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Introduction
Fraudulent transactions are defined as any unauthorized or misleading activity carried 
out with the purpose of unlawfully acquiring financial benefits [1]. These transactions 
can manifest in different ways, such as credit card fraud, identity theft, money launder-
ing, and insurance scams. Fraudulent actions have emerged as a prominent issue for cor-
porations and organizations on a global scale, resulting in substantial financial losses and 
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reputational harm [2]. The Association of Certified Fraud Examiners (ACFE) recently 
published a paper emphasizing that businesses face significant financial losses as a result 
of occupational fraud. On average, a single case of occupational fraud costs the victim 
organization more than $1.5 million [3]. Additionally, Certified Fraud Examiners (CFEs) 
estimate that organizations experience a loss of approximately 5% of their annual rev-
enues due to fraud. In the ACFE’s 2020 Report to the Nations, which examined 2504 
cases of occupational fraud across 125 countries, it was found that the typical fraud 
lasted approximately 14 months before detection and resulted in a median monthly loss 
of $8300 [4].

To safeguard both themselves and their clients, companies and financial institutions 
must be able to identify fraudulent transactions. It preserves the integrity of the entire 
financial system in addition to assisting in the prevention of monetary losses [5]. Con-
ventional approaches to fraud detection, which depend on rule-based algorithms and 
manual inspection, have shown to be insufficient for identifying complex and dynamic 
fraudulent activity. As a result, the need for increasingly sophisticated and automated 
methods of fraud detection and prevention is rising. The capacity of machine learn-
ing (ML) techniques to evaluate vast amounts of data and spot intricate patterns has 
made them effective instruments for fraud detection [6, 7]. From past transaction data, 
machine learning algorithms can identify trends or abnormalities that point to possible 
fraud. Scalability, efficiency, and adaptation to shifting fraud patterns are just a few of the 
benefits they provide [8]. Organizations can greatly enhance their fraud detection skills 
by utilizing machine learning techniques. Ensemble learning (EL) is a machine learning 
technique that generates a final prediction by aggregating the results of numerous inde-
pendent models. In a number of fields, including fraud detection, it has demonstrated 
tremendous promise. Through the utilization of diverse model strengths, ensemble 
approaches may effectively mitigate overfitting, augment model generalization, and opti-
mize overall performance [9]. Combining different models allows EL to identify a wide 
range of fraudulent transaction patterns and traits, which improves detection accuracy 
and dependability.

The detection of fraudulent transactions using ML and EL approaches has been the 
subject of several previous publications. To identify credit card fraud, for example, 
Esenogho et al. used Long Short-Term Memory (LSTM) in conjunction with Synthetic 
Minority Over-sampling Technique-Edited Nearest Neighbors (SMOTE-ENN) [10]. 
Lakshmi and colleagues utilized machine learning models, such as Random Forest, 
Decision Tree, and Logistic Regression, to detect credit card fraud [11]. A Heterogene-
ous EL Model based on Data Distribution (HELMDD) was presented by Xie et al. [12] 
to address the problem of data imbalance in credit card fraud detection. Nevertheless, a 
few drawbacks of these current efforts include their inability to correct fraudulent trans-
action data that is significantly skewed and their limited accuracy improvement [12–14].

An integrated multistage ensemble machine learning (IMEML) model for detecting 
fraudulent transactions is presented in this paper. Our method seeks to enhance the 
accuracy of fraud detection while addressing the shortcomings of previous efforts. The 
IMEML model leverages the complementing strengths of many multistage ensemble 
ML (MEML) models, such as Ensemble Independent Classifier (EIC), Ensemble Bagging 
Classifier (EBC), and Ensemble ML Classifier (EMC), to improve fraud identification 
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and capture a variety of patterns in the data. We use a number of methods, including 
Randon Under Sampler (RUS), Cluster Centroids (CC), and Instant Hardness Threshold 
with EMC (IHT+EMC), to address the problem of data imbalance. We thoroughly test 
our suggested model on a real-world credit card fraud dataset to show its excellent accu-
racy and generalizability.

Our study has made the following significant contributions:

•	 Introduced an innovative IMEML model specifically suited for credit card fraudulent 
transaction detection. Our ensemble model includes different MEML algorithms, 
including EIC, EBC and EMC, exploiting their strengths and increasing fraud detec-
tion. By merging these models, we intend to capture varied patterns and characteris-
tics of fraudulent transactions, leading to increased performance compared to indi-
vidual models or traditional approaches.

•	 Implemented and extensively examined the performance of our proposed model, 
including trustworthy analysis on a real-world credit card fraud dataset. Further-
more, we compare the performance of our model with existing studies in the field of 
fraudulent transaction detection. Through this comparison, we illustrate the excel-
lence and effectiveness of our IMEML strategy.

Our research greatly promotes fraudulent transaction detection by overcoming the 
limitations of existing systems and integrating state-of-the-art methodologies. The sug-
gested IMEML model increases the accuracy and reliability of fraud detection, hence 
boosting the security and trustworthiness of financial systems. The performance study 
and comparison indicate our approach’s practical adaptability and effectiveness in real-
world circumstances. We hope that our research will considerably impact the security 
industry and contribute to establishing powerful fraud detection systems, helping enter-
prises, organizations, and individuals alike.

The remaining sections of this work are arranged as follows: In section Related works, 
we give a detailed assessment of relevant literature focusing on credit card fraudulent 
transaction detection. Section Methodology provides a full explanation of our study pro-
cess and contains a description of the dataset used. The experimental setup and perfor-
mance evaluation are given in section Results and discussion. In section Discussion and 
Cost analysis, we offered the results discussion and complexity analysis of our research. 
Furthermore, in section  Dependable analysis, we perform a thorough investigation of 
the dependability of our suggested strategy. Lastly, section Conclusion presents the con-
clusion and future work.

Related works
Numerous studies have investigated the application of ensemble ML models for fraud-
ulent transaction detection. These works have explored diverse ensemble techniques 
and data-balancing methods to enhance the accuracy and reliability of fraud detection 
systems.

Esenogho et al. [10] devised an innovative credit card fraud detection method utilizing 
a neural network ensemble (NNE) and a hybrid data resampling technique. By employing 
Long Short-Term Memory (LSTM) within an Adaptive Boosting (AdaBoost) framework 
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and employing Synthetic Minority Oversampling Technique-Edited Nearest Neighbors 
(SMOTE-ENN) for data resampling, their approach outperformed benchmark algorithms, 
achieving a sensitivity of 99.60% and specificity of 99.80%, showcasing its effectiveness in 
detecting credit card fraud.

Lakshmi et al. [11] evaluated the performance of logistic regression (LR), decision trees 
(DT), and random forests (RF) for credit card fraud detection using a highly imbalanced 
dataset. Through random oversampling (RO) to balance the data, RF outperformed LR and 
DT techniques, achieving an accuracy of 95.5%. Xie et al. [12] proposed the Heterogene-
ous EL Model based on Data Distribution (HELMDD) to address imbalanced data in credit 
card fraud detection. Through experiments on actual credit card datasets, HELMDD dem-
onstrated superior performance compared to existing models, achieving high recall rates 
for minority and majority classes while significantly increasing savings rates for banks.

Soleymanzadeh et al. [13] proposed an ensemble stacking method for detecting cyber-
attacks in the Internet of Things (IoT). Conducting experiments on various datasets, 
including credit cards, NSL-KDD, and UNSW, their stacked ensemble classifier surpassed 
individual base model classifiers, achieving an impressive accuracy rate of 93.49%, suggest-
ing its potential in addressing cyberattacks and credit card fraud.

Taha et al. [14] introduced an optimized light gradient boosting machine (OLightGBM) 
for fraud detection in credit card transactions, integrating a Bayesian-based hyperparam-
eter optimization algorithm. Their method outperformed other approaches, achieving the 
highest accuracy of 98.40%, underscoring the effectiveness of intelligent parameter tuning 
in boosting model performance.

Faraji et al. [15] conducted a comprehensive evaluation of techniques for credit card fraud 
detection, proposing an ensemble model combining XGBoost with SMOTE to tackle data 
imbalance. Their approach yielded an impressive accuracy rate of 99%, emphasizing the sig-
nificance of employing ensemble models for handling imbalanced data and achieving high 
accuracy in fraud detection.

Nandi et  al. [16] introduced a novel multi-classifier architecture for credit card fraud 
detection, leveraging the Behavior-Knowledge Space (BKS) to combine predictions from 
multiple machine learning classification methods. Their ensemble model achieved an 
impressing accuracy rate of 99.81%, outperforming traditional techniques like major-
ity voting, especially in scenarios requiring credit card fraud detection and noisy data 
classification.

Methodology
This section outlines the methodology we used to find CCFT in our investigation. We 
describe the key steps in our preferred methodology, which include preprocessing and col-
lecting data, balancing and splitting data, creating multistage ensemble models, and doing 
performance analysis. The following sections emphasize our research’s objectives:

Aims of the research

1.	 Data Gathering and Preparation: The goal of this study is to gather the CCFT dataset 
and use efficient data preparation methods, such as MinMax Scaler, to improve the 
quality of the data such that it is appropriate for the following stages.
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2.	 Data Balance Methods: This study aims to address the imbalanced nature of fraudu-
lent transaction data by applying efficient data balancing strategies, such as RUS, CC, 
and IHT+X, where X stands for ensemble machine learning models.

3.	 Building Multistage Ensemble Models: The main goal is to create a multistage 
ensemble machine learning model construction process. After that, all ensemble 
models will be integrated to create the final model that is suggested and especially 
made for CCFT detection. The suggested approach effectively combines multistage 
ensemble models, taking advantage of their advantages to greatly increase the accu-
racy of fraud detection.

4.	 Comparison and Analysis of Performance: Using a real-world credit card fraud data-
set, the study attempts to provide a thorough performance analysis of the suggested 
hybrid multistage ensemble machine learning model. In addition, a thorough com-
parison with current methods for detecting fraudulent transactions will be carried 
out to show how much better and more efficient our suggested model is.

5.	 Adjustment to the Domain: The goal of the research is to solve the shortcomings 
of current methods and integrate cutting-edge strategies in order to significantly 
advance the field of fraudulent transaction detection. The suggested hybrid multi-
stage ensemble machine learning approach will benefit individuals, companies, and 
organizations by improving the security and dependability of financial systems and 
improving accuracy and reliability in identifying fraud.

The methodology outlined for the development of the FTC model encompasses several 
key stages: CCFT data collection, data preprocessing, application of data balancing tech-
niques, data splitting, construction of multistage ML models, integration of these mod-
els to form the proposed model, and thorough performance analysis to assess its efficacy 
in detecting fraudulent transactions. Figure 1 illustrates the proposed architecture of our 
hybrid ensemble multistage ML models designed specifically for CCFT detection.

Description of dataset

The Credit Card Fraud Detection dataset, which is publicly accessible on Kaggle [17], 
comprises anonymized credit card transactions conducted by European cardholders 
over a two-day period in September 2013. There are 284,807 transactions in the dataset 
overall, 492 of which are fake. There are 28 features in the dataset; the final feature is the 
class label, which indicates whether or not the transaction is fraudulent. Of these, 27 
are numerical features produced by Principle component Analysis (PCA) transforma-
tion because of confidentiality concerns. The majority of the transactions in the data-
set are not fraudulent, resulting in a severely skewed dataset. This makes it difficult to 
develop a classifier that minimizes false positives while effectively detecting fraudulent 
transactions. The dataset has been used to build and assess machine learning (ML) mod-
els for credit card fraud detection in a number of studies and competitions. The dataset 
is not meant for commercial usage; rather, it is meant to be used in the investigation and 
advancement of fraud detection algorithms. The public can access the dataset and utilize 
it for research or educational purposes. However, the owners of the dataset must give 
their prior written authorization before using this data for any commercial reason.
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Data preprocessing

In the data preprocessing phase of our investigation, we diligently implemented Min-
Max Scaling techniques to normalize the data. MinMax Scaling involves transforming 
the data to a uniform scale, which facilitates optimal performance of machine learning 
models. By ensuring consistency and comparability across the dataset, these normaliza-
tion techniques contribute to the efficient training and evaluation of ML models.

MinMax scaling

MinMax Scaling is a widely used normalization technique in data preprocessing, par-
ticularly in machine learning applications. Its purpose is to rescale the feature values of 
a dataset to a fixed range, typically between 0 and 1. This ensures that all features con-
tribute equally to the analysis and prevents any single feature from dominating due to its 
scale.

The MinMax Scaling transformation for a feature x can be expressed using the follow-
ing equation:

Where:

•	 xscaled is the scaled value of the feature.
•	 x is the original value of the feature.

xscaled =
x −min(x)

max(x)−min(x)

Fig. 1  The architecture developed for detecting fraudulent transactions
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•	 min(x) is the minimum value of the feature in the dataset.
•	 max(x) is the maximum value of the feature in the dataset.

This transformation ensures that the minimum value of the original feature maps to 0, 
and the maximum value maps to 1. All other values are linearly scaled between these 
two extremes. MinMax Scaling offers several benefits: It preserves the relationships 
between the original data points while ensuring consistency in scale. It is robust to outli-
ers since it scales the entire range of the data. In ML, it often leads to faster convergence 
during training, especially in optimization algorithms that are sensitive to feature scales

Strategies for data balancing

In the landscape of fraudulent transaction detection, the presence of imbalanced data-
sets presents a formidable hurdle to the effectiveness of machine learning models. Con-
ventional classification algorithms often demonstrate biased tendencies towards the 
majority class, resulting in less than optimal performance in identifying instances of 
fraud. To confront this inherent imbalance and enhance the resilience of our model, we 
have implemented a range of resampling techniques customized to the specific charac-
teristics of our dataset.

•	 Random Under Sampler (RUS) The Random Under Sampler (RUS) technique 
involves randomly eliminating instances from the majority class until a more bal-
anced distribution between the majority and minority classes is achieved. By reduc-
ing the dominance of the majority class, RUS aims to mitigate the bias towards it, 
thereby fostering improved performance in detecting fraudulent transactions.

•	 Cluster Centroids (CC) Cluster Centroids (CC) is a resampling method that operates 
by clustering the majority class instances and replacing each cluster centroid with 
the mean of the cluster. This technique effectively synthesizes new instances for the 
minority class while preserving the underlying structure of the data. By generating 
representative samples from the minority class within the clusters of the majority 
class, CC helps to rectify class imbalance and enhances the model’s ability to detect 
fraudulent activities.

•	 Instance Hardness Threshold (IHT) Instance Hardness Threshold (IHT) is a data-
driven approach that assigns a hardness score to each instance based on its diffi-
culty in being correctly classified. Instances with higher hardness scores, indicating 
greater ambiguity or complexity, are given more weight during the training process. 
By focusing on the most challenging instances, IHT aims to improve the model’s 
capacity to accurately classify minority class instances, such as fraudulent transac-
tions, thereby bolstering overall performance and resilience against imbalanced data 
distributions. Furthermore, in our experiment, we integrated IHT with three distinct 
ensemble classifiers such as RFC, GBC and LGBC, utilizing them within the frame-
work of IHT as a meta-classifier. This integration yielded three unique combinations 
of IHT with the classifiers: IHT + RFC, IHT + GBC, IHT + LGBC. Each combi-
nation leverages the strengths of both IHT, which prioritizes challenging instances, 
and the respective base classifiers, which provide distinct methodologies for classi-
fication. By integrating these classifiers with IHT, we aimed to enhance the model’s 
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discriminatory power, particularly in the detection of fraudulent transactions within 
imbalanced datasets.

Table 1 provided demonstrates the distribution of instances before and after applying 
various undersampling techniques. The original dataset contains 284,807 instances, 
with the majority class (class 0) comprising 284,315 instances and the minority class 
(class 1) comprising only 492 instances. This severe class imbalance can lead to biased 
model training, where the algorithm may prioritize the majority class and struggle to 
effectively learn patterns from the minority class.

To address this issue, undersampling techniques are applied to balance the dataset. 
It involves reducing the number of instances in the majority class to match the number of 
instances in the minority class. By doing so, the algorithm can allocate sufficient attention to 
both classes during training, improving its ability to detect fraudulent transactions without 
being overwhelmed by the abundance of genuine transactions.

However, it’s important to note that the total number of instances in the balanced 
dataset decreases significantly from the original dataset. Regarding the observation 
that even after undersampling, the number of instances in class 1 is not equal to class 
0, this can be attributed to the fact that class 0 initially has a much larger number of 
instances than class 1. Undersampling aims to address the severe class imbalance by 
reducing the number of instances in the majority class to match the minority class. 
However, since class 0 has 284,315 instances compared to only 492 instances in class 
1, it’s impossible to achieve perfect equality in the number of instances between the 
two classes without losing a significant amount of information. Therefore, the under-
sampling process aims to strike a balance between addressing class imbalance and 
preserving meaningful data for model training and evaluation.

Table 1  Distribution of CCFT data employing data balancing techniques

Data balancing 
techniques

Dataset Total instances Class 0 Class 1

CCFT Dataset Before 284807 284315 492

RUS After 984 492 492

Train 886 436 450

Test 98 56 42

CC After 984 492 492

Train 886 436 450

Test 98 56 42

IHT+RFC After 277958 277466 492

Train 250163 249722 441

Test 27795 27744 51

IHT+GBC After 57378 56886 492

Train 51641 51196 445

Test 5737 5690 47

IHT+LGBC After 207135 206643 492

Train 186422 185981 441

Test 20713 20662 51

IHT+XGB After 6372 5880 492

Train 5735 5301 434

Test 637 579 58
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Utilized independent and ensemble ML algorithms

In our credit card fraud detection framework, we have employed a total of 8 popular 
ML algorithms, comprising 4 independent classifiers and 4 ensemble classifiers. Here’s a 
description of each algorithm:

•	 Decision Tree (DTC): Decision Tree is a versatile classifier known for its flexibility in 
handling both classification and regression tasks [18]. By recursively partitioning the 
feature space based on informative attributes, it constructs a tree-like structure that 
aids in decision-making. Its interpretability and robustness make it a favored choice 
across various domains.

•	 Support Vector Classifier (SVC): Support Vector Classifier is a powerful supervised learn-
ing algorithm utilized for classification tasks [19]. It works by finding the optimal hyper-
plane that separates different classes with the maximum margin in the feature space. SVC 
is particularly effective in high-dimensional spaces and is widely used in various applica-
tions, including text classification, image recognition, and bioinformatics.

•	 K-Nearest Classifier (KNC): K-Nearest Classifier is a simple yet effective supervised 
learning algorithm used for classification and regression tasks [20]. It assigns labels 
to data points based on the majority vote of their nearest neighbors in the feature 
space. KNN’s simplicity and interpretability make it suitable for various applications, 
including pattern recognition, anomaly detection, and recommendation systems.

•	 Multilayer Perceptron (MLP): Multilayer Perceptron is a type of artificial neural network 
characterized by multiple layers of interconnected neurons [6]. It is capable of learning 
complex patterns and relationships in data through nonlinear transformations. MLP is 
widely applied in tasks such as image recognition, natural language processing, and finan-
cial forecasting due to its ability to handle large and high-dimensional datasets.

•	 Random Forest Classifier (RFC): Random Forest is an ensemble learning method 
that constructs multiple decision trees and combines their predictions to improve 
accuracy and robustness [8]. It mitigates overfitting by aggregating the predictions of 
individual trees, resulting in a more stable and accurate model. RFC is widely used in 
various fields, including finance, healthcare, and marketing, for tasks such as classifi-
cation, regression, and feature selection.

•	 Gradient Boosting Classifier (GBC): Gradient Boosting Classifier is another ensem-
ble learning technique that builds a sequence of decision trees iteratively, with each 
tree correcting the errors of its predecessor [3]. It combines the strengths of indi-
vidual trees to create a strong predictive model. GBC is known for its high accuracy 
and is commonly used in applications such as web search ranking, click-through rate 
prediction, and customer churn prediction.

•	 Light Gradient Boosting Classifier (LGBC): Light Gradient Boosting Classifier is a scal-
able and efficient implementation of gradient boosting [6]. It optimizes memory usage 
and computational speed while maintaining high predictive performance. LGBC is widely 
used in large-scale machine learning tasks, such as web-scale recommendation systems, 
fraud detection, and financial modeling, due to its speed and accuracy.

•	 XGBoost Classifier (XGBC): XGBoost is an optimized implementation of gradient 
boosting that excels in both speed and performance [21]. It employs a regulariza-
tion term in the objective function to control overfitting and enhance generalization. 
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XGBoost is highly versatile and is used in various applications, including credit risk 
modeling, time series forecasting, and personalized recommendation systems.

In our experiment, we employed various ML classifier algorithms for credit card fraud 
detection and identified the optimal parameters to enhance model performance. Table 2 
displays the best parameters utilized for each classifier algorithm in our study.

Consider a potent CCFD system that makes use of several integrated ensemble state-
of-the-art algorithms cooperating in a hybrid multistage ensemble model-rather than 
just one or four! Capable of capturing even the most skilled scammers, this system 
has 4 independent, 4 ensembles, and 1 bagging at its disposal. We can make sure that 
this dynamic combination of algorithms is genuinely unbeatable in spotting fraudulent 
transactions and protecting your financial security by assessing their performance using 
measures like precision, recall, accuracy, etc.

Multistage ensemble ML approach

To increase the precision and resilience of our CCFD model, we used an integrated 
multistage ensemble ML approach in our study. More specifically, we aggregated the 
predictions from several ensemble ML models, including EMC, EBC, and EIC, using a 
weighted vote classifier technique. We used the Grid Search technique to determine the 
ideal weights for each algorithm in order to give it the greatest performance possible 
for our ensemble model. For each algorithm, the weights had to be carefully adjusted 
in order to produce an accurate and balanced ensemble prediction. We sought to cre-
ate a more potent credit card fraud detection model by applying this ensemble method 
and refining the weights via grid search, which might potentially protect the country’s 
economy from the financial damage brought on by FD.

The weighted average voting ensemble model utilizes a weighted average of each base 
ensemble model’s predictions, with the weights representing the models’ respective 
relative relevance. By using each base model’s strengths and mitigating its limitations, 
this method improves prediction accuracy overall. The integrated multistage ensemble 
model is more reliable at detecting CCF and less prone to overfitting because it incorpo-
rates the predictions of several base ensemble models. Utilizing the knowledge of several 
base models, the weighted average voting ensemble model enhances the performance 
of the credit card fraud detection model, which makes its application in our study note-
worthy. To make sure that the ensemble model is well-calibrated and performs optimally 
in classifying fraudulent transactions, we conduct multiple experiments at multistage 
ensemble voting models. The optimized weights for these models vary depending on 
the ML model and range from 0.25 to 0.85 for different ML models. These weights are 
obtained through the grid search process. Financial institutions may be able to prevent 
possible financial losses due to fraud by doing this. The weighted average voting ensem-
ble model is a useful method in credit card fraud detection and other machine learning 
applications due to its effectiveness and resilience.

Algorithm 1 describes the Grid Search Approach to Find the Optimal Weights in our 
proposed CCFT detection method. The algorithm presented is a grid search approach 
designed to find the best combination of weights for an ensemble classifier. It takes a list 
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of pre-trained models and the corresponding training and test data as input. The goal 
is to determine the optimal weights for combining these models to achieve the highest 
accuracy on the test dataset. The algorithm systematically explores various weight com-
binations through nested loops, adjusting the weights for each model in the ensemble. 

Table 2  The best parameters used in our experiment by each classifier algorithm

Algorithm Parameter Used Value

Decision Tree Classifier (DTC) criterion ‘gini’

splitter ‘best’

min_samples_split 2

min_samples_leaf 1

K-Nearest Classifier (KNC) n_neighbors 5

weights ‘uniform’

leaf_size 30

p 2

metric ‘minkowski’

Multilayer Perceptron (MLP) hidden_layer_sizes (100,)

activation ‘relu’

solver ‘adam’

alpha 0.0001

learning_rate_init 0.001

max_iter 200

shuffle TRUE

Support Vector Classification (SVC) C 1

kernel ‘rbf’

degree 3

gamma ‘scale’

probability TRUE

decision_function_shape ‘ovr’

Random Forest Classifier (RFC) n_estimators (number of trees) 100

min_samples_split 2

min_samples_leaf 1

max_features ‘sqrt’

bootstrap TRUE

Gradient Boosting Classification (GBC) loss ‘log_loss’

learning_rate 0.1

n_estimators 100

min_samples_split 2

min_samples_leaf 1

max_depth 3

Extreme Gradient Boosting Classification (XGBC) n_estimators 100

learning_rate 0.3

max_depth 6

reg_alpha 0

reg_lambda 1

Light Gradient Boosting Classification (LGBC) n_estimators 100

learning_rate 0.1

max_depth − 1

reg_alpha 0

reg_lambda 0
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For each combination, it trains the ensemble classifier, evaluates its performance on the 
test data, and records the accuracy score. After evaluating all combinations, it selects 
the one with the highest accuracy and returns the corresponding weights. This method 
helps to automate the process of finding the most effective ensemble configuration, facil-
itating the development of robust detection models.

Algorithm 1  Grid search approach to find the optimal weights
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Results and discussion
Our study presents a novel integrated multistage ensemble machine learning model 
designed to identify fraudulent transactions. This part presents a concise summary of 
the experimental setup, the metrics used to evaluate performance, and an initial analysis 
of the findings and subsequent discussion.

Experimental configuration

The experimental configuration was implemented on a high-performance machine 
operating Windows 11 Pro, featuring an Intel Core i7 vPro 8th Generation proces-
sor, 16 GB of RAM, and a 500 GB solid-state drive (SSD). To implement our proposed 
model, we employed Anaconda Navigator and its Jupyter Notebook interface. The pri-
mary programming language was Python, with assistance from significant libraries like 
Scikit-learn, Pandas, NumPy, and Matplotlib. These libraries enabled a variety of tasks 
including data manipulation, numerical calculations, visualization, and ML processes.

Metrics for evaluating performance

To assess the efficacy of our proposed model, we employ a range of performance met-
rics, ensuring a comprehensive evaluation. These metrics include accuracy, precision, 
recall, F1-score, area under the curve (AUC) score, confusion matrix, as well as mean 
absolute error (MAE), mean squared error (MSE), and root mean squared error (RMSE). 
Here’s a brief definition of each metric:

•	 The confusion matrix provides a detailed breakdown of the model’s predictions, 
showcasing true positives, true negatives, false positives, and false negatives. It offers 
valuable insights into the model’s performance across different classes and aids in 
identifying areas for improvement. Table  3 presents the confusion matrix, visually 
summarizing the model’s predictive accuracy and errors.  where FP stands for False 
Positive, FN for False Negative, TP for True Positive, and TN for True Negative.

•	

•	

•	

•	

•	

(1)Accuracy =
TP + TN

TP + FP + FN + TN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1score = 2 ∗
(Precision ∗ Recall)

(Precision+ Recall)
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•	

•	

 where n stands for the total number of values.
•	 The AUC (Area Under the Curve) score is a crucial performance metric in evalu-

ating classification models, including our fraudulent transaction detection model. It 
measures the model’s ability to distinguish between positive and negative instances 
across various threshold values. A higher AUC score indicates better discrimination 
between classes, with a perfect score of 1 representing ideal classification.

•	 Stratified k-fold cross-validation with k = 5 was employed to robustly evaluate our 
model’s performance. This method partitions the dataset into 5 equally sized folds 
while preserving the class distribution in each fold. It ensures that each fold contains 
a representative sample of both fraudulent and genuine transactions, facilitating an 
unbiased assessment of the model’s effectiveness across different data subsets.

Results analysis

Our study delves into the realm of credit card fraud detection, a critical domain in finan-
cial security where accurate and efficient detection mechanisms are paramount. In this 
pursuit, we conducted five distinct experiments, each aimed at evaluating the perfor-
mance of various ML models utilizing different data balancing techniques. The experi-
ments were conducted on the CCFT dataset, a publicly available dataset widely used for 
benchmarking fraudulent transaction detection algorithms. Our objective was to com-
prehensively assess the effectiveness of these models in detecting fraudulent transactions 
under different experimental conditions.

Experiment 1 focused on employing the Random Under Sampling (RUS) technique, 
a commonly used method to address class imbalance, where instances of the majority 

(5)
MAE =

n
∑

i=1

predicted(i)− actual(i)

n

(6)
MSE =

n
∑

i=1

(predicted(i)− actual(i))2

n

(7)
RMSE =

√

√

√

√

√

n
∑

i=1

(predicted(i)− actual(i))2

n

Table 3  Confusion matrix

Actual positive Actual 
negative

Predicted positive TP FP

Predicted negative FN TN
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class are randomly removed to balance the dataset. Experiment 2 utilized the Clus-
ter Centroids (CC) technique, which involves generating synthetic samples to bal-
ance the dataset by clustering the majority of class instances. Experiment 3 employed 
the Instance Hardness Threshold + Random Forest Classifier (IHT+RFC) approach, 
which combines instance hardness thresholding with the Random Forest algorithm for 
enhanced fraud detection. Experiment 4 delved into the Instance Hardness Threshold + 
Gradient Boosting Classifier (IHT+GBC) technique, where instance hardness threshold-
ing is combined with the Gradient Boosting Classifier to improve model performance. 
Experiment 5 explored the Instance Hardness Threshold + Light Gradient Boosting 
Classifier (IHT+LGBC) approach, integrating instance hardness thresholding with the 
Light Gradient Boosting Classifier for enhanced fraud detection capabilities. Through 
these experiments, we aim to provide insights into the efficacy of different ML mod-
els and data-balancing techniques in detecting fraudulent transactions. By evaluating 
various performance metrics such as accuracy, precision, recall, F1-score, and AUC, 
we seek to identify the most effective approach for fraud detection, ultimately contrib-
uting to the advancement of security measures in financial transactions. Experiment 
6 further expands our investigation into fraud detection methodologies. This experi-
ment focuses on the Instance Hardness Threshold + Extreme Gradient Boosting Clas-
sifier (IHT+XGBC) technique. Here, instance hardness thresholding is coupled with 
the Extreme Gradient Boosting Classifier to enhance the model’s ability to identify 
fraudulent transactions. By incorporating the powerful gradient boosting capabilities of 
XGBoost with instance hardness thresholding, we aim to improve the model’s perfor-
mance even further. Through this experiment, we seek to evaluate the effectiveness of 
this advanced approach in comparison to other techniques explored in previous experi-
ments. Table 4 displays our Multistage Ensemble ML Model’s Performance Analysis.

In each experiment, the performance of the EIBMC stood out prominently, show-
casing its robustness and effectiveness in detecting fraudulent transactions. In Experi-
ment 1, conducted with the RUS technique, the EIBMC model achieved an accuracy of 
94.90%, precision of 94.93%, recall of 94.64%, F1-score of 94.78%, and an AUC of 99.29%. 
This demonstrated its capability to maintain high accuracy and precision while effec-
tively identifying instances of fraud amidst class imbalances. Similarly, in Experiment 2 
employing the CC technique, the EIBMC model continued to excel with an accuracy of 
97.96%, precision of 97.92%, recall of 97.92%, F1-score of 97.92%, and an AUC of 99.84%. 
These results underscored the model’s consistency in performance across different data 
balancing methods, affirming its reliability in fraud detection tasks. In Experiment 3, 
which utilized the IHT+RFC approach, the EIBMC model showcased its adaptabil-
ity by achieving an accuracy of 99.95%, precision of 98.73%, recall of 88.23%, F1-score 
of 92.85%, and an AUC of 98.54%. Despite the complexity introduced by combining 
instance hardness thresholding with the Random Forest algorithm, the EIBMC model 
maintained its high-performance standards. Experiment 4 explored the IHT+GBC tech-
nique, where the EIBMC model again demonstrated its prowess with an accuracy of 
99.91%, precision of 97.80%, recall of 96.79%, F1-score of 97.29%, and an AUC of 98.72%. 
In Experiment 5, employing the IHT+LGBC, the EIBMC model maintained its excep-
tional performance with an accuracy of 99.94%, precision of 99.97%, recall of 87.25%, 
F1-score of 92.68%, and an AUC of 95.99%. Through these experiments, the consistently 
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high performance of the EIBMC model across diverse data balancing techniques under-
scores its status as a promising choice for fraud detection in financial transactions.

Finally, In Experiment 6, the EIBMC stands out with exceptional performance 
scores. With an accuracy of 99.84%, precision of 99.91%, and recall of 99.14%, the 
EIBMC model demonstrates its ability to accurately identify fraudulent transactions. 
Moreover, achieving an impressive F1-score of 99.52% and a perfect AUC score of 
100%, the model showcases its robustness and effectiveness in fraud detection tasks. 
Additionally, the EIBMC model exhibits minimal error metrics, with a MAE and 
MSE of 0.16, and an RMSE of 3.96. These outstanding results underscore the reliabil-
ity and suitability of the EIBMC model for fraud detection applications, highlighting 
its potential as a powerful tool for ensuring financial security. While it leverages the 
diversity of the fundamental EML models and combines the finest aspects of mul-
tiple multistage ensemble models into a more robust and trustworthy system, our 
suggested integrated ensemble model performs exceptionally well. The grid search 
results improve the ensemble model and make it feasible for a successful fusion of 
the fundamental machine learning models’ predictions by providing the best weights 
for those models. The ensemble model shows promising potential as a reliable and 
efficient technique for credit card fraud detection since it beats individual models and 
offers improved accuracy and precision in detecting fraudulent transactions. Through 
the use of thorough performance matrices, we have gained insight into the efficacy 
and potential uses of these models as well as more knowledge about their real-world 
performance.

In our pursuit of effective fraud detection methodologies, we rigorously evaluated 
the performance of our EIBMC model across various experiments illustrated in Fig. 2 
and Table 4. Examining the AUC scores, a critical metric indicating the model’s ability 
to discern between fraudulent and legitimate transactions, we uncovered compelling 
insights. Notably, in Experiment 6, where we employed the IHT+XGBC technique, 
our EIBMC model achieved a remarkable AUC score of 100. This exceptional result 
signifies unparalleled accuracy in identifying fraudulent activities, demonstrating the 
robustness of our model. Comparing this achievement with other experiments, we 
observed consistently high AUC scores across different methodologies. In Experi-
ment 1, utilizing RUS, our EIBMC model attained an AUC score of 99.15. Experiment 
2, employing CC, yielded an AUC score of 99.84. Experiment 3, which utilized the 
IHT+RFC approach, resulted in an AUC score of 98.54. Experiment 4, implementing 
IHT+GBC, produced an AUC score of 99.72. Experiment 5, integrating IHT+LGBC, 
delivered an AUC score of 95.99. However, it’s Experiment 6 that stands out promi-
nently, with the IHT+XGBC configuration showcasing the EIBMC model’s excep-
tional capabilities. Achieving a perfect AUC score of 100, our model surpassed all 
other experiments in detecting fraudulent transactions. This remarkable performance 
underscores the effectiveness of the EIBMC model in real-world applications, promis-
ing heightened security and integrity in financial transactions.

Furthermore, the Confusion Matrix and ROC Curve of the EIMBC Model for CCFTD 
is illustrated in Fig. 3. The confusion matrix for the EIBMC model reveals exceptional 
performance, with 579 fraudulent transactions correctly identified (True Positives) 
and 57 legitimate transactions accurately classified (True Negatives), while only one 
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Table 4  Performance analysis of multistage ensemble ML model

Data 
balancing 
techniques

ML Model Accuracy Precision Recall F1-score AUC​ MAE MSE RMSE

RUS DTC 91.84 91.54 91.96 91.71 91.96 8.16 8.16 28.57

SVC 93.88 95.16 92.86 93.61 99.64 6.12 6.12 24.74

KNC 90.82 90.74 90.48 90.6 96.7 9.18 9.18 30.3

MLPC 93.88 94.52 93.15 93.66 99.57 6.12 6.12 24.74

RFC 92.86 92.83 92.56 92.69 98.83 7.14 7.14 26.73

GBC 93.88 93.6 94.05 93.78 98.96 6.12 6.12 24.74

LBC 94.9 94.93 94.64 94.78 99.29 5.1 5.1 22.59

XGBC 92.86 92.62 92.86 92.73 99.02 7.14 7.14 26.73

EBC 94.9 95.33 94.35 94.74 99.05 5.1 5.1 22.59

EIC 94.9 95.33 94.35 94.74 98.67 5.1 5.1 22.59

EIBMC 94.9 94.93 94.64 94.78 99.15 5.1 5.1 22.59

CC DTC 92.86 92.83 92.56 92.69 92.56 7.14 7.14 26.73

SVC 93.88 95.16 92.86 93.61 98.9 6.12 6.12 24.74

KNC 87.76 87.72 87.2 87.42 93.59 12.24 12.24 34.99

MLPC 92.86 93.2 92.26 92.64 98.11 7.14 7.14 26.73

RFC 97.96 97.92 97.92 97.92 99.63 2.04 2.04 14.29

GBC 97.96 97.92 97.92 97.92 99.95 2.04 2.04 14.29

LBC 98.98 98.84 99.11 98.96 99.97 1.02 1.02 10.1

XGBC 97.96 97.92 97.92 97.92 99.84 2.04 2.04 14.29

EBC 96.94 96.77 97.02 96.88 99.77 3.06 3.06 17.5

EIC 93.88 94.52 93.15 93.66 99.16 6.12 6.12 24.74

EIBMC 97.96 97.92 97.92 97.92 99.84 2.04 2.04 14.29

IHT+RFC DTC 99.93 90.18 90.18 90.18 90.18 0.07 0.07 2.68

SVC 99.95 98.73 88.23 92.85 96.42 0.05 0.05 2.16

KNC 99.95 99.97 86.27 92.03 90.19 0.05 0.05 2.24

MLPC 99.95 97.54 88.23 92.38 98.68 0.05 0.05 2.24

RFC 99.96 99.98 89.22 93.95 95.93 0.04 0.04 1.99

GBC 99.95 96.41 88.23 91.92 95.91 0.05 0.05 2.32

LBC 99.41 58.63 79.15 63.24 74.37 0.59 0.59 7.68

XGBC 99.96 99.98 88.24 93.32 98.16 0.04 0.04 2.08

EBC 99.95 99.98 87.25 92.68 97.81 0.05 0.05 2.16

EIC 99.95 98.73 88.23 92.85 98.81 0.05 0.05 2.16

EIBMC 99.95 98.73 88.23 92.85 98.54 0.05 0.05 2.16

IHT+GBC DTC 99.67 87.03 95.61 90.87 95.61 0.33 0.33 5.75

SVC 99.86 95.71 95.71 95.71 98.82 0.14 0.14 3.73

KNC 99.84 97.56 92.54 94.9 97.83 0.16 0.16 3.96

MLPC 99.84 96.54 93.59 95.02 99.9 0.16 0.16 3.96

RFC 99.91 97.8 96.79 97.29 99.82 0.09 0.09 2.95

GBC 99.72 89.58 94.58 91.93 99.59 0.28 0.28 5.28

LBC 99.88 97.68 94.66 96.12 98.85 0.12 0.12 3.49

XGBC 99.88 97.68 94.66 96.12 99.52 0.12 0.12 3.49

EBC 99.88 97.68 94.66 96.12 99.76 0.12 0.12 3.49

EIC 99.9 97.74 95.73 96.71 99.82 0.1 0.1 3.23

EIBMC 99.91 97.8 96.79 97.29 99.72 0.09 0.09 2.95
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legitimate transaction is incorrectly labeled as fraudulent (False Positive) and one fraud-
ulent transaction is missed (False Negative). This demonstrates high precision and recall, 
indicating minimal misclassifications. Moreover, the Receiver Operating Characteristic 
(ROC) curve underscores the model’s robustness, with an AUC of 100, reflecting perfect 
discrimination between fraudulent and legitimate transactions. This signifies the model’s 
ability to achieve a true positive rate of 100% while maintaining a false positive rate of 
0%, ensuring optimal fraud detection without erroneous classifications.

In conclusion, our study highlights the significance of thorough performance assess-
ment when deploying an integrated ensemble multistage ML model for detecting fraud-
ulent transactions. By systematically evaluating the efficacy of various models, we have 
provided valuable insights into their strengths and weaknesses, empowering businesses 
and researchers to make informed choices regarding model selection for real-world 
applications. The findings from our analysis offer valuable contributions to the fields of 
ML, fraud detection, and financial security.

Table 4  (continued)

Data 
balancing 
techniques

ML Model Accuracy Precision Recall F1-score AUC​ MAE MSE RMSE

IHT+LGBC DTC 99.9 92.82 85.28 88.68 85.28 0.1 0.1 3.18

SVC 99.9 92.82 85.28 88.68 92.43 0.1 0.1 3.18

KNC 99.93 99.97 86.27 92.03 89.2 0.07 0.07 2.6

MLPC 99.89 94.55 82.34 87.47 94.65 0.11 0.11 3.26

RFC 99.94 99.97 88.24 93.32 94.8 0.06 0.06 2.41

GBC 99.85 92.79 73.52 80.34 67.71 0.15 0.15 3.87

LBC 99.64 68.5 82.22 73.48 82.42 0.36 0.36 5.98

XGBC 99.94 99.97 88.24 93.32 93.48 0.06 0.06 2.41

EBC 99.94 99.97 87.25 92.68 94.49 0.06 0.06 2.51

EIC 99.92 97.4 86.27 91.09 95.48 0.08 0.08 2.78

EIBMC 99.94 99.97 87.25 92.68 95.99 0.06 0.06 2.51

IHT+XGBC DTC 99.06 96.49 97.93 97.2 97.93 0.94 0.94 9.71

SVC 99.22 99.57 95.69 97.53 100 0.78 0.78 8.86

KNC 99.22 99.57 95.69 97.53 97.4 0.78 0.78 8.86

MLPC 99.69 99.83 98.28 99.04 99.79 0.31 0.31 5.6

RFC 99.84 99.91 99.14 99.52 100 0.16 0.16 3.96

GBC 99.69 99.05 99.05 99.05 99.99 0.31 0.31 5.6

LBC 99.69 99.83 98.28 99.04 100 0.31 0.31 5.6

XGBC 99.84 99.91 99.14 99.52 100 0.16 0.16 3.96

EBC 99.84 99.91 99.14 99.52 100 0.16 0.16 3.96

EIC 99.53 99.74 97.41 98.54 100 0.47 0.47 6.86

EIBMC 99.84 99.91 99.14 99.52 100 0.16 0.16 3.96
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Discussion
In comparing our proposed model with existing works in fraudulent transaction 
detection, Table  5 presents a comprehensive analysis based on various metrics. 
Esenogho et  al. [10] employed the SMOTE-ENN technique with an LSTM Ensem-
ble, achieving a commendable AUC score of 99.00%. Xie et  al. [12] introduced the 
HELMDD model without employing balancing techniques, achieving an AUC score 
of 98.53%. Lakshmi et  al. [11] utilized random oversampling (RO) with Random 
Forests (RF), achieving an accuracy of 95.50%. Soleymanzadeh et al. [13] employed 
Ensemble Stacking without specifying balancing techniques, achieving an accuracy 
of 93.49%. Faraji et al. [15] employed SMOTE with an Ensemble model, achieving an 
accuracy score of 99.00%. Taha et al. [14] introduced OLightGBM without employ-
ing specific balancing techniques, achieving an accuracy of 98.40%. Nandi et  al. 
[16] presented the BKS model without specifying balancing techniques, achieving 
an impressive accuracy score of 99.80%. In comparison, our proposed model, utiliz-
ing the IHT+XGBC technique with the EIBMC model, outperforms existing meth-
ods with an accuracy score of 99.94% and an AUC score of 100%. This comparison 
underscores the superior performance of our proposed model in fraudulent transac-
tion detection, demonstrating its potential to significantly enhance security meas-
ures in financial transactions.

However, it’s important to emphasize that our primary focus was on evaluat-
ing the performance of our proposed multistage ensemble models relative to existing 
approaches. While it’s true that different researchers may employ diverse techniques 
for data balancing, we ensured consistency in the initial dataset size (284,807), which 
remains the same across our experiments and those of existing works. This approach 
allows for a fair comparison of model efficacy and facilitates meaningful insights into the 
relative strengths and weaknesses of various fraud detection methodologies.

Our proposed model, leveraging the IHT+XGBC technique with the EIBMC model, 
outperforms existing methods through its integration of multiple stages of ensemble 
models. By harnessing the collective intelligence of diverse ensemble techniques, our 
model achieves superior accuracy and AUC scores in fraud detection tasks, enhancing 
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Fig. 2  Performance analysis of EIBMC model for CCFTD
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the reliability of financial transaction monitoring systems. The adoption of our model in 
CCFD systems can strengthen fraud prevention measures, offering financial institutions 
timely and accurate insights into suspicious activities, thus fortifying the security of con-
sumers’ financial transactions.

Cost analysis
Cost analysis refers to the evaluation of resources consumed during these processes, 
both in terms of time and computational requirements. In Table 6, the costs are repre-
sented as the time taken for building and predicting using different ML models under 
various data balancing techniques. The build time signifies the duration required to train 
the model on the dataset, while the prediction time indicates the time taken to gener-
ate predictions for new or unseen data points. This cost analysis allows researchers and 
practitioners to assess the efficiency of different models. Lower build and prediction 
times imply reduced computational expenses and faster response times, which are desir-
able qualities, especially in real-time applications like credit card fraud detection. The 
associated Fig. 4 provides a visual representation of these costs, aiding in the compara-
tive analysis of different models and techniques.

The IHT+XGBC EIBMC model exhibits notably reduced build and prediction times 
compared to other IHT+X models in the provided cost analysis. While it may require 

Fig. 3  Confusion natrix and ROC curve of EIMBC model for CCFTD

Table 5  Comparison analysis of our model with existing works

SI. No. Authors Balancing Techniques Models Accuracy (%) AUC (%)

1 Esenogho et al. [10] SMOTE-ENN LSTM Ensemble – 99.00

2 Xie et al. [12] – HELMDD – 98.53

3 Lakshmi et al. [11] RO RF 95.50 –

4 Soleymanzadeh et al. [13] – Ensemble Stacking 93.49 –

5 Faraji et al. [15] SMOTE Ensemble 99.00 –

6 Taha et al. [14] – OLightGBM 98.40 –

7 Nandi et al. [16] – BKS 99.80 –

8 Our Proposal IHT+XGBC EIBMC 99.94 100
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slightly more time than independent ML models for both building and predicting, it 
offers superior performance. This multistage ensemble model surpasses the independ-
ent ones by leveraging the collective strength of multiple classifiers. Despite its slightly 
increased computational overhead, its enhanced accuracy and reliability make it a pre-
ferred choice for credit card fraud detection. Additionally, the IHT+XGBC EIBMC 
model strikes a balance between efficiency and effectiveness, offering a compelling solu-
tion for real-world applications where accuracy and speed are crucial factors.

Our IHT+XGBC EIBMC model stands out for its remarkable efficiency in both build 
and prediction times compared to other models utilizing the same data balancing tech-
niques. With a mere 19.7641 ms of build time and 0.0749 ms of prediction time, it sig-
nificantly outperforms its counterparts, such as IHT+RFC EIBMC, IHT+LGBC EIBMC, 
and IHT+GBC EIBMC, in terms of speed.

The exceptionally low prediction time of 0.0749 ms underscores the model’s ability to 
provide rapid responses, making it well-suited for real-time applications where timely 
decisions are paramount. Despite its swift execution, this model maintains high accu-
racy, ensuring reliable predictions for credit card fraud detection tasks.

The combination of fast and accurate predictions positions our IHT+XGBC EIBMC 
model as a highly efficient and effective solution for addressing the challenges of credit 
card fraud detection. Its ability to deliver rapid results without compromising accuracy 
makes it an invaluable tool for financial institutions and researchers seeking optimal 
performance in fraud detection systems.

Dependable analysis
In the realm of credit card fraud detection, ensuring dependability is paramount, encom-
passing factors like reliability, availability and efficiency as emphasized by Talukder et al. 
[21].

Our model, leveraging an IMEML approach, aligns well with the concept of depend-
ability. By amalgamating diverse Multistage ML models and data balancing strategies, it 
enhances reliability by mitigating the risk of false positives and negatives in Fig. 3. Addi-
tionally, the model’s ability to achieve high precision, recall and AUC rates, as demon-
strated by the results in Fig.  2, underscores its dependability in accurately identifying 
fraudulent transactions while minimizing false alarms.

Moreover, the model’s efficiency, as indicated by its comparatively lower build and pre-
diction times, ensures its availability for real-time deployment in financial institutions’ 
fraud detection systems in Fig. 4. In essence, our proposed model exhibits commend-
able dependability, aligning closely with the principles. Its reliability, availability and effi-
ciency collectively contribute to its efficacy in combating credit card fraud, making it a 
dependable solution for financial institutions and researchers in the field.

Conclusion
In this paper, we introduced an innovative approach to fraudulent transaction detection 
using an integrated multistage ensemble ML model. Our methodology encompassed 
various stages, including data collection, preprocessing, normalization, balancing, split-
ting, multistage ensemble model (MEM) construction, integration, and performance 
evaluation. Leveraging a credit card fraudulent transaction dataset, we tackled data 
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imbalance using RU, CC, and IHT+X techniques, where X denotes Ensemble ML algo-
rithms. Subsequently, we initialized MEM with multiple ML algorithms and fused them 
to construct an IMEML for fraud detection.

Table 6  Cost analysis of multistage ensemble ML models

Data balancing techniques ML model Build time Prediction time

IHT+RFC DTC 19.2007 0.0033

SVC 70.3317 0.5442

KNC 0.0355 16.5128

MLPC 87.7239 0.2316

RFC 226.5927 0.27

GBC 318.7969 0.0205

LBC 3.5822 0.0656

XGBC 2.6217 0.024

EBC 24.809 0.2627

EIC 309.0796 15.3606

EIBMC 879.2141 17.1296

IHT+GBC DTC 3.2144 0.0015

SVC 10.5495 0.1502

KNC 0.0069 0.989

MLPC 87.3998 0.0379

RFC 37.8179 0.0582

GBC 60.4271 0.0049

LBC 1.3055 0.0198

XGBC 0.8377 0.0061

EBC 6.7445 0.0565

EIC 73.3799 0.8955

EIBMC 202.5051 1.0778

IHT+LGBC DTC 13.2404 0.0025

SVC 58.8033 0.5503

KNC 0.0257 9.0736

MLPC 95.3515 0.1289

RFC 160.5604 0.2123

GBC 237.8369 0.0376

LBC 3.046 0.0695

XGBC 1.9757 0.0192

EBC 19.8812 0.2298

EIC 248.2804 8.7945

EIBMC 718.8227 9.8573

IHT+XGBC DTC 0.2126 0.0003

SVC 0.4586 0.0082

KNC 0.0016 0.0457

MLPC 8.5088 0.0034

RFC 2.927 0.0105

GBC 5.5692 0.0012

LBC 0.27 0.0051

XGBC 0.1283 0.0011

EBC 1.0852 0.0089

EIC 8.5907 0.0294

EIBMC 19.7641 0.0749
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Our proposed ensemble model presents a robust and efficient solution for credit 
card fraud detection, exhibiting superior accuracy, precision, and computational effi-
ciency compared to existing techniques. By amalgamating the strengths of multiple base 
ensemble models and optimizing performance through grid search, our EIBMC model 
achieved a perfect 100% AUC score, showcasing its exceptional performance.

Despite its strengths, our model has limitations. Its performance is contingent upon 
the quality and representativeness of the input dataset and may struggle with previously 
unseen or evolving fraudulent transaction types. Additionally, the choice of ML or DL 
algorithms and hyperparameter settings can influence performance, necessitating fur-
ther optimization.

Prospective avenues for investigation may comprise the integration of sophisticated 
deep feature engineering approaches, investigation of alternative methodologies for 
data balancing, and integration of real-time data to optimize performance. A deeper 
understanding of the efficacy and generalizability of our suggested model would be pos-
sible by experimentation with a variety of datasets and comparison with cutting-edge 
techniques.
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