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Abstract 

In this paper, a real cloud computing platform-oriented Low-rate Denial of Service (LDoS) attack detection method 
based on time-frequency characteristics of traffic data is proposed. All the traffic data flowing through the Web server 
is acquired by the collection and storage system, the original traffic data is divided into multiple flow segments by 
the preprocessing module, and the simple statistical features of several data packets in the flow are extracted by the 
analysis tool to form the detection sequence. The deep neural network is used to learn the potential time-frequency 
domain connection in the normal feature sequence and generate the reconstructed sequence. The discrimination 
module discriminates against the LDoS attack according to the difference between the reconstructed sequence and 
the input data in the time-frequency domain. The experimental results show that the proposed method can accu-
rately detect the attack features in the stream segments in a very short time, and can achieve high detection accuracy 
for complex and diverse LDoS attacks. Because only the statistical characteristics of data packets are used, it is not 
necessary to analyze the data in the packets, which can be adapted to different network environments.
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Introduction
The rapid development of Internet technology and scale 
not only changes people’s way of life, but also provides 
a powerful boost to economic development and cultural 
dissemination, but also brings unprecedented challenges 
to network security. Due to the openness of internet pro-
tocols and services, all kinds of network intrusion attacks 
never stop. Among many threats, LDoS (low-rate denial-
of-service) attack has been especially favored by network 
criminals and operators of black industry chains since 
they came out [1]. Different from the flood denial of ser-
vice attack [2], LDoS attack usually uses a low-rate peri-
odic attack stream to continuously destroy the target, and 

eventually paralyze it by gradually consuming the avail-
able resources of the target.

LDoS attacks are usually initiated by using the proto-
col vulnerabilities of the transport layer, network layer, 
and application layer [3]. For example, the LDoS attacks 
against the transmission control protocol (TCP) time-
out retransmission mechanism trigger a large number 
of packet losses by sending short and high-speed attack 
pulses to the bottleneck link, forcing the network to start 
the timeout retransmission mechanism, resulting in a 
large number of useless data streams exhausting the net-
work bandwidth [4]. For the LDoS attack in the applica-
tion layer, the connection maintenance mechanism of 
HTTP is used. The attacker’s server continuously sends 
multiple TCP synchronous (TCP SYN) connection 
requests but fails to complete the three-way handshake, 
and the server keeps sending out invalid synchronous 
data, eventually exhausting the server’s allocatable 
resources, resulting in the failure to respond to normal 
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requests [5]. Hyper Text Transfer Protocol (HTTP) slow 
reading attack, the attacker initiates HTTP Get request, 
and limits the sending and receiving rate of the Web 
server by setting a small or almost zero value for the send-
ing and receiving window, to occupy the server resources 
for a long time [6]. Individual LDoS attack flows are usu-
ally legitimate impulse network flows in form, and show 
the same basic characteristics as normal flows. The num-
ber of packets sent is small, and the average rate is low, 
which is generally only 10%–20% of the normal data flow 
[7]. It is often submerged in normal flows and difficult to 
be detected by ordinary firewalls. Therefore, the inten-
sity of LDoS attack flows is much smaller than that of 
DoS attacks, and the fluctuation of network flows caused 
by it is not obvious. The Cloud computing environment 
has good adaptability to the change in network traffic, 
so LDoS attack in a cloud computing environment is 
not easy to be detected at the initial stage, and the attack 
effect will gradually appear only as the attack continues. 
While framework monitors SLA as a cloud monitoring 
service (SLA-Maas) was proposed by Afzal Badshah et al. 
[8], which could penalize those who are found in breach 
of terms and conditions enlisted in SLA, however, at this 
time, the resources of cloud service platform have been 
consumed in large quantities, and the user data is in dan-
ger of being stolen [9].

Researchers have been exploring new detection meth-
ods for LDoS attacks, but some of these methods rely too 
much on feature engineering, and the detection effect 
depends on the professional quality and work experi-
ence of operators [10, 11]; Although most detection 
methods are based on deep learning can automatically 
extract data features, they need enough training samples 
to complete the modeling [12, 13]. Most of the current 
detection methods are data stream level detection meth-
ods, which need to extract features from multiple packets 
of each stream. This tracking packet detection method 
will consume a lot of computing resources. Most of the 
experimental data come from public data sets or simula-
tion platforms, and there are some defects, such as out-
dated attack scenes, incomplete traffic, and single traffic 
background.

To solve the above problems, this paper proposes a 
method to detect many LDoS attacks only by using the 
simple statistical characteristics of network traffic pack-
ets in the real network environment. This method takes 
the real network traffic as the background, uses the phys-
ical characteristics of LDoS attack pulse stream, takes the 
size and arrival interval of some data packets in the net-
work stream as the detection data, and uses a neural net-
work to carry out feature learning and attack judgment, 
thus realizing the end-to-end detection mode from the 
input of the original traffic to the output of the detection 

results. Because the normal traffic model is used, this 
method also has the ability to detect new unknown 
attacks.

In this paper, we are committed to designing a low-cost 
detection method for LDoS attacks in a cloud computing 
platform based on deep learning technology. We analyze 
the traffic characteristics of LDoS attacks caused by TCP 
SYN requests and HTTP Get policies, and propose a 
method to detect the statistical characteristics of packets 
in traffic segments. The contributions of this paper are as 
follows:

(1)	 Obtain traffic data from the original cloud com-
puting platform, and use slicing technology to 
select the simple statistical features of the first few 
data packets in the stream segment to construct a 
sequence of traffic features for detection.

(2)	 We propose a hybrid detection model based on 
two-dimensional characteristics of the traffic. The 
self-encoder with a cyclic neural network structure 
and convolutional neural network with the resid-
ual structure is used to extract the time-frequency 
domain characteristics of traffic sequence, and the 
time-frequency domain characteristics are used to 
improve the detection accuracy.

Related work
In this section, we will review the related literature on 
machine learning and other techniques for detecting 
high-rate and low-rate DDoS attacks. Kuzmanovic and 
Knightly [14], perhaps the first scholars to study LDoS 
attacks, proposed a new type of low-rate TCP-directed 
DoS attack in 2003, which they also called “sledge-ham-
mer” [15] (since it can penetrate the network core with 
a small amount of traffic and destroy any target on the 
network thus causing great damage). Since then, many 
detection methods of LDoS attacks have been proposed.

Attackers of LDoS initiates new connections at a high 
rate within a short period of time and then remains inac-
tive for a long time, and the attack traffic shows high 
pulse rate and periodic characteristics [16]; while the net-
work under attack shows the volatility of network traffic, 
which is mainly reflected in the characteristics of source 
and target IP addresses, time between new connections 
and traffic rate. Based on the above characteristics, LDoS 
attack detection methods based on traffic characteristics, 
machine learning and signal analysis have been proposed.

Traffic feature-based detection methods are usually 
used to detect abnormal fluctuation features of traffic in 
the attacked network, which include: queue length, con-
nection duration, packet number, packet interval, packet 
size, and ACK sequence number extracted from the 
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network [17]. Traffic refers to all messages with the same 
quintuple (source IP, destination IP, source port, desti-
nation port, and transmission layer protocol). Wu et al. 
[18] extracted the combined features of LDoS attack traf-
fic, input them into a neural network classifier for LDoS 
attack detection, and verified the effectiveness of its 
method through a simulation platform and experimen-
tal network. Wu’s team [10] also studied the multifractal 
characteristics of LDoS attack traffic [19], and proposed 
the multifractal trend analysis (MF-DFA) algorithm to 
estimate the singularity and burstiness of traffic under 
LDoS attack using HÖlder index, and the experimental 
results were consistent with the theoretical prediction. 
Zhang et al. [20] proposed an LDoS attack detection and 
filtering method based on the ratio of incoming pack-
ets to the total number of packets in the flow, according 
to the phenomenon that normal TCP flows send fewer 
packets during network congestion and attack flows 
send more packets, which demonstrated the feasibility 
of the method by analyzing the data in congested rout-
ers. However, these traffic feature-based detection meth-
ods suffer from two shortcomings: first, the studies and 
experiments are conducted in simulated environments 
or data sets without validation in real networks; Sec-
ondly, the extraction of features requires very high data 
processing expenses and takes a long time to consume, 
which is only suitable for processing offline data. These 
two shortcomings limit the application of feature-based 
detection methods in real-time online detection of LDoS 
attacks [21].

Detection methods based on machine learning/deep 
learning usually combine machine learning with other 
algorithms. Zhang et  al. [22] combined principal com-
ponent analysis (PCA) with support vector machine 
(SVM) models to detect attacks, using PCA to filter out 
noise interference and extract the main features of TCP 
flows, which were used to train SVM models. Yan et al. 
[23] extracted the mean, variance and entropy and other 
features to train improved logistic regression models to 
detect LDoS attacks. Pérez et al. [24] proposed a frame-
work for detecting LDoS attacks in SDN environment 
which helps to implement various machine learning 
models such as decision tree, representative tree, ran-
dom tree, random forest, multilayer perceptron (MLP) 
and support vector machine for LDoS attack detec-
tion. TANG et  al. [16] used deep learning technology 
to calculate the reconstruction error of traffic sequence 
and realized the detection of LDoS attacks. However, 
such detection methods based on machine learning or 
deep learning are all flow-based detection, and there is 
also a large computational cost in characteristic extrac-
tion. Moreover, the characteristic design depends on 
manual experience, so the attack traffic of unknown 

characteristics cannot be detected efficiently. Many 
experiments have demonstrated the feasibility of using 
signal analysis methods to detect LDoS attacks in net-
work traffic. Du Zhen et al. [25] used wavelet analysis to 
extract traffic data features, and SVM to complete anom-
aly separation in mixed traffic. Agrawal et al. [26] used a 
power spectral density based approach to identify low-
speed LDoS attacks in cloud environments, using data 
collected in the time domain, using Fourier transform to 
the frequency domain, and calculating the power spectral 
density values, and if the power spectral density is con-
centrated in the low frequency band, it is classified as an 
attack. Brynielsson [27] tried to detect LDoS attacks on 
application servers using spectral analysis based on the 
continuous connection feature in the HTTP protocol. 
Although spectrum classification is effective in detect-
ing LDoS attacks, the signal conversion will cause high 
computational overhead and high false alarm rate and 
undetected rate. In the time domain, Wu and Tang et al. 
[28] combined Hilbert spectrum and Pearson correla-
tion coefficient to detect LDDoS attack packets within a 
small-scale detection window. Swamiet al [29]. proposed 
an adaptive detection scheme based on advanced entropy 
(AEB) that enables the detection of unknown attacks, 
and although these methods are simple and fast, they all 
require that the volatility of the traffic data being detected 
in the time domain must not be excessive, otherwise the 
detection effect is severely degraded, which is obviously 
incompatible with the real network situation.

To clearly express the characteristics of each method, 
we listed the above methods in a table to compare the 
detection methods. Table  1 is a comparative analysis of 
the detection methods. The comparative analysis shows 
that each method has certain advantages.

In summary, the existing LDoS attack detection meth-
ods mainly have three problems: First, the data used in 
the research is out of touch with the current real net-
work environment, which shows that the background 
of LDoS attack stream generated by the simulator is too 
monotonous, which is inconsistent with the complicated 
and changeable current situation of the actual network 
environment; However, some public data sets collected 
in the real network environment generally have the prob-
lem of outdated attack scenarios. For example, although 
the CICIDS2017 data set contains several types of LDoS 
attack traffic, the forwarding rate of 150 packets per sec-
ond is far from the current attack rate of only transmit-
ting more than a dozen packets per second or even less. 
Secondly, it is necessary to track the traffic packets during 
detection, which will result in high calculation expenses 
and long time delay, and it is difficult to meet the demand 
for real-time online detection. Third, it is necessary to 
analyze the information of the complete data stream to 
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get the final detection result, which lacks the ability of 
early detection. Early detection of network anomalies and 
timely disposal of network threats has always been the 
goal pursued in the field of network security.

Data acquisition and design
Data acquisition
Storage system for network traffic acquisition
Due to the limitations of experiments using web simula-
tors or publicly available datasets, the data used in this 
study were obtained from real Web service networks, 
preprocessed, and constructed for model training and 
performance evaluation. For obtaining all the traffic 
exchanged in the cloud server, a set of high-performance 

traffic collection and storage system is built. Wireshark 
is used as the traffic collection software, and the large-
capacity disk array is used to permanently store data; In 
addition, to alleviate the speed difference between traffic 
acquisition and disk storage, a high-speed RAM cache set 
is used to absorb the instantaneous peak data of the traf-
fic to ensure the integrity of the collected information. 
Figure 1 shows the basic architecture of the network traf-
fic collection system. Traffic acquisition and storage sys-
tem is deployed on the switch closest to the cloud server, 
and the cloud server traffic is acquired by port mirror-
ing. Wireshark collects all the traffic flowing through 
the cloud service from the mirror port and temporarily 
stores it in different RAM in batches. According to the 

Table 1  Qualitative comparison of detection against LDoS attacks

Category Detection method Applicable attack Positive rate False 
positive 
rate

Speed Implementation
Complexity

Experimental 
environment

Detection methods 
Based on features

ACK [16] LDoS/DDoS High Low High Low Virtual machine

Combined features 
[17]

LDoS High Low Low Medium NS-2

MF-DFA [9] LDoS High Low Low High Simulation platform

CPR [19] LDoS& LDDoS High Low Low Medium NS-2

Detection methods 
Based on ML/DL

PCA-SVM [21] LDoS High Low Medium Medium NS-2

improved logistic 
regression [22]

LDoS High Low Low High NS-2

SDN-based [23] LDoS Low Low High High Mininet virtual machine

NAS-AE [15] LDoS NS-2

Detection methods 
Based on Signal 
analysis

wavelet analysis [24] LDoS Low High Low Low Simulation platform

PSD [25] LDoS&LDDoS Low High High Low Real cloud environment

Hilbert-Huang Trans-
form [27]

LDoS&LDDoS High Low Low High NS-2

spectral analysis [26] LDoS&DDoS Low Low Medium High LoRDAS simulator

Fig. 1  Network traffic acquisition and storage system architecture diagram
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“first come, first out” order, the RAM traffic data is input 
into the disk array for permanent storage.

Attack traffic acquisition
In order not to affect the normal operation of the net-
work, the attack traffic cannot be transmitted on the Web 
server network, but can only be generated and acquired 
in a physically isolated network. Therefore, an attack traf-
fic collection LAN is designed, and its topology is shown 
in Fig. 2. Attackers 1 and 2 run different attack programs 
according to the set plan to launch LDoS attacks on the 
webserver to generate attack traffic. Meanwhile, nor-
mal users also run programs that normally visit the web 
server according to the set rules to simulate the traf-
fic generated by normal users. The traffic collection 
and storage system collects and stores all traffic flowing 
through the server from the mirror port of SDN.

The LAN consists of five hosts, four of which are 
installed with Linux and one with Windows. One Linux 
host runs an OpenSwitch as an OpenFlow switch, and 
a Pox controller as an OpenFlow controller to create an 
SDN environment; the southbound interface is a TCP 
channel with a bandwidth of 1Gbps and the OpenFlow 
v1.3 protocol is used for communication between the 
switch and the controller. 1 Linux host acts as a separate 
web server; 1 Linux host as a separate cloud server; 1 
Linux host as a normal user access cloud server; a Linux 
host and a Windows host perform LDoS attacks on a 
cloud server by running different attacks. The client and 
server machines are connected to the OpenFlow switch, 
and the specific configuration of each host is shown in 
Table 2.

The network traffic collection storage system captures 
all traffic flowing through the server from the mirror 
port of a company’s cloud server. Four instances of the 

Fig. 2  Attack traffic acquisition network topology diagram

Table 2  LAN host configuration to generate LDoS attack traffic

Host Name CPU model (frequency) Memory 
capacity and 
frequency

System Version (Kernel) Running programs

SDN Controllers/Switches Intel Core i7–8750(2.21GHz) 32GB(2666MHz) Ubuntu 18.04 LTS(Linux 4.15.0) OpenSwitch/Pox controller

Servers Intel Core i7-12700H(2.3GHz) 32GB(4800MHz) Ubuntu Server 18.04 LTS(Linux 
5.2.4)

Apache 2 (Apache for Ubuntu 18)

Attacking host 1 Intel Core i7–8750(2.21GHz) 32GB(2666MHz) Windows 10(21H2) Pwnloris (Httpbog)

Attacking host 2 AMD Ryzen R7-4800H(2.9GHz) 16GB(3200MHz) Ubuntu 18.04 LTS(Linux 4.15.0) Slowloris/ Torshammer/Hping/ 
Slowhttptest

General users Intel Core i7-8565U(1.80GHz) 16GB(2133MHz) Ubuntu 16.04 LTS(Linux 4.4.34) Python program for accessing the 
server normally
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client Python program running continuously on the 
normal user machine communicate with two instances 
of the server program with different ports to gener-
ate normal HTTP traffic of different sizes and differ-
ent arrival times. The attack traffic is generated by the 
attack programs running on each attacking host respec-
tively, and the types of attack traffic include various low-
rate TCP SYN attacks, HTTP slow read attacks, etc. In 
order to implement SYN low-rate attacks in small time 
intervals, we design each attack for 50 seconds, and 
then sleep for 100 seconds, and the attack occurs only 
in the first 0.1 seconds of each second attack mode, each 
attack program running net time of 60 minutes. Figure 3 
gives a schematic diagram of the time cycle of the attack 
program running and sleep.

The slow-read attacks generated by the Slowhttptest 
program do not use the pulse-shaped attack pattern. By 
excluding the traffic data of the dormant period from the 
collected traffic, we can get six types of attack traffic with 
normal traffic as background, all of which are 60 minutes 
long. Compared to the pure attack traffic without back-
ground, the traffic we designed is more complex and 
more difficult to detect.

Normal traffic collection
Figure 4 is a simplified network topology diagram con-
taining the traffic acquisition system. The network 
traffic acquisition storage system is connected to mir-
ror port of cloud server to capture all the traffic data 
of the server’s external interaction. We select from 

the acquired traffic data for 1200 consecutive min-
utes without network abnormalities as normal traffic, 
because this collection period the network can provide 
normal services, indicating that there is no obvious 
abnormality in the network, has ruled out any denial-
of-service attacks, perhaps there are a small number 
of other types of attacks, but this attack traffic is very 
small, the impact on our detection of LDoS attacks can 
be ignored.

Detection data design
Since the data used in this paper are all from real net-
works, they need to be pre-processed, feature data 
selected and data set divided before they can be used as 
experimental data for training and detection.

Data pre‑processing
The main purpose is to remove some defective and 
redundant data; in addition, some traffic feature values 
are in the form of text, which need to be operated numer-
ically, and the normalization of each feature value is also 
needed to improve the operation efficiency. Since the 
features selected in this study do not involve the specific 
content of the traffic package, and the data pre-process-
ing is not the focus of this paper, so it is not described in 
detail.

Traffic feature selection
We know that the general model of pulsed LDoS attack 
traffic can be represented by a triad of parameters (R, 

Fig. 3  Schematic diagram of the operation cycle of the attack program
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L, T), as shown in Fig.  5, where R is the rate of each 
attack pulse, usually expressed in terms of packets 
transmitted per unit of time, the rate of LDoS attacks 
is low and does not occupy the full network band-
width, usually only 10%–20% of normal network traf-
fic; L is the duration of each attack pulse, and T is the 
attack cycle.

The traditional approach to detection is to detect 
LDoS attack traffic by extracting the appropriate 
characteristics of individual streams, which usually 
incurs high network overhead because of the need to 

track the packets of the stream. Streams are all pack-
ets with the same five elements (source IP, destination 
IP, source port, destination port, and traditional layer 
protocol). From the results of the references [12, 30], it 
can be found that the size and arrival interval of pack-
ets within the first 2 seconds within a stream are very 
important for detecting DDoS. Therefore, the input 
sample data attempted to be constructed in this paper 
is 2-dimensional array consisting of two features of 
fixed time steps within the stream (the arrival inter-
val time of the first number of packets in the statistical 

Fig. 4  Normal traffic acquisition network topology

Fig. 5  General model of LDoS attack traffic
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stream and the packet size). Each packet arrival is a 
time step, so to ensure that the set time step covers a 
time greater than 2 seconds, for the constructed single 
sample can be expressed as:

where tji is the interval between the arrival of the jth 
packet and the j-1th packet in the ith sample, and lji is the 
size of the jth packet.

Data set construction and partitioning
After pre-processing and feature selection, the stream data is 
cut into one stream segment every 10 seconds, so 1200 min-
utes of normal traffic data can get 7200 segments of normal 
stream segments, and label them as normal samples. Each 
attack flow sample time is 60 minutes, so each attack flow is 
cut into 360 flow segments, and a total of 2160 attack flow 
segments can be obtained and labeled as abnormal sam-
ples. In addition, in order to facilitate the aggregation of the 
detection results of different modules, it is also necessary to 
add a unique identifier for each stream segment.

This model uses normal traffic data for training and 
validation. So 40% of normal traffic segments are ran-
domly selected as training sets, 30% of traffic segments 
are used as verification sets, and the remaining 30% are 
used to construct test sets.

(1)

To construct the detection data set, one attack flow 
segment is randomly inserted into the normal flow each 
time, as shown in Fig. 6, so that six sets of synthetic net-
work traffic sets can be obtained by combining differ-

ent attack flows with normal flows, and the detection 
set of each attack flow contains 2520 flow segments of 
420 minutes in length, with 2160 segments for the basic 
normal flow segment and 360 segments for the attack 
flow segment. Attack traffic accounts for 14.29% of the 
total traffic.

Considering the diversity of attack traffic in real net-
works, it is necessary to use data containing multi-
ple attack flows to test the detection capability of our 
proposed method for multiple attacks. Therefore, 120 
attack flow segments are randomly selected from each 
of the six attack flows, and then randomly inserted into 
the normal flows to generate an “All-United” synthetic 
flow set containing six attack flows, which contains a 
total of 2880 flow segments of 480 minutes in length, 
including 2160 normal flow segments and 720 attack 
flow segments. The traffic set contains a total of 2880 
flow segments of 480 minutes in length, including 2160 
normal flow segments and 720 attack flow segments. 
Attack traffic accounts for 25% of the total traffic. 
Table 3 shows the relevant information of each dataset.

Fig. 6  Synthetic traffic generation schematic
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TFD model
TFD model
Numerous experiments have shown that convolutional 
neural networks have the efficacy of signal filters, i.e., 
convolutional neural network structures can be used as 
extractors of short-time frequency domain features of 
network traffic [31]; while recurrent neural networks 
are better at extracting time-dependent information in 
sequences, i.e., time-domain features of network traf-
fic [32]. Therefore, in order to extract the time-domain 
and frequency-domain features of the traffic, a recon-
struction machine based on time-domain features and 
a reconstruction machine based on frequency-domain 
features are constructed in this study, and the time-
domain and frequency-domain features in the input traf-
fic are extracted by the two reconstruction machines, 
and then the reconstruction sequence of the input data 
is generated based on the extracted features. In order 
to make full use of the feature information of network 
traffic in time domain and frequency domain, the LDoS 
attack traffic anomaly detection model (Time domain 
& Frequency domain Based Detection, TFD) based on 
time and frequency domain features is proposed. Fig-
ure  7 shows the overall architecture of TFD, including 
three functional blocks of data preparation, data recon-
struction, and attack determination.

Data preparation functional group
This group includes 2 modules of traffic acquisition 
and data pre-processing, which mainly capture the net-
work traffic from the network interface and perform 
operations such as corresponding feature extraction 
and format conversion, converting it into the required 
form output for the next step of detection. According 
to the experimental findings, 16 time steps are suf-
ficient to include the first 2  s of the flow, so the traf-
fic data obtained from the real network, only the first 
16 packets of information in the network flow studied, 
that is, the input data of the model is a 2-dimensional 
array containing 2 features of packet arrival interval 
and packet size for 16 time steps.

Data reconfiguration functional group
This group consists of three modules: reconstructor 
based on time-domain features, reconstructor based on 
frequency-domain features and reconstruction error cal-
culation. This function group is the core component of 
TFD, which mainly completes the reconstruction of the 
input feature sequence in two dimensions, time domain 
and frequency domain, and calculates the deviation of 
the generated reconstruction sequence from the input 
sequence, i.e., reconstruction error, as the basis for the 
next attack determination.

Table 3  Information on each synthetic traffic dataset

Name Total traffic time (minutes) Number of normal flow segments 
(segments)

Number of attack stream segments 
(segments)

Anomaly ratio

Pwnloris 420 2160 360 0.142 9

Hping 420 2160 360 0.142 9

Torshammer 420 2160 360 0.142 9

Slowloris 420 2160 360 0.142 9

Httpbog 420 2160 360 0.142 9

Slowhttptest 420 2160 360 0.142 9

All-United 480 2160 720 0.25

Fig. 7  Flowchart of LDoS attack traffic detection based on time-frequency features
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Attack determination functional group
This group consists of the attack determination mod-
ule, whose main task is to compare the reconstruction 
error in both time and frequency domain dimensions 
calculated in the previous stage with the corresponding 
threshold, and to determine the flow with a reconstruc-
tion error greater than the threshold as an attack flow.

Reconstructor based on time domain features
We proposed a reconstructor based on time-domain 
features, which uses LSTM auto-encoder to extract and 
reconstruct the features of the input traffic data. In order 
to fully extract the data features, a channel enhancement 
layer is set up between the encoder and decoder, and the 
specific structure is shown in Fig. 8.

The specific functions of each layer of the reconstruc-
tor based on time-domain features are as follows:

(1)	 Encoder

	 Layer 1, LSTM (32), reads the input data and outputs 
32 features, each with 16 time steps.

	 Layer 2, LSTM (8), takes a 16 × 32 input from layer 
1 and reduces the feature size to 8, and outputs a 
feature matrix of size 1 × 8.

	 Layer 3, the channel enhancement layer (16) copies 
the 1 × 8 feature matrix 16 times to form a 16 × 8 
2-dimensional matrix as the input of the decoder 
layer, which can provide a richer feature representa-
tion for the decoder and is the bridge between the 
encoder and decoder.

(2)	 Decoder
	 The decoder builds layer 4 LSTM (8) and layer 5 

LSTM (32) in the opposite order to the encoder, 
which are mirrors of layer 2 and layer 1, respec-
tively.

Layer 6 is a fully connected layer that performs matrix 
multiplication between the output of layer 5 and its inter-
nal vector to generate a 16 × 2 output vector.

Define the encoder function in each layer as 
ϕ : X → Z , which maps the input x ∈ Rx

= X  to 
z ∈ Rz

= Z , and the decoder layer with the func-
tion ψ : Z → X ′ , which maps the input z ∈ Rz

= Z to 
x′ ∈ Rx

= X ′.
Thus, the encoding and decoding process is expressed 

as:

Where ∘ is the joint function, fθ(x) denotes the func-
tion of the LSTM autoencoder defining the model, and 
θ is the parameters to be determined for each neuron, 
using the softsign activation function. The aim of our 
LSTM autoencoder fitting is to make the output fit 
the input as closely as possible, using the mean square 
error as the objective function:

(2)z = ϕ2 ϕ1(x) = ϕ2
◦ ϕ1(x)

(3)z′ = C16
boosted(z)

(4)x′ = ψ1
(

ψ2
(

z′
)

)

= ψ1
◦ ψ2

(

z′
)

(5)fθ(x) = x′ = ψ1
◦ ψ2

◦ C16
boosted ◦ ϕ2

◦ ϕ1(x)

Fig. 8  Reconstructor based on time domain features



Page 11 of 19Fu et al. Journal of Cloud Computing           (2022) 11:31 	

where xi is the input original feature data and fθ(xi) is the 
output reconstructed data.

Using stochastic gradient descent training, the 
AdaGrad optimization algorithm is chosen, the learn-
ing rate in 0.000 05, the batch size in 16, and 100 com-
plete training sessions of this reconstructor with the 
training set data. The training process is shown in 
Algorithm 1.

Algorithm  1  Training of reconstructor based on time 
domain featuresThe reconstruction error decreases with 

(6)Loss(θ) =
1

m

m
∑

i=1

[xi − fθ (xi)]
2

each complete training, and eventually, the reconstructor 
converges to a steady state in which additional training 
does not reduce the reconstruction error. The reconstruc-
tion error of the validation set data in the steady state is 
used as the threshold to distinguish normal traffic or attack 
traffic, namely the threshold for anomaly determination.

Reconstructor based on frequency domain features
We know that both Fourier transform and wavelet 
transform use convolutional operations to realize the 
conversion from time domain to frequency domain, 
therefore, we use a convolutional neural network to 
extract the frequency domain features in the network 
traffic. Figure  9 shows the structure of our proposed 
frequency domain feature-based reconstructor, which 
is built using a convolutional residual network.

We design a frequency domain feature-based recon-
structor consisting of five convolutional modules for 
extracting features of the input data in layers, denoted 
as Conv1 to Conv5. They all use 1 × 2 convolutional 
kernels with a step size of 1 and a number of channels 
of 1. The number of convolutional kernels in each layer 
is 32, 26, 8, 4, and 2, respectively, using the ReLU acti-
vation function, due to the fact that only two features in 
the flow are operated on. Since only two features of the 
traffic are operated and the feature data are small, this 
model does not set up pooling layer and dropout layer, 
and introduces residual structure to prevent the perfor-
mance degradation of the neural network.

The residual network is composed of a series of residual 
blocks, and as Andreas et al. [33] argue “direct mapping 
is the best choice”, here a direct mapping of the inputs 
to the final design is used. Figure 10 illustrates a simple 
residual block structure, which can be represented as:

Among them, h(xl) is the direct mapping part, which 
needs to be upgraded or downscaled using 1 × 1 con-
volution because the dimensions of xl and xl + 1 may be 

(7)xl+1 = h(xl)+ F(xl ,Wl)

Fig. 9  Reconstructor model structure based on frequency domain features
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different; ℱ(xl, Wl) is the residual part, which consists of 
multiple convolution operations.

As the input and output dimensions of the recon-
structor are the same, it can be mapped directly with-
out dimensional change, so the final reconstructed 
sequence Y for the input data X after each convolution 
operation and residual mapping can be expressed as

Where φk(·) denotes the operation of the kth convo-
lutional module, gϑ(·) denotes the function of the con-
volutional residual network definition model, ϑ denotes 
the pending parameters of each neuron, and the cross-
entropy function is used as the loss function:

Where xi is the input original feature data, gϑ(xi) is 
the output reconstruction data, trained using stochas-
tic gradient descent method, the optimization algorithm 
is Adam, the learning rate is taken as 0.000 01, and the 
batch size is 16. One hundred times of complete train-
ing is performed for this reconstructor using the train-
ing set data, and the training algorithm is analogous to 
Algorithm 1. The error of the model in steady state is cal-
culated using the validation set data as the threshold for 
anomaly determination.

Abnormality determination
Using the normal data trained TFD, the reconstruc-
tor can better complete the reconstruction of the nor-
mal flow fragment, while for the attack flow fragment 
because it deviates from the characteristics of the nor-
mal TCP flow, the reconstructed sequence will produce 
a large deviation from the original input sequence, so 

(8)F(x,W ) = φ5
(

φ4
(

φ3
(

φ2
(

φ1(x)
))))

(9)gϑ(x) = x′ = x + F(x,W )

(10)

Loss(�) = −
1

n

n
∑

i=1

[

xi log
(

g
�

(

xi
))

−
(

1 − xi
)

log
(

1 − g
�

(

xi
))]

this deviation can be compared with the reconstruc-
tion error threshold to determine whether the input is 
an attack flow or a normal flow. Since our purpose of 
detecting attack traffic is to ensure network security, we 
pay more attention to the recall rate (detection rate) of 
the attack traffic, and even the presence of appropriate 
false positives is tolerable, so when either of the recon-
structed errors generated by the two reconstructors 
is greater than the corresponding reconstructed error 
threshold, the input is determined to be an attack traffic, 
that is:

Where RT,  rT is the reconstruction error threshold based 
on the time domain features and the reconstruction error 
value calculated using the data to be tested, and RF,  rF is 
the reconstruction error threshold based on the frequency 
domain features and the reconstruction error value of the 
data to be tested.

Experiments and analysis of results
Experimental settings
The hardware and software configurations of the experi-
mental platform for model training and detection are as fol-
lows: hardware: Intel Core i9-12900F, 128GBRAM(DDR5), 
NVIDIA RTX3090; software: Ubuntu 18.04LTS, CUDA11.2, 
Pytorch1.8.

Evaluation indicators
We design a fast detection method for LDoS attacks based 
on the TFD model with the aim of quickly discovering 
LDoS attack traffic from the traffic to be detected. As for 
the initiation phase of the attack and the type of the attack, 
they are not our focus, so the detection objective is finally 
converted into a binary classification problem. Normal 
traffic is defined as negative samples and attack traffic is 
defined as positive samples, and five metrics, Accuracy, 
Precision, Recall, False positive rate (FAR), and F1 value, 

(11)Traffic =

{

attack (rT ≥ RT or rF ≥ RF )

normal else

Fig. 10  Reconstructor model structure based on frequency domain features
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are used to evaluate the performance of the TFD model, 
and these metrics are calculated as follows:

Where TP, TN, FP, and FN indicate the interrela-
tionship between the true and predicted results, and 
the specific meanings can be referred to the confusion 
matrix in Table 4.

(12)Accuracy =
TP + TN

TP + TN + FP + FN

(13)Precision =
TP

TP + FP

(14)Recall = TPR =
TP

TP + FN

(15)FPR =
FP

FP + TN

(16)F1 =
2× Precision× Recall

Precision+ Recall

TFD model training
The two reconstructors in the TFD model have the 
same input data, the training process is independent 
of each other, and both can output results indepen-
dently, so the two reconstructors are trained separately. 
Figure 11 shows the loss function values when the two 
reconstructors are trained for 100 iterations on a train-
ing set of All-United traffic data.

It can be seen that the loss function values of the two 
reconstructors change slowly in the initial training phase, 
then suddenly and rapidly decrease, and stabilize after 
reaching a certain procedure. Relatively speaking, the 
time-domain-based reconstructor has a slight vibration 
in the loss function value at the initial training stage, but 
can decrease rapidly and enters a stable state first after 
about 50 iterations. The frequency domain-based recon-
structor, on the other hand, has a stable but slow decay-
ing loss function value at the beginning of training and 
stabilizes only after 70 iterations, and its steady-state 
loss value is smaller than that of the time-domain-based 
reconstructor. The reason why the time-domain-based 
reconstructor reaches the steady state first may be 
because the parameters of the model are less than those 
of the frequency-domain-based reconstructor model, 
which is easier to train and can complete the training 
faster, but oscillations may occur in the early training 
period.

In addition, because the number of samples in the data-
set we use is relatively small, and the features of each 
sample are only a 16 × 2 2-dimensional matrix with few 

Table 4  Confusion matrix

Predictive Positive Predictive 
Negative

True Positive TP FN

True Negative FP TN

Fig. 11  Anomaly recall rate for each LDoS attack traffic detection
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trainable parameters, the average time to complete one 
iteration of training on the training set for each attack 
traffic is no more than 7 seconds, which is converted to 
millisecond detection time for a single sample. In addi-
tion, since the detection target is a simple binary clas-
sification problem, the computation time to perform 
anomaly determination can be neglected, which means 
that our detection model can complete millisecond 
detection from data input to result output, and can be 
considered to be able to perform time-to-real detection 
of network traffic even with the addition of data collec-
tion and pre-processing time.

Classifier threshold setting
The error in the steady state of the two reconstructors 
by using the validation set as the threshold for anomaly 
determination during testing, combined with their per-
formance during training, was defined as the steady state 
after 70 iterations, and the average of the errors gener-
ated from 71 to 100 training sessions was calculated as 
the threshold. In addition, to eliminate the chance in the 
operation, the average of the thresholds calculated for 
five times was taken as the final threshold of this recon-
structor, as shown in Table 5.

Testing results
The testing experiment is divided into two phases, the 
first phase is to test each attack traffic individually to 
obtain the detection capability of the TFD model for each 
LDoS attack; the second phase is to test the All-United 
dataset consisting of multiple attack traffic to evaluate 
the detection capability of the model for complex attacks. 
A 5-fold cross-validation approach is used to calculate 
the mean value of the model’s detection results for each 
dataset as the model’s performance metric. The detection 
results for LDoS attacks alone are shown in Table 6.

As shown in Table 5, all the results are the average of 
five detection results, excluding the possible chance fac-
tors in computing. It can be seen that the proposed 
method achieves a recall rate of more than 95% for the 

detection of each attack traffic. Although the false alarm 
rate for the Slowhttptest attack exceeds 7%, several other 
attacks are kept at a low level with an overall false alarm 
rate of 3.88%, which is acceptable in the design of detec-
tion with security alerts as the goal. The best detec-
tion indicator for Pwnloris attacks, Pwnloris is actually 
an upgraded version of Slowloris with more obvious 
features.

Secondly, the detection of Hping attacks was also good, 
and the reason for this was analyzed, as the Hping pro-
gram was originally used for flooding attacks of DDoS. 
In this experiment, for the effect of low-speed attacks, 
Hping is set to generate attacks only in the first 0.1 s 
interval per second, and the attack packet size is fixed, 
which makes the Hping attack traffic has a significant 
periodic change characteristic, and therefore is more eas-
ily detected.

The reason for the relatively poor detection of Slow-
httptest attacks should be due to the Slowhttptest gen-
eration is a slow-read attack traffic, the time span itself 
is relatively large, and we choose data for the first 16 time 
steps in each 10-second stream segment features, result-
ing in the selection of some data just to deal with Slow-
httptest attack traffic “silent period” so that no obvious 
data features, which adversely affects the detection.

The TFD model performs well in detecting individ-
ual attack traffic, but in order to study the ability of the 

Table 5  Detection domain values for each data set

Validation Sets Time Domain Reconstructor Frequency Domain 
Reconstructor

Pwnloris 0.017 6 0.011 2 Take the average of 5 times verification results

Hping 0.018 6 0.011 6

Torshammer 0.016 3 0.018 9

Slowloris 0.016 8 0.016 6

Httpbog 0.073 5 0.018 8

Slowhttptest 0.082 3 0.063 8

All-United 0.017 4 0.010 9

Table 6  Detection performance of the model for six LDoS 
attacks

Validation Sets Accuracy Recall Precision FAR F1

Pwnloris 0.982 3 0.980 4 0.984 1 0.015 8 0.982 3

Hping 0.978 3 0.980 5 0.976 2 0.023 8 0.978 3

Torshammer 0.963 7 0.958 6 0.968 4 0.031 2 0.963 5

Slowloris 0.962 3 0.960 4 0.964 0 0.035 8 0.962 2

Httpbog 0.963 7 0.978 6 0.950 2 0.051 2 0.964 2

Slowhttptest 0.948 4 0.971 6 0.928 5 0.074 8 0.949 6

Average 0.966 5 0.971 7 0.962 0 0.038 8 0.966 7
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proposed method to cope with complex attacks, it is also 
necessary to test the All-United data set containing mul-
tiple attack traffic, and after training the model using the 
data in the training set, the threshold value is derived 
using the validation set data, and the same 5-fold cross-
validation method is used for the test set data, with the 
arithmetic of each result The average value is the final 

result, as shown in Fig. 12 where the average accuracy is 
0.935 8, the average precision 0.936 3, the average recall 
0.940 7, the average false alarm 0.059 2, and the average 
F1 value 0.938 4.

Figure 13 shows the recall rate of the TFD model for 
each LDoS attack type, and it can be seen that the recall 
rate of detecting one LDoS attack alone can reach more 

Fig. 12  TFD detection metrics on the All-United attack traffic dataset

Fig. 13  Anomaly recall rate for each LDoS attack traffic detection
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than 95%, and the detection rate of multiple attacks 
also reaches 94%. In addition, the recall here is calcu-
lated in terms of flow segments, and an attack will gen-
erate multiple flow segments, so the probability of this 
attack being detected will be close to 100%, and basi-
cally, there will be no problem of undetected attacks, 
so our proposed method is effective on the dataset we 
designed.

To verify the adaptability of our proposed method to 
heterogeneous network traffic data, it is tested respectively 
on five publicly available datasets, including NSL-KDD, 
DARPA2000, ISCX2016, CICDDoS2019, and UTSA2021, 
where:

NSL-KDD dataset is the most commonly used data-
set in the field of network traffic anomaly detection 
research, including ping-of-death, syn flood, smurf and 
other resource-consuming attacks, NSL-KDD is a dataset 
generated based on the improvement of KDD-CUP-99, 
which removes the redundant data in the KDD-CUP-99 
dataset and makes an appropriate selection of the ratio of 
normal and abnormal data, with a more reasonable dis-
tribution of the number of test and training data.

The DARPA2000 dataset [28] is a standard dataset in 
the field of network intrusion detection and is one of 
three separate datasets in the DARPA dataset. Unlike 
DARPA 1998 and DARPA 1999, the DARPA2000 dataset 
focuses on attack traffic for Windows NT and adds inter-
nal attack and internal eavesdropping data.

The ISCX2016 low-speed denial-of-service attack 
dataset [29] is a dataset generated in a simulation envi-
ronment, where the developers obtained eight differ-
ent application-layer DoS attack traffic by building web 
servers such as Apache Linux, PHP5, and Drupal v7, and 
mixed them with the normal traffic from the original 
ISCX-IDS dataset to form an LDoS attack traffic dataset.

The CICDDoS2019 dataset [25] is a real-world DDoS 
attack-like dataset. The latest DDoS attack procedures, 
including reflective attacks, are used to simulate the gen-
eration of attack traffic. There are 50,063,112 samples 
in the dataset, among which there are 50,006,249 DDoS 
attack samples and 56,863 normal samples, with very few 
normal samples, so the dataset is used with the choice of 
loading normal traffic from external sources or selecting 
only some attack samples.

The UTSA2021 dataset [30] is a set of normal and 
attack traffic at different rates generated using the DNS 
network testbed, mainly including multiple rates of TCP 
SYN flood attacks, HTTP slow read and slow acquisition 
attacks, and in this study, a subset of Syn50 with an attack 
peak of 50 r/s is used to participate in the validation.

Since we design the detection method for LDoS attacks 
at the transport and application layers, each data set 
needs to be processed to extract DoS traffic and normal 

traffic to form a new data set before conducting detection 
experiments, and then feature extraction is performed 
on the new data set to form the required data structure 
for our detection. For larger datasets, such as CICD-
DoS2019, only about 1% of partial attack samples are 
selected to improve computing efficiency.

Since the network configuration environment of each 
dataset has a large variability, the model TFD is trained 
using some normal samples from each dataset and the 
threshold value for anomaly determination is calculated 
before conducting the detection, and then the detection 
set containing both normal and anomalous samples is 
tested with the recall rate, accuracy rate and F1 value as 
the detection index, and the specific results are shown in 
Fig. 14, which shows that we Concerned about the attack 
recall rate, basically maintain above 90%, which reached 
more than 98% on NSL-KDD, DARPA2000, and 96% on 
CICDDoS2019, UTSA2021, while the recall rate of 91.7% 
on ISCX2016 is relatively low. To analyze the reason for 
this is that the attack traffic in the three datasets NSL-
KDD, DARPA2000, and CICDDoS2019 are DoS or DDoS 
attacks, which have more obvious statistical character-
istics than LDoS in terms of packet interval and packet 
size, and thus can be easily identified. In the UTSA2021 
dataset, we chose the attack peak of 50 r/s subset Syn50, 
which is more challenging than detecting attack samples 
from a dataset with higher attack rates, and then the 96% 
recall is still a good result. The reason for the relatively 
low recall of ISCX2016 is probably due to the fact that 
the attack samples are generated in a different network 
environment than the normal samples, such that the 
TFD model trained using the normal samples was more 
rough and difficult to detect small changes in the statisti-
cal features.

The accuracy of the model on the NSL-KDD, 
DARPA2000, ISCX2016, and CICDDoS2019 datasets did 
not achieve as excellent results as the recall, and the anal-
ysis may be due to the fact that we chose relatively few 
feature vectors and simple model results, which required 
much less training parameters compared to large deep 
network models, using sufficient samples for training. 
The overfitting problem occurs. This makes the model 
more “demanding” in determining normal traffic, so that 
some normal samples are mistaken for attack samples.

The UTSA2021 dataset performs the most spectacu-
larly, even surpassing the All-United dataset we designed. 
The reason for this is probably due to the network traf-
fic collection environment. The normal and attack 
samples of the UTSA2021 dataset are generated and col-
lected in the same network environment, so they have 
good isomorphism and can be trained to produce more 
“pure” classifiers. In contrast, the normal samples of the 
All-United dataset are collected from the real network 
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environment, which are inevitably disturbed by exter-
nal conditions and produce “impurities” during the col-
lection process. The attack samples are collected from 
experimental platforms with similar topology and are less 
subject to external interference. The model trained with 
the “impurity” data is a “rough” model, which may ignore 
the small differences between the feature data and cause 
misjudgment of the sample type.

The TFD model shows strong adaptability on several 
datasets, achieving a recall of 91.7% even on ISCX2016. 
Since we conduct detection experiments with stream 
fragments, an attack stream is composed of multiple 
stream fragments, which makes the detection probability 
of the attack stream will be much higher than the detec-
tion probability of the stream fragments, therefore, the 
TFD detection model we designed can well meet the 
original design intention of targeting the discovery of 
attack samples.

Conclusions
For the traditional LDoS attack detection method, 
it needs to extract more features, consumes more 
resources, cannot meet the demand of real-time online 
detection, and the problem that the experimental envi-
ronment is too different from the real network environ-
ment. A method of attack traffic detection (TFD) based 
on the time-frequency domain features of network traf-
fic is proposed, and only the arrival interval and size of 
the first 16 packets of the network traffic segment are 

selected as feature data. The TFD is modeled using nor-
mal traffic feature data. The TFD learns the spatial dis-
tribution of normal traffic features and can accurately 
reconstruct the normal traffic, while reconstructing the 
attack will generate a large reconstruction error, and the 
model determines the attack based on this error.

The experimental results show that the proposed 
method can quickly process the traffic feature data 
obtained from the real network environment and accu-
rately detect the contained multiple attack traffic fea-
tures with a recall rate of more than 94%, which has the 
capability requirement of real-time online detection. 
In addition, although the experimental environment is 
based on the Web service of a cloud service network, 
the proposed method can be used in principle for the 
detection of other LDoS attacks against HTTP servers 
or HTTPS servers with strong generalizability because 
the feature data only rely on the statistical information 
of packet interval and packet size in the network traffic, 
without the need to manually design the features, let 
alone analyze the specific contents of the traffic.

Advantages:

(1)	 The number of detection features is less because 
only the two features of partial packet size and 
arrival time interval in the traffic slice need to be 
considered, so compared with the traditional flow 
level detection method which needs to consider the 
complete traffic features, the number of features 
used is less.

Fig. 14  TFD model for performance detection of DOS attacks in each dataset
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(2)	 Learning the internal relationship of feature 
sequences in the time domain and frequency 
domain is beneficial to mining potential diversity 
information in traffic and providing more sufficient 
discrimination references for attack detection.

(3)	 Have the ability of early detection. It is not neces-
sary to calculate the characteristic data of the com-
plete stream, but only need to count the two char-
acteristics of the first 16 packets to perform the 
operation. Compared with the traditional detection 
method, it has the ability of early detection.

Shortcomings:

(1)	 In this paper, the statistical characteristics of some 
data packets in the first 10 seconds of the traffic are 
discussed, the detection results of network traffic 
characteristics in different granularity are not dis-
cussed, and there is a lack of research on the detec-
tion of slice traffic segments in different time scales.

(2)	 It is required that the connection time of the stream 
is longer than 10 seconds, and the eigenvalue of the 
stream less than 10 seconds is filled with “0”. This 
will lead to an increase in the operation cost com-
pared with the original traffic. Secondly, this filling 
operation of attack traffic and normal traffic may 
lead to an increase in false alarms.
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