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Abstract 

Social media can be a major accelerator of the spread of misinformation, thereby 
potentially compromising both individual well-being and social cohesion. Despite 
significant recent advances, the study of online misinformation is a relatively young 
field facing several (methodological) challenges. In this regard, the detection of online 
misinformation has proven difficult, as online large-scale data streams require (semi-)
automated, highly specific and therefore sophisticated methods to separate posts 
containing misinformation from irrelevant posts. In the present paper, we intro-
duce the adaptive community-response (ACR) method, an unsupervised technique 
for the large-scale collection of misinformation on Twitter (now known as ’X’). The 
ACR method is based on previous findings showing that Twitter users occasionally 
reply to misinformation with fact-checking by referring to specific fact-checking sites 
(crowdsourced fact-checking). In a first step, we captured such misinforming but fact-
checked tweets. These tweets were used in a second step to extract specific linguistic 
features (keywords), enabling us to collect also those misinforming tweets that were 
not fact-checked at all as a third step. We initially present a mathematical framework 
of our method, followed by an explicit algorithmic implementation. We then evalu-
ate ACR on the basis of a comprehensive dataset consisting of > 25 million tweets, 
belonging to > 300 misinforming stories. Our evaluation shows that ACR is a useful 
extension to the methods pool of the field, enabling researchers to collect online 
misinformation more comprehensively. Text similarity measures clearly indicated cor-
respondence between the claims of false stories and the ACR tweets, even though ACR 
performance was heterogeneously distributed across the stories. A baseline compari-
son to the fact-checked tweets showed that the ACR method can detect story-related 
tweets to a comparable degree, while being sensitive to different types of tweets: Fact-
checked tweets tend to be driven by high outreach (as indicated by a high number 
of retweets), whereas the sensitivity of the ACR method extends to tweets exhibiting 
lower outreach. Taken together, ACR’s capacity as a valuable methodological contribu-
tion to the field is based on (i) the adoption of prior, pioneering research in the field, (ii) 
a well-formalized mathematical framework and (iii) an empirical foundation via a com-
prehensive set of indicators.

Keywords:  Misinformation detection, Fake news detection, Twitter, Social media

*Correspondence:   
julian.kauk@uni-jena.de

1 Department of General 
Psychology and Cognitive 
Neuroscience, Friedrich Schiller 
University Jena, Am Steiger 3/1, 
07743 Jena, Thuringia, Germany
2 Institute of Medical Statistics, 
Computer and Data Sciences, 
Jena University Hospital, 
Bachstraße 18, Haus 1, 
07743 Jena, Thuringia, Germany
3 Michael Stifel Center Jena 
for Data-Driven and Simulation 
Science, Leutragraben 1, 
07743 Jena, Thuringia, Germany
4 German Center for Mental 
Health (DZPG), Site 
Jena-Magdeburg-Halle, 
Philosophenweg 3, 07743 Jena, 
Thuringia, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-024-00894-w&domain=pdf


Page 2 of 32Kauk et al. Journal of Big Data           (2024) 11:35 

Introduction
Social media has dramatically changed our information ecosystem, increasing the vol-
ume and speed of information flow exponentially. Despite several positive aspects of 
social media (e.g., connecting individuals across large physical distances, stimulating 
democracies by facilitating public discourse or serving (local) communities as common 
ground for communication; see, e.g., [2, 5, 68]), there are also negative side effects. Those 
range from reduced psychological well-being (e.g., due to cyberbullying or social media 
addiction; see, e.g., [5, 15, 36, 54]) to more broad, societal effects (e.g., disproportionally 
powerful social media companies, overaccelerated public discourse or formation of legal 
vacuums; see, e.g., [27, 39, 73]).

A major concern regarding social media, the spread of misinformation, has become a 
significant global challenge. Here, we understand misinformation as any kind of false or 
inaccurate information, regardless of the intent to deceive individuals (see, e.g., [85, 30]). 
Several events, including the 2016 US presidential election (see, e.g., [3, 9]), the COVID-
19 pandemic [34, 63, 76] and the evolving climate crisis [41, 44, 79] have taught us that 
underestimating this phenomenon may have substantial and unforeseeable conse-
quences. A growing body of research indicates that misinformation can adversely affect 
social cohesion, adherence to public health measures, integrity of democracies, or trust 
in elected representatives or the press (see [33, 58, 69, 76, 77]; but see also [83]). Scholars 
currently conclude that addressing the spread of misinformation requires multidiscipli-
nary, large-scale societal and research efforts (see, e.g., [37, 39]).

Social media play a determining role in the amplification of misinformation (see, e.g., 
[3, 4, 17, 37, 73]), thus challenging researchers to better understand the dynamics and 
mechanisms underlying the spread of misinformation, despite its complex and multifac-
eted nature [39, 40, 64]. Pioneering works on the diffusion of misinformation through 
social media have helped to improve our understanding of the mechanisms that likely 
underlie this phenomenon (see, e.g., [4, 25, 31, 37, 65, 82]), but the field is still con-
fronted with significant questions and (methodological) challenges: For instance, there 
is still no broadly accepted conceptual framework of terms related to the issue (see, e.g., 
[30, 85]), nor are there sophisticated answers to the relevant question of how common 
misinformation actually is [37] and what its short- and long-term effects are [83].

One reason for these gaps in knowledge is that there is thus far no broadly accepted 
pool of methods to collect and analyze online misinformation data. This point was 
raised by Camargo and Simon [14], who explicitly called for more methodological rigor 
in the field. Single-case studies and studies with selective and/or small datasets can yield 
important insights about certain phenomena, but may fail to provide robust and com-
prehensive evidence with predictive power concerning relevant research questions. 
Collecting representative and large-scale misinformation datasets can be considered a 
crucial prerequisite for the generation of knowledge, but this prerequisite is often vio-
lated in the field [82].

Several approaches have been proposed to detect misinformation on social media 
(for overviews, see, e.g., [55, 67, 85]), each focusing on different features of misinfor-
mation: techniques may exploit (i) content-based features (e.g., application of fact-
checking allows the credibility of a post to be scored; see, e.g., [67, 82]), (ii) style-based 
features of the posts (e.g., heavy use of adverbs; see, e.g., [1]) or (iii) the social context 



Page 3 of 32Kauk et al. Journal of Big Data           (2024) 11:35 	

(e.g., user profiles or reactions to the posts; see, e.g., [18, 32]). However, each approach 
is confronted with the challenge of avoiding overload with false positive posts. Overload 
reduction is particularly important when dealing with social data, as such data streams 
typically involve millions of posts being posted within days or even hours (in terms of 
Twitter, more than 200 million tweets per day were posted in some years [38]). Select-
ing posts supporting a misinformation story is therefore not trivial [67], and requires a 
sophisticated filtering of story-supporting posts from the immense body of irrelevant 
posts not concerning or not supporting this story.

Vosoughi et al. [82] proposed an approach to collect misinforming tweets on Twitter 
by exploiting both content-based features and the social context. This approach may be 
named the ’community-response approach’ and relies on the assumption that story-sup-
porting tweets are subsequently fact-checked by other users (crowdsourced fact-check-
ing) via replying (’reply’: comment to a tweet) tweets1 (Fig. 1, Stream 2, red ovals). Those 
fact-checking tweets often contain links to fact-checking sites; by searching for such 
links in replies, the original, story-supporting tweets can be identified (Fig. 1, Stream 2, 
light gray ovals).

Fig. 1  Our sketch of the (adaptive) community-response approach. Note that t  and r  stand for 
(story-supporting) tweet and reply, respectively. Here, tweets t1, t6 and t7 can be identified via fact-checking 
(’seen’ tweets). However, the community-response approach fails for t2, t3, t4, t5, t8 and t9 (’unseen’ tweets), 
because there were no fact-checking responses

1  Technically speaking, a tweet can also be fact-checked via a quoting tweet (’quote’: comment to a tweet while repeating 
the tweet). For ease of readability, we will refer to replies only.
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Even though the community-response approach represents a valuable method 
to collect misinforming tweets, it also comes with certain pitfalls, as it fails to detect 
story-supporting tweets that are not fact-checked at all during the dissemination of a 
story2 (Fig.  1, Stream 2, black ovals). Thus, the community-response approach prob-
ably neglects a substantial proportion of tweets supporting a story due to the absence 
of crowd fact-checking. Presumably, tweets that are not fact-checked play an important 
role, as there might be users who post story-supporting tweets without having any (criti-
cal) followers to correct them. Furthermore, the findings of Cinelli et al. [17], that Twit-
ter users tend to agglomerate within homogeneous clusters, may also have consequences 
for the validity of the community-response approach: If there are few or no critical users 
within a cluster, tweets probably remain in an unchecked state.

To fill this gap in methodology, we propose a method that should capture both crowd 
fact-checked tweets and tweets without any fact-check reply. More precisely, our 
approach aims to additionally detect the ’unseen’ tweets that were not fact-checked at 
all (Fig. 1, Stream 2, black ovals). Here, we refer to this novel approach as the adaptive 
community-response (ACR) method - a research method to automatically collect large-
scale datasets of misinforming tweets. The ACR method is inspired by the approach pro-
posed by Vosoughi et al. [82] but extends this approach substantially, as will be explained 
in the following sections. Initially, we will provide a mathematical framework of the ACR 
method. Next, we describe the implementation and finally, we evaluate our method on 
the basis of a large-scale tweet collection, consisting of more than 25 million tweets 
belonging to more than 300 misinformation stories.

Mathematical framework of the ACR method
As the ACR method is essentially concerned with binary classification, we initially pro-
vide the set-theoretical basics of the method. Subsequently, we describe the assumptions 
on which the method is based, followed by an explication of what is implicated by these 
assumptions.

Set‑theoretical basics

We consider a set of story-supporting tweets

where ti stands for the i th story-supporting tweet. We aim to collect as many tweets as 
possible that truly belong to T  , while minimizing the number of irrelevant tweets (tweets 
that do not belong to T  ). We assume that these irrelevant tweets belong to another set of 
tweets

where zi is the i th tweet not concerning the story. It holds that T ∩ Z = ∅.
The main problem in the context of tweet retrieval is the enormous number of com-

peting tweets in Z compared to T  , because the prevalence of T  is (often extremely) low. 

(1)T = {t1, t2, . . . , tn},

(2)Z = {z1, z2, . . . , zn},

2  Another scenario is that tweets might be fact-checked but without providing links to fact-checking sites. We refrained 
from taking this scenario into account in the interest of readability.
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Consequently, when searching Twitter for T  via a query, even a query that seems to have 
’high’ specificity can yield numerous false positives. An explicit model and example of the 
low prevalence problem is provided in Additional file 1 which provides supporting infor-
mation to improve understanding of the upcoming sections.

Any query qi passed to Twitter will yield a set of tweets, which can be decomposed into 
story-supportive (true positives; TP(qi) ) or irrelevant (false positives; FP(qi) ) tweets. Tweets 
that do not match the query can also be either story-supportive (false negatives; FN(qi) ) or 
irrelevant (true negatives; TN(qi) ). It holds that

The decomposition of matching ( Pos(qi) ) tweets is therefore given by

The number of tweets yielded by query qi is

Evaluating queries’ performance

To evaluate the performance of any query qi , we considered both recall and precision. 
Recall, reflecting the fraction of story-supporting tweets being detected, is given by

Precision is the fraction of story-supporting tweets yielded by qi and is given by

To keep data ’clean’, it makes sense to define a lower bound of precision. Here, we con-
sidered a query to be valid only if it holds that precision is equal to or greater than 0.9 . A 
corresponding indicator function is therefore given by

Thus, we consider data that contain less than 90% true positive tweets as so noisy that 
analyses would be inappropriate. This strict precision criterion may lead to a loss of 
recall, due to the precision-recall trade-off (see, e.g., [11]), which describes a negative 
relationship between recall and precision. At the same time, a decrease in recall may be 
considered to be ’acceptable’, as a story typically involves thousands of tweets, such that 
even a subset of them should be representative according to the law of large numbers.

(3)
TP(qi)∪̇FN(qi) = T and

TN(qi)∪̇FP(qi) = Z.

(4)Pos(qi) = TP(qi)∪̇FP(qi).

(5)
N (qi) = |Pos(qi)|

= |TP(qi)∪̇FP(qi)|

= |TP(qi)| + |FP(qi)|.

(6)Recall(qi) =
|TP(qi)|

|T |
.

(7)Precision(qi) =
|TP(qi)|

N (qi)
.

(8)Precise(qi) =

{

1 if Precision(qi) ≥ 0.9
0 otherwise.
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Assumptions

Assumption i: Content‑representativity

As illustrated in Fig.  1, Vosoughi et  al.’s approach can detect only a subset of T  , 
because not every story-supporting tweet is fact-checked. Accordingly, T  can be 
decomposed into two distinct subsets

where Ts is the part ’seen’ by the community-response-approach and Tu is the ’unseen’ 
part. The community-response-approach captures Ts , while Tu remains ’hidden’. The 
ACR method is based on the assumption that the ’seen’ tweets Ts are representative 
regarding the content of the ’unseen’ tweets Tu . This assumption might not hold under 
all circumstances (e.g., the language used in a homogeneous cluster could differ with 
regard to the hashtags and keywords that are used when spreading a story).

Assumption ii: Temporal specificity

Temporal specificity means that tweets supporting a story only occur in a specific 
time window. Accordingly, tweets before and after this time window by definition can 
not belong to the story. Figure 1 illustrates this idea: During the story period, there 
are both story-supporting tweets and unrelated (irrelevant) tweets (see Streams 1 and 
2). In the pre- and post-story period, by definition, only irrelevant tweets can occur. 
We introduce the following notations:

We assume that Ṫ� is nonzero and finite. We therefore explicitly assume that the story is 
’closed’, meaning that it is no longer present. This assumption may not perfectly resem-
ble real-world relationships, as a story could - in theory - reemerge at any time.

Assumption iii: Temporal homogeneity of irrelevant tweets

This assumption refers to the stream of irrelevant tweets (Stream 1 in Fig.  1) and 
means that the statistical properties of the irrelevant tweets are time-independent. 
Essentially, this means that the ’background noise’ does not change over time. Note 
that this is a very strict assumption, which might well be violated, for instance when 
general aspects of the public discourse change in the long-run or due to unpredicted 
global events (e.g., the emergence of a pandemic).

(9)T = Ts∪̇Tu,

(10)

Time point when ti was posted : ṫi,

Vector of tweets’ time points : Ṫ = (ṫ1, ṫ2, . . . , ṫn),

Onset of the story : Ṫ o = min(Ṫ ),

End of the story : Ṫ e = max(Ṫ ) and

Lifetime of the story : Ṫ� = Ṫ e − Ṫ o.
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Implications of these assumptions

Estimating queries’ recall

Under assumption i, it can be inferred that the number of matching tweets in Ts for a 
query qi is an estimator for recall of qi:

where f  stands for ’relative frequency’ and Tsqi
 refers to all tweets in Ts matching query 

( qi ⊆ Ts).

Estimating queries’ precision

From Eq. 4 we know that the tweets yielded by a query can be decomposed into true 
positives and false positives. As we assume that the story only occurs in a specific time 
window (Assumption ii), we can therefore also extend the equation to be bounded to a 
specific time window:

It therefore also holds that (under consideration of Eq. 5):

However, when we consider a baseline period bj , as defined by two points in time 
bj = (boj , b

e
j ) that do not fall into the story period ( boj , b

e
j ∈ {x|x < Ṫ o ∨ x > Ṫ e} ), and 

that has the same timespan as the story ( b�j = bej − boj = Ṫ� ), the results of a query can 
be decomposed according to:

Under the assumption of temporal specificity, it holds that TP(qi; boj , b
e
j ) = ∅ , because 

we assume that the extratemporal occurrence of true positives is impossible. Thus, it 
holds that

As assumption iii implies that the (statistical) properties of Z remain constant over time, 
the cardinality of FP(qi; boj , b

e
j ) should be an approximation of |FP(qi; Ṫ o, Ṫ e)|:

(11)
̂Recall(qi) = f (Ts; qi)

=
|Tsqi

|

|Ts|
,

(12)
Pos(qi) = Pos(qi; Ṫ

o, Ṫ e)

= TP(qi; Ṫ
o, Ṫ e)∪̇FP(qi; Ṫ

o, Ṫ e).

(13)
N (qi) = N (qi; Ṫ

o, Ṫ e)

= |TP(qi; Ṫ
o, Ṫ e)∪̇FP(qi; Ṫ

o, Ṫ e)|

= |TP(qi; Ṫ
o, Ṫ e)| + |FP(qi; Ṫ

o, Ṫ e)|.

Pos(qi; b
o
j , b

e
j ) = TP(qi; b

o
j , b

e
j )∪̇FP(qi; b

o
j , b

e
j )

(14)
Pos(qi; b

o
j , b

e
j ) = ∅∪̇FP(qi; b

o
j , b

e
j )

= FP(qi; b
o
j , b

e
j ).

(15)
̂|FP(qi; Ṫ o, Ṫ e)| = |FP(qi; b

o
j , b

e
j )|

= |Pos(qi; b
o
j , b

e
j )|.
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Consequently, after solving Eq. 13 for |TP(qi; Ṫ o, Ṫ e)| , we can obtain an estimation for 
the number of true positives, as N (qi; Ṫ

o, Ṫ e) is known and |FP(qi; Ṫ o, Ṫ e)| is estimable:

The precision of query qi can therefore be estimated via

Consequently, we are able to estimate both the recall and precision of a query (under 
assumptions i-iii). This means that we can evaluate any query in terms of its perfor-
mance and select the best queries according to Eq. 8.

Implementing the ACR method
The following paragraphs explain in greater detail how we implemented the ACR 
method. If not indicated otherwise, we used PYTHON (version 3.10.2) for data retrieval 
and analyses.

General methodological information

Data collection tools

Twitter allowed researchers until March 2023 to collect up to 10 million tweets per 
month via the Academic Research product track (see [78]). Tweets can be requested 
via the full history search endpoint, which returns all the tweets (in a specified time 
period) matching a specific query. These queries are keyword-based, meaning that the 
query OBAMA WHITE HOUSE will match all tweets containing OBAMA, WHITE 
and HOUSE. There is, however, also an endpoint option that simply outputs the number 
of matching tweets for a query (Tweets count endpoint), without retrieving the tweets 
itself (see [80]). We used the library TWEEPY (version: 4.6; see [62]) to fetch Twitter 
data via the Twitter application programming interface (API).

We only considered English tweets; thus, when requesting the Twitter API, we always 
attached the LANG:EN command to the query. We defined a general time window of 
interest starting from January 01, 2007, until October, 31, 2022. This means that we con-
sidered Twitter activity in a time window of almost 15 years, representing a comprehen-
sive time period including various global and local historical events.

Tweet preprocessing

We preprocessed the collected tweets by removing unfavorable characters to obtain 
standardized, usable tweets. We removed URLs, several irregular characters (regular 
expression of allowed characters: [A-ZA-Z0-9) and transformed the tweet to lower-
case. We decided to keep mentions (@) and hashtags (#) in the tweets (but without 

(16)
̂|TP(qi)| = N (qi; Ṫ

o, Ṫ e)− ̂|FP(qi; Ṫ o, Ṫ e)|

= N (qi; Ṫ
o, Ṫ e)− |Pos(qi; b

o
j , b

e
j )|.

(17)

̂Precision(qi) =
T̂P(qi)

N (qi)

=
N (qi; Ṫ

o, Ṫ e)− |Pos(qi; b
o
j , b

e
j )|

N (qi; Ṫ o, Ṫ e)
.
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@ and #), as they are often integral to the tweets’ sentences (e.g., replacing Trump 
with @realdonaldtrump).

Retrieval of stories and their fact‑checks

Twitter users rely on different fact-checking pages to validate tweets, mainly depend-
ing on the topic of the respective story. To keep things simple, we only considered 
two major fact-checking pages (Snopes and PolitiFact; see [57, 71]) We selected 
these pages because they are known to (i) be highly prevalent on Twitter, (ii) propose 
clear and quantifiable verdicts about the checked stories [67, 87] and (iii) conduct 
independent and high-quality fact-checking. Both sites were also used by [82]; they 
predominantly fact-check stories related to the US [19].

We relied on the ClaimReview system, which is a tagging system for fact-check-
ing organizations to flag their fact-checks for search engines and social network-
ing services (see [20]). Based on this system, Google built the Google Fact Check 
Tool API (see [24]), which provides access to a relatively comprehensive database of 
fact-checks of several fact-checking sites (including our sites of interest) in a stand-
ardized, JSON-based form. Importantly, this API provides, alongside the link of the 
fact-checking article, information about (i) the claim that is examined in the fact-
check, (ii) the textual verdict of the fact-checkers and (iii) who started the claim. In 
accordance with Vosoughi et al., we mapped the textual ratings to a five-level Likert 
scale, ranging from heavily false ( ≡ 1 ) to mixed ( ≡ 3 ) to completely correct ( ≡ 5 ). 
We only considered false ( ≡ 2 ) and heavily false ( ≡ 1 ) stories.

Fig. 2  A simplified story processing pipeline of the ACR method. Please note that processes before (e.g., 
retrieval of stories and their fact-checks) and after (i.e., Evaluation of the tweets) this pipeline are not shown, 
but are presented in the main text
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Story processing pipeline

The following sections describe how each of the stories retrieved via the ClaimReview 
system was processed to collect tweets related to the respective story. To better repre-
sent this algorithm, the reader is referred to Fig. 2.

Retrieval of fact‑checked tweets Ts
Retrieval of fact-checking tweets. Subsequently, we searched Twitter for replies and 
quotes (command: IS:REPLY OR IS:OUOTE) containing links to the stories evaluated by 
our fact-checking pages via the URL: command. This allowed us to collect fact-checking 
tweets and to assign these tweets to specific stories. We resolved links in advance, mean-
ing that we identified other links circulating on Twitter pointing toward fact-checking 
articles. This was necessary, as one and the same fact-checking article may be reached 
via different links (due to, e.g., migration of the content management system). We used 
the GET function of the REQUESTS library for link resolving.

Retrieval of fact-checked tweets. We subsequently used the fact-checking tweets and 
their REFERENCED_TWEETS  field (see [81]) to retrieve the parent tweets, i.e., the 
fact-checked tweets. In accordance with Vosoughi et al., we excluded parent tweets that 
(i) were not in English or (ii) themselves contained a link to a fact-checking page. We 
slightly diverged from Vosoughi et al.’s approach by also taking into account tweets that 
are not first level, i.e., we also considered replies to replies. This allowed us to capture 
more data, aiming to increase the accuracy of the ACR method. Analyses were stopped 
whenever the number of fact-checked tweets fell below n = 30.

Feature extraction from Ts and creation of (limited) power sets

The fact-checked tweets Ts were subsequently used to build a vocabulary, enabling us 
to identify keywords (or keyword combinations) that are sensitive regarding the respec-
tive story (according to Eq. 11). We considered uni-, bi- and trigrams, although the pre-
processing methods differed slightly between both unigrams and bi- and trigrams (see 
upcoming sections). N-grams had to occur in at least 5% of the tweets, but at least three 
times, to remove insignificant features.

Unigrams. We initially removed stopwords (taken from NLTK.CORPUS) and per-
formed word stemming (using the  PORTERSTEMMER from NLTK.STEM; for the 
NLTK library, see [8]). Both steps were mandatory, as (i) stopwords are extremely unspe-
cific and (ii) tweets may contain (many) inflected words with the same word stem. Twit-
ter API, however, does not allow searching for word stems (e.g., GET*), so instead we 
searched for all the collected inflected words by combining them disjunctively (e.g., 
GETS OR GETS  OR GETTING). We then used the COUNTVECTORIZER function 
(from SKLEARN.FEATURE_EXTRACTION.TEXT.text; see [53]) with the parameter 
BINARY = TRUE to build the vocabulary for the unigrams, resulting in a matrix of uni-
grams’ occurrence.

Bi- and trigrams. Different from the procedure for the unigrams, we did not per-
form (initial) stopword removal or word stemming, because we wanted to maintain 
the ’genuineness’ of the phrases used. Thus, we passed the tweets directly to the  
COUNTVECTORIZER function (again, BINARY = TRUE) to build the vocabulary 
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for bi- and trigrams. However, we removed bi- and trigrams that started or ended 
with a stopword (as suggested by [21]). We performed exact phrase matching for bi- 
and trigrams, meaning that the queries passed to the Twitter API would only match 
tweets containing the full phrase (e.g., OBAMA IS INJURED).

Union of vocabularies and creation of (limited) power sets. Finally, we combined 
the unigrams’ vocabulary with the vocabulary for bi- and trigrams. We ordered the 
n-grams according to their relative frequency and considered only the 50 most fre-
quent n-grams (subsequently denoted as features F  ) for further analyses. Execution 
was cancelled if fewer than ten features were extractable.

We subsequently created power sets of limited cardinality Pk(F) for the extracted 
features using the COMBINATIONS function of the ITERTOOLS library. We consid-
ered subsets up to a cardinality of k = 4 , meaning that a query passed to the Twitter 
API could contain up to four (conjunctively combined) features (e.g., “white house” 
obama explosions injured). A cardinality of k = 4 was chosen because creation 
of subsets with higher cardinality turned out to be computationally demanding (due 
to the high number of possible combinations), and because queries with more than 
four features may be too specific to fetch a useful number of tweets. We removed uni-
gram subsets with k = 1 (e.g., OBEMA), since single words are rarely specific enough 
regarding the respective story. We subsequently computed the relative frequency 
(being an estimator for recall, see Eq. 11) of each subset in the fact-checked tweets Ts 
and ordered the subsets in descending order.

Estimating stories’ lifetime

As stated previously, the ACR method assumes that any story only occurs in a spe-
cific time period. Theoretically, the onset of the story Ṫ o should correspond to the 
first tweet spreading the story, while the end of the story Ṫ e can be defined as the 
last tweet supporting the story. As we do not precisely know when these tweets were 
posted, we had to estimate both the onset and the end of the story. For both estima-
tions, we relied on temporal information provided by the set of fact-checked tweets Ts

.
Estimation of the onset was performed by using the time point of the first tweet in 

Ts ( ̇To
s  ) as a first guess for Ṫ o . It is, however, reasonable to assume that fact-checking 

requires a certain amount of time to be conducted, implying that there might be a lag 
between Ṫ o

s  and Ṫ o . Consequently, Ṫ o was estimated via

while �← stands for the backward buffer, as given by �← = 60 days . We therefore 
assumed that the true onset of the story could be up to 60 days before the first fact-
checked tweet was posted (backward buffer), giving both fact-checkers and users a rea-
sonable amount of time to conduct and spread fact-checking.

Estimating the end of a story is arguably even more difficult. First, a story may never 
completely ’die out’, but becomes so infrequent that it can be considered terminated. 
Determining this point of factual end may be challenging. Second, Ṫ e

s  might not be a 

(18)̂Ṫ o = Ṫ o
s −�←,
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good estimator for Ṫ e , as a story may reappear multiple times on Twitter (see [66]), 
but potentially not implicitly accompanied by community fact-checking responses. To 
take both points into account, we estimated Ṫ e via

where Q0.95(Ṫs) stands for the 95th percentile of Ts and �→ for the forward buffer, as 
given by �→ = Q0.95(Ṫs)− Ṫ o

s  . Q0.95(Ṫs) was used to determine the factual end of the 
fact-checked tweets, therefore also resembling the end of fact-checking efforts. As this 
time point may not correspond to the factual end of the story, we added a forward buffer 
by simply doubling the timespan. Equation  20 should therefore account both for the 
problem of identifying a factual end and for the (potential) problem of reoccurring mis-
information (without fact-checking responses). We restricted the maximum observation 
period to 365 days, as the ACR method may work less efficiently when considering very 
long time periods (as temporal specificity then may be weakened).

Selecting baseline periods and precision thresholds

To estimate queries’ precision, we had to perform the queries in extratemporal time peri-
ods. According to Eq. 14 and 16, the cardinality of extratemporal queries should estimate 
the number of false positives. However, these equations are derived from assumptions ii 
(temporal specificity) and iii (homogeneity of irrelevant tweets) and may not hold under 
all circumstances. In particular, assumption iii may prove to be too strict for the ’real’ 
Twitter world, as public discourse may change slowly or rapidly due to societal change 
or sudden (global) events (e.g., the onset of a pandemic). Such a violation of assumption 
iii arguably leads to an underestimation of the number of false positives and, vice versa, 
to precision overestimation. To compensate for this, we used (i) relatively strict precision 
thresholds, (ii) multiple baseline periods and (iii) penalties for the precision thresholds if 
not all baseline periods were accessible.

Baseline periods

Using multiple baseline periods may be considered the most effective tool in address-
ing violation of assumption iii, as they increase the likelihood that at least one of them 
validly reproduces the background noise during the story period. We considered up 
to n = 4 baseline periods (but at least two), depending on whether these periods were 
available (a baseline period may be not available because Twitter was, for instance, not 
launched at this time). A baseline period bj is defined via two points in time boj  and bej  , 

both extratemporal and with the same duration as the story (we used ̂Ṫ� =
̂Ṫ e −

̂Ṫ o to 
estimate the duration). Table  1 shows the relevant baseline periods and explains why 
they were used.

Precision thresholds and penalties

To keep data ’clean’, we used the precision threshold defined in Eq. 8, which means that 
queries with a precision smaller than 0.9 were not considered. To address potential vio-
lations of assumption iii, we decided to differentiate precision thresholds for the single 

(19)̂Ṫ e = Q0.95(Ṫs)+�→,
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baseline periods ( Precision(qi; bj) ) as well as for the overall precision, which is defined 
as the mean of all single baseline periods. Both Precision(qi; bj) and the overall precision 
are estimators for the true precision Precision(qi).

We defined that queries had to be at least 90% precise for single baseline periods, while 
the overall precision had to be even greater, with at least 95% . The application of such 
strict criteria presumably ensures that even if assumption iii is somewhat violated, the 
queries should nevertheless be sufficiently precise.

Additionally, we also applied precision penalties, depending on the number of avail-
able baseline periods. We performed this step because it is reasonable to assume that 
precision estimations are more likely to be biased if not all baseline periods are available. 
We used a geometric series to represent the penalty, by halving the distance to the maxi-
mum precision of 1 with a missing baseline period3.

Query identification and data retrieval

We used an iterative procedure to identify queries that could detect story-supporting 
tweets. Even though we only considered a limited power set of keyword combinations, 
the number of possible combinations was expected to be high. As certain Twitter API 
endpoints have limited numbers of requests per time unit (usually 15 min), we tested 
only a subset of all possible queries. We used the Tweet counts endpoint (as mentioned 

Table 1  Summary of the four baseline periods and the story period (in chronological order)

For all baseline periods, it holds that: bej − boj =
̂Ṫ�

j Name Description Onset and end

1 b1 : Four years pre-story period Since many fact-checks concerned the 
US (elections), this baseline period should 
represent a possible election period (a 
term lasts four years in the US).

b
o
1 =

̂

Ṫ o − 4 years

b
e
1 =

̂

Ṫ e − 4 years

2 b2 : Two years pre-story period This baseline period was used to account 
for seasonality, meaning that it would 
compensate for false positives that only 
occur due to seasonal effects.

b
o
2 =

̂

Ṫ o − 2 years

b
e
2 =

̂

Ṫ e − 2 years

3 b3 : Close pre-story period This baseline period was located as 
close as possible before the onset of the 
story (but, ideally, without overlapping). 
This reduces the likelihood of violating 
assumption iii, as ample changes in public 
discourse arguably occur less often in a 
shorter time period.

b
e
3 =

̂

Ṫ o − 30 days

b
o
3 = b

e
3 −

̂

Ṫ�

– Story period s Time period where the story spread. 
Everything before and after this period is 
considered to be extratemporal.

Onset: ̂Ṫ o End: ̂Ṫ e Duration: ̂Ṫ�

4 b4 : Post-story period This baseline period was located after 
the (estimated) end of the story. It should 
compensate for very sudden changes in 
public discourse, which cannot be cap-
tured by pre-story periods.

b
o
4 =

̂

Ṫ e + 1
4
·�→ be4 = b

o
4 +

̂

Ṫ�

3  The penalty is formally defined as Penalty(B) =
∑4−|B|

n=1 (
1
2
)
n · (1− Threshold) . Threshold and B stand for the respective 

threshold (either 0.9 or 0.95 ) and the set of available baseline periods (e.g., B = {b1, b2, b3} ), respectively.
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in Section 3.1.1) to determine the number of tweets matching our queries. Testing only 
a subset of queries is reasonable, as it reduces the risk of selecting false positive queries. 
We tested at maximum 50 queries per story (attempts), ordered by (estimated) recall 
(decreasing). If a query was considered to be valid (according to Eq. 8, and under con-
sideration of precision penalties), it was stored as a valid query. We then continued to 
search for more queries satisfying the criteria, but reduced the number of attempts per 
round (according to a geometric series). This procedure of early stopping was imple-
mented to reduce the risk of false-positive queries. If the algorithm identified multiple 
valid queries, those were combined disjunctively (OR operator) to increase recall. We 
performed query concatenation only if it led to measurable increase of query perfor-
mance, as indicated by F0.54. When a query consists of multiple, disjunctively combined 
queries, we denote them as subqueries.

Finally, we conducted a full-archive search to retrieve matching tweets. Due to a hard 
limit of 10 million tweets per month, we performed tweet sampling if the number of 
tweets matching a query exceeded 100k . The number of matching tweets |Pos(qi)| was 
again determined by the Tweet counts endpoint; subsequently, we calculated a down-
sampling coefficient, as given by α = 100k

|Pos(qi)|
 . This coefficient was then used to deter-

mine the number of tweets that should be retrieved for every single day of the story 
period, thereby maintaining representativity.

Evaluation
To evaluate the ACR method, we considered a set of indicators, which will be explained 
in further detail in the following sections. Those indicators were deducible from the pro-
posed mathematical framework and contribute to validating the ACR method. Initially, 
however, we present a set of descriptive statistics to objectively characterize our dataset.

Descriptive statistics

Our dataset consisted of 7091 stories that were either fact-checked by Snopes ( 2097 sto-
ries), PolitiFact ( 4981 stories) or both ( 13 stories). A majority of these stories ( N = 5488 ) 
had a verdict score of 1, meaning that they were considered to be heavily false, while the 
remaining stories had a verdict score of 2 (false stories; N = 1603 ). Most stories were 
concerned with the United States and its politicians (see Additional file  2 Fig.  1), but 
such a large dataset arguably covers a diverse set of topics.

Replies

It is important to note that probably only a minority of these stories played a signifi-
cant role on Twitter: Links to the respective fact-checking sites were found in 2.07 · 105 
replies, with an average of 29.22 replies per story. Importantly, we found that the dis-
tribution of the number of replies was highly right-skewed, which was also expressed 
by the median Md = 4 , as well as by the fact that 1589 stories ( 22.41% ) did not occur 

4  Fβ is a measure which takes into account both recall and precision (see, e.g., [29]), where β controls how much weight 
is given to recall and precision. In the context of tweet retrieval, it makes sense to weight precision more heavily due to 
the outlined low prevalence problem. A common approach is to weight precision as twice as important as recall, corre-
sponding to β = 0.5 . Fβ is then given by F0.5(qi) = 5

4
·

Precision(qi )·Recall(qi )
1
4 ·Precision(qi )+Recall(qi )

.



Page 15 of 32Kauk et al. Journal of Big Data           (2024) 11:35 	

in any reply. This is also expressed in Fig. 3a, which reflects the log10-transformed dis-
tribution of the number of replies per story. Despite this transformation, the distribu-
tion remains substantially right-skewed. We also found that stories checked by Snopes 
were more frequently mentioned ( 33.18 replies on average) than stories checked by 
PolitiFact ( 27.52 replies on average). This was also confirmed by a Mann–Whitney U 
test ( U = 5493496, p = 5.11 · 10−4, two− tailed ). We also observed that significant ini-
tial fact-checking efforts on Twitter coincided with the 2016 US presidential election, as 
shown in Fig. 3b. This figure also indicates that fact-checking remained prevalent in the 
following years, with a peak in 2020, possibly due to the emergence of COVID-19 and 
the 2020 US presidential election.

Story selection

To ensure the quality of the retrieved tweets, we applied a set of exclusion criteria (see 
Methods section). A key reason for deselecting stories was, as stated previously, that 
many stories played only a negligible role on Twitter, as indicated by a low prevalence 
of fact-checking. However, even when a query selection process was initiated, only in 
56.58% of the cases the ACR method also identified a valid query. The exclusion process 

Fig. 3  Relevant distributions of our dataset. Please note the following points: First, we performed kernel 
density estimations (KDEs (kernel density estimations (KDEs; bandwidth selection according to Scott’s rule) 
to approximate the underlying probability density functions. Second, the dashed line and the colored 
area reflect the median and the interquartile range (IQR), respectively. Third, the full dataset, i.e., before 
story exclusion (see Additional file Table view, Fig. 2), was used for panels a and b. a KDE of the number 
of replies per story; the x-axis was log10(x + 1)-transformed. b Time series (KDE-approximated) of all 
replies ( N = 2.07 · 105 ) c KDE of the number of fact-checked tweets per story; the x-axis is log10(x + 1)

-transformed. d, e KDEs of Recall d and Overall Precision e. Note that these measures are estimates. The 
density evaluation was restricted to [0, 1] . f KDE of the number of matching tweets. These data were accessed 
via the Tweet count endpoint, and that the number of retrieved tweets for a given story might be lower due 
to downsampling. g Time series (KDE-approximated) of all retrieved tweets ( N = 2.69 · 107 ). h KDE of the 
estimated story duration. The density evaluation was restricted, as we limited the observation period to 1 
year
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(see Additional file 2 Fig. 2 for the detailed exclusion flowchart) finally collected tweets 
of 348 stories (out of 7091 ), corresponding to a dropout rate of 95.09% . This low success 
rate of 4.91% indicates that the ACR method is relatively strict in terms of data selection.

It is important to note that a considerable number of the stories likely did not spread 
on Twitter to a substantial degree, as indicated by the low median number of replies 
containing fact-checks (see above). We therefore also quantified the success rate of the 
ACR method under consideration of the effective dissemination of the stories, therefore 
reflecting the capability of the ACR method to retrieve tweets from stories which pre-
sumably attracted public attention. We used the number of fact-checking replies as a 
proxy for the public attention towards a story, assuming that a higher number corre-
sponds to higher public attention. We found a slight improvement of the success rate 
( 3485502 = 6.325% ) when only considering stories which were fact-checked at least once 
( Replies ≥ 1 ). However, a story having only a few fact-checking replies may be consid-
ered as present, but insignificant, as it likely played only a negligible role on Twitter. We 
therefore quantified the success rate for stories having at least 30 fact-checking replies, 
indicating that the stories probably attracted significant public attention. Overall, there 
were 1296 stories having at least 30 fact-checking replies, corresponding to a ACR suc-
cess rate of 26.852% . This higher success rate suggests that the ACR method can fetch a 
considerable proportion of stories that have gained significant traction on Twitter.

Please note that the upcoming sections only present results where the ACR method 
was not terminated.

Fact‑checked tweets

In total, we retrieved 4.08 · 104 fact-checked tweets5. The fact-checked tweets showed a 
similar pattern as the replies in terms of the distribution shape (see Fig. 3c): After log10
-transformation, the distributions remained right-skewed, indicating that strong fact-
checking of misinforming tweets is relatively rare on Twitter. This is also confirmed by 
the discrepancy of the median ( 72.5 ) and the mean ( 117.21).

Query selection and performance metrics

We evaluated up to 50 (sub)queries per story, indicating that a substantial number of 
(sub)queries were tested for each story (for the distribution, see Additional file 2 Fig. 3a). 
The averaged number of subqueries per story is 2.08 (max. 6 ), but, notably, the distri-
bution of the valid number of queries decreased exponentially (see Additional file  2 
Fig. 3b), indicating that our early stopping approach successfully restricted the number 
of queries. Concerning the number of available baseline periods, we found that most 
stories had three baselines, followed by four baselines (average: 3.39 baselines). Notably, 
baseline b4 (post-story) was most likely to be missing due to time constraints. The distri-
bution of the number of available baselines is shown in Additional file 2, Fig. 3c.

5  Note that we did not retrieve a parent fact-checked tweet for every reply for three reasons. First, one and the same 
fact-checked tweet may be checked by multiple replies (containing the same link to a fact-checking article). Second, the 
Twitter API may not return the parent tweet after the request due to, e.g., tweet deletion. Third, the fact-checked tweets 
may not be in English. On average, 2.03 replies yielded one fact-checked tweet.
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With respect to the performance metrics, we found that Recall followed a right-skewed 
distribution (see Fig. 3c) with an average and a median of .259 and .228 , respectively. This 
pattern of low average recall and positive skewness can be explained by the relatively 
strict precision thresholds: Queries that are both sensitive and precise might occur rela-
tively rarely due to the precision-recall tradeoff. Thus, the observed distribution can be 
considered a signature of the precision-recall tradeoff. Despite the relatively low average 
recall, it is nevertheless reasonable to assume that we were able to collect representative 
sets of tweets according to the law of large numbers.
Precision (see Fig. 3d), on the other hand, also behaved as expected: Overall Precision 

was kept above 0.95 , with an average and a median of .985 and .987 , respectively. The 
skew of the distribution is arguably due to ceiling effects and stricter precision thresh-
olds due to penalties for fewer baseline periods.

Retrieved tweets

Overall, we retrieved 2.69 · 107 tweets belonging to 348 stories. On average, we collected 
7.72 · 104 tweets per story (median: 9.98 · 104 , see Fig. 3g). It is, however, important to 
note that we had to perform tweet sampling for 235 ( 67.53% ) stories, as the respective 
number of matching tweets exceeded the threshold of 105 . The distribution of the num-
ber of matching tweets (see Fig.  3f ) was highly right-skewed, making a log10-transfor-
mation necessary. This pattern of (extremely) skewed distributions is very common for 
social data (see, e.g., [23]) and may partially reflect the ’viral’ nature of social media or 
biases introduced by algorithms used by the social networking services [7]. However, the 
median of 2.59 · 105 , as well as the interquartile range of 5.78 · 104 to 2.29 · 106 , support 
the idea that most stories are small-scaled relative to the entirety of tweets.

With respect to the temporal features of our dataset, we found that most stories 
emerged beginning in 2016 (see Fig.  3h) with a peak in 2020/21. In general, the time 
series seems to resemble the time series of the replies, as shown in Fig. 3b. This close 
correspondence, although to some extent logical (as fact-checking replies are a precon-
dition for the ACR method), restricts the interpretability of the time series shown in 
Fig. 3h: The conclusion that the prevalence of misinformation on Twitter increased sub-
stantially over the past years might be inappropriate, whereas the conclusion that misin-
formation tends be more fact-checked and countered might hold. The peak in 2020/21, 
however, may be attributed to the COVID-19 pandemic, which was accompanied by 
a sizeable body of misinformation, but also significant fact-checking efforts (see, e.g., 
[10]). The estimated duration of the stories (Fig. 3i) indicates that most were estimated 
to last for one year or longer. Note that estimated duration may not always correspond 
to true duration, as we used a relatively liberal estimator to avoid exclusion of time peri-
ods where the story was (still) spreading. However, the relatively large temporal extent of 
many stories is not implausible: Shin et al. [66] presented preliminary evidence that mis-
information tended to reappear multiple times after the initial peak, potentially explain-
ing the observed pattern.
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Main indicators of the ACR method

We subsequently present a set of indicators that provide robust and direct evidence 
regarding the validity of the ACR method. For ease of readability, we focus here on 
important indicators only; additional indicators can be found in Additional file 3.

In order to objectivize the efficacy of the ACR method, we mainly rely on a text simi-
larity measure, which we used to determine the semantic similarity between individual 
tweets and the claim of a story. Specifically, we used a sentence-transformers model (see 
[60]), a state-of-the-art Python framework for text embeddings. We used the best-per-
forming model provided by Reimers and Gurevych [60] (all-mpnet-base-v2; see [61]), 
showing good model performance when fine-tuned on a set of natural language process-
ing (NLP) tasks. Model performance was evaluated on the basis of the Sentence Embed-
ding Benchmark, which uses a set of clustering, binary classification, retrieval, reranking, 
and semantic textual similarity tasks (see [60]). This model allowed us to map sentences 
to vectors capturing their semantic information. These vectors can then be used to com-
pute measures of similarity. We used cosine similarity ( Sc(a, b) ∈ [−1, 1] ; see, e.g., [70]) 
to quantify semantic similarity between tweets ( a ) and the respective claim ( b).

Comparing text similarity across baselines and story period

Under consideration of Eq. 12 and Eq. 14, we assumed that story-supporting tweets can 
be only retrieved during the story period, while only irrelevant tweets can occur dur-
ing baseline periods. We therefore expected lower text similarities for the baselines 
compared to the story period. We collected up to 10k tweets per baseline, depending 
upon how precise the respective query was for a given baseline. We used both linear 
mixed-effects modelling (LMEM) and receiver operating characteristic (ROC) analyses 
to quantify the differences in text similarity between baselines and story period.

LMEM of mean text similarity across baselines and story period. Unlike analysis of 
variance, LMEM can accommodate missing data under the missing at random assump-
tion (see, e.g., [45, 46]) and can also take into account that the performance of the ACR 
method may vary across stories (random effects). The ACR method may (intentionally) 
yield missing data for some baselines, as (i) baselines may not be available due to time 
constraints (see Methods section) or (ii) the identified query might be so selective that 
no false positives were present for some baselines.

The LMEM was performed with the STATSMODEL package (version: 0.13.2), using 
the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm or Powell’s method 
(see [42, 56]) combined with maximum likelihood estimation. We considered mean text 
similarity for each time period as our dependent variable; this measure, however, was 
only determined when at least 100 tweets were available for the respective time period. 
We specified our model according to the formula sim ~ t + (1 + t|sid), where 
sim, t and sid stand for mean text similarity, time point of measurement ( b1, b2, b3, b4 
and story period s as reference period) and story ID, respectively. In such a random 
effects model, both the intercepts and slopes are allowed to vary stochastically. We also 
tested a fixed effects model (formula: sim ~ t + (1|sid)) in contrast (restrict-
ing the slopes to be invariant), but found that the random effects model showed better 
model fit, as indicated by both Akaike information criterion (AIC) and BIC (Bayesian 
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Table 2  Fixed effects of the random effects model for mean text similarity

Note:  SE stands for standard error and reported P -values reflect one-tail P-values

Time period Coefficient SE z p > |z| 95% confidence 
interval

0.025 0.975

Intercept s 0.47 7.11 · 10−3 66.13 ≈ 0 0.456 0.484

Baseline b1 −0.099 7.42 · 10−3 −13.33 ≈ 0 −0.113 −0.084

Baseline b2 −0.115 6.93 · 10−3 −16.54 ≈ 0 −0.128 −0.101

Baseline b3 −0.099 6.54 · 10−3 −15.06 ≈ 0 −0.111 −0.086

Baseline b4 −0.088 7.64 · 10−3 −11.49 ≈ 0 −0.103 −0.073

Fig. 4  Main indicators of the ACR method. Regression lines reflect ordinary least squares regression, with 
95% confidence intervals (estimation by bootstrapping). In panels b and g, colored areas and white triangles 
reflect KDEs and means, respectively. a Mean text similarity and sentiment score across baselines and 
story period. Error bars reflect 95% confidence intervals. Both measures showed the expected pattern of a 
peak during the story period. b Mean text similarity was significantly higher for stories with four baselines, 
indicating that the ACR method is more reliable when more baselines are available. c A strong association 
between the number of matching tweets and mean text similarity is a signature of occasional tweet 
overload. d A weak association between mean text similarity and sentiment score indicates that the more 
reliably a story is measured, the more negative the tweets are. e KDE of the mean correlation between 
subqueries. A majority of the subqueries are highly correlated. f Association between mean correlation 
between subqueries and text similarity; the more the subqueries converge, the better the story is measured. 
g A text similarity comparison of the ACR-retrieved and original tweets indicates that ACR-retrieved may 
outperform original tweets. h An association between text similarity of the ACR-retrieved and fact-checked 
tweets indicates that the reliability of the ACR depends upon a good training set



Page 20 of 32Kauk et al. Journal of Big Data           (2024) 11:35 

information criterion; see, e.g., [12, 72]). For full model outputs, absolute and subtracted 
AIC and BIC values, see Additional file 4 (output 1 and 2).

For improved readability, we report only the fixed effects of each baseline (see Table 2). 
Mean text similarity was significantly reduced for all baselines compared to the story 
period, as indicated by negative baselines coefficients (Fig.  4a), and an expected pat-
tern of mean text similarity across baselines: While the pre-story baselines b1, b2 and b3 
showed the lowest text similarity, text similarity of post-story baseline b4 was slightly less 
reduced. This b4-effect attenuation can be explained by the potential presence of residual 
story-supporting tweets, as a story may continue to reemerge on Twitter even after long 
periods of time [66]. We observed substantial effect heterogeneity across stories (see 
Additional file 5), with a minority of stories ( 40.52% ) not showing the expected pattern 
of a similarity peak during the story period at all, arguably reflecting failures of the ACR 
method. Welch’s t-tests confirmed for 207 ( 59.48% ) stories that the similarity during the 
story period was significantly higher than all other baselines.

Text similarity during story periods was significantly higher for stories hav-
ing four baselines (average: .497 ) compared to stories with two or three base-
lines (average: .454 ), as indicated by Fig.  4b and confirmed by Welch’s t-test 
( t(307.48) = 3.05, p = 1.22 · 10−3, one− tailed ). We expected this, as more baselines 
should increase the precision of the respective query, thereby increasing the text similar-
ity of the tweets with the respective claim. A control analysis (see Additional file 6 con-
firmed that this effect was not driven by potential confounding variables (such as recall 
and number of subqueries).

ROC analysis of text similarity between baselines and story period. We performed 
a ROC analysis (see, e.g., [22]) by considering tweets during story period s as positive 
tweets, while tweets during baselines were considered to be negative.6 ROC analysis 
was performed using the SCIKIT-LEARN package (version: 1.1.1; see [53]) using the 
METEICS.ROC_CURVE function; we merged tweets from all available baselines and 
determined ROC curves, as well as areas under the ROC curves (AUCs; for interpreta-
tion rules, see, e.g., [28]), if at least 100 tweets were available for the baselines.

The ROC analysis confirmed the substantial performance heterogeneity of the ACR 
method: While a mean AUC of .66 ( SD = .175 ) indicates fair but not excellent classifica-
tion performance, we observed good ( ≥ .7 ), very good ( ≥ .8 ) and even excellent ( ≥ .9 ) 
performance for 133 ( 40.67% ), 73 ( 22.32% ) and 37 ( 11.31% ) stories, respectively. At the 
same time, we observed ACR failures for 133 ( 40.67% ) stories, as indicated by AUCs 
being equal to or smaller than .6 , corresponding to poor or even uninformative classi-
fication. However, ROC analysis confirmed that (complete) ACR failures are rare. For 
individual ROC curves and AUCs, see Additional file 7.

We also observed a relatively strong association between AUC and mean text simi-
larity during story periods ( r(325) = .577, p ≈ 0, two− tailed ), indicating that better 
discrimination between tweets of the story and baseline periods is accompanied by an 

6  Strictly speaking, the tweets during story period should also contain a small proportion of negative tweets (as impli-
cated by the defined precision thresholds, see Methods section). As the average precision of our queries was relatively 
close to 1 (see Fig. 3d), the presence of negative tweets during the story period can be considered negligible.
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absolute increase in mean text similarity. This association can be interpreted as evidence 
for the discriminative power of the ACR method to separate story-supporting tweets 
from irrelevant tweets.

Again, we observed that more baselines improve ACR performance, as indicated by 
higher AUC scores for four stories (mean: .689 ) with four baselines relative to stories 
with two or three baselines (mean: .641 ). A Welch’s t-test confirmed this difference 
( t(297.67) = 2.51, p = 6.28 · 10−3, one− tailed ), which is in line with our expectations, 
as more baselines should improve the discriminative power of the ACR performance.

Validating the ACR method through manual annotation of tweets

To gain a deeper understanding of the ability of the ACR method to collect story-
related tweets, we conducted a validation analysis where we manually annotated a sam-
ple of tweets (for a full description of the procedure, the results and the conclusions, 
see Additional file 9). We used 37 stories with excellent automated classification levels 
( AUC ≥ .9 ), expecting to observe similarly unambiguous classification by human raters. 
To obtain robust estimates of task performance for each of these stories, we randomly 
sampled 30 tweets per story, which corresponds to a total number of annotated tweets 
N = 37 · 30 = 1110 . The tweets were annotated by at least two independent raters.

The raters performed two tasks: They determined whether a tweet was related to the 
story or not (Task I: Relatedness) and if so, whether it was supportive, neutral, or contra-
dictive for the story (Task II: natural language inference [NLI]). We found that the inter-
rater reliability, as measured by Cohen’s κ , was acceptable for both Task I ( κ = .637 ) and 
Task II ( κ = .537 ). We observed that 984 of the 1110 annotated tweets were related to 
the stories, corresponding to an overall performance of 88.65% ( 95% [ 86.63%, 90.46%]). 
The performance varied from story to story, ranging from 50.0% to 100.0% success rate 
(median: 93.33% ). Most stories ( 22 =̂ 59.46% ) showed performances ≥ .9 , and 10 stories 
( 27.03% ) even showed perfect performance, meaning that all annotated tweets in the 
sample were considered to be related. The observed overall performance approximates 
closely the intended precision of .9 , indicating that the ACR method is capable of detect-
ing story-related tweets.

Among the related tweets, we found that 76.3% ( 95% CI [ 73.51%, 78.92%]) of the tweets 
were also supportive, meaning that a majority of the tweets in fact support the stories. 
On the level of the individual stories, we observed that most of the stories showed high 
proportions of supportive tweets, as indicated by a (i) median proportion of 86.21% and 
(ii) low number of stories having less than 50% supportive tweets ( N = 6 [ 16.22%]). We 
also observed a considerable amount of tweets being contradictive to the stories ( 16.58% ; 
95% CI [ 14.31%, 19.06%]), whereas neutral tweets were less prevalent ( 7.12% ; 95% CI 
[ 5.59%, 8.91%]). We found that a majority of the stories had less than 10% contradicting 
tweets ( N = 24 [ 64.86%]), which was paralleled by a relatively low median proportion 
of contradicting tweets ( 6.67% ). These results indicate that the ACR primarily gathers 
tweets that support the stories, yet it intermittently retrieves tweets that exhibit neutral-
ity or contradict the stories.
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Tweet overload phenomenon

We observed large numbers of matching tweets ( 119 ( 34.2% ) stories exceeded 106 ), 
which could be related to at least two different factors. First, stories may actually dis-
seminate broadly, meaning that there are many true positives among the tweets. Sec-
ond, the ACR method may fail to identify a sufficiently specific query (leading to tweet 
overload with false positives). A substantial negative correlation between the number 
of matching tweets and text similarity ( r(346) = −.61, p ≈ 0, two− tailed ; see Fig.  4c) 
indicates that the second explanation may be more likely: stories with many matching 
tweets showed poor correspondence with the respective claims, indicating an overload 
with false positives. Conversely, stories with few matching tweets showed high similarity 
with the respective claims. This finding was confirmed by a robust association between 
the number of matching tweets and AUC ( r(325) = −.394, p ≈ 0, two− tailed ), indicat-
ing that tweet overload also led to reduced classification performance.

Comparing sentiment scores across baselines and story period

Sentiment analysis is another NLP tool to assess whether false stories tend to elicit nega-
tive affective responses. A growing body of research indicates that misinformation (espe-
cially when disseminated with the intent to deceive) tends to use negative emotional 
language to fuel uncertainty and conflict (see, e.g., [16, 47, 67]). We used the sentiment 
analysis provided in the TWEETNLP library (see [13]), which is a dedicated state-of-the-
art language model, to differentiate three affective categories (negative, neutral, positive) 
of tweets. The model provides both tweet categories and category probabilities. We used 
the mean probability that a tweet was classified as negative p(catagory = negative) as 
our dependent measure, which we denoted ’mean sentiment score’.

We used the same mixed-effects model specification used for the text similar-
ity to quantify mean sentiment scores during the different time periods (see Table  3). 
We observed a similar pattern as for the text similarity: While mean sentiment scores 
were reduced during baselines, they peaked during story periods (see also Fig. 4a). Even 
though the effects were slightly smaller than for mean text similarity, they were highly 
significant for all baselines, indicating that false stories indeed contained more negative 
affective information. Welch’s t-tests confirmed that in 41.38% of the stories, the senti-
ment score during the story period was significantly higher than all other baselines. It is 
conceivable that these effects should be interpreted in the context of a general tendency 

Table 3  Fixed effects of the random effects model for mean sentiment score

SE stands for standard error and reported  P-values reflect one-tail P-values

Time period Coefficient SE z p > |z| 95% confidence 
interval

0.025 0.975

Intercept s 0.429 7.84 · 10−3 54.69 ≈ 0 0.413 0.444

Baseline b1 −0.111 9.45 · 10−3 −11.73 ≈ 0 −0.129 −0.092

Baseline b2 −0.096 9.49 · 10−3 −10.13 ≈ 0 −0.115 −0.078

Baseline b3 −0.083 8.41 · 10−3 −9.87 ≈ 0 −0.099 −0.067

Baseline b4 −0.042 0.011 −3.76 8.57 · 10−5 −0.064 −0.02
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of the public discourse to become more ’hostile’ (see, e.g., [39]) over the past years. Note 
however that sentiment reduction during baseline b4 (post-story) shows that elevated 
sentiment scores during story periods are specific, and do not simply result from a gen-
eral tendency over time.

We also found a weak to moderate association between mean text similarity and mean 
sentiment score ( r(346) = .285, p = 3.22 · 10−8, one− tailed ; see Fig.  4d), indicating 
that the more validly a story is measured, the stronger the inherent negative affective 
information. Again, this correlation might be confounded by the inherent ’negativity’ of 
the stories’ claims; if so, it would not truly reflect an increase in affective negativity. We 
excluded this possibility by a semipartial correlation, using the sentiment score of sto-
ries’ claims as a covariate, which did not confirm a confounding effect as the correlation 
remained virtually unchanged ( r(345) = .274, p = 1.06 · 10−7, one− tailed ). We con-
sider this association as evidence that the ACR method indeed collects tweets belonging 
to the respective story.

Time series correlation between subqueries

For a majority of the stories ( 61.78% ), multiple subqueries were identified. As each sub-
query should detect tweets that capture the same story, the time series of the subquer-
ies should be positively correlated. We retrieved the time series for each subquery via 
the Tweet counts endpoint (granularity: days; see Methods section). We performed 
log10(x + 1)-transformations to the time series, as recommended by Gonzales [23]. For 
any story having three or more subqueries, we calculated the mean of all correlation 
coefficients.

On average, the time series of the subqueries were robustly correlated 
( r = 0.586, SD = 0.205 ; see Fig.  4e), suggesting that these time series reflect the same 
underlying process. However, this correlation between time series of subqueries could 
be spurious if different subqueries match the very same tweets, thus artificially raising 
the correlation coefficients. To address this, we conducted a control analysis where we 
considered the correlation among the subqueries where these intersections were elimi-
nated (relative complements). Despite a relatively small decrease, the analysis confirmed 
the robustness of the average correlation ( r = 0.504, SD = 0.2).

The substantial average correlation between subqueries’ time series allows us to infer 
that the ACR method can reliably measure an underlying process. Whether this pro-
cess also reflects the process of interest (i.e., the respective story), remains an open ques-
tion. We therefore considered the correlation between text similarity and subqueries’ 
time series correlation. We expected a positive correlation, as we assumed that when the 
underlying process is measured more reliably, the validity (as indicated by text similar-
ity) should increase as well. We observed a moderate correlation between both variables 
( r(213) = 0.314, p = 1.27 · 10−6, one− tailed ; see Fig.  4f ), indicating that queries that 
are assumed to be more reliable also reflect the respective story more accurately.

Comparing fact‑checked and ACR tweets

To assess whether the ACR method yields tweets that represent the respective story to 
a comparable degree as the original tweets do, we compared the mean text similarity 
between ACR tweets and original tweets. Here, we defined original tweets following 
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Vosoughi et al., meaning that only first-level tweets were considered (replies to replies 
were not considered). In fact, we found that the ACR tweets showed higher mean text 
similarity (average: 0.47 ) relative to the original tweets (average: 0.446 ), as confirmed by 
a paired t-test ( t(347) = −3.5, p = 5.2 · 10−4, two− tailed ; see also Fig. 4g).

We additionally conducted a ROC analysis of text similarity for the original tweets, 
in order to better compare the performance of both methods. So far, we have only con-
ducted a ROC analysis for the ROC method (see Sect.  ), where we considered tweets 
during the story period as positive tweets, while tweets during the baselines were con-
sidered to be negative. We performed the same analysis for the approach of Vosoughi 
et al., whereas the retrieved original tweets were considered as positive, while the nega-
tive tweets still corresponded to the baseline tweets.

We found that original tweets also showed a fair, but slightly reduced performance 
for the given task: While the ACR tweets achieved a mean AUC of 0.66 ( SD : 0.175 ), the 
original tweets had a mean AUC of 0.616 ( SD : 0.193 ). This difference was confirmed by a 
paired t-test ( t(325) = 3.79, p = 1.77 · 10−4, two− tailed ). In accordance with the ROC 
results of the ACR tweets, we found the performance to be heterogeneously distributed 
for the approach of Vosoughi et al. too. We observed good ( ≥ 0.7 ), very good ( ≥ 0.8 ) and 
excellent ( ≥ 0.9 ) performance for 118 ( 36.2% ), 62 ( 19.02% ) and 20 ( 6.13% ) stories, respec-
tively. At the same time, we observed poor classification performance ( AUC < 0.6 ) for 
145 ( 44.48% ) stories.

Even though such difference should be interpreted with caution (and may not neces-
sarily mean superiority of the ACR method), it further provides evidence that the ACR 
method is an efficient tool to identify specific linguistic features, and one that may even 
outperform the approach proposed by Vosoughi et al. in certain domains.

Interestingly, we observed a different pattern for the mean sentiment score: original 
tweets were more emotional compared to the ACR tweets, as shown by a paired t-test 
( t(347) = 7.18, p ≈ 0, two− tailed ). We suspect that the increased emotional valence 
triggered greater outreach (via retweets), thereby increasing the probability that tweets 
were fact-checked. If this is true, then the ACR method may additionally detect a ’blind 
spot’ of less emotional, less distributed tweets. We performed a control analysis to prove 
whether fact-checked tweets had in fact higher retweet frequencies than ACR tweets: 
for each story, we compared the retweet frequencies of both methods via a Mann–Whit-
ney U test (two-tailed). In 304 ( 87.36% ) of the stories, the retweet frequency was sig-
nificantly higher for the fact-checked tweets than for the ACR tweets. This difference 
is also expressed in the much higher proportion of tweets exceeding particular retweet 
frequencies: 69.65% of the fact-checked tweets exceeded the threshold of 10 retweets, 
whereas only 27.16% of the ACR tweets achieved the same level of engagement. This 
difference remained substantial also for higher levels of retweet activity (100 retweets: 
51.99% vs. 12.12% ; 1000 retweets: 28.04% vs. 2.78% ). We interpret this higher retweet 
frequency among fact-checked tweets as evidence that the ACR method is more suitable 
to detect tweets ’below radar level’ (meaning that it also detects tweets which are not 
heavily distributed), while the original fact-checking approach seems to perform well for 
detecting large-scale tweet cascades having substantial outreach via many retweets.
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We also investigated whether both methods are capable of tracking narrative dynam-
ics of stories: The (dominant) narrative of a story may change over time, a phenom-
enon which has been described for (false) rumors in previous studies (see, e.g., [6, 
66]). For each story and method, we partitioned the dataset into three equally sized 
segments: the first, second, and third segments were assumed to encapsulate the ini-
tial, intermediate, and final narratives of each story, respectively. We performed a 2 x 
3 repeated-measures analysis of variance (rmANOVA) with factors data collection 
method (ACR versus fact-checked tweets) and time segment (initial, intermediate 
and final). In line with our previous findings, we observed a main effect of the method 
( F(1, 321) = 15.02, p = 1.29 · 10−4, η2 = 0.011 ), indicating that ACR tweets had higher 
text similarity with the respective claims than fact-checked tweets (see also Fig. 4g). We 
also observed a main effect of the time segment ( F(2, 642) = 61.64, p ≈ 0, η2 = 0.019 ) 
meaning that text similarity evolved over time negatively (thus, initial tweets cor-
responded to the story more closely than later ones). We also observed a significant 
interaction between both factors ( F(2, 642) = 7.47, p = 6.2 · 10−4, η2 = 2.23 · 10−3 ), 
indicating that the effect of the time segments depended on the data collection method. 
Post-hoc tests revealed that the differences between the data collection methods were 
more pronounced for later time segments than for the initial one, while there was no 
such difference between the intermediate and final segment. We suspect that the ACR 
method is profound in collecting one (dominant) ’line’ of story, which can be attributed 
to the static nature of queries which are based on linguistic features.

We also found that the ’quality’ of the fact-checked tweets was predictive of the 
ability of the ACR method to detect story-related tweets, as indicated by a mod-
erate association between mean text similarity of fact-checked and ACR tweets 
( r(346) = 0.399, p ≈ 0, two− tailed ; see also Fig.  4h). This correlation underpins the 
dependency of the ACR method on a ’good’ training dataset for feature identification.

Discussion
The proposed ACR method represents an efficient tool for large-scale and fully automa-
tized collection of misinforming tweets. Its efficacy is based upon three pillars: (i) the 
adoption of prior, pioneering research in the field, (ii) a well-formalized mathematical 
framework and (iii) an extensive empirical proof. More precisely, it builds upon liter-
ature by extending the approach proposed by Vosoughi et al., thereby benefiting from 
prior research in the field. The ACR method also provides a formal mathematical frame-
work with well-defined assumptions and implications, which distinguishes it from other 
approaches in terms of clarity and structure. In addition, a comprehensive set of indica-
tors has established substantial evidence that the ACR method can, despite significant 
performance heterogeneity, reliably collect misinforming tweets.

Despite its strengths, the ACR method also has limitations. We repeatedly observed that 
the number of false positives was underestimated by the ACR method, which can probably 
be linked to violations of assumption iii (temporal homogeneity of irrelevant tweets). The 
consequence of such biased estimations was tweet overload with false positives, resulting 
in poor data quality and an unfavorable signal-to-noise ratio. To mitigate this issue, future 
revisions of the ACR method may (i) refine parameter values (e.g., improve estimates of 
the onset and end of a story), (ii) implement overload thresholds that, when exceeded, lead 
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to rejection of a query or (iii) avoid the use of multiple subqueries but instead use only the 
most accurate query according to specific performance measures (e.g., F0.5 ; see, e.g., [29]).

When comparing the ACR method to the approach proposed by Vosoughi et al., we 
found a strong difference in the sensitivity to highly influential (’viral’) tweets: While 
fact-checked tweets showed high retweet frequencies, the tweets yielded by the ACR 
method were much less retweeted, therefore being ’nonviral’. Previous research (see 
[43]) has shown that the frequency distribution of retweets can be described via a 
power law distribution. This implies that nonviral tweets (e.g., tweets having less than 
10 retweets) constitute a substantial proportion of the tweets, while viral tweets with 
high outreach (e.g., > 1000 retweets), on the other hand, are relatively rare. Our results 
show that the ACR method is more sensitive to nonviral tweets, while the original fact-
checking approach predominantly catches viral ones. Retrieving data from multiple 
inputs (whereas the methods may have different strengths and limitations) is crucial for 
drawing robust inferences, as such multi-method approaches allow validating research 
results. We therefore believe that researchers in the field of social media research who 
are interested in diversifying their data inputs could benefit from this approach. Apart 
from its relevance for users among the scientific community, ACR might also contribute 
to efficient automatic pre-screening of social data by fact-checking organizations, thus 
ultimately promoting faster responses.

We also consider the keyword-based nature of the ACR method as a limitation, for 
two reasons. First, the narrative of a misinformation story may change over time (see 
[66]; but see also [6]), making dynamic tracking of such changes necessary. The ACR 
method is assumed to be less adaptive to such narrative changes compared to the origi-
nal fact-checking approach. It is reasonable to assume that this reduced adaptivity of the 
ACR method can be linked to the static nature of (keyword-based) queries used to col-
lect the tweets: When a narrative changes over time (e.g., by exchanging a specific term), 
the ACR method may fail to detect tweets belonging to this second narrative, as the 
query is based on the initial term. This might be particularly important for stories resur-
facing multiple times over a long time period, as it has been shown for climate change 
misinformation [79].

Second, a substantial proportion of misinformation in social media is distributed via 
videos, photos, or audio files (see, e.g., [75]). These media increasingly use “deepfakes” 
that contain forged identities created via artificial intelligence (AI) to enhance perceiv-
ers’ trust in misinformation [86]. The APIs of social networking services typically do not 
have dedicated operators to search for specific videos, photos, or audio (which would be 
challenging, as the same photo/video/audio may exist with different formats and filters). 
Further research is needed to address this shift from text-based misinformation towards 
photo-, video-, or audio-based material. Recent developments in AI (such as ChatGPT 
or DALL-E; see [51, 52]) may facilitate our everyday life and work substantially, but may 
also facilitate the creation of false media content. We appeal to the research community 
to address this issue, as the presence of these new technologies may dramatically affect 
the volume and format of online misinformation. The proposed ACR method could con-
stitute an important tool in addressing these new forms of misinformation: While it was 
not designed to recognize AI-generated content, it arguably represents an important 
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’preselector’ of potentially relevant material by identifying specific keywords that might 
be attached to the respective AI-generated media.

We explicitly suggest that the ACR method should be combined with other methods 
for misinformation detection to improve data quality. An initial approach could be to use 
a text similarity threshold, while it is assumed that text similarity has a (positive) proba-
bilistic relationship to the (true) labels of tweets (thus, the higher the text similarity, the 
higher is the chance that a tweet indeed relates to the respective story). However, there 
are other challenges regarding the valid classification of tweets. For instance, the query 
OBAMA INJURED aiming to detect a misinformation story that Obama was injured 
during an attack on the White House (see Additional file 1) potentially also yields results 
that contradict the claim (e.g., ’Obama was not injured!’) or which use irony to debunk it 
(e.g., ’Obama was injured? then I will move into the White House!’). Our manual anno-
tation results confirmed that the ACR method successfully retrieves a large majority of 
story-supporting tweets. At the same time, these results suggest that, in cases in which 
optimal performance at the level of specific stories is a priority, it can be beneficial to 
combine automated ACR-based processing with manual checks of tweets to achieve 
the best outcome. Large language models may help to better distinguish posts that truly 
support the story of interest from the other posts by using strict, ROC-based thresholds, 
NLI or stance or irony detection (see, e.g., [13, 48]). The performance of such large lan-
guage models on social data may currently be limited, as posts on social media typically 
’suffer’ from a fragmented syntactic structure as well as the use of unusual, online-spe-
cific words (e.g., lol or fyi; see, e.g., [35, 50]). The correspondence of the training data of 
these models to social data is often poor, highlighting the need to incorporate appropri-
ate training data before applying such models to social media.

At this point, the ACR method is a tool to collect misinformation on Twitter. The 
degree to which it can be applied to other social networking services remains to be 
tested. We expect that the ACR method will also prove a valid tool for other services, 
but its efficacy may vary due to differences in architectures and user populations, thus 
calling for adaptations to achieve optimal performance. In general, the outcome of the 
ACR method depend on a complex interplay of the parameters (and optimal param-
eter settings may vary from story to story), explaining its heterogeneously distributed 
performance. This includes, among others, the dependency on the fact-checked tweets. 
Besides a threshold of the minimum number of fact-checked tweets of n = 30 (which 
makes ACR less sensitive to relatively small stories), we observed that the accuracy of 
the ACR tweets was contingent on the quality of the entered fact-checked tweets. Diver-
sifying the data inputs and further fine-tuning of other parameters will likely improve 
ACR’s performance significantly. For instance, additional baselines are presumed to be 
beneficial for the outcome of the ACR method. Moreover, more precise estimations of 
the onset and end of a story may also be advantageous, due to higher temporal specific-
ity (see section  ). We hope that future research will promote better understanding of 
such parameter effects and thus optimization of ACR.

Unfortunately, the research community is witnessing significant aspirations of social 
networking services to monetize their data: Twitter announced in February 2023 that 
it will increase the cost of its API dramatically (see, e.g., [84]), making it economically 
unfeasible for researchers to further collect data via the Twitter API. Similarly, Reddit 
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announced in April 2023 that it will no longer provide an API free of charge (see [59]), 
triggering disapproval of the Reddit community. These profit-seeking steps of social net-
working services drastically constrain the availability of social data, thereby rendering 
future research in the field highly challenging, but not impossible (see, e.g., [26, 49]).

While these adverse developments promote fundamental questions regarding the 
ownership of data that have been provided by large user communities, it seems clear 
that future research in the field is important and potentially vital for societies: Being 
equipped with knowledge about misinformation and tools to detect and counter it may 
be an important precondition for the integrity of societies and democracies (see, e.g., 
[33, 39, 58, 74]; but see also [83]). In this context, we believe it is essential that social net-
working services provide free or low-cost APIs to enable researchers to generate robust 
evidence regarding pressing research questions.

We consider the ACR method proposed here as a valuable tool extending the present 
research equipment. Despite its theoretical and empirical foundation, it comes with a set 
of advantages: It (i) is fully automated, (ii) yields large-scale datasets, (iii) allows estimates 
of how reliable the data are and (iv) probably also works for mixed and true stories, i.e., 
stories which were fact-checked and rated as mixed/true (see Additional file 8 view for 
an evaluation of the ACR method for true stories). In sum, the ACR method represents 
a useful extension to the methods pool of the field, as it can be used for automated large-
scale collection of misinformation on Twitter, with promising potential for other social 
networking services and different kinds of social data.

Conclusion
The ACR method proposed here represents a sophisticated technique for automatized, 
large-scale collection of misinforming tweets for three reasons. First, it relies on the cur-
rent literature by adopting and extending an elaborated approach proposed by Vosoughi 
et al. Second, and unlike many other methods, it provides a clear and formal mathemati-
cal framework with well-defined assumptions and implications. Third, its validity has been 
linked to a comprehensive set of indicators (including manual checks of tweets), which 
showed that the ACR method is, despite significant performance heterogeneity, a useful 
extension to the methods pool of the field, as it allows to better collect nonviral tweets.
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