
Evaluation of distributed stream processing 
frameworks for IoT applications in Smart Cities
Hamid Nasiri*  , Saeed Nasehi and Maziar Goudarzi

Introduction
Large number of embedded devices, massive volumes of data, users and applications 
are driving the digital world to move faster than ever. To be competitive in today’s digi-
tal economy companies have to process large volumes of dynamically changing data at 
real-time. There are many industries from health-care, e-commerce, insurance and tel-
ecommunications with various use cases such as DNA sequencing, capturing customer 
insights, real-time offers, high-frequency trading, and real-time intrusion detection 
that have taken the use of Big Data analytics into account to make critical decisions that 
impact their business [1].

On the other hand, the Internet of Things (IoT) is becoming the primary grounds 
for data mining and Big Data analytics [2]. With the rapid growth of IoT and its use 
cases in different domains such as Smart City, Mobile e-Health and Smart Grid, 
streaming applications are driving a new wave of data revolutions. In most IoT appli-
cations the resulting analytics give some feedbacks to the system to improve it [3]. 
Compared to the other Big Data domains, there is a low-latency cycle between system 

Abstract 

The widespread growth of Big Data and the evolution of Internet of Things (IoT) 
technologies enable cities to obtain valuable intelligence from a large amount of 
real-time produced data. In a Smart City, various IoT devices generate streams of data 
continuously which need to be analyzed within a short period of time; using some Big 
Data technique. Distributed stream processing frameworks (DSPFs) have the capac-
ity to handle real-time data processing for Smart Cities. In this paper, we examine 
the applicability of employing distributed stream processing frameworks at the data 
processing layer of Smart City and appraising the current state of their adoption and 
maturity among the IoT applications. Our experiments focus on evaluating the perfor-
mance of three DSPFs, namely Apache Storm, Apache Spark Streaming, and Apache 
Flink. According to our obtained results, choosing a proper framework at the data 
analytics layer of a Smart City requires enough knowledge about the characteristics 
of target applications. Finally, we conclude each of the frameworks studied here have 
their advantages and disadvantages. Our experiments show Storm and Flink have very 
similar performance, and Spark Streaming, has much higher latency, while it provides 
higher throughput.

Keywords:  Distributed stream processing, Smart City, IoT applications, Latency, 
Throughput

Open Access

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Nasiri et al. J Big Data            (2019) 6:52  
https://doi.org/10.1186/s40537-019-0215-2

*Correspondence:   
hnasiri@ce.sharif.edu 
Department of Computer 
Engineering, Sharif University 
of Technology, Azadi Avenue, 
Tehran, Iran

http://orcid.org/0000-0002-9809-9306
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-019-0215-2&domain=pdf


Page 2 of 24Nasiri et al. J Big Data            (2019) 6:52 

responses which makes it necessary to process events in real-time, to derive accept-
able responsiveness. In all of these domains, one of the most fundamental challenge is 
to explore the large volumes of data and extract useful information for future actions. 
In particular, this real-time exploration has to be done at massive scales.

Nowadays generated data in IoT era have several characteristics that put them in 
the class of Big Data [4]. Specially, in a Smart City generated data normally has the 
following characteristics:

•	 Large volumes of data the amount of real-time generated data by different applica-
tions in a Smart City can be in order of zetabytes.

•	 Heterogeneous data sources in Smart Cities, the data sources are diverse. For 
example, there are many sensors data, RFID data, cameras data, human generated 
data, and so on.

•	 Heterogeneous data types collected data by different devices are different in for-
mat, packet size, required precision and arrival time.

Many distributed Big Data platforms are designed to provide scalable processing on 
commodity clusters. Apache Hadoop [5] is one of the most popular frameworks for 
batch processing, which uses MapReduce [6] programming model. There are several 
large-scale computing architectures customized for batch processing [7]; however, 
they are not suitable for stream processing; because in the MapReduce paradigm all 
input data need to be stored on a distributed file system (like HDFS) before start to 
process. To address the large-scale real-time processing problem, some distributed 
frameworks such as Apache Storm [8], Spark Streaming [9] and Apache Flink [10] 
have been emerged. They process a continuous stream of messages on distributed 
resources with low-latency and high throughput. These recent Big Data platforms are 
becoming one of the most essential components of IoT ecosystems.

Smart City

It is expected to about 68% of the population to live in cities by 2050 [11]. On the other 
hand, using technology to improve citizen’s lives makes a city into a smart one. In other 
words, Smart Cities offer their citizens a high quality of life by improving processes and 
reducing environmental footprint with technology [12]. These cities capture data using 
sensors, and use Big Data analytics techniques to improve environmental, financial, and 
social aspects of urban life. According to [13] Smart City technology, spending reached 
$80 billion in 2016, and is predicted to grow to $135 billion by 2021.

An intelligent combination of technological advances such as IoT, Cloud Comput-
ing, Smart Grid and Smart Building allows tracking huge amounts of information; 
this combination creates an intelligent system known as Smart City. A Smart City 
uses IoT sensors and many other technologies to connect components through a city 
to derive data and improve the lives of citizens and visitors. For example, in a Smart 
City, buildings have interconnected electrical, cooling, and heating systems moni-
tored by an intelligent management system and a Smart Grid can be used to control 
on-demand generation of electricity.



Page 3 of 24Nasiri et al. J Big Data            (2019) 6:52 

System architecture for Smart City

The backbone of a Smart City is Internet of Things and the IoT itself consists of dif-
ferent areas such as embedded systems, ubiquitous computing and Big Data analytics. 
Normally, the system architecture for IoT has five layers including: Devices, Gateways, 
Access network, Data processing and Application [4]. So the system structure that inte-
grates Big Data into Smart City [12] can be considered as Fig. 1. Layers in this architec-
ture are similar to IoT system architecture layers and can be divided as follow:

1.	 Device layer: Set of sensors, RFID, cameras, and other devices that continuously 
capture physical measures such as temperature, humidity, light, vibration, location, 
movement, etc.

2.	 Data collection layer: Continuous streams of unstructured data which are being cap-
tured by device layer, will be transferred to the data nodes. In the data collection 
layer, all of the collected data by the data nodes will be aggregated. Aggregation of 
these raw data allows offering usable services.

3.	 Data processing layer: In this layer, the aggregated data are processed using batch or 
stream distributed processing engines such as Hadoop [14], Spark [15], Storm [16], 
and Flink [17].

Smart Analyzer

Source Of Big Data

Programming model for processing large sets with a parallel, distributed algorithms

Distributed fault tolerance database for large unstructured data sets like NOSQL

Applica�on 
service Layer

Data Processing 
Layer

Data Collec�on 
Layer

Device Layer

Recommender Fraud Detec�on Intelligent Traffic 
Management

Web Display 
Adver�sing

Fig. 1  System architecture of Smart Cities



Page 4 of 24Nasiri et al. J Big Data            (2019) 6:52 

4.	 Application service layer: Here many applications such as intelligent traffic manage-
ment, water and electricity monitoring, disaster discovery, fraud detection and web 
display analysis are provided. In this layer, people and machines directly interact with 
each other.

In the third layer of this architecture the main requirements for Big Data processing 
are needed. So, choosing efficient Big Data tools and frameworks has important role to 
utilize the processing resources.

The goal of this paper is to examine applicability of employing distributed stream 
processing frameworks at the data processing layer of Smart Cities and appraising the 
current state of their adoption and maturity among the IoT applications. Regardless to 
where the data processing is happening (edge or center of processing layer) our experi-
mental results can be taken into account to determine the best framework depending 
on the processing requirements of streaming applications. The main contribution of our 
work is providing a fair comparison among three well-known DSPFs in terms of perfor-
mance, throughput, and scalability.

In comparison with our previously published conference paper [18], we have added 
complementary information to “Programming model of stream processing” section and 
studied more frameworks in “Distributed stream processing frameworks” section. The 
discussed frameworks are also explained with more details and some figures are used 
to better show their architectures. A new section is added to cover the prior works that 
evaluate stream processing systems from different aspects. Moreover, to show the pow-
erful cooperation of DSPFs and message brokers (which makes the real-time streaming 
processing of Big Data possible) we have added some information about the integration 
of DSPFs with message brokers.

The evaluations are extended and we have also taken into account the resource uti-
lization (including CPU and network usage) in our experiments. Another real-world 
application “Training application” is chosen among several benchmark application and 
is developed for all intended frameworks. We have also added a new section namely 
“Results and discussion” to discuss the experimental results in more details. Here, all 
discussions relay on our observations from two different benchmark applications, and 
we have tried to cover enough considerations. At the end of this section we have pro-
vided a recommendation on what kind of frameworks may be followed for certain IoT 
workloads.

The rest of this paper is organized as follows. “Related work” section presents the 
related works in this topic. “Programming model of stream processing” section explains 
some primary information about the stream processing models. “Distributed stream 
processing frameworks” section shortly introduces the most popular distributed stream 
processing frameworks. The next section describes the technological infrastructure and 
the application benchmarks used in this research process. “Evaluation” section presents 
the experiment scenarios and reports the obtained results, highlighting the performed 
benchmarks and the needed resources, in terms of performance metrics and resource 
usage. The obtained results are discussed in “Results and discussion” section. Finally, 
“Conclusion and future works” section presents the main conclusions and applicability 
of DSPFs in Smart Cities.



Page 5 of 24Nasiri et al. J Big Data            (2019) 6:52 

Related work
To realize the mechanism, performance and efficiency of different distributed stream 
processing frameworks many survey papers are published. They study the characteristics 
of these Big Data platforms and compare them in different conditions. In some papers 
[19–23] authors present a conceptual overview on several stream data processing sys-
tems such as Apache Storm, Apache Spark, etc. These works discuss general information 
of these frameworks such as mechanisms, programming languages, and some character-
istics such as fault-tolerance; whereas no experimental evaluation is provided. So, there 
is no metric to assess the efficiency of such frameworks in case of IoT applications.

Authors in [24] consider some important aspects of Big Data processing frameworks 
such as scalability, fault tolerance, and availability and use k-means as the case study of 
their evaluations. However, they do not consider specific features of IoT applications 
such as throughput, latency and resource utilization. Paper [25] presents some informa-
tion about Big Data analytics besides of some important open issues in this area. Lack of 
execution of some benchmark applications and hence not to pay attention to important 
metrics such as throughput and latency are the weaknesses of this work; whereas these 
parameters are taken into account in our work.

Researchers in [26] provide a valuable overview on Big Data processing frameworks 
and their efficiency in Smart City domain. They categorize Big Data processing frame-
works according to their programming model, type of data sources, and supported pro-
gramming languages. They have focused on hardware aspects of the processing cluster 
while some important considerations of Big Data processing in IoT applications (such as 
throughput and processing latency) are not covered.

Paper [27] provides some information about the Big Data processing frameworks 
namely Apache Hadoop, Apache Spark and Apache Flink. To have quantitative evalu-
ation, it uses some well-known applications such as Terasort, WordCount, Grep, Pag-
eRank and K-means and provide comparative information about the performance of 
these frameworks in terms of latency. The first drawback of this work is the different 
programming model of evaluated frameworks which dramatically effects the definition 
of comparison metrics. In addition, in such a comparative works latency and through-
put can not be reported separately; while no throughput is reported in the experiments. 
Moreover, other important metrics of large-scale distributed systems like resource 
usage efficiency are not discussed. The data sources are not clarified and the adaptation 
of applications and their input data for both batch and stream processing in different 
frameworks are not mentioned.

Programming model of stream processing
The most important aspect of a processing system probably is the programming model, 
because it defines the future limitations, costs and available operations. In stream pro-
cessing, one of the fundamental parts of a programming model is how each pieces of 
new data is processed when it arrives; or later as a part of a set of new data. That distinc-
tion divides stream processing into two categories: native and micro-batch.

In native streaming model, all incoming tuples are processed as they arrive. It means 
that data processing happens as individual pieces before storing data in a storage media 



Page 6 of 24Nasiri et al. J Big Data            (2019) 6:52 

rather than being processed a batch at a time. Figure  2 shows the data flow of native 
streaming model.

Second approach for stream processing is micro-batching. In this method, collections 
of tuples that are called short batches are created from incoming tuples and go through 
the system. These batches are created according to a scheduled time interval (e.g. every 
10 min) or one or more triggered conditions (e.g. process each batch if it has more or 
equal than 100  KB of data). Batch processing can be useful when it is not important 
to have the most real time and up to date data. In Fig. 3, we can see the mechanism of 
micro-batch processing model.

Both methods have their own pros and cons. The great advantage of native stream-
ing is its expressiveness. Because it takes stream as it is, it is not limited by any 
unnatural abstraction. Also in comparison with micro-batching systems, achievable 
execution time in native streaming is always much better; because the tuples are 

Fig. 2  Native stream processing model

Fig. 3  Micro-batch stream processing model



Page 7 of 24Nasiri et al. J Big Data            (2019) 6:52 

processed immediately upon arrival. But on the other hand, native streaming systems 
have usually lower throughput. Furthermore, fault tolerance and load balancing are 
more expensive, in native streaming rather than micro-batch systems [20, 28].

In micro-batching systems, splitting data streams into micro-batches reduces sys-
tem’s costs [29]. Some operations, such as state management, are much harder to 
implement, because system has to deal with whole batch [30]. Finally, it is good to 
mentioned that micro-batching systems can be built on a native streaming. In the 
following section, we will have quick look at some well-known streaming processing 
systems.

Distributed stream processing frameworks
Apache Storm

Apache Storm is the most popular and widely adopted open-source distributed real-
time computational platform introduced by Twitter [16]. Similar to what Hadoop does 
for batch processing, Apache Storm performs on unbounded streams of data in a reliable 
manner. A Storm cluster consists of two types of nodes: master node and worker node.

Master node runs a daemon called Nimbus, which is the central component of Apache 
Storm. The responsibility of Nimbus is distributing codes and assigning tasks to the 
worker nodes. It also monitors health of the cluster by listening to the produced heart-
beats by worker nodes and re-assigns failed tasks if needed. Worker nodes do the actual 
execution of the streaming application. Each worker node runs a daemon called Super-
visor, which works by Nimbus and starts and stops the worker processes when required.

The configuration of worker nodes determines how many slots they can provide for 
the cluster; so each worker node, may run one or more worker processes, depending 
on its number of slots [8]. Since Apache Storm is not able to manage its cluster state, 
it relies on Apache Zookeeper [31] for this purpose. Zookeeper simplifies communi-
cation between Nimbus and Supervisors with the help of message acknowledgments, 
processing status, etc. Figure 4 represents the architecture view of a Storm cluster.

Nimbus

Zookeeper

Zookeeper

Supervisor Worker

Zookeeper

Supervisor Worker

Supervisor Worker

Supervisor Worker

Worker Node

Fig. 4  High level architecture of Apache Storm



Page 8 of 24Nasiri et al. J Big Data            (2019) 6:52 

Apache Flink

Apache Flink is an open-source streaming platform, which provides capability to run 
real-time data processing pipelines in a fault-tolerant way at a scale of millions of 
tuples per second [17]. Flink is based on native stream processing rather than pro-
cessing micro-batches. Flink processes the user-defined functions code through the 
system stack. It has master-slave architecture, consists of a Job Manager and one or 
more Task Manager(s) [10].

The duty of the Job Manager is coordination of all the computations in the Flink 
system, while the Task Managers are being used as workers and execute parts of the 
parallel programs. Figure  5 shows the architecture of Apache Flink which is com-
pletely clear to the programmers and they just need to know how to work with the 
API to write programs [17]. Flink is famous for its ability to compute common opera-
tions such as hashing, very efficiently.

Apache Spark

Apache Spark is a widely used, highly flexible engine for batch-mode and stream data 
processing that is well developed for scalable performance at high volumes [15]. To max-
imize the performance of Big Data analytics applications, Spark supports in-memory 
processing, but it also can perform disk-based processing when data sets are too large to 
fit into the available memory. The architecture of Apache Spark is based on the following 
components [29]:

•	 Spark Driver
•	 Cluster Manager
•	 Executors

A Spark application takes data from a collection of sources (HDFS, NoSQL and rela-
tional DBs, etc.), then applies a set of transformations on them, and finally executes an 
action that generates meaningful results. The Spark Driver, which is the master node in a 
Spark cluster, converts the application into a set of tasks to be executed by a set of Exec-
utors. Once the Spark Driver has converted the application into a set of tasks, it passes 
them to the Cluster Manager for distribution.

The purpose of the Cluster Manager is to understand where the intended data resides 
and distribute tasks to the most appropriate server in the cluster. Each server in the 

Client

Task Manager

Job Manager

Task Manager

Task Manager

Flink Program

Job Graph

Execu�on 
Graph

Fig. 5  High level architecture of Apache Flink



Page 9 of 24Nasiri et al. J Big Data            (2019) 6:52 

cluster has an Executor that receives tasks from the Cluster Manager, executes them, 
and then returns the results back to the Cluster Manager. It is then the Cluster Man-
ager’s responsibility to combine the results from all Executors and make a response for 
the Spark Driver. In Fig. 6 the cluster view of Apache Spark is shown.

Apache Heron

Twitter open sourced Heron is re-imagined Storm with emphasis on higher scalability 
and better debug ability [32]. The goals of developing Heron are handling petabytes of 
data, improving developer productivity, simplifying debugging and providing better effi-
ciency [33]. As it is shown in Fig. 7, Heron consists of three key components:

•	 Topology Master: it is responsible for managing a topology from its submitting 
moment until it is killed.

Spark Driver

Executor

Cluster 
Manager

Executor

Executor

Fig. 6  High level architecture of Apache Spark

ZooKeeper

Topology Master

Stream Manager

Heron Instance

Heron Instance

Container

Container

Stream Manager Heron Instance

Fig. 7  High level architecture of Apache Heron



Page 10 of 24Nasiri et al. J Big Data            (2019) 6:52 

•	 Stream Manager: its duty is managing the routing of tuples between topology 
components.

•	 Heron Instance: it is a process that executes a single task and allows for easy 
debugging and profiling.

Samza

Apache Samza is formed by combination of Apache Kafka [34] and YARN [35] to 
perform computation over data streams. The main goals of Apache Samza are having 
better fault tolerance, processor isolation, security, and resource management [36]. 
Input streams of tuples are decomposed and partitioned so that data flow graph is 
created. Each graph contains multiple streams and jobs, which let user to partition 
the streams and parallelize execution of operators across a cluster of machines [37]. 
Figure 8 shows the high level architecture of Apache Samza.

Akka

Akka is an advanced toolkit and message-driven runtime based on the Actor Model that 
helps development teams to build the right foundation for successful micro-services 
architectures and streaming data pipelines [38]. In Akka, the communication between 
services uses messaging primitives that optimized for CPU utilization, low latency, high 
throughput and scalability.

Akka Streams is a streaming dataflow abstraction on top of Akka Actors, giving devel-
opers a better way to define their workflows. As a founding implementation of the Reac-
tive Streams specification, Akka Streams adds benefits of back-pressure and type-safety 
to the development of streaming applications [39]. Akka Streams and the underlying 
Akka Actor model are ideal for low-latency processing of data streams.

Integration with message brokers

DSPFs and message brokers naturally complement each other, and their powerful coop-
eration enables real-time streaming processing of Big Data. In most streaming appli-
cations, message brokers such as Apache Kafka, RabbitMQ, ActiveMQ, and Kestrel, 
prepare data streams instead of connecting to the data source, directly. They employs 
a pull-based consumption model that allows an application to consume data at its own 
rate and rewind the consumption whenever needed. They usually provide integrated dis-
tributed support and can scale out [40]. Furthermore, the message brokers allow data 

Yarn Client Resource Manager Node Manager

Application Manager Node Manager Task Runner

Fig. 8  High level architecture of Apache Samza



Page 11 of 24Nasiri et al. J Big Data            (2019) 6:52 

replication to make it available for several systems and persists data coming from vari-
ous sources.

Methods/experimental
In all experiments the reported values for all metrics are measured under the same con-
ditions and a specific input rate. For each run 5 min of warm up execution is consid-
ered before the metrics were captured from the Web UI of each framework; because the 
throughput of the streaming application that is being evaluated should have stabilized 
and converged. According to our experiments after 5  min all applications have stable 
state in the target frameworks. All of the benchmarks were performed using default set-
tings for Storm, Flink, and Spark Streaming and we have avoided configuration tweaks 
to tune them.

Experimental setup

For our experimental evaluation, we use a cluster with 8 homogeneous worker nodes. 
Table  1 shows the specification of our master and worker nodes. Master node runs 
the job manager and its corresponding demons, and manages all employed worker 
nodes. Depending on our experiment we use 1, 2, 4, or 8 worker nodes. In all experi-
ments we have used Apache Storm 0.10.0, Apache Flink 1.2.0 and Spark 2.2.1 on top 
of Ubuntu 16.04 operating system.

Moreover, since Apache Storm supports two message processing guarantee seman-
tics, we have run the benchmark applications under both at least once and at most 
once (No-Ack) semantics. At most once semantics happens when the acknowledg-
ment mechanism is disabled.

Application benchmarks

In our experiments two different streaming applications are used to make sure that 
our evaluation is reliable. These applications are visually depicted in Figs. 9, and 10. 
The Advertising application is a sample IoT streaming program from Yahoo Streaming 
Benchmarks [41]. In this program each incoming tuple is processed by the following 
operators respectively.

Table 1  System characteristics

Parameter Master node Worker node

Processor Core i7 Xeon E5-2650

Number of cores 4 2

Memory 8 GB 4 GB

Operating system Ubuntu 16.04 Ubuntu 16.04

DeserializeSource Filter Projec�on Join Count Sink

Fig. 9  Layout of Advertising application



Page 12 of 24Nasiri et al. J Big Data            (2019) 6:52 

•	 Source: This component reads the tuples from Kafka message broker and prepares 
them as standard data units according to the data processing model of intended 
framework.

•	 Deserialize: Divides the input JSON string to some meaningful fields.
•	 Filter: Filters out irrelevant tuples based on their type.
•	 Projection: Remove unnecessary fields.
•	 Join: Joins tuples by a specific field with its associated information of another field.
•	 Count: Take a windowed count of tuples per joined field and store them.

The second application is based on the Model Training application benchmark from 
RIoTBench [42]. This application consists of some micro benchmark tasks which are 
mainly developed for Apache Storm. We have partially changed it to be able to work 
off-line. It uses a timer to periodically trigger a model training run as follows:

•	 Timer Source: This component simulates the model training trigger.
•	 Table Read: At each run it fetches data from the stored table, available since the last 

run.
•	 Multi-Var Linear Reg. train: It uses the fetched data to train a linear regression 

model.
•	 Annotation and Decision Tree: Fetched tuples from the Table-Read operator are also 

annotated to allow a decision tree classifier to be trained.
•	 Table Write: Stores the trained model files.
•	 MQTT Publish: Publishes all updates to the database records to the MQTT broker.

Both Advertising and Model Training applications, are written for Storm, Flink and Spark 
Streaming according to the operators of their dataflow graph. The programming model 
of both Storm and Flink is based on directed acyclic graph (DAG) so the structure of the 
applications for these frameworks is similar. But Spark Streaming is a modified version 
of Apache Spark and its programming model is something between batch and stream 
processing, called micro-batch.

Evaluation
As explained in “Distributed stream processing frameworks” section there are many 
distributed stream processing frameworks which can be employed as the data analyt-
ics layer of IoT applications in Smart Cities [18]. However, Apache Storm [8], Apache 
Spark Streaming [29], and Apache Flink [10] are the most popular DSPFs for real-time 

Table ReadTimer 
Source

Annota�on Decision 
Tree Train

Mul�-Var Linear 
Reg. Train

Table 
Writer

MQTT 
Publish Sink

Fig. 10  Layout of Model Training application



Page 13 of 24Nasiri et al. J Big Data            (2019) 6:52 

processing [21]. So, we evaluate these three open source and community driven frame-
works in terms of performance and scalability, using two streaming applications.

The most commonly-used quantitative performance measures to evaluate efficiency of 
DSPFs, are latency and throughput [19]. In our experiments, we consider these metrics 
to compare performance and scalability of intended DSPFs. Considering each streaming 
application as a dataflow graph, we use the following definitions for latency and through-
put. We also measure CPU and Network utilization, to realize how efficient each DSPF 
works.

Latency: For a tuple that is consumed by an application graph, latency is the time it 
took for that tuple to be processed by intermediate vertexes and transferred (includ-
ing the network and queuing time) between them. This latency is known as end-to-end 
latency. As the end-to-end latency of each tuple may vary depending on the tuple size 
and type, resource allocation, and input rate, we consider the average latency in our 
evaluations.

Throughput: Depending on the operation of each vertex of the application graph, for 
each incoming tuple, different number of output tuples may be emitted. Normally the 
aggregated output tuple rate of all vertexes is considered as the overall throughput. But, 
when we are talking about different frameworks, we face different implementation of the 
application graph. So, we cannot use the overall throughput as a unique metric. In our 
evaluation, we consider the total number of received tuples by the sink operator of the 
application at 1 s as the processing throughput (all implementations of the applications 
have a sink operator which collects the output tuples).

In our experiments, Apache Kafka [34] is used to produce desired data streams, so 
we can see the behavior of the target DSPF in the real world conditions. There are some 
classes and API to integrate Kafka with DSPFs. The classes are used to track the Kafka 
brokers dynamically by maintaining the details in ZooKeeper, or statically set the Kafka 
brokers and its details. Provided API can be used to define configuration settings, fetch-
ing the messages from kafka topic and emitting them into DSPF as tuples.

As the data partitioning of message brokers mostly is not chosen wisely, may the raw 
data is partitioned in a different way than the streaming system requires it. To handle 
this issue some technique are used, but trades some overhead and performance lost. So, 
when we are benchmarking a distributed stream processing system, the data exchange 
between the message broker and the streaming system may become the performance 
bottleneck. We ran the Kafka in a separated machine and took enough instances from 
the spout to get sure that the message broker has no effect in our experiment results and 
never becomes bottleneck.

Latency evaluation

To compare the performance of intended DSPFs in terms of latency, we measure end-to-
end latency for each tuple, and calculate the average latency in desired time slices. For 
a particular input rate (Advertising: 400 k tuple/s, Model Training: 1 k tuple/s) we have 
executed the applications by different number of worker nodes. In Figs. 11 and 12 we 
can see the latency results obtained by Storm, Storm No-Ack, Flink and Spark Streaming 
respectively; using 2 and 8 worker nodes.



Page 14 of 24Nasiri et al. J Big Data            (2019) 6:52 

Throughput evaluation

According to the mentioned above definition for throughput, we consider the total num-
ber of received tuples by the sink operator at 1 s as the processing throughput, to have a 
fair comparison among different frameworks in terms of throughput.

Fig. 11  Latency of intended frameworks with different number of worker nodes for Advertising application



Page 15 of 24Nasiri et al. J Big Data            (2019) 6:52 

Figures 13 and 14 represent the throughput of each framework over the time; using 
2 and 8 worker nodes. In these experiments, we have executed the applications by dif-
ferent number of worker nodes with a particular input rate (Advertising: 2.8 M tuple/s, 

Fig. 12  Latency of intended frameworks with different number of worker nodes for Model Training 
application



Page 16 of 24Nasiri et al. J Big Data            (2019) 6:52 

Fig. 13  Throughput of intended frameworks with different number of worker nodes for Advertising 
application



Page 17 of 24Nasiri et al. J Big Data            (2019) 6:52 

Fig. 14  Throughput of intended frameworks with different number of worker nodes for Model Training 
application



Page 18 of 24Nasiri et al. J Big Data            (2019) 6:52 

Model Training: 14 k tuple/s). We have set these rates to fully utilize the worker nodes 
and hence realize how much throughput each frameworks provides at high load.

Considering these results, we see on smaller cluster Flink is the winner in terms of 
throughput and its throughput values have the least variance over the time. By scal-
ing the cluster out via adding more worker nodes, the throughput of Storm and Spark 
Streaming increase with an almost linear ratio; however, throughput of Flink has little 
increment.

Load scalability

To appraise the ability for each framework to efficiently expand and contract its resource 
pool to accommodate heavier or lighter loads, we increase the input rate and measure 
the corresponding latency. For Advertising application the input rate is varied from 
20,000 to 560,000 tuples/s, and for Model Training it is varied from 200 to 2000 tuples/s. 
For each input rate, benchmark applications are executed for 100 min and the end-to-
end latencies are measured.

Figure  15 shows the latency behavior of different frameworks as the load increases, 
for both benchmarks. As we can see, for all frameworks the average end-to-end latency 
increases as the system load increases; however, the distance between Spark Stream-
ing and other frameworks increases dramatically due to the essence of its programming 
model. As mentioned in “Programming model of stream processing” section Spark 
Streaming is not using a real streaming paradigm and relay on micro-batching mecha-
nism. So, when the input rate is increased more tuples are buffered to form a micro-
batch in the configured batching time slice, and hence the end-to-end latency of all of 
these buffered tuples is increased.

From the results in Fig. 15, we also observe that the average latency of Flink has the 
least dependency to the load because of its internal message handling mechanism and 
works well while the network is not over-utilized; and Storm shows a bit more reaction 
to load variances; while Spark Streaming performs worst among them due to the men-
tioned above reason.

For each input rate, the 99th percentile latency for a tuple to be completely processed 
by the DSPFs is illustrated in Fig. 16.

a b
Fig. 15  Latency comparison over different rate



Page 19 of 24Nasiri et al. J Big Data            (2019) 6:52 

Horizontal scaling

To examine the ability of the appraised frameworks to scale out, we increased the 
cluster size by adding more worker nodes from 1 to 8. Figure  17 shows scale out 
effect on the latency of Advertising and Model Training applications, respectively. 
Also, Fig.  18 represents the scalability of Advertising and Model Training applica-
tions in terms of throughput.

Looking at these graphs we can see Flink has the worst scalability and its latency 
and throughput have a few improvements when the number of worker nodes is 
increased. In large-scale clusters, Storm and Spark Streaming beat Flink in terms of 
latency and throughput. Both Storm and Spark Streaming have near linear behav-
ior in terms of scalability but Storm scales even better than Spark Streaming and 
behaves almost linear, specially when no acking mechanism is applied.

ba
Fig. 16  99th percentile latency comparison over different rate

a b
Fig. 17  Scalability comparison in terms of latency

a b
Fig. 18  Scalability comparison in terms of throughput



Page 20 of 24Nasiri et al. J Big Data            (2019) 6:52 

Resource utilization

In IoT domain, applications are too resource intensive and efficient use of distributed 
resources has vital role. To make better sense about efficiency of intended frameworks 
we calculate average CPU usage and Network utilization in all experiments. The aver-
age resource utilization of eight worker nodes related to experiments in “Latency evalu-
ation” section (latency evaluation of different frameworks) are shown in Fig. 19. Using 
this information, we know which resource may become performance bottleneck in each 
framework.

Results and discussion
Load scalability: Throughout the results from “Load scalability” section, we observe 
that (1) Storm and Flink consistently outperforms Spark Streaming in terms of latency. 
(2) Increasing the input rate leads to more significant improvement of them. In Spark 
Streaming, multiple tuples are processed in a micro-batch, which leads to higher 
throughput but it cause deterioration of the end-to-end latency for individual tuples 
since they have to wait for a little bit before being batched by the Spark Streaming 
component.

Resource utilization: By placing resource utilization of all frameworks under scru-
tiny, we realized that Flink is more network intensive than other frameworks while its 
CPU usage is less than both Storm and Spark Streaming. As we can see in Fig. 15 Flink 
has stable performance while the input rate is increasing, but at a certain rate the net-
work gets bottleneck and its latency becomes worse than both Storm and Storm no-Ack.

Ability to scale out: According to our observations when the cluster has a few 
number of worker nodes Flink provides the lowest latency and hence the best per-
formance in both applications. The reasoning behind this excellence is the message 
passing mechanism of Flink which trades more network usage at a benefit of better 
CPU utilization. For small-scale cluster the extra CPU power that is saved by efficient 
message passing is consumed by the processing components and hence, the latency 
is decreased. By increasing the number of worker nodes Storm latency is reduced 
almost linearly, but Flink latency decrement is lighter and does not scale as expected; 
insofar as, for a cluster of 8 worker nodes Storm and Flink result almost equal perfor-
mance. In the larger clusters we have more inter-node communications and the net-
work utilization becomes more valuable parameters. Although, the massage passing 

a b
Fig. 19  Resource usage for both Advertising and Model Training applications running on 8 worker nodes



Page 21 of 24Nasiri et al. J Big Data            (2019) 6:52 

of Flink benefits from better CPU utilization but it worsens the network utilization 
which increases the processing latency. Spark Streaming, always has much higher 
latency, but its latency scales better than Flink by increasing size of the cluster, how-
ever not as well as Storm.

From these results, we conclude that while the network resources do not get bot-
tleneck Flink provides more stable response time and its 99th percentile latency 
value says it is better solution for real-time applications. On the other hand, Spark 
Streaming latency strongly depends on the input rate. It would not be good choice 
for application with variable data load like network monitoring, but a good selection 
to achieve high-throughput when latency is not as important as throughput. With 
acking disabled, Storm has better performance and provides more reliable response 
time at high throughput. However, in this conditions the ability to handle failures is 
disabled.

From the application perspective it is ideal to predict the certain behavior of stream-
ing applications on different frameworks according to their category. Using these 
information, we can determine which framework better suits each category of appli-
cations. Table  2 represents a categorization of most popular streaming workloads. 
An ETL application is a process consists of cleaning or correcting the data, retrieving 
data from the sources, transforming data into a usable format and finally transmitting 
data to the consumers. An executing machine learning algorithm on streaming data is 
called Stream ML. A CEP application combines data from multiple sources to identify 
events or patterns. An IVP application is a process consists of some operations, per-
forming on an image or a frame of an incoming video.

As our experiments show there are some trade-off to choose the proper frame-
work for each category of applications. For example, an ETL application may has the 
least latency on Storm but Spark Streaming provides more processing throughput. In 
another case may Flink process a single tuple much faster than Storm but when the 
data arrival rate or cluster size are changed, Storm passes Flink.

So, regardless to the category of applications there are several parameters such as 
data arrival rate, cluster size, tuple size and data type [43] which severely effect differ-
ent performance metrics. Further, giving a recommendation for a framework per each 
category can vary depending on the desired metric. Nevertheless, we made a recom-
mendation for a specific framework per each category in Table 2 based on the main 
characteristics of the applications in each category. In this table, for each category we 
have specified which framework provides the best results in general terms.

Overall, each of the frameworks studied here have their advantages and disad-
vantages. Our experiments show Storm and Flink have very similar performance, 
and Spark Streaming, has much higher latency, while it provides higher throughput. 

Table 2  Framework recommendation for different streaming application categories

Category Description Recommended framework

ETL Extract, transform and load Storm, Spark Streaming

Stream ML Stream machine learning Spark Streaming

CEP Complex event processing Flink

IVP Image and video processing Storm



Page 22 of 24Nasiri et al. J Big Data            (2019) 6:52 

However, Flink behaves very well at small-scale clusters but it has poor scalability and 
loses the competition on the large-scale clusters.

Conclusion and future works
Collections of large amount of IoT devices and objects are producing huge amount of 
data in Smart Cities which requires being processed immediately. Big Data analytics 
tools have the capacity to handle large volumes of data generated from IoT devices that 
create a continuous stream of information. There are plenty of Big Data processing plat-
forms which are designed for special purposes. At the age of IoT and Smart Cities it is 
interesting to compare the behavior of available distributed stream processing frame-
works and examine the applicability of employing them to process high volume of data 
generated in Smart Cities.

In this paper we made a deep comparison between three most popular frameworks, 
namely Apache Storm, Apache Flink, and Spark Streaming to show that which platform 
is suitable for what kind of streaming application. In our experiments we focused on 
evaluating the performance of intended frameworks in terms of latency, and throughput. 
We also evaluated the scalability (in terms of data arrival rate and the number of cluster 
nodes), and resource utilization of these frameworks using two benchmark applications 
from real world.

In addition to further consideration for resource utilization, we like to take into 
account the processing guarantees and fault tolerance. We also like to include other 
stream processing frameworks like Apache Heron and Apache Samza.

Abbreviations
IoT: Internet of Things; DSPF: distributed stream processing framework; RFID: Radio Frequency IDentification; HDFS: 
Hadoop Distributed File System; API: application programming interface; DB: database; JSON: JavaScript Object Notation; 
DAG: directed acyclic graph; ETL: extract, transform, load; CEP: Complex Event Processing; ML: machine learning; IVP: 
Image and Video Processing.

Acknowledgements
The authors thanks reviewers for valuable feedback on an early draft of this manuscript.

Authors’ contributions
HN performed the primary work and analysis of this manuscript and designed the experiments. HN and SN performed 
experiments and analyzed the observed results and co-wrote the paper. MG supervised the research. All authors read 
and approved the final manuscript.

Funding
This work is partially supported by the Iran National Science Foundation (INSF), under Grant Number 96015834.

Availability of data and materials
The data used in this paper are publicly online available at [41] and [44]. The link for the same is mentioned in the “Refer-
ences” section.

Competing interests
The authors declare that they have no competing interests.

Received: 20 February 2019   Accepted: 3 June 2019

References
	1.	 Agarwal S. 2016 state of fast data and streaming applications survey. https​://www.opscl​arity​.com/2016-state​-fast-

data-strea​ming-appli​catio​ns-surve​y/. Accessed 12 Oct 2017.
	2.	 Díaz M, Martín C, Rubio B. State-of-the-art, challenges, and open issues in the integration of internet of things and 

cloud computing. J Netw Comput Appl. 2016;67:99–117.

https://www.opsclarity.com/2016-state-fast-data-streaming-applications-survey/
https://www.opsclarity.com/2016-state-fast-data-streaming-applications-survey/


Page 23 of 24Nasiri et al. J Big Data            (2019) 6:52 

	3.	 Zhu C, Zhou H, Leung VC, Wang K, Zhang Y, Yang LT. Toward big data in green city. IEEE Commun Mag. 
2017;55(11):14–8.

	4.	 Chen F, Deng P, Wan J, Zhang D, Vasilakos AV, Rong X. Data mining for the internet of things: literature review and 
challenges. Int J Distrib Sens Netw. 2015;11(8):431047.

	5.	 Guo Y, Rao J, Jiang C, Zhou X. Moving hadoop into the cloud with flexible slot management and speculative execu-
tion. IEEE Trans Parallel Distrib Syst. 2017;3:798–812.

	6.	 Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
	7.	 Goudarzi M. Heterogeneous architectures for big data batch processing in mapreduce paradigm. IEEE Trans Big 

Data. 2017. https​://doi.org/10.1109/TBDAT​A.2017.27365​57.
	8.	 Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, Jackson J, Gade K, Fu M, Donham J, et al. Storm@

twitter. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data. New York: 
ACM; 2014. p. 147–56.

	9.	 Zaharia M, Das T, Li H, Shenker S, Stoica I. Discretized streams: an efficient and fault-tolerant model for stream pro-
cessing on large clusters. HotCloud. 2012;12:10.

	10.	 Katsifodimos A, Schelter S. Apache flink: stream analytics at scale. In: 2016 IEEE international conference on cloud 
engineering workshop (IC2EW). New York: IEEE; 2016. p. 193.

	11.	 Wilmoth J. 2018 revision of the world urbanization prospects. https​://popul​ation​.un.org/wup/Publi​catio​ns/Files​/
WUP20​18-Press​Relea​se.pdf. Accessed 02 Mar 2019.

	12.	 Hashem IAT, Chang V, Anuar NB, Adewole K, Yaqoob I, Gani A, Ahmed E, Chiroma H. The role of big data in smart 
city. Int J Inf Manag. 2016;36(5):748–58.

	13.	 Shirer M, Rold SD. Worldwide semiannual smart cities spending guide. https​://www.idc.com/getdo​c.jsp?conta​inerI​
d=prUS4​35767​18. Accessed 11 Feb 2018.

	14.	 Apache hadoop. https​://hadoo​p.apach​e.org/. Accessed 02 June 2018.
	15.	 Apache spark: Lightning-fast unified analytics engine. https​://spark​.apach​e.org/. Accessed 02 June 2018.
	16.	 Apache storm. http://storm​.apach​e.org/. Accessed 02 June 2018.
	17.	 Apache flink: Stateful computations over data streams. https​://flink​.apach​e.org. Accessed 02 June 2018.
	18.	 Nasiri H, Nasehi S, Goudarzi M. A survey of distributed stream processing systems for smart city data analytics. In: 

Proceedings of the international conference on smart cities and internet of things. New York: ACM; 2018. p. 12.
	19.	 Hesse G, Lorenz M. Conceptual survey on data stream processing systems. In: 2015 IEEE 21st international confer-

ence on parallel and distributed systems (ICPADS). New York: IEEE; 2015. p. 797–802.
	20.	 Singh MP, Hoque MA, Tarkoma S. A survey of systems for massive stream analytics; 2016. arXiv preprint arXiv​

:1605.09021​.
	21.	 Kamburugamuve S, Fox G, Leake D, Qiu J. Survey of distributed stream processing for large stream sources. 2013. 

https​://schol​ar.googl​e.com/schol​ar?hl=en%26as_sdt=0%2C5%26q=Surve​y+of+distr​ibute​d+strea​m+proce​ssing​
+for+large​+strea​m+sourc​es%26btn​G=.

	22.	 Kamburugamuve S, Fox G. Survey of distributed stream processing. Bloomington: Indiana University; 2016.
	23.	 Pääkkönen P, Pakkala D. Reference architecture and classification of technologies, products and services for big data 

systems. Big Data Res. 2015;2(4):166–86.
	24.	 Singh D, Reddy CK. A survey on platforms for big data analytics. J Big Data. 2015;2(1):8.
	25.	 Tsai C-W, Lai C-F, Chao H-C, Vasilakos AV. Big data analytics: a survey. J Big Data. 2015;2(1):21.
	26.	 Inoubli W, Aridhi S, Mezni H, Maddouri M, Nguifo EM. An experimental survey on big data frameworks. Fut Gener 

Comput Syst. 2018;86:546–64.
	27.	 Veiga J, Expósito RR, Pardo XC, Taboada GL, Tourifio J. Performance evaluation of big data frameworks for large-scale 

data analytics. In: 2016 IEEE international conference on Big Data (Big Data). New York: IEEE; 2016. p. 424–31.
	28.	 Hirzel M, Soulé R, Schneider S, Gedik B, Grimm R. A catalog of stream processing optimizations. ACM Comput Surv 

CSUR. 2014;46(4):46–50.
	29.	 Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, et al. Apache 

spark: a unified engine for big data processing. Commun ACM. 2016;59(11):56–65.
	30.	 Oliver AC. Storm or spark: choose your real-time weapon. http://www.infow​orld.com/artic​le/28548​94/appli​catio​

n-devel​opmen​t/spark​-and-storm​-for-real-time-compu​tatio​n.html. Accessed 01 Feb 2018.
	31.	 Hunt P, Konar M, Junqueira FP, Reed, B. Zookeeper: wait-free coordination for internet-scale systems. In: USENIX 

annual technical conference, vol. 8, Boston, MA, USA; 2010.
	32.	 Introduction to heron. https​://strea​ml.io/blog/intro​-to-heron​. Accessed 10 Apr 2018.
	33.	 Kulkarni S, Bhagat N, Fu M, Kedigehalli V, Kellogg C, Mittal S, Patel JM, Ramasamy K, Taneja S. Twitter heron: stream 

processing at scale. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data. 
New York: ACM; 2015. p. 239–50.

	34.	 Apache kafka: a distributed streaming paltform. http://kafka​.apach​e.org/. Accessed 02 June 2018.
	35.	 Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R, Graves T, Lowe J, Shah H, Seth S et al. Apache 

hadoop yarn: Yet another resource negotiator. In: Proceedings of the 4th annual symposium on cloud computing. 
New York: ACM; 2013. p. 5.

	36.	 Apache samza: A distributed stream processing framework. http://samza​.apach​e.org/. Accessed 11 Aug 2018.
	37.	 Gorawski M, Gorawska A, Pasterak K. A survey of data stream processing tools. In: Czachórski T, Gelenbe E, Lent R, 

editors. Information sciences and systems 2014. Cham: Springer; 2014. p. 295–303.
	38.	 Kejariwal A, Kulkarni S, Ramasamy K. Real time analytics: algorithms and systems. Proc VLDB Endow. 

2015;8(12):2040–1.
	39.	 Zapletal P. Comparison of apache stream processing frameworks. Cakesolutions. http://www.cakes​oluti​ons.net/

teamb​logs/compa​rison​-of-apach​e-strea​mproc​essin​g-frame​works​-part-1. Accessed 12 Feb 2018.
	40.	 Kreps J, Narkhede N, Rao J et al. Kafka: A distributed messaging system for log processing. In: Proceedings of the 

NetDB; 2011. p. 1–7.
	41.	 Yehuda G. Yahoo streaming benchmarks. https​://githu​b.com/yahoo​/strea​ming-bench​marks​. Accessed 08 Oct 2017.

https://doi.org/10.1109/TBDATA.2017.2736557
https://population.un.org/wup/Publications/Files/WUP2018-PressRelease.pdf
https://population.un.org/wup/Publications/Files/WUP2018-PressRelease.pdf
https://www.idc.com/getdoc.jsp?containerId=prUS43576718
https://www.idc.com/getdoc.jsp?containerId=prUS43576718
https://hadoop.apache.org/
https://spark.apache.org/
http://storm.apache.org/
https://flink.apache.org
http://arxiv.org/abs/1605.09021
http://arxiv.org/abs/1605.09021
https://scholar.google.com/scholar?hl=en%26as_sdt=0%2C5%26q=Survey+of+distributed+stream+processing+for+large+stream+sources%26btnG=
https://scholar.google.com/scholar?hl=en%26as_sdt=0%2C5%26q=Survey+of+distributed+stream+processing+for+large+stream+sources%26btnG=
http://www.infoworld.com/article/2854894/application-development/spark-and-storm-for-real-time-computation.html
http://www.infoworld.com/article/2854894/application-development/spark-and-storm-for-real-time-computation.html
https://streaml.io/blog/intro-to-heron
http://kafka.apache.org/
http://samza.apache.org/
http://www.cakesolutions.net/teamblogs/comparison-of-apache-streamprocessing-frameworks-part-1
http://www.cakesolutions.net/teamblogs/comparison-of-apache-streamprocessing-frameworks-part-1
https://github.com/yahoo/streaming-benchmarks


Page 24 of 24Nasiri et al. J Big Data            (2019) 6:52 

	42.	 Shukla A, Chaturvedi S, Simmhan Y. Riotbench: an iot benchmark for distributed stream processing systems. Con-
curr Comput Pract Exp. 2017;29(21):4257.

	43.	 Ahmadvand H, Goudarzi M, Foroutan F. Gapprox: using gallup approach for approximation in big data processing. J 
Big Data. 2019;6(1):20.

	44.	 Brian D, Dan W. New york city taxi trip data. https​://datab​ank.illin​ois.edu/datas​ets/IDB-96108​43. Accessed 12 Apr 
2018.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://databank.illinois.edu/datasets/IDB-9610843

	Evaluation of distributed stream processing frameworks for IoT applications in Smart Cities
	Abstract 
	Introduction
	Smart City
	System architecture for Smart City

	Related work
	Programming model of stream processing
	Distributed stream processing frameworks
	Apache Storm
	Apache Flink
	Apache Spark
	Apache Heron
	Samza
	Akka
	Integration with message brokers

	Methodsexperimental
	Experimental setup
	Application benchmarks

	Evaluation
	Latency evaluation
	Throughput evaluation
	Load scalability
	Horizontal scaling
	Resource utilization

	Results and discussion
	Conclusion and future works
	Acknowledgements
	References




