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Abstract 

In a distributed cloud, unlike centralized resource management, users provide and share resources. However, this 
allows for the existence of free riders who do not provide resources to others, but at the same time use resources that 
others provide. In a distributed cloud, resource providers share resources in a P2P fashion. In this paper, we propose 
a 3-pronged solution KeyPIn—a Key-based, Participation-based, and Incentive-based scheme to mitigate the free 
rider problem in a distributed cloud environment. We propose an incentive-based scheme based on game theory 
for providers to participate in the cloud by providing resources. This participation will be low for free riders thereby 
limiting their access to resources. A secure time instant key is generated based on a key management scheme that 
enables good users’ more time to access resources as their participation is high, whereas free riders are given limited 
or no time as their participation is low. Simulation results show that our scheme is effective in mitigating the free rider 
problem in the distributed cloud.
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Introduction
Cloud computing refers to delivering configurable com-
puting and network resources over the internet to users 
on-demand. It uses virtualization techniques [1–3] to 
provide required resources to users dynamically in the 
form of virtual machines (VMs). Cloud providers pro-
vide resources in the form of various instances of plat-
form, infrastructure, and storage as services to users. 
For example, Amazon [4] provides different sizes of 
virtual machine instances – Small, Medium, Large and 
Extra Large. Cloud Computing use massive datacenters 
which lead to communication overhead as the number of 
users increases. Moreover, enterprise usage of the cloud 
is much higher when compared to individuals’ usage 
of the cloud. A large percentage of individuals use the 

cloud for sharing and storing data free-of-charge. Cloud 
computing-based traffic has increased significantly, and 
global cloud datacenter traffic is forecasted to an esti-
mate of 19.5 Zettabytes per year by 2021 by Cisco [5]. 
Cloud accounts for 95 percent of global data center traffic 
[5]. Most of the cloud service providers such as Google, 
Amazon, Facebook, and many others are expanding and 
building new datacenters worldwide.

There is a huge increase in demand for cloud 
resources. Cloud computing is made possible because 
of virtualization technology. By moving towards cloud-
based services many resources such as Desktops, PC’s 
and servers which can run virtualization software and 
can create multiple VMs on them are not being used 
to their fullest capabilities [6]. A distributed cloud 
developed using the resources provided by individual 
resources can mitigate the disadvantages of cloud com-
puting. Moreover, it will be helpful to reduce inter-
net traffic by reducing the load on cloud data centers. 
A distributed cloud makes use of unused individual 
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resources, which are not used to their maximum capac-
ity and thereby avoiding investments on new data 
centers.

In the distributed cloud users, both provide resources 
and use resources. Resource providers are distinctive i.e., 
these distributed cloud servers are offered by individuals 
with resources to offer. Resource requestors may request 
resources from other users in the distributed cloud who 
then become resource providers. Users of the distributed 
cloud must discover these resource providers and request 
the resources. A distributed cloud uses a decentralized 
mechanism to discover and allocate resources where 
users share recourses in a P2P fashion [7]. In our model 
resources are shared by users, but there might be some 
users, so-called “free riders”, who do not provide any 
resources for others, but use the cloud to get resources 
for themselves. Free riders should be given limited access 
or prevented from getting access to resources. This could 
be achieved by exacting a high cost to free riders for 
using the system. Hence, the system must be stable after 
resource allocation. In our model, a system is said to be 
stable when the resource allocation is fair, that is, users 
who provide resources for other users are more likely to 
get the resources they require.

Our contributions are as follows:

1.	 An incentive-based scheme is proposed where users 
who provide resources (the resource providers) to 
other users (the resource requestors) are assigned 
a higher participation factor ( ρ) and free riders will 
have a lower participation factor. Hence users have 
an incentive to provide resources whereas free riders 
will be denied or given very limited resources.

2.	 In addition to providing incentives, free riders must 
be identified so that they have limited access to 
resources in the cloud. The participation factor over 
all nodes in the cloud is proposed to identify free rid-
ers based on our proposed incentive-based scheme.

3.	 To control resource access to requestors, a time-
based access scheme based on participation is pro-
posed. A resource requestor with a high participa-
tion value is given more time to access resources 
when compared to a free rider who will have a lower 
participation value and is thereby given less time to 
access resources.

The problem specification is presented next. This 
is followed by the literature review and preliminaries 
(distributed cloud architecture). Next, we   propose an 
incentive-based scheme to identify resource provid-
ers and motivate them to provide resources to genuine 
users. Also, we present a trust scheme to detect free rid-
ers and the time-based access scheme to share resources. 

Simulation results are presented next before the paper 
concludes.

Problem specification
In research [8] conducted on P2P networks, researchers 
found that the percentage of free riders is around 85% of 
all users. Statistics show that 99% of resources in Gnu-
tella [8] is offered by only 25% of peers, i.e., the remain-
ing 75% of users provide only 1% of the resources. The 
free rider problem is therefore a serious issue and there 
needs to be a mechanism which addresses this poten-
tial problem. Mitigating the free riders’ problem is very 
challenging and important as the existence of free riders 
clog the network and hinder the growth of the network. 
In this paper, we propose an incentive-based mechanism 
based on game theory and use this to mitigate the free 
rider problem in a secure manner.

Literature review
All peers are expected to share their resources in a peer-
to-peer network. Free riding is a genuine concern in 
a network since free riders are reluctant to share their 
resources with their peers. As mentioned in [8] up to 85% 
of users may be free riders. Existence of free riders in a 
network affects the system in multiple ways such as, CPU 
overloading, unnecessary traffic in the network, under-
provision of network resources, single-point-of-failure, 
degrading system utility, system collapse etc. [9–11]. As 
free riders do not share their resources, honest or good 
users in a network face difficult tradeoffs between shar-
ing resources and not sharing resources. In the distrib-
uted cloud, resources are provided by users in a P2P 
manner [12]. Resource providers (RPs) in a distributed 
cloud architecture also suffer from the free rider problem 
when any user becomes reluctant to share resources with 
others.

Free riders clog the network and hinder the growth of 
the network. Solutions to reduce free riding problems 
can be categorized into three groups – monetary-based, 
reciprocity-based, and reputation-based approaches [11, 
13]. The monetary-based approach charges peers for any 
received service. The accounting module of monetary-
based approach securely stores each peer’s virtual cur-
rency, and the settlement module exchanges the virtual 
currency for services. For a current session, the reci-
procity-based approach monitors peers’ contributions 
to assess peers. It does not keep track of long-term his-
tory of peers and that lets a peer be judged as a free rider 
in one session and contributor in the next. Assuming 
peers report their interaction honestly, the reputation-
based approach keeps track of long-term behavior of a 
peer to measure peers’ reputation. Some implementa-
tion issues with this approach are reputation reliability, 
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communication overhead, persistent identifiers. In this 
paper, we focus on reputation and trust-based approaches 
in the distributed cloud to mitigate the free rider prob-
lem because the distributed cloud is completely decen-
tralized, and peers need to be both trustworthy as well 
as reputed to be reliable and successful. When applied to 
P2P networks, the monetary-based approach has several 
implementation limitations such as centralization and 
communication overhead, persistent identifiers, mental 
transaction costs. The reciprocity-based approach has 
several implementation issues such as fake services, peer 
identity management, and contribution-level credibility. 
In [12, 14–16], authors proposed trust-based approaches 
in different networks. In [12] the authors proposed a trust 
model based on human cognitive behavior and incor-
porated multiple trust factors to reflect the complexity 
of trust. For social networks, a game theory-based trust 
measurement model based on service reliability, feedback 
effectiveness and recommendation credibility has been 
proposed in [14]. To alleviate the free rider problem, the 
authors have proposed a game theory-based punish-
ment mechanism for global trust and punishment cycles 
for specific trust. A secure, robust Reputation and Risk 
evaluation-based Trust management framework named 
R2 Trust [15] uses both reputation and risk to evaluate 
the trustworthiness of a peer. In ubiquitous and perva-
sive computing environments, Trust computation and 
management system (TOMS) based on trust manage-
ment has been proposed by the authors of [16]. The trust 
management of TOMS makes decisions on nodes’ access 
rights by developing a trust model, assigning credentials, 
and managing the trust value of each node and updating 

private keys. The way resources are used and provided 
in P2P computing and distributed cloud are completely 
different. The distributed cloud uses an additional layer 
on top of P2P to perform resource discovery and alloca-
tion. In the distributed cloud unlike P2P networks, the 
provider has control over how much of his resources can 
be made available and at the same time the user has the 
choice of choosing a provider from a pool. This poses a 
completely new challenge for evaluating reputation and 
trust and therefore a need for a different mechanism to 
evaluate trust and reputation.

Preliminaries
Distributed cloud architecture
With the advent of cloud resources, a distributed cloud 
model [7] was created by considering a huge number of 
resources that are not being utilized to their full poten-
tial. 72.9% of the cloud services were used for enterprise 
solutions and the remaining were used by consumer ser-
vices which includes Gmail, Twitter, Facebook, YouTube, 
Dropbox, Google Drive, and many others. According to 
Cisco, consumer IP traffic is much higher than business 
IP traffic [5]. Currently, this traffic is directed to and from 
data centers which results in the creation of single point 
bottlenecks.

A distributed cloud model is shown in Fig. 1. In a dis-
tributed cloud, resources are discovered by users [7]. The 
nodes in distributed cloud model can be both RPs and 
RRs. All nodes in this model can communicate with each 
other in a P2P fashion. There are different factors that 
need to be considered when discovering resources, such 
as latency, throughput, locality etc. Instead of discovering 

Fig. 1  Distributed Cloud Model
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only the exact number of resources requested by a user, n 
number of resources are selected in an optimized man-
ner to minimize latency or maximize throughput. As a 
result, resources that fit user requirements and have low 
latency or high throughput are chosen to ensure efficient 
resource allocation in the distributed cloud.

In the distributed cloud, all the resources are shared 
in a P2P fashion. In the distributed cloud, users are not 
charged to use the cloud. Instead, they are expected to 
provide resources to other users. Free riders use the 
resources of other users in the distributed cloud with-
out providing their own resources for others to use. Each 
node in the distributed cloud will run a distributed cloud 
overlay application over a P2P architecture.

Providing resources to users
Resource discovery
A user requesting resources (or Resource Requestor RR) 
must first discover the resources. We proposed a scheme 
to discovery resources using a modified Kademlia [17] 
protocol to perform resource discovery. Kademlia is a 
P2P, decentralized protocol used to identify peers by 
making use of DHT’s. Kademlia uses bitwise XOR met-
ric to perform accelerated lookups and is shown to per-
form efficient query lookups. In a network of size N, 
locating a node takes an average of O(logN) hops. To 
perform resource discovery, a multi-valued hash table 
scheme was used [7]. In this scheme, we proposed a con-
cept of distributed local multi-valued hash table to iden-
tify resources using a range of attributes. Each node in 
the distributed cloud is given two ID’s, one is to locate 
the node and other is to identify attributes of a node. 
Each node has different attributes that are used for the 
resource discovery mechanism. This scheme is imple-
mented by modifying the Kademlia protocol.

Incentive for providing resources
The distributed cloud does not charge users to use the 
cloud apart from providing resources to other users. 
Free riders are users who use the resources of other 
users in the distributed cloud without providing their 
own resources for others to use. A critical issue is how 
much resources a resource provider should allocate to a 
user or resource requestor given there are free riders in 
the network. After discovering resources, a game theo-
retic approach is used to allocate appropriate resources 
to requestors offered by RPs. In this section we propose 
an incentive-based scheme that will give more resources 
to genuine or good users and provide fewer resources to 
free riders or bad users.

A utility function (µ) determines the utility which is 
the value of resources assigned to the user. This is based 
on the participation factor of a user. A participation 

factor ρy is assigned to each user y . The participation 
factor of a node y in the distributed cloud is a meas-
ure of the value of node y’s resources that y has made 
available to others. In our mechanism a user x request-
ing resources (or resource requestor RR) receives bids 
from RPs and then chooses the RPs rationally. Users 
(or resource requestors RRs) with low participation 
factors will receive less time to access resources. Users 
need to provide resources, to raise their participation 
factor. The participation factor thus serves as an incen-
tive to encourage users to provide resources. Hence, 
there are two types of players, a Resource Provider (RP) 
of resources and a user of resources who requests the 
resources (RR).

During the initial stages or if the user’s ρ is low, he 
might receive resources whose utility value is small. Once 
the system is close to stability, users who are not free rid-
ers will most likely receive resources with maximum or 
close to maximum utility. Ideally each provider will pro-
vide resources to maximize her own participation factor. 
In the distributed cloud, users will be requesting multi-
ple resources for computation, so a simultaneous auction 
with multiple winners is used. A bidding profile is a vector 
of player i’s bids bi = b1, b2...bi . The bidding profile of user 
i is represented using bi and the bidding profile of user i ’s 
opponent is defined as b−i = b1..bi−1..bi+1bi+2 . . . User i 
chooses a resource based on the utility, where utility µi is 
defined as:

Utility µi is a function of memory, CPU. Once the user 
(or RR) receives all the bids from RPs, the user will calcu-
late utility values for all the bids using the above equation. 
This game achieves Nash equilibrium. In µi(bi; b−i, ρ) ,  bi  
represents the winning bid and b−i represents all the bids 
that were lost.

In practice, RR is bargaining with multiple providers 
to get the best deal. This bargaining game is played in 
rounds. In each round, the user RR makes a request, and 
the provider RP decides to accept it or not. Acceptance 
ends the game while rejection leads to the next round. A 
strategy si of player i is a function that assigns an action 
to player i when it is its turn to move. As a notational 
convention, −i represents the player other than player 
i in the bargaining game. Similarly, s−i represents the 
strategies of the player other than player i . Note that 
s = (si, s−i) is a strategy profile.

A user who needs resources, that is the RR, makes 
the first move. A user gains access to resources he has 
requested to accomplish his task. This may be Memory, 
CPU etc. Some tasks are important whereas others are 
less important. There is therefore a weight α associ-
ated with each request. This is labeled as α(CPU ,Mem) . 

µi(bi; b−i) = f (MEM,CPU)
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CPU and Mem resource parameters are normalized to 
between 0 and 1.

Each round of the bargaining process involves a cost 
c for the users, both RR and RP. The cost for a RR may 
involve, for example, acquiring and managing resources 
provided by RPs. The total cost is labeled as 

∑m
i=1 cRi for 

m rounds. The cost for a RP includes unavailability of 
resources during the time the resources are being used by 
a RR, for example. The total cost is labeled as 

∑m
i=1 cPi for 

m rounds.
RP makes the next move. RP provides resources to RR 

to accomplish the requested task of RR . This is labeled as 
β(CPU ,Mem) . β is a weight, indicating the loss factor. 
A resource provider who has a lot of resources but con-
tributes little will have a low β value, whereas a RP with 
few available resources but contributing proportionally a 
larger share will have a high β .  β  is a measure of the loss 
to the RP in providing the resources to the RR.

The utilities µU and µRP of user RR and RP are 
therefore:

In this game, we assume that this is a full informa-
tion game, that is, RR has full information about RP and 
vice-versa.

A bargaining game is a special case of extensive game 
with perfect information [18]. In an extensive game with 
perfect information Ŵ , a history h is a sequence of actions 
starting from the beginning of the game. A subgame is 
the remaining part of the game following a specific his-
tory. Denote by  Ŵ|h  the subgame that follows the his-
tory h . Let si|h denote the strategy that si induces in the 
subgame Ŵ|h , and ui|h denote the utility of player i in 
subgame Ŵ|h. In extensive games, an important solution 
concept is sub-perfect equilibrium [18].

Definition 1:  A subgame perfect equilibrium of an 
extensive game with perfect information  Ŵ   is a strat-
egy profile s∗ such that for every player i ∈ N  and every 
nonterminal history h , after which it is player i’s turn to 
take an action, we have.

for every strategy si of player i in the subgame Ŵ|h.
The game studied in this paper has a finite horizon, 

which means that the number of rounds is finite and 
the number of actions at any round is finite. To verify 

(1)µRR = α(CPU ,Mem)−

m
∑

i=1

cRi

(2)µRP = −β(CPU ,Mem)−

m
∑

i=1

cPi

ui|h(s
∗
i |h, s

∗
−i|h) ≥ ui|h(si, s

∗
−i|h)

a strategy profile s∗ is a subgame perfect equilibrium in 
a game with a finite horizon we use the one deviation 
property [19]:

Lemma 1:  (The One Deviation Property) [20]: The 
strategy profile s∗ is a subgame perfect equilibrium of a 
finite horizon extensive game with perfect information Ŵ if 
and only if for every player i ∈ N  and every history h , after 
which it is player i’s turn to take an action, we have:

for every strategy si of player i in the subgame Ŵ|h that 
differs from s∗ only in the action it prescribes after the 
initial history of Ŵ|h

Non‑incentive scheme
We now show why free riders exist in the cloud. RR 
makes the first move.

Theorem  1:  There is no incentive for the resource pro-
vider RP to provide any resources as RP’s utility µRP is 
always less than 0, that is, it is always negative.

As the RPs utility is always negative, the resource pro-
vider starts acting selfishly or a free rider. Hence RP will 
not provide any resources but may request for resources.

Proof:  Follows from (1) and (2). RP always has a loss 
when allowing a RR to access its resources.

To avoid a resource provider from becoming a free 
rider, we propose an incentive-based scheme.

Incentive‑based scheme
An incentive is therefore provided to the RP . The incen-
tive is the participation factor ρ which is a measure of 
the resources a node or user has provided to others in 
the cloud. A user with a high ρ is more likely to provide 
resources to other users than a user with a low ρ . Fur-
thermore, a RP is more likely to provide resources to a 
RR with a higher ρ as this means the RR is more likely 
to provide resources. The main idea is to influence the 
players strategy by introducing an incentive. This incen-
tive, the participation factor ρ to the provider is therefore 
added to the utility function. The advantage of introduc-
ing the incentive is that we can influence the provider’s 
best strategy in the game, such that the offer in the first 
round is a “reasonable” price for the resources. This price 
is “reasonable” in the sense that it makes the transaction 
profitable for both parties. That is, both parties will have 
positive utilities in the game. Furthermore, accepting 
this “reasonable” price is also to the best interest of the 

ui|h(s
∗
i |h, s

∗
−i|h) ≥ ui|h(si, s

∗
−i|h)
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provider. The requestor or user of resources maintains 
the same utility when he uses resources, and the provider 
adds  ρ to her utility when she provides resources. ρ does 
not increase for a node using resources, whereas it does 
increase for a node providing resources. A requestor may 
provide resources and become a RP and similarly a RP 
may become a RR . Hence for the stability of the system 
the participation factors must be at an acceptable level. 
The utilities of RPs and RRs are now therefore:

RP has an incentive ρ to provide resources where ρj 
is the participation factor of a user j. The participation 
factor increases as RP provides more resources. In the 
notation below, a subscript denotes a particular partici-
pant in the cloud as a resource requestor or a resource 
provider. [α(CPU ,Mem)−

∑m
i=1 cRi]k denotes utility 

of a requestor k and [ρk − β(CPU ,Mem)−
∑m

i=1 cPi]k 
denotes utility of a provider k where ρk is the participa-
tion factor of k.

Analysis of the scheme
We use backward induction as we start at the end of the 
bargaining process. The last mover in the game is RP . In 
the last mth round the payoff for RP will be as in (4). For 
the RR , the payoff will be as in (3). Given the incentive 
ρ , the system will choose the resource provider who pro-
vides the closest amount of resources to that requested 
by the requestor.

The cost of bargaining to RRj is not considered as it has 
no effect on RPk for the provision of resources by RPk.

Since RPk has provided resources its participation fac-
tor ρk will increase. This updated participation factor is 
considered when a provider RP becomes a requestor 
RR. The new participation factor of provider k in the n th 
round is determined as follows:

In other words, the new participation factor of RPk is 
the previous participation factor added to a function of 
the resources k has provided in the current round.

(3)µU = α(CPU ,Mem)−

m
∑

i=1

cRi

(4)µRP = ρ − β(CPU ,Mem)−

m
∑

i=1

cPi

argmin

([

�k −

m
∑

i=1

cPi − �(CPU ,Mem)

]

k

− [�(CPU ,Mem)]j

)

ρn
k = ρn−1

k + f (CPU ,Mem)

In the (m-1)th round, the system will choose the 
resource provider who provides the closest amount of 
resources to that requested by the user which will be:

Repeat until the first bargaining round. The lowest cost 
will therefore be at the first round, that is, when m = 1. 
That is,

ρk will be different for each round. Since the minimum 
value for the participation factor ρk  is in the first round 
we can say:

Theorem  2:  There exists a unique sub-game perfect 
equilibrium where the bargaining ends in one round 
where the resources that a resource provider will provide 
will be determined by:

Proof:  The proof is as outlined above using backward 
induction.

The above game is between one RP and one RR . The 
game will be played between one RR and many RP s. 
Hence there are many simultaneous games where each 
game is between one RR and different RP s. Since they 
are independent games, the above equations apply to 
each game and RR will choose the RP with the minimum 
price. The bargaining ends in one round. The provider 
that provides closest to the requested resources is cho-
sen. Hence participation factor is not simply a matter of 
providing the most resources. It is a based on providing 
only the required amount of resources or as close as pos-
sible to the requested amount (hence the argmin func-
tion). Providing the most resources will therefore not 
satisfy (5) above. In the proposed scheme, a selfish pro-
vider may not get all the resources he needs as he will 
have a low participation factor. A RR who has not pro-
vided any resources will not be able to participate in the 
cloud unless they start to provide resources. Moreover, in 
the proposed scheme the incentive will be the minimum 
amount as in (5) and higher incentives are not required.

Detecting free riders in the distributed cloud
To identify a free rider, we calculate the participation fac-
tor of all participating users in the distributed cloud. As 
mentioned above, the participation factor of a user is a 
measure of his resource contributions to the distributed 
cloud. A high participation factor means that the user 

argmin

([

�k −

m−1
∑

i=1

cPi − �(CPU ,Mem)

]

k

− [�(CPU ,Mem)]j

)

argmin
([

�k − cPi − �(CPU ,Mem)
]

k
− [�(CPU ,Mem)]j

)

(5)argmin
([

�k − cPi − �(CPU ,Mem)
]

k
− [�(CPU ,Mem)]j

)
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provides a lot of resources to the cloud. A participation 
factor is the value that a resource provider RPx calculates 
for a particular requestor of resources RRy based on its 
behavior. A participation factor is the collection of expe-
riences that all RPs (other than RPx ) have on a particular 
resource requestor RRy . Each RP determines the partici-
pation factors of the RR who has requested its resources 
as shown in Eq.  (6). In addition, a RPx calculates the 
participation factor of a resource requestor RRy by the 
participation factor values that other RPs have of RRy as 
shown in Eq. (7) and Eq. (8). A participation factor value 
less than a threshold trust value determines a user as a 
free rider. Although RRy may be able to access resources, 
it will be allowed to access these resources only for a time 
determined by the participation factor. Hence free riders 
will be given less time to access resources of a provider 
when compared to a requestor who is not a free rider. 
Therefore, the free riders’ problem will be mitigated in 
a distributed cloud network. We next look at how legiti-
mate users can request and use resources from other 
RPs securely based on their participation. Free riders or 
requestors with poor participation on the other hand will 
get minimal access time to use resources from a provider 
in the distributed cloud. Access time of a user depends 
on their pattern of behavior (or participation factor) with 
other RPs, that is, if they are good users or free riders.

Alleviating the free rider problem in the distributed 
cloud is very important as free riders are reluctant to 
share resources. They use up resources freely, hence 
affecting the whole cloud system. We propose a novel 
mechanism to identify free riders in a distributed cloud 
network. A resource provider can also be a user who is 
requesting resources from other users. In other words, a 
resource provider (RP) may be a resource requestor (RR) 
at another time. Any requestor’s behavior is determined 
by its participation factor since a free rider can be a good 
provider to a specific resource requestor but not pro-
vide any resources to other RRs. A server provides a time 
constrained key to the resource requestor RR who has 
requested resources and to the RP. When the time associ-
ated with a key expires, the user RR is denied access to the 
resource. This method is more applicable for users who 
are performing computation over the distributed cloud 
rather than using it for storage. This ensures that free rid-
ers with low participation factors will get minimal access 
to resources as their key will expire quickly, whereas good 
users with high participation factors will have sufficient 
time to access resources to complete their tasks.

Factors to determine free rider
From a practical implementation perspective, each 
resource provider should have at the minimum required 

capacity and CPU resources such that a minimum num-
ber of virtual machines (VM’s) can be created. The mini-
mum can be set by the system. The factors that determine 
the free rider are:

a.	 Participation Factor 
(

ρy
)

 : The participation factor 
determines the behavior of users who are request-
ing resources, that is, resource requestors (RR). 
It is based on the number of requests that a node 
y which is requesting resources has fulfilled suc-
cessfully in the past as a provider. The more the 
requestor has provided its resources in the past, 
the higher the participation factor ρ will be with 
0 < ρ ≤ 1 . The participation factor is a measure of 
how much resources a requestor has contributed 
to others in the system. In our model, each node x 
stores a value for  ρy which is the participation fac-
tor that x has determined for node y (a resource 
requestor) based on previous requests it has made 
to y. A requestor or provider cannot set their own 
participation factor values and cannot change the 
values of other providers from whom it has received 
resources. The participation factor aims to prevent 
selfish behavior of users. The participation factor 
ρy,x at a node x for a resource requestor RRy is cal-
culated as:

	 Ni is a measure of resources provided by y as a 
resource provider during a request ‘i’ by requestor x 
and Ci is the capacity of available resources at y dur-
ing request i , t is the total number of requests x has 
made.

	 However, this gives only a measure of the experiences 
x had with y. Node x, the RP may request other nodes 
(apart from the RR y) for their participation factor 
values of y. The overall participation factor of y in 
relation to all nodes in the distributed cloud is deter-
mined to be:

	 where g is the total number of participation factor 
values received from other nodes, ρy,i is the partici-
pation factor of y by i. wi is the weight given and the 
sum of the weights must be 1. Higher weight is given 
to node x’s own experience with y, that is wx.

(6)ρy,x =

t
∑

i=1

Ni

Ci

(7)ρy = wi

m
∑

i=1

ρy,i

g
+ wxρy,x
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b.	 Time-based participation factor (TFy

)

∶ The participa-
tion factor ρ as determined above, does not consider 
past historical behaviors, that is, it does not consider 
time. A resource requestor RRi may have provided 
resources in the distant past but has been a free 
rider in the more recent past. On the other hand, a 
resource requestor RRj may have been a free rider 
in the distant past but has provided resources in the 
more recent past. Both resource requestors RRi and 
RRj may therefore have very similar participation fac-
tors. However, RRj should have a higher participation 
factor as its more recent behavior is a better indicator 
of its participation. Time based participation Factor 
for a resource provider RRy by a node x is:

where ρ(t)
y,x is participation factor at the tth request, 

that is, the latest request. ρ(1)
y,x is the first request. α is the 

temporal importance factor. If α is high, more weight 
or importance is given to more recent participation, 
whereas if α is low, more weight is given to older partici-
pation experiences.

Hence ρ(t)
y,x obtained in Eq.  (8) is substituted for ρy,i 

in Eq. (7) to get the final participation factor. The time 
t
y
x that a resource requestor RRy has access to RPx’s 

resources is therefore a function of the participation 
factor of RRy, that is,

Additional factors such as quality of service provided 
by a resource provider could be included, for exam-
ple, the time to access a resource. However, quality of 
service may be affected by factors outside the control 
of the resource provider, such as network traffic or 
congestion.

The interactions with a provider are kept in a table. 
Each resource requestor keeps track of the providers 
from whom it has received resources. The table will con-
tain entries listing participation factors, number of inter-
actions and measure of resources provided.

A good user with a high total participation factor gets 
more access time than one with a low participation fac-
tor, as a user with a low participation factor may be a 
free rider. A new node that enters the distributed cloud 
is given an initial value by the cloud system. This may be 
based on the average of the participation factors of all 
nodes, or a minimum value based on historical data.

Controlling resource access to resource requestor
Once the participation factor is obtained, the RPx 
informs the RRy of the participation factor. The 

(8)ρ(t)
y,x = αρ(t−1)

y,x + (1− α)ρ(t−2)
y,x

(9)t
y
x = f (ρy)

resource requestor may get responses from no RPs or 
from many RPs. Each RP calculates the participation 
factor as outlined above. The responses from the RPs 
therefore may not all give the same participation fac-
tor. This is because the RPs do not have a global view of 
the distributed cloud. The RR selects the RP that satis-
fies Theorem 2, that is, Eq. (5). The resource requestor 
will determine the winner. The resource requestor 
RRy informs the selected resource provider RPx that it 
wishes to use its resources. RPx has already calculated 
the participation factor of RRy as determined by Eq. (8) 
because it had earlier informed RRy of the participation 
factor.

Our goal is to propose a simple algorithm that is com-
putationally not intensive to operate in the proposed 
distributed cloud. This is because the machines are com-
modity or off the shelf computers. The literature has 
reported few instances of time-based encryption [21, 
22]. Time lock encryption has been proposed in [24] 
where a message is encrypted after a certain deadline has 
passed. This approach draws on bitcoin and time-lock 
puzzles. Our approach is based on [22] as it is a simple 
algorithm-based approach. Time is broken into time 
slices. If current time is t, for example, the time is deter-
mined to be ⌈t⌉ where the time slice is pre-determined 
and constant. A key server generates a time sensitive 
key that will specify the time a requestor is allowed to 
access the provider’s resources. The server takes as input 
a time tT =

[

⌈ts⌉ +
⌈

t
y
x

⌉

+ ⌈n⌉
]

 . ts is the current time at 
RP, tyx is the time RRy has to access RPx’s resources deter-
mined based on the participation factor calculated by RPx 
(Eq. (9)), and n is a constant time that may be needed due 
to network and other delays. Our goal is to make sure 
that resources can be accessed by RRy only within the 
time specified by the participation factor, that is, only for 
a timetyx . All messages are encrypted when communicat-
ing between (i) the server and nodes and (ii) between 
nodes. To ensure that keys cannot be reused, a session 
key is derived where this key can be used only for the 
current session for RRy to access RPx’s resources. A differ-
ent key will have to be generated for RRy to access RPx’s 
resources in the future. The resource provider RPx gener-
ates an access key (tokm, aRR) which RRy will use to access 
RPx’s resources.

A public cryptography scheme is followed where the 
public key is KPi, and the private key is KRi for a node i. 
The public key of the server is KPServ, and the private key 
is KRServ. The server is assumed to be trustworthy. The 
protocol in Fig. 2 is outlined below.

Protocol:

1.	 Server generates Time Instant Key (TIK)
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	 Resource provider RPx sends the server the participa-
tion factor (Eq. (8)) and the identity of the requestor 
RRy, that is, RPx

ρ
(t)
y,x ,RRy

−−−−→ S where S is the server. The 
server calculates the time tyx  (Eq. (9)) that a resource 
requestor RRy has access to RPx’s.

	 Using KPy, KPx where y is the requestor RRy, 
x is the provider RPx, S is the server and time 
tT =

[

⌈ts⌉ +
⌈

t
y
x

⌉

+ ⌈n⌉
]

 , the output is the Time 
Instant Key (TIK) kt. kt therefore includes tT gener-
ated by the server, RRy and RPx.

2.	 Server distributes TIK to Requestor RRy and Provider 
RPx,

	 The server sends the time key kt to the Resource 
Requestor RRy and the Resource Provider RPx 
encrypted with their public keys. The time allocated 
to RRy to access RPx’s resources can therefore be 
determined from kt.

3.	 Resource Provider RPx generates access key.
	 Access rights tokm for the resources requested by RRy 

is generated by RPx where tokm = (mi,℘(n)){iǫ11,...,N } . 
Here ℘(n) is the power set of n. mi is resource i and n 

is the set of all possible accesses on a resource (exam-
ple: read access). This identifies the operations the 
requestor can execute on the RPs resources.

	 An access code aRR is also generated. The access 
code enables the access rights. Hence, when the 
time for the requestor to access RPx’s resources has 
expired, the access code is changed, thereby deny-
ing requestor RRy to provider RPx’s resources. (An 
alternate approach would be to change the access 
rights to individual resources when the access time 
expires, but this would be more cumbersome). Using 
the shared symmetric TIK key kt , the provider RPx 
generates the access rights tokm for the resources 
requested by the requestor RRy and the access code 
aRR to generate the access key (tokm,aRR ). This 
ensures that when the access key is transmitted to 
the requestor RRy, the access rights and access code 
cannot be read by an intruder who intercepts the 
message. If an attacker acquires access to the access 
rights and access code, he may be able to gain access 
to the provider’s resources. Hence the access rights 
and access code are encrypted using the TIK key kt.

Fig. 2  Resource Access Protocol
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	 It is also important to note that the secret TIK key kt 
can be used only for this session of a provider provid-
ing resources to a requestor. Subsequent requests for 
resources will require a different secret key. This makes 
the scheme more secure than using the public keys of 
the provider and requestor as these can be used at any 
time and are not limited the current session.

4.	 Resource Provider RPx sends access key to Resource 
Requestor RRy.

	 RP sends RR the access key (tokm,aRR ) encrypted by 
the TIK key kt

5.	 Resource Requestor RRy extracts information in 
access key

	 RRy. will decrypt using the shared symmetric TIK key 
kt since it was encrypted by kt and RR already has kt 
which was set by the server, to read the access token 
tokm and access code aRR to thereby gain access to 
the resources requested.

6.	 Resource Requestor RRy accesses resources
	 The Resource Requestor can access the resource only 

if t ∈ [t0, t0 + tT] where t0 is the time the Resource 
Requestor RRy first accessed the resource. The algo-
rithm takes as input access rights tokm , TIK kt , 
access code aRR and permits access to RP’s resources 
if t ∈ [t0, t0 + tT], otherwise it returns a failure ⊥.. t0 
is the start time of access. RR uses the access rights 
tokm to gain access to the resources requested.

7.	 Resource Provider RPx locks out Resource Requestor 
RRy when t ≥ t0 + tT

Decrementing counters are set by RPx and RRy which 
decrement with each time instant. Their initial values will 
be tT.When tf = 0, that is, t ≥ tT , RRy is no longer permitted 
to access RPx’s resources. RPx rekeys the access code aRR 
for the resources that RRy is using. That is, aRR is changed 
to some other access code aRX where no other requestors 
can use the resources of RPx. Hence at the end of the time 
slice, RRy will not be authenticated as the access code has 
changed and will be denied access to RP’s resources.

The key server generates a time sensitive key (TIK) 
that will specify the time a requestor is allowed to 
access the provider’s resources. The server distributes 
TIK to Requestor RRy and Provider RPx. The server 
does not allocate resources. Hence the server load is 
typically low. Multiple servers may be deployed as serv-
ers are independent of each other to provide a truly dis-
tributed system.

Properties 

•	 All messages are encrypted when communicating 
between server and nodes and between nodes.

•	 Neither the resource provider nor the resource 
requestor can dispute the time tyx the requestor is 
allowed to access the resource as the server sets the 
time and both the requestor and the provider are 
informed of this time.

•	 The provider cannot deny resources to the requestor 
as tyx is set by the server and delivered though kt

•	 Each resource access session has a unique key to 
ensure that keys cannot be reused. This key can be 
used only for the current session for RRy to access 
RPx’s resources. A different key will have to be gener-
ated for RRy to access RPx’s resources in the future.

•	 At the latest, after the elapsed time, the provider will 
shut off resources to the requestor by changing the 
access code.

•	 If there is collusion to increase the participation fac-
tor of the free rider, the colluding resource provider 
will have to provide its resources to the free rider. 
This is how the game proceeds. Hence there is a cost 
to the provider and therefore it is not in the interest 
of the provider to provide resources to a free rider. 
Collusion involves malicious parties colluding to 
obtain resources of non-colluding honest parties. In 
this case, the loss is to one of the colluding parties, 
namely the provider. On the other hand, if the collu-
sion results in a decrease of the participation factor, 
the free rider is adversely impacted. In this case, the 
loss is to the other colluding party. Hence, there is lit-
tle incentive to collude.

•	 The limitations with this scheme include synchro-
nization of the different clocks on the server, the 
requestor, and the provider.

Correctness property
if (tokm , aRR ) is sent by the provider to the requestor and 
the Time Instant Key (TIK) kt is output by the server on 
input tT =

[

⌈ts⌉ +
⌈

t
y
x

⌉

+ ⌈n⌉
]

then the requestor can access the provider’s resources 
only if t ∈ [t0,tT]

else it returns a failure ⊥.

Implementation
In a distributed cloud, we use Kademlia [17], a peer-to-
peer distributed hash table for routing. We vision the 
implementation of the infrastructure required for a 
distributed cloud as an overlay network. In distributed 
cloud model [7], a distributed cloud computing and 
storage framework, node architecture, and resource 
discovery mechanism were implemented. In the cur-
rent implementation we incorporated bargaining 
mechanisms that are built on top of this structured P2P 
overlay network. The proposed distributed cloud uses 
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Kademlia for nodes joining and leaving the system. In 
a distributed cloud after the resources are discovered, 
the user RR will use the bargain mechanism to select 
appropriate RPs. In Fig. 3 below, there are four provid-
ers. RR will initiate the bargaining process by sending 
an initial request message to all the n RPs discovered. 
Resource providers RPi will then send their response to 
RR. Based on the game described in Sect. 5 above, the 
best RPi will provide the resources for RR. To mitigate 
the free rider problem, we included an incentive-based 
mechanism for allocating resources, a participation-
based strategy for identifying free riders, and a secure 
time-based key management system for limiting 
resource access.

The major communication required in our model is 
to perform resource discovery. We have used Kadelmia 
overlay along with the multi-valued hash table scheme to 
perform efficient resource discovery in Distributed cloud 
and our method provides O(log N) to find a resource. The 
other major communication is to connect to a trusted 
server which generates the TIK. This communication can 
be optimized and is minimal because the server location 
is known to all nodes. Computation load that incurs on 
nodes after the resources are selected is unknown and 
is mainly application dependent. It depends on what 
resource requestor tasks are what they want to perform 
on nodes selected. Trusted server calculates TIK and 
computation performed to generate TIK is very light and 
doesn’t introduce any significant load.

Simulation
We simulated a distributed cloud computing environ-
ment using Kademlia. We used the King dataset [20] 
to simulate the latency between nodes. The King data 
set contains measurements of latencies between a set 
of DNS servers. This data set has been used to evaluate 
Vivaldi network coordinate system and other distrib-
uted systems. Each node has different attributes such 
as id, memory, capacity, memory, cores, and availabil-
ity. Apart from maintaining routing table and a multi-
valued hash table, each node also maintains a neighbor 
information table. We used Kademlia routing table in 
our simulator with each node maintaining 3 k-buckets 
with bucket size set to 1. A ping event will check the 
status and updates of node when it joins and allocates 
resources to other nodes. Each node updates its rout-
ing table, neighbor information table and multi-valued 
hash table when a new node joins and whenever there 
is a new node discovered. Apart from that each node 
updates its neighbor information table when a resource 
request has been satisfied. After a node has assigned 
its resource to another node it deducts the resources 
assigned. It then updates its multi valued hash table 
and then informs about the change to nodes in its rout-
ing table. Once the processing time is finished, a node 
updates its new availability information and multi val-
ued hash table again.

The simulation network consisted of 10,000 nodes. 
Each node has a 32-bit unique ID generated randomly. 

Fig. 3  Implementation of Distributed Cloud
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Each node has mean memory of 8 GB; the minimum is 
1 GB and maximum is 16 GB. Each node has cores which 
are randomly assigned form set of valid cores 1, 2,4,6,8 
or 10. To make sure that simulations would be more 
realistic we have been biased towards lower core values 
when assigning them. This is the assumption we used 
because in the real world most of the machines offered 
would be small machines with basic computation power 
i.e., lower number of cores and low memory. So, we had 
50% of nodes with 1 core, 25% of nodes with 2 cores, 10% 
of nodes with 4 cores, 8% of nodes with 6 cores, 4% of 
nodes with 8 cores, and 3% of nodes with 10 cores. We 
also made sure that most of the requests to the distrib-
uted cloud are more biased towards the lower values of 
cores and memory, i.e., users requesting nodes with lower 
computing power. We had 80% of nodes requesting 1 
core and memory up to 4 GB, 10% requesting 2 cores and 
memory ranging 5 to 11 GB, 5% requesting 4 cores, 2% 
requesting 6 cores, 1% requesting 8 and 10 cores and all 
4, 8 and 10 core machines requesting 12-16 GB memory.

Each node requests a resource or set of resources with 
randomly assigned capability. Requests are processed 
over a normal distribution with a time of 6 h; the mini-
mum is 1 h, and the maximum is 6 h. We ran the experi-
ments with 50% of nodes as free riders to see the effect of 
free riders on the system. We evaluated the system based 
on the number of searches required to find node or set of 
nodes and their success rates.

From Fig. 4 and Fig. 5, using the incentive-based model 
we propose, it is observed that with free riders in the sys-
tem, not only does the number of required searches to 
find resources increase, but the success rate of finding the 
nodes decrease. This is because of the low participation 
factor. We see from Fig.  4 that the success rate of find-
ing a resource is low and is reduced by almost 55%. From 
both these evaluations, we see that free riders in a system 

can decrease the stability of the system and penalizes 
genuine users as they may not be able to get the resources 
they want.

To validate our proposed participation factor scheme, 
we also ran the simulation to discover 10% and 50% of 
free riders in the system under three different scenar-
ios. The scenarios used were, poor participation factor, 
medium participation factor and good participation fac-
tor. We calculated the time taken to find 10% and 50% 
free riders and are shown in Fig.  6. It is observed that 
the time taken to identify free riders when participation 
factor is poor is minimum. We also notice that it takes 
more time to identify free riders when participation fac-
tor is medium. When participation factor is medium, 
then users may be good to some users in providing 
resources and bad to other users. If there are users who 
are good to some users and bad with few others, it takes 
time to designate them as free riders by all the users. 
Finally, we see if participation factor is good, it takes 
less time to identify free riders than when participation 
factor is medium, but more time than when participa-
tion factor is poor. This is because a good participation 
factor means that nodes are given more time to access 
resources, this results in a greater number of iterations 
to update the participation factor ad identify a free 
rider. Because of internet speeds and network traffic, 
the timeframes may differ in real-world settings. How-
ever, the pattern will be identical to what we observed. 
Since the time taken to identify the free riders is very 
minimal, our proposed model is effective.

Conclusions
Existence of free riders in a network creates an implicit ten-
sion among resource providers as free riders do not pro-
vide resources to others. In the distributed cloud resource 
providers share resources in P2P fashion. Existence of free 

Fig. 4  Number of searches required to find k nodes
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riders in distributed cloud will create many problems such 
as unwanted network traffic, system collapse and will dis-
courage new users to join the network. In this paper, we 
propose a 3-pronged solution to mitigate free rider prob-
lem in distributed cloud environment. An incentive-based 
scheme is proposed to assign resources such as CPU time 
and memory based on whether the requestor of resources 
is a good user or a free rider. Our approach detects free 
riders using a participation scheme. A key management 
scheme based on a time instant key enables good users’ 
sufficient time to access resources, whereas free riders 
are given limited or no time. Simulation results show that 

our scheme is effective detecting free riders and in limit-
ing resource access to free riders. In this work we have lim-
ited the time–space domain of free riders. For future work 
we will look at other types of game theoretic approaches, 
derive models for resource provision, and measure perfor-
mance overheads using our approach.
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