio sample rate and processing platform

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

0

1000

2000

3000

4000

5000

Per-second average from 10 test runs á 60 seconds per audio sample rate and processing platform

MATLAB on a Windows 7 Intel Desktop PC (Intel Ceon X5650 CPU of 2.66 Ghz, 12.0 GB RAM)
Octave on a Windows 7 Intel Desktop PC (Intel Ceon X5650 CPU of 2.66 Ghz, 12.0 GB RAM)
Octave on an Android 5 Nexus 5 smartphone (Quad-core 2.3 GHz Krait 400 CPU, 2 GB RAM)

8
0

0
0

 H
z

8
0

0
0

 H
z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

150

200

250

300

350

400

REPET online: PC execution time per audio data frame á 1000 ms

Audio sample rate and processing platform

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

8
0

0
0

 H
z

8
0

0
0

 H
z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

150

200

250

300

350

400

REPET online: PC execution time per audio data frame á 1000 ms

Audio sample rate and processing platform

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

10 test runs á 60 frames processed per audio sample rate and processing platform

MATLAB on a Windows 7 Intel Desktop PC (Intel Ceon X5650 CPU of 2.66 Ghz, 12.0 GB RAM)
Octave on a Windows 7 Intel Desktop PC (Intel Ceon X5650 CPU of 2.66 Ghz, 12.0 GB RAM)

8
0

0
0

 H
z

8
0

0
0

 H
z

8
0

0
0

 H
z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

0

500

1000

1500

REPET online: Mobile execution time per audio data frame á 1000 ms

Audio sample rate and processing platform

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

8
0

0
0

 H
z

8
0

0
0

 H
z

8
0

0
0

 H
z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

1
6

0
0

0
 H

z

0

500

1000

1500

REPET online: Mobile execution time per audio data frame á 1000 ms

Audio sample rate and processing platform

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

5 test runs á 60 frames processed per audio sample rate and processing platform

Octave on an Android 5 Nexus 5 smartphone (Quad-core 2.3 GHz Krait 400 CPU, 2 GB RAM) with the GUI App running
Data exchange time between Octave and GUI App
Octave on an Android 5 Nexus 5 smartphone (Quad-core 2.3 GHz Krait 400 CPU, 2 GB RAM) without GUI App running

 Int. J. Com. Dig. Sys. 5, No.2, 11-19 (Jan-2016) 17

http://journals.uob.edu.bh

is that there is a general tendency of the execution time to
in-crease, the longer the algorithm runs together with the
GUI, while without the GUI an overall stable behavior
(no trend) is observed both for the average and the
minimum/maximum graphs. On average, the divergence
between execution with GUI and without GUI already
begins to develop after just 10 seconds into execution.
Already at less than 20 seconds into execution, the sum
of execution plus data exchange time surpasses the 1000
ms threshold, destroying the real-time effect. Shortly
after just half a minute, it is already 200 ms above the
real-time threshold and significantly worse than without
the GUI. Even more importantly, looking at the sum of
the maximum graphs alone, the threshold is surpassed 8
seconds earlier than for the sum of average graphs. Only
one second after that, there is a very sudden leap above
1200 ms, which is in just half the time as the sum of
average graphs.

Without the GUI, average execution time is
predominantly below the threshold. There is hardly any
difference between the average and minimum or
maximum. All values fluctuate around 800 ms. But this
being without the GUI app running, are only performance
values of the algorithm running stand-alone for
measurement, but without any benefit for the user.

Figure 6. REPET online on a mobile platform in detail

The GUI vs non-GUI execution times indicate the
negative impact that running the algorithm together with
the GUI (which after all records from the microphone
and performs playback) has on the runtime performance
of the actual separation algorithm: It causes a worsening
performance over time and makes real-time processing –
even in telephone quality – impossible for anything
longer than a few seconds. This is in spite of the fact that

the algorithm – when run by itself – still fulfills the real-
time requirements.

D. Summary of the Experiments

The results of the runtime performance benchmark on
multiple platform all-together lead to one conclusion:
The opportunity of porting state-of-the-art BSS
algorithms to a mobile platform without native
reimplementation is demonstrably achieved. The same
holds for the feasibility of integrating them into a mobile
GUI app. What still forms a major problem is the
significant loss of run-time performance of the ported
algorithms, which is highly critical in the case of real-
time algorithms. This is primarily due to the non-native
porting method. Furthermore, there are huge problems in
achieving and maintaining a stable runtime performance
with real-time capabilities when multi-threading the GUI
(recording, display and playback) with the algorithm. The
latter is, of course, only so far demonstrated for the quite
simple online algorithm tested (REPET). This already
demonstrates the limits of the porting method at this early
stage.

5. CONCLUSION AND OUTLOOK

For an autonomous, self-confident and long
productive life, a good speech understanding in everyday
life situations is necessary to reduce the listening effort.
In this paper, necessary considerations in developing an
app-based assistance system are presented that makes
every day acoustic scenarios more transparent to hearing-
impaired people by the opportunity of an interactive
focusing on the preferred sound source. For a quick
development of such a system using limited resources, an
algorithm porting and app integration method is
presented and tested. The runtime performance tests
show the inability of the porting method to enable real-
time capabilities for the app. As an outlook, outsourcing
the signal processing to a MATLAB PC platform is
under consideration, for which a significantly higher
runtime performance with real-time potential is partly
already demonstrated by the tests. Challenges lie
predominantly in real-time data exchange over the
network.

ACKNOWLEDGMENT

This work as a part of the SMARTNAVI-project is

funded by the German Federal Ministry of Education and

Research (BMBF) under the registration number

16SV6368. The financial project organization is directed

by the VDI/VDE Berlin.

REFERENCES

[1] H. Zaretsky, S. Flanagan, and A. Moroz, Medical
Aspects of Disability, Fourth Edition: A Handbook for the
Rehabilitation Professional, ser. Medical Aspects of
Disability: A Handbook for the Rehabilitation
Professional. Springer Publishing Company, 2010.

0 10 20 30 40 50 60

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

REPET online: Mobile execution time per audio data frame á 1000 ms

Audio frame number (equals progress in seconds)

E
x
e

c
u

ti
o

n
 t
im

e
 i
n

 m
il
li
s
e

c
o

n
d

s

5 test runs á 60 frames processed with 8000 Hz sample rate

Octave on an Android 5 Nexus 5 smartphone (Quad-core 2.3 GHz Krait 400 CPU, 2 GB RAM) with the GUI App running

Data exchange time between Octave and GUI App (lower graph)
Octave on an Android 5 Nexus 5 smartphone (Quad-core 2.3 GHz Krait 400 CPU, 2 GB RAM) without GUI App running

18 M. C. Offiah & M. Borschbach: Non-native Mobile Porting and Multi-platform …

http://journals.uob.edu.bh

[2] E. C. Cherry, “Some experiments on the recognition
of speech, with one and with two ears,” The Journal
of the Acoustical Society of America, vol. 25, no. 5, pp.
975–979, 1953.

[3] M. S. Pedersen, J. Larsen, U. Kjems, and L. C. Parra,
“A survey of convolutive blind source separation
methods,” in Springer Handbook of Speech Processing.
Springer Press, 2007.

[4] M. Pedersen, D. Wang, J. Larsen, and U. Kjems, “Two-
microphone separation of speech mixtures,” Neural
Networks, IEEE Transactions on, vol. 19, no. 3, pp.
475–492, March 2008.

[5] Z. Rafii and B. Pardo, “REpeating pattern extraction
technique (REPET): A simple method for music/voice
separation,” IEEE Transactions on Audio, Speech &
Language Processing, vol. 21, no. 1, pp. 71–82, 2013.

[6] D. Nion, K. N. Mokios, N. D. Sidiropoulos, and A.
Potamianos, “Batch and adaptive PARAFAC-based blind
separation of convolutive speech mixtures,” Trans.
Audio, Speech and Lang. Proc., vol. 18, no. 6, pp. 1193–
1207, 2010.

[7] Z. Rafii, “REPET – codes,” 2015. [Online]. Available:
http://www.zafarrafii.com/repet.html#Codes

[8] D. Nion, “Dr. Dimitri Nion, signal processing for digital
communication – Matlab codes,” 2015. [Online].
Available: http://dimitri.nion.free.fr/

[9] ARM, “ARM – the architecture for the digital world,”
2015. [Online]. Available: http://http://www.arm.com/

[10] PassMark Software, “PassMark Software – CPU
benchmarks – CPU popularity in the last 90 days,” 2015.
[Online]. Available:
http://www.cpubenchmark.net/share30.html

[11] CPUBoss, “CPUBoss – best CPUs – all the CPUs ranked
in real-time!” 2015. [Online]. Available:
http://cpuboss.com/

[12] D. A. Patterson and D. R. Ditzel, “The case for the
reduced instruction set computer,” SIGARCH Comput.
Archit. News, vol. 8, no. 6, pp. 25–33, 1980.

[13] J. Fitzpatrick, “An interview with Steve Furber,”
Commun. ACM, vol. 54, no. 5, pp. 34–39, 2011.

[14] MathWorks, “MATLAB – the language of
technical computing,” 2014. [Online]. Available:
http://www.mathworks.com/products/matlab/

[15] B. Hunt, R. Lipsman, and J. Rosenberg, A Guide to
MATLAB: For Beginners and Experienced Users.
Cambridge University Press, 2014.

[16] V. Ingle and J. Proakis, Digital Signal Processing
Using MATLAB. Cengage Learning, 2011.

[17] Z. Koldovsky and P. Tichavsky, “Time-domain blind
sep- aration of audio sources on the basis of a
complete ICA decomposition of an observation space,”
Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 19, no. 2, pp. 406–416, Feb 2011.

[18] Gartner, “Gartner: Worldwide smartphone sales to end
users by operating system in 2013,” feb 2014. [Online].
Available: http://www.gartner.com/newsroom/id/2665715

[19] J. Drake, Z. Lanier, C. Mulliner, P. Fora, S. Ridley,
and G. Wicherski, Android Hacker’s Handbook. Wiley,
2014.

[20] Gartner, “Gartner: Worldwide traditional PC, tablet,
ultramobile and mobile phone shipments on pace
to grow 7.6 percent in 2014,” jan 2014. [Online].
Available: http://www.gartner.com/newsroom/id/2645115

[21] K. Yaghmour, Embedded Android: Porting, Extending,
and Customizing, ser. Oreilly and Associate Series.
O’Reilly Media, Incorporated, 2013.

[22] M. Gargenta and M. Nakamura, Learning Android:
Develop Mobile Apps Using Java and Eclipse. O’Reilly
Media, 2014.

[23] Android Developers, “Starting another Activity,”
2014. [Online]. Available:
http://developer.android.com/training/
basics/firstapp/starting-activity.html

[24] Google, “Matlab Mobile – Android apps on Google
Play,” 2014. [Online]. Available:
https://play.google.com/store/
apps/details?id=com.mathworks.matlabmobile&hl=en

[25] MathWorks, “MATLAB Coder,” 2014. [Online]. Avail-
able: http://www.mathworks.com/products/matlab-coder/

[26] MathWorks, “Functions and objects supported for
C and C++ code generation categorical list,”
2014. [Online]. Available:
http://www.mathworks.com/help/coder/ ug/functions-
supported-for-code-generation--categorical-list. html

[27] MathWorks, “Features – MATLAB Coder,” 2014.
[Online]. Available:
http://www.mathworks.com/products/matlab-coder

[28] Google, “Android NDK,” 2014. [Online]. Available:
https://developer.android.com/tools/sdk/ndk/index.html

[29] S. Chapman, MATLAB Programming for Engineers.
Cengage Learning, 2007.

[30] MathWorks, “MATLAB Compiler,” 2014. Online].
Available: http://www.mathworks.com/products/compiler/

[31] Sourceforge.net, “Octave-Forge – extra packages for
GNU Octave,” 2014. [Online]. Available:
http://octave.sourceforge.net/

[32] A. Quarteroni, F. Saleri, and P. Gervasio, Scientific
Computing with MATLAB and Octave, ser. Texts in
Computational Science and Engineering. Springer, 2010.

[33] J. Hansen, GNU Octave: Beginner’s Guide: Become
a Proficient Octave User by Learning this High-level
Scientific Numerical Tool from the Ground Up, ser.
Learn by doing : less theory, more results. Packt Publ.,
2011.

[34] Google, “Octave – Android apps on Google Play,”
2014. [Online]. Available:
https://play.google.com/store/apps/details?id=com.octave

[35] Y. Yu and S. U. of New York at Stony Brook, OS-level
Virtualization and Its Applications. State University of
New York at Stony Brook, 2007.

[36] S. Smith, MATLAB: Advanced GUI Development. Dog
Ear Pub., 2006.

[37] Google, “Linux Installer – Android apps on Google
Play,” 2014. [Online]. Available:
https://play.google.com/store/
apps/details?id=com.zpwebsites.linuxonandroid

[38] P. Aksoy and L. DeNardis, Information Technology
in Theory, ser. Information Technology Concepts Series.
Thomson Course Technology, 2007. [Online].

http://www.zafarrafii.com/repet.html#Codes
http://dimitri.nion.free.fr/
http://http/www.arm.com/
http://www.cpubenchmark.net/share30.html
http://www.cpubenchmark.net/share30.html
http://cpuboss.com/
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.gartner.com/newsroom/id/2665715
http://www.gartner.com/newsroom/id/2645115
http://developer.android.com/training/basics/firstapp/starting-activity.html
http://developer.android.com/training/basics/firstapp/starting-activity.html
http://developer.android.com/training/basics/firstapp/starting-activity.html
https://play.google.com/store/apps/details?id=com.mathworks.matlabmobile&hl=en
https://play.google.com/store/apps/details?id=com.mathworks.matlabmobile&hl=en
https://play.google.com/store/apps/details?id=com.mathworks.matlabmobile&hl=en
http://www.mathworks.com/products/matlab-coder/
http://www.mathworks.com/help/coder/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/coder/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/coder/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/products/matlab-coder/features.html
http://www.mathworks.com/products/matlab-coder/features.html
https://developer.android.com/tools/sdk/ndk/index.html
http://www.mathworks.com/products/compiler/
http://octave.sourceforge.net/
http://octave.sourceforge.net/
https://play.google.com/store/apps/details?id=com.octave
https://play.google.com/store/apps/details?id=com.octave
https://play.google.com/store/apps/details?id=com.zpwebsites.linuxonandroid
https://play.google.com/store/apps/details?id=com.zpwebsites.linuxonandroid
https://play.google.com/store/apps/details?id=com.zpwebsites.linuxonandroid

 Int. J. Com. Dig. Sys. 5, No.2, 11-19 (Jan-2016) 19

http://journals.uob.edu.bh

Marvin Chibuzo Offiah Since

2011, Marvin C. Offiah is a member

of the research group “Optimized

Systems” which focusses on re-

search in BMBF-founded and in-

dustrial projects in the area of

acoustic and digital signal pro-

cessing as well as evolutionary

optimization in various areas, for

instance Chemoinformatics. Since

more than four years, he researches

in the field of Digital Signal Pro-

cessing, and especially in the area

of Applied Computer Science. Over the years, he published 5

articles and journals on these topics. He received his diploma

degree in Geoinformatics from the Institute for Geoinformatics

at the University of Münster in 2011.

Markus Borschbach Since 2009,

Markus Borschbach is an Associated

Professor at the University of Ap-

plied Sciences in Bergisch Gladbach

(Germany). Here, he founded the

Competence Centre and the research

group “Optimized Systems”, which

focusses on research in BMBF-

founded and industrial projects in

the area of acoustic and digital signal

processing as well as evolutionary

optimization in various areas, for

instance Chemoinformatics. Since

more than fifteen years, he researches in the field of artificial

intelligence and especially in the area of Applied Computer

Science. Over the years, he published more than 60 articles and

journals on these topics. He earned his PhD from the University

of Münster, department of mathematics and computer science in

2002, where he stayed for a further five years as post-doctoral

researcher and team leader. He took a duty as a visiting profes-

sor at the department for computer networks and distributed

systems at the University of Chemnitz (Germany) from 2006 to

2007. He received his diploma degree of engineering (Dipl.-

Ing.) in Technical Computer Science from the department of

Electrical Engineering and Computer Science at the University

of Siegen in 1996 and a call as a fulltime Professor at the facul-

ty of Computer Science in Bergisch Gladbach in 2008.

