
Pal et al. Journal of Cloud Computing (2022) 11:8
https://doi.org/10.1186/s13677-022-00280-y

RESEARCH

KeyPIn – mitigating the free rider problem
in the distributed cloud based on Key,
Participation, and Incentive
Doyel Pal1*  , Praveen Khethavath1, Johnson P. Thomas2 and Utpal Mangla3 

Abstract 

In a distributed cloud, unlike centralized resource management, users provide and share resources. However, this
allows for the existence of free riders who do not provide resources to others, but at the same time use resources that
others provide. In a distributed cloud, resource providers share resources in a P2P fashion. In this paper, we propose
a 3-pronged solution KeyPIn—a Key-based, Participation-based, and Incentive-based scheme to mitigate the free
rider problem in a distributed cloud environment. We propose an incentive-based scheme based on game theory
for providers to participate in the cloud by providing resources. This participation will be low for free riders thereby
limiting their access to resources. A secure time instant key is generated based on a key management scheme that
enables good users’ more time to access resources as their participation is high, whereas free riders are given limited
or no time as their participation is low. Simulation results show that our scheme is effective in mitigating the free rider
problem in the distributed cloud.

Keywords:  Distributed cloud, Free rider, Game theory, Trust, Participation, Key, and Incentive

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Cloud computing refers to delivering configurable com-
puting and network resources over the internet to users
on-demand. It uses virtualization techniques [1–3] to
provide required resources to users dynamically in the
form of virtual machines (VMs). Cloud providers pro-
vide resources in the form of various instances of plat-
form, infrastructure, and storage as services to users.
For example, Amazon [4] provides different sizes of
virtual machine instances – Small, Medium, Large and
Extra Large. Cloud Computing use massive datacenters
which lead to communication overhead as the number of
users increases. Moreover, enterprise usage of the cloud
is much higher when compared to individuals’ usage
of the cloud. A large percentage of individuals use the

cloud for sharing and storing data free-of-charge. Cloud
computing-based traffic has increased significantly, and
global cloud datacenter traffic is forecasted to an esti-
mate of 19.5 Zettabytes per year by 2021 by Cisco [5].
Cloud accounts for 95 percent of global data center traffic
[5]. Most of the cloud service providers such as Google,
Amazon, Facebook, and many others are expanding and
building new datacenters worldwide.

There is a huge increase in demand for cloud
resources. Cloud computing is made possible because
of virtualization technology. By moving towards cloud-
based services many resources such as Desktops, PC’s
and servers which can run virtualization software and
can create multiple VMs on them are not being used
to their fullest capabilities [6]. A distributed cloud
developed using the resources provided by individual
resources can mitigate the disadvantages of cloud com-
puting. Moreover, it will be helpful to reduce inter-
net traffic by reducing the load on cloud data centers.
A distributed cloud makes use of unused individual

Open Access

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence: dpal@lagcc.cuny.edu
1 Mathematics, Engineering and Computer Science Department,
LaGuardia Community College, CUNY, Long Island City, New York City, NY
11101, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-0479-3541
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00280-y&domain=pdf

Page 2 of 14Pal et al. Journal of Cloud Computing (2022) 11:8

resources, which are not used to their maximum capac-
ity and thereby avoiding investments on new data
centers.

In the distributed cloud users, both provide resources
and use resources. Resource providers are distinctive i.e.,
these distributed cloud servers are offered by individuals
with resources to offer. Resource requestors may request
resources from other users in the distributed cloud who
then become resource providers. Users of the distributed
cloud must discover these resource providers and request
the resources. A distributed cloud uses a decentralized
mechanism to discover and allocate resources where
users share recourses in a P2P fashion [7]. In our model
resources are shared by users, but there might be some
users, so-called “free riders”, who do not provide any
resources for others, but use the cloud to get resources
for themselves. Free riders should be given limited access
or prevented from getting access to resources. This could
be achieved by exacting a high cost to free riders for
using the system. Hence, the system must be stable after
resource allocation. In our model, a system is said to be
stable when the resource allocation is fair, that is, users
who provide resources for other users are more likely to
get the resources they require.

Our contributions are as follows:

1.	 An incentive-based scheme is proposed where users
who provide resources (the resource providers) to
other users (the resource requestors) are assigned
a higher participation factor ( ρ) and free riders will
have a lower participation factor. Hence users have
an incentive to provide resources whereas free riders
will be denied or given very limited resources.

2.	 In addition to providing incentives, free riders must
be identified so that they have limited access to
resources in the cloud. The participation factor over
all nodes in the cloud is proposed to identify free rid-
ers based on our proposed incentive-based scheme.

3.	 To control resource access to requestors, a time-
based access scheme based on participation is pro-
posed. A resource requestor with a high participa-
tion value is given more time to access resources
when compared to a free rider who will have a lower
participation value and is thereby given less time to
access resources.

The problem specification is presented next. This
is followed by the literature review and preliminaries
(distributed cloud architecture). Next, we propose an
incentive-based scheme to identify resource provid-
ers and motivate them to provide resources to genuine
users. Also, we present a trust scheme to detect free rid-
ers and the time-based access scheme to share resources.

Simulation results are presented next before the paper
concludes.

Problem specification
In research [8] conducted on P2P networks, researchers
found that the percentage of free riders is around 85% of
all users. Statistics show that 99% of resources in Gnu-
tella [8] is offered by only 25% of peers, i.e., the remain-
ing 75% of users provide only 1% of the resources. The
free rider problem is therefore a serious issue and there
needs to be a mechanism which addresses this poten-
tial problem. Mitigating the free riders’ problem is very
challenging and important as the existence of free riders
clog the network and hinder the growth of the network.
In this paper, we propose an incentive-based mechanism
based on game theory and use this to mitigate the free
rider problem in a secure manner.

Literature review
All peers are expected to share their resources in a peer-
to-peer network. Free riding is a genuine concern in
a network since free riders are reluctant to share their
resources with their peers. As mentioned in [8] up to 85%
of users may be free riders. Existence of free riders in a
network affects the system in multiple ways such as, CPU
overloading, unnecessary traffic in the network, under-
provision of network resources, single-point-of-failure,
degrading system utility, system collapse etc. [9–11]. As
free riders do not share their resources, honest or good
users in a network face difficult tradeoffs between shar-
ing resources and not sharing resources. In the distrib-
uted cloud, resources are provided by users in a P2P
manner [12]. Resource providers (RPs) in a distributed
cloud architecture also suffer from the free rider problem
when any user becomes reluctant to share resources with
others.

Free riders clog the network and hinder the growth of
the network. Solutions to reduce free riding problems
can be categorized into three groups – monetary-based,
reciprocity-based, and reputation-based approaches [11,
13]. The monetary-based approach charges peers for any
received service. The accounting module of monetary-
based approach securely stores each peer’s virtual cur-
rency, and the settlement module exchanges the virtual
currency for services. For a current session, the reci-
procity-based approach monitors peers’ contributions
to assess peers. It does not keep track of long-term his-
tory of peers and that lets a peer be judged as a free rider
in one session and contributor in the next. Assuming
peers report their interaction honestly, the reputation-
based approach keeps track of long-term behavior of a
peer to measure peers’ reputation. Some implementa-
tion issues with this approach are reputation reliability,

Page 3 of 14Pal et al. Journal of Cloud Computing (2022) 11:8 	

communication overhead, persistent identifiers. In this
paper, we focus on reputation and trust-based approaches
in the distributed cloud to mitigate the free rider prob-
lem because the distributed cloud is completely decen-
tralized, and peers need to be both trustworthy as well
as reputed to be reliable and successful. When applied to
P2P networks, the monetary-based approach has several
implementation limitations such as centralization and
communication overhead, persistent identifiers, mental
transaction costs. The reciprocity-based approach has
several implementation issues such as fake services, peer
identity management, and contribution-level credibility.
In [12, 14–16], authors proposed trust-based approaches
in different networks. In [12] the authors proposed a trust
model based on human cognitive behavior and incor-
porated multiple trust factors to reflect the complexity
of trust. For social networks, a game theory-based trust
measurement model based on service reliability, feedback
effectiveness and recommendation credibility has been
proposed in [14]. To alleviate the free rider problem, the
authors have proposed a game theory-based punish-
ment mechanism for global trust and punishment cycles
for specific trust. A secure, robust Reputation and Risk
evaluation-based Trust management framework named
R2 Trust [15] uses both reputation and risk to evaluate
the trustworthiness of a peer. In ubiquitous and perva-
sive computing environments, Trust computation and
management system (TOMS) based on trust manage-
ment has been proposed by the authors of [16]. The trust
management of TOMS makes decisions on nodes’ access
rights by developing a trust model, assigning credentials,
and managing the trust value of each node and updating

private keys. The way resources are used and provided
in P2P computing and distributed cloud are completely
different. The distributed cloud uses an additional layer
on top of P2P to perform resource discovery and alloca-
tion. In the distributed cloud unlike P2P networks, the
provider has control over how much of his resources can
be made available and at the same time the user has the
choice of choosing a provider from a pool. This poses a
completely new challenge for evaluating reputation and
trust and therefore a need for a different mechanism to
evaluate trust and reputation.

Preliminaries
Distributed cloud architecture
With the advent of cloud resources, a distributed cloud
model [7] was created by considering a huge number of
resources that are not being utilized to their full poten-
tial. 72.9% of the cloud services were used for enterprise
solutions and the remaining were used by consumer ser-
vices which includes Gmail, Twitter, Facebook, YouTube,
Dropbox, Google Drive, and many others. According to
Cisco, consumer IP traffic is much higher than business
IP traffic [5]. Currently, this traffic is directed to and from
data centers which results in the creation of single point
bottlenecks.

A distributed cloud model is shown in Fig. 1. In a dis-
tributed cloud, resources are discovered by users [7]. The
nodes in distributed cloud model can be both RPs and
RRs. All nodes in this model can communicate with each
other in a P2P fashion. There are different factors that
need to be considered when discovering resources, such
as latency, throughput, locality etc. Instead of discovering

Fig. 1  Distributed Cloud Model

Page 4 of 14Pal et al. Journal of Cloud Computing (2022) 11:8

only the exact number of resources requested by a user, n
number of resources are selected in an optimized man-
ner to minimize latency or maximize throughput. As a
result, resources that fit user requirements and have low
latency or high throughput are chosen to ensure efficient
resource allocation in the distributed cloud.

In the distributed cloud, all the resources are shared
in a P2P fashion. In the distributed cloud, users are not
charged to use the cloud. Instead, they are expected to
provide resources to other users. Free riders use the
resources of other users in the distributed cloud with-
out providing their own resources for others to use. Each
node in the distributed cloud will run a distributed cloud
overlay application over a P2P architecture.

Providing resources to users
Resource discovery
A user requesting resources (or Resource Requestor RR)
must first discover the resources. We proposed a scheme
to discovery resources using a modified Kademlia [17]
protocol to perform resource discovery. Kademlia is a
P2P, decentralized protocol used to identify peers by
making use of DHT’s. Kademlia uses bitwise XOR met-
ric to perform accelerated lookups and is shown to per-
form efficient query lookups. In a network of size N,
locating a node takes an average of O(logN) hops. To
perform resource discovery, a multi-valued hash table
scheme was used [7]. In this scheme, we proposed a con-
cept of distributed local multi-valued hash table to iden-
tify resources using a range of attributes. Each node in
the distributed cloud is given two ID’s, one is to locate
the node and other is to identify attributes of a node.
Each node has different attributes that are used for the
resource discovery mechanism. This scheme is imple-
mented by modifying the Kademlia protocol.

Incentive for providing resources
The distributed cloud does not charge users to use the
cloud apart from providing resources to other users.
Free riders are users who use the resources of other
users in the distributed cloud without providing their
own resources for others to use. A critical issue is how
much resources a resource provider should allocate to a
user or resource requestor given there are free riders in
the network. After discovering resources, a game theo-
retic approach is used to allocate appropriate resources
to requestors offered by RPs. In this section we propose
an incentive-based scheme that will give more resources
to genuine or good users and provide fewer resources to
free riders or bad users.

A utility function (µ) determines the utility which is
the value of resources assigned to the user. This is based
on the participation factor of a user. A participation

factor ρy is assigned to each user y . The participation
factor of a node y in the distributed cloud is a meas-
ure of the value of node y’s resources that y has made
available to others. In our mechanism a user x request-
ing resources (or resource requestor RR) receives bids
from RPs and then chooses the RPs rationally. Users
(or resource requestors RRs) with low participation
factors will receive less time to access resources. Users
need to provide resources, to raise their participation
factor. The participation factor thus serves as an incen-
tive to encourage users to provide resources. Hence,
there are two types of players, a Resource Provider (RP)
of resources and a user of resources who requests the
resources (RR).

During the initial stages or if the user’s ρ is low, he
might receive resources whose utility value is small. Once
the system is close to stability, users who are not free rid-
ers will most likely receive resources with maximum or
close to maximum utility. Ideally each provider will pro-
vide resources to maximize her own participation factor.
In the distributed cloud, users will be requesting multi-
ple resources for computation, so a simultaneous auction
with multiple winners is used. A bidding profile is a vector
of player i’s bids bi = b1, b2...bi . The bidding profile of user
i is represented using bi and the bidding profile of user i ’s
opponent is defined as b−i = b1..bi−1..bi+1bi+2 . . . User i
chooses a resource based on the utility, where utility µi is
defined as:

Utility µi is a function of memory, CPU. Once the user
(or RR) receives all the bids from RPs, the user will calcu-
late utility values for all the bids using the above equation.
This game achieves Nash equilibrium. In µi(bi; b−i, ρ) , bi
represents the winning bid and b−i represents all the bids
that were lost.

In practice, RR is bargaining with multiple providers
to get the best deal. This bargaining game is played in
rounds. In each round, the user RR makes a request, and
the provider RP decides to accept it or not. Acceptance
ends the game while rejection leads to the next round. A
strategy si of player i is a function that assigns an action
to player i when it is its turn to move. As a notational
convention, −i represents the player other than player
i in the bargaining game. Similarly, s−i represents the
strategies of the player other than player i . Note that
s = (si, s−i) is a strategy profile.

A user who needs resources, that is the RR, makes
the first move. A user gains access to resources he has
requested to accomplish his task. This may be Memory,
CPU etc. Some tasks are important whereas others are
less important. There is therefore a weight α associ-
ated with each request. This is labeled as α(CPU ,Mem) .

µi(bi; b−i) = f (MEM,CPU)

Page 5 of 14Pal et al. Journal of Cloud Computing (2022) 11:8 	

CPU and Mem resource parameters are normalized to
between 0 and 1.

Each round of the bargaining process involves a cost
c for the users, both RR and RP. The cost for a RR may
involve, for example, acquiring and managing resources
provided by RPs. The total cost is labeled as

∑m
i=1 cRi for

m rounds. The cost for a RP includes unavailability of
resources during the time the resources are being used by
a RR, for example. The total cost is labeled as

∑m
i=1 cPi for

m rounds.
RP makes the next move. RP provides resources to RR

to accomplish the requested task of RR . This is labeled as
β(CPU ,Mem) . β is a weight, indicating the loss factor.
A resource provider who has a lot of resources but con-
tributes little will have a low β value, whereas a RP with
few available resources but contributing proportionally a
larger share will have a high β . β is a measure of the loss
to the RP in providing the resources to the RR.

The utilities µU and µRP of user RR and RP are
therefore:

In this game, we assume that this is a full informa-
tion game, that is, RR has full information about RP and
vice-versa.

A bargaining game is a special case of extensive game
with perfect information [18]. In an extensive game with
perfect information Ŵ , a history h is a sequence of actions
starting from the beginning of the game. A subgame is
the remaining part of the game following a specific his-
tory. Denote by Ŵ|h the subgame that follows the his-
tory h . Let si|h denote the strategy that si induces in the
subgame Ŵ|h , and ui|h denote the utility of player i in
subgame Ŵ|h. In extensive games, an important solution
concept is sub-perfect equilibrium [18].

Definition 1:  A subgame perfect equilibrium of an
extensive game with perfect information Ŵ is a strat-
egy profile s∗ such that for every player i ∈ N and every
nonterminal history h , after which it is player i’s turn to
take an action, we have.

for every strategy si of player i in the subgame Ŵ|h.
The game studied in this paper has a finite horizon,

which means that the number of rounds is finite and
the number of actions at any round is finite. To verify

(1)µRR = α(CPU ,Mem)−

m
∑

i=1

cRi

(2)µRP = −β(CPU ,Mem)−

m
∑

i=1

cPi

ui|h(s
∗
i |h, s

∗
−i|h) ≥ ui|h(si, s

∗
−i|h)

a strategy profile s∗ is a subgame perfect equilibrium in
a game with a finite horizon we use the one deviation
property [19]:

Lemma 1:  (The One Deviation Property) [20]: The
strategy profile s∗ is a subgame perfect equilibrium of a
finite horizon extensive game with perfect information Ŵ if
and only if for every player i ∈ N and every history h , after
which it is player i’s turn to take an action, we have:

for every strategy si of player i in the subgame Ŵ|h that
differs from s∗ only in the action it prescribes after the
initial history of Ŵ|h

Non‑incentive scheme
We now show why free riders exist in the cloud. RR
makes the first move.

Theorem 1:  There is no incentive for the resource pro-
vider RP to provide any resources as RP’s utility µRP is
always less than 0, that is, it is always negative.

As the RPs utility is always negative, the resource pro-
vider starts acting selfishly or a free rider. Hence RP will
not provide any resources but may request for resources.

Proof:  Follows from (1) and (2). RP always has a loss
when allowing a RR to access its resources.

To avoid a resource provider from becoming a free
rider, we propose an incentive-based scheme.

Incentive‑based scheme
An incentive is therefore provided to the RP . The incen-
tive is the participation factor ρ which is a measure of
the resources a node or user has provided to others in
the cloud. A user with a high ρ is more likely to provide
resources to other users than a user with a low ρ . Fur-
thermore, a RP is more likely to provide resources to a
RR with a higher ρ as this means the RR is more likely
to provide resources. The main idea is to influence the
players strategy by introducing an incentive. This incen-
tive, the participation factor ρ to the provider is therefore
added to the utility function. The advantage of introduc-
ing the incentive is that we can influence the provider’s
best strategy in the game, such that the offer in the first
round is a “reasonable” price for the resources. This price
is “reasonable” in the sense that it makes the transaction
profitable for both parties. That is, both parties will have
positive utilities in the game. Furthermore, accepting
this “reasonable” price is also to the best interest of the

ui|h(s
∗
i |h, s

∗
−i|h) ≥ ui|h(si, s

∗
−i|h)

Page 6 of 14Pal et al. Journal of Cloud Computing (2022) 11:8

provider. The requestor or user of resources maintains
the same utility when he uses resources, and the provider
adds ρ to her utility when she provides resources. ρ does
not increase for a node using resources, whereas it does
increase for a node providing resources. A requestor may
provide resources and become a RP and similarly a RP
may become a RR . Hence for the stability of the system
the participation factors must be at an acceptable level.
The utilities of RPs and RRs are now therefore:

RP has an incentive ρ to provide resources where ρj
is the participation factor of a user j. The participation
factor increases as RP provides more resources. In the
notation below, a subscript denotes a particular partici-
pant in the cloud as a resource requestor or a resource
provider. [α(CPU ,Mem)−

∑m
i=1 cRi]k denotes utility

of a requestor k and [ρk − β(CPU ,Mem)−
∑m

i=1 cPi]k
denotes utility of a provider k where ρk is the participa-
tion factor of k.

Analysis of the scheme
We use backward induction as we start at the end of the
bargaining process. The last mover in the game is RP . In
the last mth round the payoff for RP will be as in (4). For
the RR , the payoff will be as in (3). Given the incentive
ρ , the system will choose the resource provider who pro-
vides the closest amount of resources to that requested
by the requestor.

The cost of bargaining to RRj is not considered as it has
no effect on RPk for the provision of resources by RPk.

Since RPk has provided resources its participation fac-
tor ρk will increase. This updated participation factor is
considered when a provider RP becomes a requestor
RR. The new participation factor of provider k in the n th
round is determined as follows:

In other words, the new participation factor of RPk is
the previous participation factor added to a function of
the resources k has provided in the current round.

(3)µU = α(CPU ,Mem)−

m
∑

i=1

cRi

(4)µRP = ρ − β(CPU ,Mem)−

m
∑

i=1

cPi

argmin

([

�k −

m
∑

i=1

cPi − �(CPU ,Mem)

]

k

− [�(CPU ,Mem)]j

)

ρn
k = ρn−1

k + f (CPU ,Mem)

In the (m-1)th round, the system will choose the
resource provider who provides the closest amount of
resources to that requested by the user which will be:

Repeat until the first bargaining round. The lowest cost
will therefore be at the first round, that is, when m = 1.
That is,

ρk will be different for each round. Since the minimum
value for the participation factor ρk is in the first round
we can say:

Theorem 2:  There exists a unique sub-game perfect
equilibrium where the bargaining ends in one round
where the resources that a resource provider will provide
will be determined by:

Proof:  The proof is as outlined above using backward
induction.

The above game is between one RP and one RR . The
game will be played between one RR and many RP s.
Hence there are many simultaneous games where each
game is between one RR and different RP s. Since they
are independent games, the above equations apply to
each game and RR will choose the RP with the minimum
price. The bargaining ends in one round. The provider
that provides closest to the requested resources is cho-
sen. Hence participation factor is not simply a matter of
providing the most resources. It is a based on providing
only the required amount of resources or as close as pos-
sible to the requested amount (hence the argmin func-
tion). Providing the most resources will therefore not
satisfy (5) above. In the proposed scheme, a selfish pro-
vider may not get all the resources he needs as he will
have a low participation factor. A RR who has not pro-
vided any resources will not be able to participate in the
cloud unless they start to provide resources. Moreover, in
the proposed scheme the incentive will be the minimum
amount as in (5) and higher incentives are not required.

Detecting free riders in the distributed cloud
To identify a free rider, we calculate the participation fac-
tor of all participating users in the distributed cloud. As
mentioned above, the participation factor of a user is a
measure of his resource contributions to the distributed
cloud. A high participation factor means that the user

argmin

([

�k −

m−1
∑

i=1

cPi − �(CPU ,Mem)

]

k

− [�(CPU ,Mem)]j

)

argmin
([

�k − cPi − �(CPU ,Mem)
]

k
− [�(CPU ,Mem)]j

)

(5)argmin
([

�k − cPi − �(CPU ,Mem)
]

k
− [�(CPU ,Mem)]j

)

Page 7 of 14Pal et al. Journal of Cloud Computing (2022) 11:8 	

provides a lot of resources to the cloud. A participation
factor is the value that a resource provider RPx calculates
for a particular requestor of resources RRy based on its
behavior. A participation factor is the collection of expe-
riences that all RPs (other than RPx ) have on a particular
resource requestor RRy . Each RP determines the partici-
pation factors of the RR who has requested its resources
as shown in Eq. (6). In addition, a RPx calculates the
participation factor of a resource requestor RRy by the
participation factor values that other RPs have of RRy as
shown in Eq. (7) and Eq. (8). A participation factor value
less than a threshold trust value determines a user as a
free rider. Although RRy may be able to access resources,
it will be allowed to access these resources only for a time
determined by the participation factor. Hence free riders
will be given less time to access resources of a provider
when compared to a requestor who is not a free rider.
Therefore, the free riders’ problem will be mitigated in
a distributed cloud network. We next look at how legiti-
mate users can request and use resources from other
RPs securely based on their participation. Free riders or
requestors with poor participation on the other hand will
get minimal access time to use resources from a provider
in the distributed cloud. Access time of a user depends
on their pattern of behavior (or participation factor) with
other RPs, that is, if they are good users or free riders.

Alleviating the free rider problem in the distributed
cloud is very important as free riders are reluctant to
share resources. They use up resources freely, hence
affecting the whole cloud system. We propose a novel
mechanism to identify free riders in a distributed cloud
network. A resource provider can also be a user who is
requesting resources from other users. In other words, a
resource provider (RP) may be a resource requestor (RR)
at another time. Any requestor’s behavior is determined
by its participation factor since a free rider can be a good
provider to a specific resource requestor but not pro-
vide any resources to other RRs. A server provides a time
constrained key to the resource requestor RR who has
requested resources and to the RP. When the time associ-
ated with a key expires, the user RR is denied access to the
resource. This method is more applicable for users who
are performing computation over the distributed cloud
rather than using it for storage. This ensures that free rid-
ers with low participation factors will get minimal access
to resources as their key will expire quickly, whereas good
users with high participation factors will have sufficient
time to access resources to complete their tasks.

Factors to determine free rider
From a practical implementation perspective, each
resource provider should have at the minimum required

capacity and CPU resources such that a minimum num-
ber of virtual machines (VM’s) can be created. The mini-
mum can be set by the system. The factors that determine
the free rider are:

a.	 Participation Factor
(

ρy
)

 : The participation factor
determines the behavior of users who are request-
ing resources, that is, resource requestors (RR).
It is based on the number of requests that a node
y which is requesting resources has fulfilled suc-
cessfully in the past as a provider. The more the
requestor has provided its resources in the past,
the higher the participation factor ρ will be with
0 < ρ ≤ 1 . The participation factor is a measure of
how much resources a requestor has contributed
to others in the system. In our model, each node x
stores a value for ρy which is the participation fac-
tor that x has determined for node y (a resource
requestor) based on previous requests it has made
to y. A requestor or provider cannot set their own
participation factor values and cannot change the
values of other providers from whom it has received
resources. The participation factor aims to prevent
selfish behavior of users. The participation factor
ρy,x at a node x for a resource requestor RRy is cal-
culated as:

	 Ni is a measure of resources provided by y as a
resource provider during a request ‘i’ by requestor x
and Ci is the capacity of available resources at y dur-
ing request i , t is the total number of requests x has
made.

	 However, this gives only a measure of the experiences
x had with y. Node x, the RP may request other nodes
(apart from the RR y) for their participation factor
values of y. The overall participation factor of y in
relation to all nodes in the distributed cloud is deter-
mined to be:

	 where g is the total number of participation factor
values received from other nodes, ρy,i is the partici-
pation factor of y by i. wi is the weight given and the
sum of the weights must be 1. Higher weight is given
to node x’s own experience with y, that is wx.

(6)ρy,x =

t
∑

i=1

Ni

Ci

(7)ρy = wi

m
∑

i=1

ρy,i

g
+ wxρy,x

Page 8 of 14Pal et al. Journal of Cloud Computing (2022) 11:8

b.	 Time-based participation factor (TFy

)

∶ The participa-
tion factor ρ as determined above, does not consider
past historical behaviors, that is, it does not consider
time. A resource requestor RRi may have provided
resources in the distant past but has been a free
rider in the more recent past. On the other hand, a
resource requestor RRj may have been a free rider
in the distant past but has provided resources in the
more recent past. Both resource requestors RRi and
RRj may therefore have very similar participation fac-
tors. However, RRj should have a higher participation
factor as its more recent behavior is a better indicator
of its participation. Time based participation Factor
for a resource provider RRy by a node x is:

where ρ(t)
y,x is participation factor at the tth request,

that is, the latest request. ρ(1)
y,x is the first request. α is the

temporal importance factor. If α is high, more weight
or importance is given to more recent participation,
whereas if α is low, more weight is given to older partici-
pation experiences.

Hence ρ(t)
y,x obtained in Eq. (8) is substituted for ρy,i

in Eq. (7) to get the final participation factor. The time
t
y
x that a resource requestor RRy has access to RPx’s

resources is therefore a function of the participation
factor of RRy, that is,

Additional factors such as quality of service provided
by a resource provider could be included, for exam-
ple, the time to access a resource. However, quality of
service may be affected by factors outside the control
of the resource provider, such as network traffic or
congestion.

The interactions with a provider are kept in a table.
Each resource requestor keeps track of the providers
from whom it has received resources. The table will con-
tain entries listing participation factors, number of inter-
actions and measure of resources provided.

A good user with a high total participation factor gets
more access time than one with a low participation fac-
tor, as a user with a low participation factor may be a
free rider. A new node that enters the distributed cloud
is given an initial value by the cloud system. This may be
based on the average of the participation factors of all
nodes, or a minimum value based on historical data.

Controlling resource access to resource requestor
Once the participation factor is obtained, the RPx
informs the RRy of the participation factor. The

(8)ρ(t)
y,x = αρ(t−1)

y,x + (1− α)ρ(t−2)
y,x

(9)t
y
x = f (ρy)

resource requestor may get responses from no RPs or
from many RPs. Each RP calculates the participation
factor as outlined above. The responses from the RPs
therefore may not all give the same participation fac-
tor. This is because the RPs do not have a global view of
the distributed cloud. The RR selects the RP that satis-
fies Theorem 2, that is, Eq. (5). The resource requestor
will determine the winner. The resource requestor
RRy informs the selected resource provider RPx that it
wishes to use its resources. RPx has already calculated
the participation factor of RRy as determined by Eq. (8)
because it had earlier informed RRy of the participation
factor.

Our goal is to propose a simple algorithm that is com-
putationally not intensive to operate in the proposed
distributed cloud. This is because the machines are com-
modity or off the shelf computers. The literature has
reported few instances of time-based encryption [21,
22]. Time lock encryption has been proposed in [24]
where a message is encrypted after a certain deadline has
passed. This approach draws on bitcoin and time-lock
puzzles. Our approach is based on [22] as it is a simple
algorithm-based approach. Time is broken into time
slices. If current time is t, for example, the time is deter-
mined to be ⌈t⌉ where the time slice is pre-determined
and constant. A key server generates a time sensitive
key that will specify the time a requestor is allowed to
access the provider’s resources. The server takes as input
a time tT =

[

⌈ts⌉ +
⌈

t
y
x

⌉

+ ⌈n⌉
]

 . ts is the current time at
RP, tyx is the time RRy has to access RPx’s resources deter-
mined based on the participation factor calculated by RPx
(Eq. (9)), and n is a constant time that may be needed due
to network and other delays. Our goal is to make sure
that resources can be accessed by RRy only within the
time specified by the participation factor, that is, only for
a timetyx . All messages are encrypted when communicat-
ing between (i) the server and nodes and (ii) between
nodes. To ensure that keys cannot be reused, a session
key is derived where this key can be used only for the
current session for RRy to access RPx’s resources. A differ-
ent key will have to be generated for RRy to access RPx’s
resources in the future. The resource provider RPx gener-
ates an access key (tokm, aRR) which RRy will use to access
RPx’s resources.

A public cryptography scheme is followed where the
public key is KPi, and the private key is KRi for a node i.
The public key of the server is KPServ, and the private key
is KRServ. The server is assumed to be trustworthy. The
protocol in Fig. 2 is outlined below.

Protocol:

1.	 Server generates Time Instant Key (TIK)

Page 9 of 14Pal et al. Journal of Cloud Computing (2022) 11:8 	

	 Resource provider RPx sends the server the participa-
tion factor (Eq. (8)) and the identity of the requestor
RRy, that is, RPx

ρ
(t)
y,x ,RRy

−−−−→ S where S is the server. The
server calculates the time tyx (Eq. (9)) that a resource
requestor RRy has access to RPx’s.

	 Using KPy, KPx where y is the requestor RRy,
x is the provider RPx, S is the server and time
tT =

[

⌈ts⌉ +
⌈

t
y
x

⌉

+ ⌈n⌉
]

 , the output is the Time
Instant Key (TIK) kt. kt therefore includes tT gener-
ated by the server, RRy and RPx.

2.	 Server distributes TIK to Requestor RRy and Provider
RPx,

	 The server sends the time key kt to the Resource
Requestor RRy and the Resource Provider RPx
encrypted with their public keys. The time allocated
to RRy to access RPx’s resources can therefore be
determined from kt.

3.	 Resource Provider RPx generates access key.
	 Access rights tokm for the resources requested by RRy

is generated by RPx where tokm = (mi,℘(n)){iǫ11,...,N } .
Here ℘(n) is the power set of n. mi is resource i and n

is the set of all possible accesses on a resource (exam-
ple: read access). This identifies the operations the
requestor can execute on the RPs resources.

	 An access code aRR is also generated. The access
code enables the access rights. Hence, when the
time for the requestor to access RPx’s resources has
expired, the access code is changed, thereby deny-
ing requestor RRy to provider RPx’s resources. (An
alternate approach would be to change the access
rights to individual resources when the access time
expires, but this would be more cumbersome). Using
the shared symmetric TIK key kt , the provider RPx
generates the access rights tokm for the resources
requested by the requestor RRy and the access code
aRR to generate the access key (tokm,aRR ). This
ensures that when the access key is transmitted to
the requestor RRy, the access rights and access code
cannot be read by an intruder who intercepts the
message. If an attacker acquires access to the access
rights and access code, he may be able to gain access
to the provider’s resources. Hence the access rights
and access code are encrypted using the TIK key kt.

Fig. 2  Resource Access Protocol

Page 10 of 14Pal et al. Journal of Cloud Computing (2022) 11:8

	 It is also important to note that the secret TIK key kt
can be used only for this session of a provider provid-
ing resources to a requestor. Subsequent requests for
resources will require a different secret key. This makes
the scheme more secure than using the public keys of
the provider and requestor as these can be used at any
time and are not limited the current session.

4.	 Resource Provider RPx sends access key to Resource
Requestor RRy.

	 RP sends RR the access key (tokm,aRR ) encrypted by
the TIK key kt

5.	 Resource Requestor RRy extracts information in
access key

	 RRy. will decrypt using the shared symmetric TIK key
kt since it was encrypted by kt and RR already has kt
which was set by the server, to read the access token
tokm and access code aRR to thereby gain access to
the resources requested.

6.	 Resource Requestor RRy accesses resources
	 The Resource Requestor can access the resource only

if t ∈ [t0, t0 + tT] where t0 is the time the Resource
Requestor RRy first accessed the resource. The algo-
rithm takes as input access rights tokm , TIK kt ,
access code aRR and permits access to RP’s resources
if t ∈ [t0, t0 + tT], otherwise it returns a failure ⊥.. t0
is the start time of access. RR uses the access rights
tokm to gain access to the resources requested.

7.	 Resource Provider RPx locks out Resource Requestor
RRy when t ≥ t0 + tT

Decrementing counters are set by RPx and RRy which
decrement with each time instant. Their initial values will
be tT.When tf = 0, that is, t ≥ tT , RRy is no longer permitted
to access RPx’s resources. RPx rekeys the access code aRR
for the resources that RRy is using. That is, aRR is changed
to some other access code aRX where no other requestors
can use the resources of RPx. Hence at the end of the time
slice, RRy will not be authenticated as the access code has
changed and will be denied access to RP’s resources.

The key server generates a time sensitive key (TIK)
that will specify the time a requestor is allowed to
access the provider’s resources. The server distributes
TIK to Requestor RRy and Provider RPx. The server
does not allocate resources. Hence the server load is
typically low. Multiple servers may be deployed as serv-
ers are independent of each other to provide a truly dis-
tributed system.

Properties 

•	 All messages are encrypted when communicating
between server and nodes and between nodes.

•	 Neither the resource provider nor the resource
requestor can dispute the time tyx the requestor is
allowed to access the resource as the server sets the
time and both the requestor and the provider are
informed of this time.

•	 The provider cannot deny resources to the requestor
as tyx is set by the server and delivered though kt

•	 Each resource access session has a unique key to
ensure that keys cannot be reused. This key can be
used only for the current session for RRy to access
RPx’s resources. A different key will have to be gener-
ated for RRy to access RPx’s resources in the future.

•	 At the latest, after the elapsed time, the provider will
shut off resources to the requestor by changing the
access code.

•	 If there is collusion to increase the participation fac-
tor of the free rider, the colluding resource provider
will have to provide its resources to the free rider.
This is how the game proceeds. Hence there is a cost
to the provider and therefore it is not in the interest
of the provider to provide resources to a free rider.
Collusion involves malicious parties colluding to
obtain resources of non-colluding honest parties. In
this case, the loss is to one of the colluding parties,
namely the provider. On the other hand, if the collu-
sion results in a decrease of the participation factor,
the free rider is adversely impacted. In this case, the
loss is to the other colluding party. Hence, there is lit-
tle incentive to collude.

•	 The limitations with this scheme include synchro-
nization of the different clocks on the server, the
requestor, and the provider.

Correctness property
if (tokm , aRR ) is sent by the provider to the requestor and
the Time Instant Key (TIK) kt is output by the server on
input tT =

[

⌈ts⌉ +
⌈

t
y
x

⌉

+ ⌈n⌉
]

then the requestor can access the provider’s resources
only if t ∈ [t0,tT]

else it returns a failure ⊥.

Implementation
In a distributed cloud, we use Kademlia [17], a peer-to-
peer distributed hash table for routing. We vision the
implementation of the infrastructure required for a
distributed cloud as an overlay network. In distributed
cloud model [7], a distributed cloud computing and
storage framework, node architecture, and resource
discovery mechanism were implemented. In the cur-
rent implementation we incorporated bargaining
mechanisms that are built on top of this structured P2P
overlay network. The proposed distributed cloud uses

Page 11 of 14Pal et al. Journal of Cloud Computing (2022) 11:8 	

Kademlia for nodes joining and leaving the system. In
a distributed cloud after the resources are discovered,
the user RR will use the bargain mechanism to select
appropriate RPs. In Fig. 3 below, there are four provid-
ers. RR will initiate the bargaining process by sending
an initial request message to all the n RPs discovered.
Resource providers RPi will then send their response to
RR. Based on the game described in Sect. 5 above, the
best RPi will provide the resources for RR. To mitigate
the free rider problem, we included an incentive-based
mechanism for allocating resources, a participation-
based strategy for identifying free riders, and a secure
time-based key management system for limiting
resource access.

The major communication required in our model is
to perform resource discovery. We have used Kadelmia
overlay along with the multi-valued hash table scheme to
perform efficient resource discovery in Distributed cloud
and our method provides O(log N) to find a resource. The
other major communication is to connect to a trusted
server which generates the TIK. This communication can
be optimized and is minimal because the server location
is known to all nodes. Computation load that incurs on
nodes after the resources are selected is unknown and
is mainly application dependent. It depends on what
resource requestor tasks are what they want to perform
on nodes selected. Trusted server calculates TIK and
computation performed to generate TIK is very light and
doesn’t introduce any significant load.

Simulation
We simulated a distributed cloud computing environ-
ment using Kademlia. We used the King dataset [20]
to simulate the latency between nodes. The King data
set contains measurements of latencies between a set
of DNS servers. This data set has been used to evaluate
Vivaldi network coordinate system and other distrib-
uted systems. Each node has different attributes such
as id, memory, capacity, memory, cores, and availabil-
ity. Apart from maintaining routing table and a multi-
valued hash table, each node also maintains a neighbor
information table. We used Kademlia routing table in
our simulator with each node maintaining 3 k-buckets
with bucket size set to 1. A ping event will check the
status and updates of node when it joins and allocates
resources to other nodes. Each node updates its rout-
ing table, neighbor information table and multi-valued
hash table when a new node joins and whenever there
is a new node discovered. Apart from that each node
updates its neighbor information table when a resource
request has been satisfied. After a node has assigned
its resource to another node it deducts the resources
assigned. It then updates its multi valued hash table
and then informs about the change to nodes in its rout-
ing table. Once the processing time is finished, a node
updates its new availability information and multi val-
ued hash table again.

The simulation network consisted of 10,000 nodes.
Each node has a 32-bit unique ID generated randomly.

Fig. 3  Implementation of Distributed Cloud

Page 12 of 14Pal et al. Journal of Cloud Computing (2022) 11:8

Each node has mean memory of 8 GB; the minimum is
1 GB and maximum is 16 GB. Each node has cores which
are randomly assigned form set of valid cores 1, 2,4,6,8
or 10. To make sure that simulations would be more
realistic we have been biased towards lower core values
when assigning them. This is the assumption we used
because in the real world most of the machines offered
would be small machines with basic computation power
i.e., lower number of cores and low memory. So, we had
50% of nodes with 1 core, 25% of nodes with 2 cores, 10%
of nodes with 4 cores, 8% of nodes with 6 cores, 4% of
nodes with 8 cores, and 3% of nodes with 10 cores. We
also made sure that most of the requests to the distrib-
uted cloud are more biased towards the lower values of
cores and memory, i.e., users requesting nodes with lower
computing power. We had 80% of nodes requesting 1
core and memory up to 4 GB, 10% requesting 2 cores and
memory ranging 5 to 11 GB, 5% requesting 4 cores, 2%
requesting 6 cores, 1% requesting 8 and 10 cores and all
4, 8 and 10 core machines requesting 12-16 GB memory.

Each node requests a resource or set of resources with
randomly assigned capability. Requests are processed
over a normal distribution with a time of 6 h; the mini-
mum is 1 h, and the maximum is 6 h. We ran the experi-
ments with 50% of nodes as free riders to see the effect of
free riders on the system. We evaluated the system based
on the number of searches required to find node or set of
nodes and their success rates.

From Fig. 4 and Fig. 5, using the incentive-based model
we propose, it is observed that with free riders in the sys-
tem, not only does the number of required searches to
find resources increase, but the success rate of finding the
nodes decrease. This is because of the low participation
factor. We see from Fig. 4 that the success rate of find-
ing a resource is low and is reduced by almost 55%. From
both these evaluations, we see that free riders in a system

can decrease the stability of the system and penalizes
genuine users as they may not be able to get the resources
they want.

To validate our proposed participation factor scheme,
we also ran the simulation to discover 10% and 50% of
free riders in the system under three different scenar-
ios. The scenarios used were, poor participation factor,
medium participation factor and good participation fac-
tor. We calculated the time taken to find 10% and 50%
free riders and are shown in Fig. 6. It is observed that
the time taken to identify free riders when participation
factor is poor is minimum. We also notice that it takes
more time to identify free riders when participation fac-
tor is medium. When participation factor is medium,
then users may be good to some users in providing
resources and bad to other users. If there are users who
are good to some users and bad with few others, it takes
time to designate them as free riders by all the users.
Finally, we see if participation factor is good, it takes
less time to identify free riders than when participation
factor is medium, but more time than when participa-
tion factor is poor. This is because a good participation
factor means that nodes are given more time to access
resources, this results in a greater number of iterations
to update the participation factor ad identify a free
rider. Because of internet speeds and network traffic,
the timeframes may differ in real-world settings. How-
ever, the pattern will be identical to what we observed.
Since the time taken to identify the free riders is very
minimal, our proposed model is effective.

Conclusions
Existence of free riders in a network creates an implicit ten-
sion among resource providers as free riders do not pro-
vide resources to others. In the distributed cloud resource
providers share resources in P2P fashion. Existence of free

Fig. 4  Number of searches required to find k nodes

Page 13 of 14Pal et al. Journal of Cloud Computing (2022) 11:8 	

riders in distributed cloud will create many problems such
as unwanted network traffic, system collapse and will dis-
courage new users to join the network. In this paper, we
propose a 3-pronged solution to mitigate free rider prob-
lem in distributed cloud environment. An incentive-based
scheme is proposed to assign resources such as CPU time
and memory based on whether the requestor of resources
is a good user or a free rider. Our approach detects free
riders using a participation scheme. A key management
scheme based on a time instant key enables good users’
sufficient time to access resources, whereas free riders
are given limited or no time. Simulation results show that

our scheme is effective detecting free riders and in limit-
ing resource access to free riders. In this work we have lim-
ited the time–space domain of free riders. For future work
we will look at other types of game theoretic approaches,
derive models for resource provision, and measure perfor-
mance overheads using our approach.

Acknowledgements
Part of this project has been supported by PSC-CUNY research award
program.

Authors’ contributions
Proposed method: Doyel Pal and Praveen Khethavath did all the simulation
work and also some of the work on the game theory. Johnson Thomas did

Fig. 5  Percentage of successful searches

Fig. 6  Percentage of free riders found vs time taken

Page 14 of 14Pal et al. Journal of Cloud Computing (2022) 11:8

some work on the game theory and proposed the key model. Utpal Mangala
gave some valuable insights into the key model. He also provided helpful
feedback on the final manuscript. All authors have read the final manuscript.

Funding
Part of this project has been supported by PSC-CUNY research award
program.

Availability of data and materials
The supporting data used in this article for simulation is cited and are available
from corresponding author upon request.

Declarations

Ethical approval and consent to participate
(should this be indicated as it is a health care based on Blockchain and Privacy
Computing).
Not applicable

Consent for publication
(should this be indicated as it is a health care based on Blockchain and Privacy
Computing).
Not applicable

Competing interests
All authors declare that they do not have competing interests.

Author details
1 Mathematics, Engineering and Computer Science Department, LaGuardia
Community College, CUNY, Long Island City, New York City, NY 11101, USA.
2 Department of Computer Science, Oklahoma State University, Stillwater, OK,
USA. 3 IBM Global Services, Toronto, Canada.

Received: 6 September 2021 Accepted: 11 February 2022

References
	1.	 Michael Armbrust, Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz,

Andrew Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica and
Matei Zaharia, “Above the Clouds: A Berkeley View of Cloud Computing”,
Technical report EECS-2009–28, UC Berkeley, 2009

	2.	 Peter Mell and Timothy Grance, “NIST definition of cloud computing,
National Institute of Standards and Technology”, Special Publication
800–145, 2011, “http://​csrc.​nist.​gov/​publi​catio​ns/​nistp​ubs/​800-​145/​SP800-​
145.​pdf”, Retreived July 22, 2014

	3.	 Buyya, R. and Chee Shin Yeo and Venugopal, S., “Market-Oriented Cloud
Computing: Vision, Hype, and Reality for Delivering IT Services as Comput-
ing Utilities”, Proccedings 10th IEEE International Conference on. High
Performance Computing and Communications, HPCC’08. IEEE, 2008.

	4.	 Amazon EC2, “http://​aws.​amazon.​com/​ec2/”, Retrieved July 22, 2016
	5.	 Cisco, “http://​www.​cisco.​com/c/​en/​us/​solut​ions/​colla​teral/​servi​ce-​provi​der/​

global-​cloud-​index-​gci/​Cloud_​Index_​White_​Paper.​html”
	6.	 Fox A (2011) Cloud computing-what’s in it for me as a scientist. Science

331:406–407
	7.	 Praveen Khethavath, Johnson P Thomas, and Eric Chan-Tin, “Towards an

efficient Distributed cloud computing architecture”, Peer-to-peer Network-
ing and Applications (Springer), https://​doi.​org/​10.​1007/​s12083-​016-​0468-x,
2016

	8.	 Hughes, Daniel, Geoff Coulson, and James Walkerdine. "Free riding on
Gnutella revisited: the bell tolls?" IEEE distributed systems online 6.6 (2005).

	9.	 Ramaswamy, Lakshmish, and Ling Liu. "Free riding: A new challenge to
peer-to-peer file sharing systems." System Sciences, 2003. Proceedings of
the 36th Annual Hawaii International Conference on. IEEE, 2003.

	10.	 Krishnan, Ramayya, et al. "The impact of free-riding on peer-to-peer
networks." System Sciences, 2004. Proceedings of the 37th Annual Hawaii
International Conference on. IEEE, 2004.

	11.	 Karakaya M, Korpeoglu I, Ulusoy Ö (2009) Free riding in peer-to-peer net-
works. IEEE Internet Comput 13(2):92–98

	12.	 Li X, Zhou F, Yang X (2011) A multi-dimensional trust evaluation model for
large-scale P2P computing. Journal of Parallel and Distributed Computing
71(6):837–847

	13.	 Feldman M, Chuang J (2005) Overcoming free-riding behavior in peer-to-
peer systems. ACM sigecom exchanges 5(4):41–50

	14.	 Wang Y, Cai Z, Yin G, Gao Y, Tong X, Han Q (2016) A game theory-based trust
measurement model for social networks. Computational Social Networks
3(1):1–16

	15.	 Tian C, Yang B (2011) Trust, a reputation and risk-based trust management
framework for large-scale, fully decentralized overlay networks. Futur Gener
Comput Syst 27(8):1135–1141

	16.	 Boukerche A, Ren Y (2008) A trust-based security system for ubiquitous and
pervasive computing environments. Comput Commun 31(18):4343–4351

	17.	 P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric. In Proceedings of IPTPS02, Cambridge,
USA, Mar. 2002.

	18.	 M. J. Osborne and A. Rubenstein, A Course in Game Theory. MIT Press, 1994.
	19.	 Pal, D., Khethavath, P., Thomas, J.P. and Chen, T., 2015, August. Multilevel

Threshold Secret Sharing in Distributed Cloud. In International Symposium
on Security in Computing and Communication (pp. 13–23). Springer Inter-
national Publishing.

	20.	 Index of /archive/p2psim/kingdata https://​pdos.​csail.​mit.​edu/​archi​ve/​
p2psim/​kingd​ata/. 2016.

	21.	 QinLiu, GuojunWang, JieWu, “Time-based proxy re-encryption scheme for
secure data sharing in a cloud environment” Information Sciences Volume
258, February 2014, Pages 355–370

	22.	 Kenneth G. Paterson and Elizabeth A. Quaglia, “Time-Specic Encryption”,
International Conference on Security and Cryptography for Networks SCN
2010: Security and Cryptography for Networks pp 1–16

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://aws.amazon.com/ec2/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
https://doi.org/10.1007/s12083-016-0468-x
https://pdos.csail.mit.edu/archive/p2psim/kingdata/
https://pdos.csail.mit.edu/archive/p2psim/kingdata/

	KeyPIn – mitigating the free rider problem in the distributed cloud based on Key, Participation, and Incentive
	Abstract
	Introduction
	Problem specification
	Literature review
	Preliminaries
	Distributed cloud architecture

	Providing resources to users
	Resource discovery
	Incentive for providing resources
	Non-incentive scheme
	Incentive-based scheme
	Analysis of the scheme

	Detecting free riders in the distributed cloud
	Factors to determine free rider
	Controlling resource access to resource requestor
	Correctness property

	Implementation
	Simulation

	Conclusions
	Acknowledgements
	References

