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Abstract 

Vehicular edge computing (VEC) is emerging as a new computing paradigm to improve the quality of vehicular 
services and enhance the capabilities of vehicles. It enables performing tasks with low latency by deploying comput-
ing and storage resources close to vehicles. However, the traditional task offloading schemes only focus on one-shot 
offloading, taking less into consideration task dependency. Furthermore, the continuous action space problem during 
task offloading should be considered. In this paper, an efficient dependency-aware task offloading scheme for VEC 
with vehicle-edge-cloud collaborative computation is proposed, where subtasks can be processed locally or can 
be offloaded to an edge server, or a cloud server for execution. Specifically, first, the directed acyclic graph (DAG) 
is utilized to model the dependency of subtasks. Second, a task offloading algorithm based on Deep Deterministic 
Policy Gradient (DDPG) was proposed to obtain the optimal offloading strategy in a vehicle-edge-cloud environment, 
which efficiently solves the continuous control problem and helps reach fast convergence. Finally, extensive simula-
tion experiments have been conducted, and the experimental results show that the proposed scheme can improve 
performance by about 13.62% on average against three baselines.
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Introduction
The Internet of Vehicles (IoV) is a new paradigm that 
combines traditional vehicle ad hoc network and vehi-
cle remote information processing, which can effectively 
improve vehicular services and augment the capabilities 
of vehicles [1, 2]. In IoV, an intelligent vehicle is capable 
of running various applications [3, 4], such as collision 
warning [5], automatic driving [6], and auto navigation 
[7]. Unfortunately, these applications not only require 
significant computation resources and storage resources 

but also have stringent delay requirements [2, 8]. As a 
result, it is challenging to execute them on vehicles with 
low latency that have limited resources.

Vehicular edge computing (VEC) is proposed as a 
promising solution to solve the above problem, which 
integrates mobile edge computing (MEC) into IoV [9]. 
VEC can improve vehicle service quality [10–12] by 
deploying MEC servers’ computation resources and stor-
age resources close to vehicles. Specifically, computa-
tion-intensive and delay-sensitive tasks can be offloaded 
to MEC servers for execution via wireless networks [2, 
13]. Compared to resource-constrained vehicles, MEC 
servers with more computation resources can efficiently 
reduce the execution latency of these tasks.
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Although VEC can reduce execution latency of tasks, 
MEC servers cannot ensure load balancing due to their 
limited computing and storage ability of [14, 15]. To 
better improve resource utilization, some tasks can be 
executed locally or offloaded to the cloud server for exe-
cution. Thus, this type of task offloading with vehicle-
edge-cloud collaborative computing can obtain a low 
latency for various vehicular tasks. Such approaches have 
been extensively studied [9, 16]. For example, Dai et  al. 
propose an offloading method for VEC, which offloads 
tasks based on vehicle-edge-cloud collaborative com-
puting [9]. Xu et al. [16] presented a game theory-based 
service offloading approach to minimize task processing 
latency of users, where both predictions of traffic flow 
and the allocation of resources are considered. In these 
works, tasks were considered as a whole during task off-
loading. Their assumption is that offloaded tasks are 
atomic. However, a typical application task consists of a 
series of subtasks [17, 18], which are originally designed 
to enable multithread processing [18]. As shown in 
Fig.  1(a), we divide a task into five subtasks and use a 
directed acyclic graph (DAG) to describe the inter-sub-
task dependency. Figure  1(b) illustrates the fine-grained 
task offloading approach, where subtask 2, subtask 3, and 
subtask 4 are executed in parallel through vehicle-edge-
cloud collaborative computing. Therefore, it is neces-
sary to take task dependency into account during task 
offloading.

Deep reinforcement learning (DRL) is a branch of arti-
ficial intelligence (AI), which utilizes the perceptual abil-
ity of deep learning and the decision-making ability of 

reinforcement learning [19]. DRL can obtain the opti-
mal offloading strategies by directly interacting with 
the dynamic vehicular network. For example, Dai et  al. 
proposed an efficient task offloading approach based on 
the deep Q-network (DQN) to minimize the processing 
delay of tasks. He et al. [20] first introduce a novel Qual-
ity of Experience (QoE), and then proposed a task off-
loading algorithm based on DRL to improve QoE for IoV. 
In these works, these value-based reinforcement learning 
methods mainly focused on discrete actions. However, 
the problem of task offloading in a vehicle-edge-cloud 
computing environment is a continuous action space 
(i.e., continuously allocating computation resources and 
bandwidth resources of edge servers). Therefore, it is 
necessary to take continuous action space into account 
during task offloading.

To tackle the above challenges, an efficient depend-
ency-aware task offloading scheme based on a deep 
deterministic policy gradient (DDPG) named DA-TOD-
DPG, is proposed. Compared with the existing task off-
loading methods, this approach considers both task 
dependencies and the continuous control problem dur-
ing task offloading. Specifically, the main contributions of 
this article are summarized as follows:

•	 Modeling the system model of task offloading in a 
vehicle-edge-cloud collaborative computing environ-
ment, where DAG is utilized to model the dependen-
cies of subtasks in the task model.

•	 Proposing an efficient dependency-aware task off-
loading scheme based on DDPG to achieve the opti-

Fig. 1  a A DAG of a task. b Fine-grained offloading
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mal fine-grained offloading strategy, which consid-
ers both task dependencies and continuous action 
spaces.

•	 Conducting extensive experiments to evaluate the 
performance of our proposed scheme. The experi-
mental results show that our scheme can greatly 
reduce the average processing time compared with 
baseline schemes.

The rest of this paper is organized as follows. Section 2 
discusses the related works. Section  3 presents the sys-
tem model and problem definition. Section  4 proposes 
the design of the dependency-aware task offloading 
scheme based on DDPG. Section 5 evaluates the perfor-
mance of our proposed offloading scheme. Section 6 con-
cludes this paper and outlines future work.

Related works
There are some studies work on task offloading for vehic-
ular edge computing, which consists of mobility-aware 
task offloading [21], dependency-aware task offloading 
[22], learning-based task offloading [13], and traffic flow 
prediction task offloading [16]. Most work has stud-
ied the task offloading between vehicles and MEC serv-
ers. Yao et al. [19] considered both energy consumption 
and processing delay and proposed a twin delayed deep 
deterministic policy gradient algorithm to achieve the 
optimal offloading strategy. Zhang et  al. [23] proposed 
an offloading method, where both the heterogeneous 
requirements of the computation tasks and the mobil-
ity of the vehicles are considered. Ren et al. [24] studied 
task offloading problems with multiple constraints and 
proposed a DDPG-based task offloading algorithm. Zhan 
et al. [25] studied the offloading problem without infor-
mation sharing and proposed a computation offloading 
game formulation. However, these works only considered 
the resources of vehicles and MEC servers and did not 
fully utilize the rich resources of the cloud.

Recently, some works have begun to consider the prob-
lem of task offloading in the vehicle-edge-cloud com-
puting environment. Xu et  al. [16] presented a game 
theory-based service offloading approach to minimize 
task processing latency of users, where both predictions 
of traffic flow and the allocation of resources are con-
sidered. Dai et al. [9] proposed an efficient task offload-
ing approach to minimize the processing delay of tasks, 
which jointly considered the edge-cloud opportunities 
and the convergence of deep reinforcement learning. 
Zhang et  al. [26] studied the problem of resource allo-
cation for edge services under the vehicle-edge-cloud 
computing environment and proposed two algorithms to 
maximize social welfare and profit. However, these works 
did not consider the subtask dependencies within a task.

With respect to dependency-aware task offloading, 
Chen et  al. [27] studied the problem of dependency-
aware task offloading, where considered both the col-
laboration between MEC servers and the cloud servers 
and the collaboration among MEC servers. Fan et al. [28] 
proposed a heuristic algorithm with the aim of reducing 
the consumed energy of vehicles. Pan et al. [29] consid-
ered both energy consumption and task dependency in a 
vehicle-edge-cloud computing environment. A Q-learn-
ing-based framework was proposed to select optimal 
strategies. Chen et  al. [30] studied multiple dependent 
tasks offloading problems under an end-edge-cloud col-
laborative computing environment. A DRL-based algo-
rithm was proposed to reduce the average energy-time 
cost. However, these works assume that each MEC server 
has enough resources for task offloading.

Besides, some studies have attempted to solve the task 
offloading problem via deep reinforcement learning. Qu 
et al. [31] proposed a deep meta-reinforcement learning-
based offloading (DMRO) algorithm for reducing latency 
and energy consumption. Binh et  al. [32] proposed a 
based on Deep Q-Network (DQN) algorithm to enhance 
the average quality of experience. Huang et al. [33] con-
sidered both task offloading and resource allocation and 
proposed a Deep-Q Network based algorithm to mini-
mize the overall offloading cost in terms of energy cost, 
computation cost, and delay cost. However, the research 
works simply assume that the action space of task off-
loading is discrete due to using a value-based function.

Unlike these above works, we investigate dependency-
aware task offloading for IoV in the vehicle-edge-cloud 
collaborative computing environment. Our work is dif-
ferent from these works in three aspects: 1) we take task 
dependency into account to further minimize execution 
delays when designing task offloading strategies. 2) we 
fully utilize the resources of vehicles, MEC servers, and 
the cloud server. 3) we efficiently solve the continuous 
control problems.

In addition, based on the above discussion in the field 
of task offloading for IoV, a side-by-side comparison is 
presented in Table 1 in terms of strategy, applied metrics, 
advantages, and weaknesses of each technical study.

System model and problem formulation
In this section, the system model of dependency-aware 
task offloading is designed, and then the problem of 
dependency-aware task offloading is formulated as an 
optimization problem. The key terms and the related 
descriptions in the system are listed in Table 2.

Network model
As illustrated in Fig. 2, the network model of depend-
ency-aware task offloading for VEC is presented, which 
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consists of three layers: user layer, edge layer, and cloud 
layer. The user layer is a collection of all vehicles, where 
each vehicle can process some subtasks of a task. The 
edge layer consists of RSUs and MEC servers, where 
each RSU is equipped with a MEC server. Each RSU 
can collect vehicle service requests within its coverage 

range and each MEC server can execute subtasks 
through offloading. The cloud layer is the cloud server, 
which has enough computing and storage resources.

We assume that all tasks generated by vehicles can be 
broken down into smaller subtasks. Each subtask can 
be processed locally or offloaded to a MEC server or 
the remote cloud server for execution.

Table 1  A side-by-side comparison of offloading strategies

Reference Strategy Applied metrics Collaborative way Advantages Weakness

[17] deep deterministic policy 
gradient (TD3)

Delay, Energy Vehicle-Edge Appropriate computation 
model

Not considering the resources 
of cloud services

[21] Machine Learning Delay, Cost Vehicle-Edge Considering the mobility of 
the vehicles

Not considering the resources 
of cloud services

[22] Deep Deterministic Policy 
Gradient (DDPG)

Delay Vehicle-Edge Considering V2V and V2I High complexity

[23] A policy gradient deep rein-
forcement learning

Delay, Energy Vehicle-Edge Acceptable system model Not considering the resources 
of cloud services

[14] Takagi-Sugeno fuzzy neural 
network and game theory

Delay, Energy Vehicle-Edge-Cloud Traffic flow prediction com-
bined with task offloading

High complexity

[7] Deep Q-Network (DQN) Delay Vehicle-Edge-Cloud Acceptable complexity Not considering task depend-
encies

[24] Machine Learning Profit Vehicle-Edge-Cloud Edge and cloud share 
resources in the form of 
wholesale and buyback

High dimensional state space

[25] A Greedy Based Delay Vehicle-Edge-Cloud Considering task dependen-
cies

Single offloading

[26] Heuristic Algorithm Energy, Cost Vehicle-Edge-Cloud Considering task dependen-
cies

High complexity

[27] Q-learning Delay Vehicle-Edge-Cloud Acceptable system model High dimensional state space

[28] Actor-Critic Mechanism Delay, Energy Vehicle-Edge-Cloud Considering task dependen-
cies

Not considering continuous 
action space

[29] Deep Meta Reinforcement 
Learning-based Offloading 
(DMRO)

Cost Vehicle-Edge-Cloud Fine-grained offloading Not considering continuous 
action space

[30] Deep Q-Network (DQN) QoE Vehicle-Edge Solving for high dimensional 
state space

Model limitations

[31] Deep Q-Network (DQN) Cost Vehicle-Edge Appropriate mathematical 
proof

Not considering continuous 
action space

Table 2  Notations and descriptions

Symbol Description

Qk
m,i The ith subtask belonging to task Qk

m

dkm,i
The input data size of the ith subtask

ckm,i The amount of computation resource required to complete subtask Qk
m,i

�k,e The data transmission rate between vehicle k and RSU r

pk The transmission power of vehicle k

δk,e The channel gain between vehicle k and RSU r

w The bandwidth of each sub-channel between vehicle k and RSU r

σ
−2 The surrounding noise power

tr ,c The round-trip time of transmission data between RSU r and the cloud server

fk The computation capability of vehicle k
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The set of RSUs is denoted as R = {1, 2, ..., r, ...,R} , and 
the set of vehicles is denoted as K = {1, 2, ..., k , ...,K } . In 
addition, we assume that each vehicle has M computa-
tion-intensive and delay-sensitive tasks to be executed 
within a stringent completion time constraint. The vari-
able Qk

m is used to represent the nth task of vehicle k, rep-
resents one vehicle. For ease of reference, we show the 
key notations used in this article in Table 2.

Task model
In this section, the task model of dependency-aware 
task offloading is introduced. Since tasks are not 
atomic, their subtask may be interdependent, i.e., the 
output of some subtask is the input of another sub-
task [2]. To describe subtask dependencies with a task, 
each subtask can either be processed on the vehicle or 
offloaded to the edge server or cloud server for com-
putation. Each task can be modeled as a directed acy-
clic graph (DAG), i.e., G = (I , E) , where I  is the set of 
subtasks, and E is the set of directed edges. Let I = |I| 
denote the total number subtasks of task Qk

m . In the 

task graph, node Qk
m,i means the ith subtask belonging 

to task Qk
m , and a directed edge (Qk

m,i,Q
k
m,j) denotes the 

subtask dependency that subtask Qk
m,j cannot be per-

formed until subtask Qk
m,i has been completed, i, j ∈ I .

To accurately illustrate the task dependencies, we 
show an example in Fig.  3. The figure shows that task 
Qk
m is divided into 9 subtasks (i.e., Qk

m,1 , Q
k
m,2 , Q

k
m,3 , Q

k
m,4 , 

Qk
m,5 , Q

k
m,6 , Q

k
m,7 , Q

k
m,8 , Q

k
m,9 ). Specifically, subtask Qk

m,1 is 
entry task of task Qk

m . Subtask Qk
m,3 is predecessor task 

of Qk
m,4 and Qk

m,5 . Subtask Qk
m,4 and Qk

m,5 are successor 
tasks of Qk

m,3 . So, subtask Qk
m,4 and Qk

m,5 are start exe-
cuted until subtask Qk

m,3 has been completed. Similarly, 
subtask Qk

m,9 is exit task of task Qk
m . Therefore, Qk

m,9 is 
start executed until all predecessor subtasks (i.e., Qk

m,1 , 
Qk
m,2 , Q

k
m,3 , Q

k
m,4 , Q

k
m,5 , Q

k
m,6 , Q

k
m,7 , Q

k
m,8 , Q

k
m,9 ) has been 

completed. In addition, subtask Qk
m,2 and Qk

m,3 or Qk
m,7 

and Qk
m,8 can execute in parallel, Similarly, subtask Qk

m,4 
, Qk

m,5 , and Qk
m,6 can also be executed in parallel.

Each subtask Qk
m,i can be described in two terms as 

Qk
m,i = dkm,i, c

k
m,i  , dkm,i denotes the input data size of 

Fig. 2  The architecture of VEC in a vehicle-edge-cloud computing environment
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the ith subtask and ckm,i denotes the amount of compu-
tation resource required to complete subtask Qk

m,i.

Communication model
In this section, the communication model of the task off-
loading is introduced, which consists of the communica-
tion model of vehicle to RSUs and the communication 
model of RSUs to the cloud server.

1) Vehicles to RSUs: we consider that the wireless com-
munication (i.e., 4G, 5G, and WiFi) between vehicles and 
RSUs is based on the orthogonal frequency-division mul-
tiple access [2]. Specifically, we let �k ,e denote the data 
transmission rate between vehicle k and RSU r, which 
can be calculated as [2, 34]

where nek denotes the number of sub-channels allocated 
to the vehicle k, w denotes the bandwidth of each sub-
channel between vehicle k and RSU r, pk denotes the 
transmission power of vehicle k, δk ,e denotes the channel 
gain between vehicle k and RSU r, σ−2 denotes the sur-
rounding noise power.

2) RSUs to cloud server: we consider that the wire-
line communication (i.e., high-speed optical fiber lines) 
between RSUs and the cloud server. In the case MEC 
servers cannot provide computation services for vehicles, 
vehicles offload the subtasks to the remote cloud server 
via RSUs. Especially, it should be noted that the trans-
mission latency of the MEC server transmitting data to 
the cloud server is equal to the transmission latency of 
the cloud server returns the result to the MEC server and 
this transmission latency is independent of the size of 
the data, due to the long geographical distances between 
cloud servers and MEC servers [2, 34]. We let tr,c denote 
the round-trip time of transmission data between RSU r 
and the cloud server, which can be calculated as [2, 34]

(1)�k ,e = nek .wlog2(1+ pk .δk ,e.σ
−2

).

where tcloudoff  denotes the transmission latency of RSU r 
transmitting data to the cloud server.

Computation model
Subtasks with a task can either be performed on the vehi-
cle or be offloaded to the MEC server or cloud server for 
execution. Thus, in this section, the processing time of 
subtasks is discussed in the vehicle, the MEC server, and 
the cloud server, respectively.

1) Local computing: when the subtask is assigned to 
be executed on the vehicle, we assume that each vehicle 
processes one subtask at a time. In this case, if there is a 
subtask computed in a vehicle, other subtasks executed 
locally need to wait in a task queue based on the first-in-
first-out principle until the computation resources are 
available [9, 35]. Thus, the total local completion delays of 
subtask Qk

m,i consist of the local execution delay and the 
local waiting delay, which is given by:

where c
k
m,i

fk
 denotes the local execution delay, fk denotes 

the computation capability of vehicle k, ckm,i denotes the 
amount of computation resource required to complete 
subtask Qk

m,i , and tlocal,waitk ,m,i  is the local waiting delay of the 
subtask Qk

m,i , denoted by the difference between the exe-
cution starting time and requested time as 
tlocal,waitk ,m,i = tlocal,startk ,m,i − t

local,request
k ,m,i .

2) Edge computing: when the subtask is offloaded to 
MEC servers for processing, we consider that the whole 
process can be broken down into three parts: the trans-
mission delay, the execution delay, and the waiting delay 
of the subtask on the MEC server.

(2)te,c = 2tcloudoff .

(3)t
local,completion
k ,m,i =

ckm,i

fk
+ tlocal,waitk ,m,i .

Fig. 3  An example of a directed task graph
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Firstly, the raw data of the subtask Qk
m,i is transmitted 

from vehicle k to MEC server e via wireless communi-
cation. According to the communication mode (1), the 
transmission delay of the subtask Qk

m,i is defined as

Secondly, similar of local execution, the processing delay 
of the subtask Qk

m,i on the MEC server e is defined as

where f mec
e  represents the computation capability of the 

MEC server e.
Thirdly, the edge waiting time is similar to the local 

waiting time.

Where tedge,startk ,m,i  denotes the start execution time of the 
subtask, and tedge,requestk ,m,i  denotes the requested time of 
subtask.

According to equations (4), (Eq5), and (Eq6), the 
total completion delays for offloading subtask to the 
MEC server e can be defined as

3) Cloud computing: when the subtask is offloaded to the 
cloud server for processing, the raw data of subtask Qk

m,i 
is first transmitted from vehicle k to RSU r, and then is 
transmitted from RSU r to the cloud server. In addition, 
considering the enormous computation capability of the 
cloud server, the execution delay is negligible compared 
with the transmission delay [2, 16]. Therefore, the total 
completion delays of offloading subtask Qk

m,i to the cloud 
server can be broken down into two parts: the transmis-
sion delay between vehicle k and RSU r, and the trans-
mission delay between RSU r and the cloud server, which 
is defined as

where d
k
m,i

�k ,e
 denotes the transmission delay between vehi-

cle k and RSU r, and according to (2) te,c denotes the 
cloud transmission delay.

(4)tmec,trans
k ,m,i =

dkm,i

�k ,e
.

(5)tmec,com
k ,m,i =

ckm,i

f mec
e

.

(6)tmec,wait
k ,m,i = tmec,start

k ,m,i − t
mec,request
k ,m,i .

(7)
t
mec,completion
k ,m,i = tmec,trans

k ,m,i + tmec,com
k ,m,i + tmec,wait

k ,m,i

=
dkm,i

�k ,e
+

ckm,i

f mec
e

+ tmec,wait
k ,m,i .

(8)
t
cloud,completion
k ,m,i = tmec,trans

k ,m,i + te,c

=
dkm,i

�k ,e
+ te,c.

Problem formulation
In this part, we formalize the problem of dependency-
aware task offloading for VEC as an optimization prob-
lem. This optimization problem aims to minimize the 
average processing latency under the constraints of 
computing and communication resources of MEC serv-
ers. Specifically, the optimization problem is defined as

 where rkm,i = {β
E
k ,m,i, x

E
k ,m,i} denotes the allo-

cated computation and communication resources, 
tkm,i=tlocalk ,m,iα

local
k ,m,i+t

mec,offload
k ,m,i α

mec
k ,m,i+t

cloud,offload
k ,m,i α

cloud
k ,m,i  , B 

denotes the maximum communication capability of MEC 
servers, and C denotes the maximum computation capa-
bility of MEC servers.

Task offloading algorithm based on DDPG
In this section, an efficient dependency-aware task off-
loading algorithm based on DDPG, named DA-TOD-
DPG, is proposed. Compared with the value-based 
reinforcement learning (RL) approach (e.g., DQN) [24, 
36], DDPG combines the characteristics of DQN and 
the actor-critic (AC) algorithm to learning the Q value 
and the deterministic policy by the experience relay 
and the frozen network [37], thereby efficiently solv-
ing continuous control problems and helping reach the 
fast convergence. Figure  4 illustrates the framework 
of DA-TODDPG. First, the algorithm settings of DA-
TODDPG are defined. Second, we present the details of 
DA-TODDPG. Third, the action selection based on the 
E-greedy policy is described. Finally, the DDPG net-
work update is detailed presented.

Algorithm setting
In this section, DDPG is introduced to address the pro-
posed optimization problem in (9). i.e., obtaining the 
optimal offloading strategy (i.e., the subtask executed 
on local, or offloading to edge server, or offloading to 
cloud server) through exploring the dynamic environ-
ment at the beginning of each subtask offloading round.

(9)min
(pkm,i ,r

k
m,i)

∑

k∈V ,m∈Q

tkm,i

(10a)s.t. plocalk ,m,i + p
edge
k ,m,i + pcloudk ,m,i = 1

(10b)
∑

k∈V

βk ,e ≤ B

(10c)
∑

k∈V

xk ,e ≤ C
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Similar to [38], we assume that there is one central-
ized MEC server as the agent in DA-TODDPG. The 
agent identifies the optimal fine-grained offloading 
strategy by interacting with the environment through 
a sequence of observations, actions, and rewards [39]. 
Specifically, when the agent receives a subtask request 
from a vehicle, it selects an action based on the current 
environment state. Then the vehicles choose where to 
execute the task according to the selected action. After 
the action is executed, the agent receives a reward that 
indicates the benefits of the selected action. Finally, the 
environment evolves into the next state.

There are four key elements in the DDPG, namely envi-
ronment, state, action, and reward, which are specified as 
follows:
Environment. The environment env reflects the inter-

net of vehicles environment, including the set of vehicles, 
the set of tasks, the transmission power of the vehicle, the 
channel gain between the vehicle and MEC server, and 
the computation and communication resources of MEC 
servers. The environment is defined as

State. The state s reflects the observation the available 
resources of MEC servers, which is defined as

where the subscript t denotes the t-th time step, Ba 
denotes the available communication resources of 
MEC servers, and Ca denotes the available computation 
resources of MEC servers.

(11)env = {V ,Q, p, δ,B,C}.

(12)st = {Ba,Ca}.

Action. Based on the observed states, the agent decides 
the allocation of computing and bandwidth resources of 
the MEC server for executing the subtask. The action a is 
defined as

where atk ,m,i denotes the action of subtask i of task Qk
m,i 

at the t-th time step, bk ,m,i denotes the allocated com-
munication resources for subtask i of task Qk

m,i , and ck ,m,i 
denotes the allocated computation resources for subtask 
i of task Qk

m,i.
Reward. According to the state and action, the agent 

calculates the offloading strategy benefits, which can be 
defined as

where rtk ,m,i denotes the benefits of the action atk ,m,i of 
subtask i of task Qk

m,i at the t-th time step.

Task offloading algorithm
The illustration of DA-TODDPG is shown in Fig.  4, 
which combines the characteristics of DQN and the 
actor-critic (AC) [37]. Therefore, it consists of three com-
ponents, namely evaluation network, target network, and 
replay memory.

(13)atk ,m,i = {bk ,m,i, ck ,m,i}.

(14)

rtk ,m,i =























0, if subtask i is executed locally

t
lcoal,completion
k ,m,i − t

mec,completion
k ,m,i , if subtask

i is offloaded to the MEC server

t
local,completion
k ,m,i − t

cloud,completion
k ,m,i , if subtask

i is offloaded to the cloud server

Fig. 4  The framework of DA-TODDPG
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The evaluation network consists of two deep neural 
networks, namely an evaluation actor network Critic-E 
and an evaluation critic network Action-E. The evalua-
tion actor network is utilized to explore the offloading 
strategy. The evaluation critic network estimates the 
offloading strategy and provides the critic value which 
helps the evaluation actor to learn the gradient of the 
policy. In addition, the input of the evaluation net-
work is the current state st , the output is the action at , 
the training state and the training action from replay 
memory.

The target network can be understood as an older ver-
sion of the evaluation network due to their having the 
same network structure but different parameters, which 
is utilized to produce the target value for training Critic-
E. It consists of a target actor network Actor-T and a 
target critic network Critic-T. The input of the target net-
work is the next state st+1 from replay memory and the 
output is a critic value for computing loss of Critic-E.

The replay memory is used to store experience tuples, 
consisting of the current state, selected action, reward, 
and next state. The stored experience tuples can be 
randomly sampled for training the evaluation network 
and the target network. The randomly sampled expe-
rience tuples are intended to reduce the effect of data 
correlation.

The DA-TODDPG algorithm based on DDPG is 
described in Algorithm 1, which mainly includes three 
main parts: selection (Line 7), reward evaluation (Line 
9), and network update (Line 14).

Algorithm 1  DA-TODDPG Algorithm.

Reward evaluation algorithm
Evaluating the reward of each offloading decision not 
only enables us to obtain an optimal offloading strategy 
but also accelerates the convergence of the DA-TODDPG 
algorithm. The goal of the DA-TODDPG algorithm is to 
maximize the reward of performing actions. Therefore, 
the reward is negatively related to the execution time. 
The algorithm for evaluating reward is shown in Algo-
rithm 2. Specifically, when the subtask is executed locally, 
the reward is equal to 0 (Lines 4-5). When the subtask is 
offloading to the MEC server for execution, the reward 
is equal to the subtask’s local processing delay minus the 
subtask’s processing delay on the edge server (Lines 6-7). 
Similarly, when a subtask is offloaded to a cloud server 
for execution, the reward is equal to the subtask’s local 
processing delay minus the subtask’s processing delay on 
the cloud server (Lines 8-9).

Algorithm 2  Reward Evaluation Algorithm.

Network upload algorithm
The network update is outlined in Algorithm  3. Spe-
cifically, in each training step, a minibatch of experience 
tuples Dt are randomly sampled from replay memory 
D (Line 1-2). Then, the target critic network Critic-T 
calculates the target value yt and transmits yt to evalu-
ation critic network Critic-E (Line 3). After receiving yt 
Critic-E updates θQ by minimized the loss function L(θQ) 
(Line 4). On the other hand, Utilizing the sampled pol-
icy gradient ∇θµJ  to update the weights θµ of evaluation 
actor network (Line 5). Finally, the parameters θQ′ and 
θ
µ
′ of target actor network and target critic network are 

updated after each C step, respectively (Line 6-8).
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Algorithm 3  Network Update Algorithm.

Experimental performance
In this section, extensive experiments are carried out 
to evaluate the performance of our proposed scheme. 
The experimental setting details are explained first, and 
then the convergence performance of the DA-TODDPG 
scheme is analyzed. Finally, DA-TODDPG is compared 
with existing task offloading schemes to prove the effec-
tiveness of the DA-TODDPG scheme.

Experimental setting
A VEC system is simulated, which consists of 7 vehi-
cles, 40 tasks, and 4 RSUs. Each RSU is equipped with 
one MEC server and each MEC server is equipped with 
several CPUs. The size of input data of tasks is randomly 
generated from the set {25, 30, 40, 45, 60} MB. The com-
putation resource requirements of tasks are randomly 
assigned from the set {0.5, 0.6, 0.7, 0.8, 1.2} Gigacycle/s. 
Each task is randomly divided into 4 to 8 subtasks, and 
the size of input data and computation resource require-
ments of the task are randomly assigned to subtasks. In 
addition, the other parameters in the experiments are set 
in Table 3.

To demonstrates the effectiveness of DA-TODDPG, 
three baselines are selected to compare the DA-TOD-
DPG as follows.

•	 Dependency-aware random offloading (DA-RO). 
The DA-RO is a traditional offloading approach with-
out utilizing optimization algorithms, where the edge 
server randomly assigns sub-channels and compu-
tational resources to vehicles for the corresponding 
task offloading operations.

•	 Dependency-aware task offloading scheme based 
on DQN (DA-TODQN). The DA-TODQN is a fine-

grained task offloading approach, which considers 
the decomposability and dependencies of the task. 
Unlike our method DA-TODDPG, DA-TODQN uses 
a value-based reinforcement learning approach to 
allocate sub-channels and computational resources. 
It is an implementation of MORL-ODT [42].

•	 Entire task offloading scheme based on DDPG 
(E-TODDPG). The E-TODDPG is a coarse-grained 
task offloading approach, which without the consid-
eration of the decomposability and dependency of 
tasks. It is a realization of [43].

Evaluation of train performance
As a DDPG-based algorithm, the train performance of 
the model should be guaranteed. To prove the train per-
formance of DA-TODDPG, we first compare the con-
vergence under different learning rates, and we second 
compare its convergence with other baselines.

1) Convergence with Different Learning Rates: through 
the simulations with different learning rates, the most 
appropriate value for learning rate is 0.01, which has an 
average reward of 2024, as shown in Fig.  5. The worst 
value for this parameter is 0.08, and its average reward is 
2003. Thus, the learning rate is set to 0.01 in the following 
system simulations and evaluations.

2) Convergence with Different Baselines: Figure  6 
shows the train performance of different baselines 
(i.e., E-TODDPG, DA-TODQN), which is the average 
result of multiple experiments. It is seen that the DA-
TODDPG converges faster and has a higher reward 
value than the E-TODDPG and the DA-TODQN. The 
reason is that DA-TODDPG both considers the inter-
subtask dependency and the dynamic environment, 
and utilizes DDPG to solve the continuous control 
problems. Thus, fine-grained offloading opportunities 
can be well obtained. Specifically, the E-TODDPG is a 

Table 3  Parameter values

Parameter Value

the transmission power p 2± 0.2 Watt [40]

the channel gain δ 144± 14.4 dB [41]

noise power σ−2 1.5× 10−8 Watt [41]

the computation capacity of a vehicle 0.3± 0.03 Gigacycles/s [9]

the size of the experience pool D 2000

min-batch size of Dt 32

the learning rate 0.01

the communication capability of a MEC 
server

40 MHz

The computation capability of a MEC server 5 Gigacycle/s

tcloudoff
1000ms
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coarse-grained task offloading approach that does not 
consider task decomposability and dependencies thus 
the fine-grained offloading opportunities for subtasks 
are wasted and cannot obtain optimization strategy. 
The DA-TODQN demonstrates slow convergence and 
unstable performance caused by that DQN shows the 

inefficiency on the network with a high dimension in 
the action space.

Performance evaluation and analysis
To verify the adaptability and effectiveness of DA-TOD-
DPG, three sets of simulation experiments with diversity 

Fig. 5  The convergence performance of average reward under different learning rates

Fig. 6  The convergence performance of average reward under different baselines
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in environments are conducted, and the performance of 
DA-TODDPG is evaluated.

The control values for the comparative analysis vari-
ables are listed in Table 3. In each set of experiments, the 
value of one variable fluctuated around the control value 
and the other variables remained constant (Table 4).

1) Analysis on the Variety of Task Number: When the 
number of Tasks in the offloading system are differ-
ent, the Average processing delay of different baselines 
are shown in Fig.  7. With other variables unchanged, 
the number of tasks ranges from 20 to 70 in this set of 
experiments. It is seen that the average processing delay 
increase with the rise in the number of tasks. As the num-
ber of tasks grows from 20 to 70, DA-TODDPG perpetu-
ally outperforms DA-RO, DA-TODQN and E-TODDPG. 
This is because DA-TODDPG gains the most appropriate 
fine-grained offloading opportunities for subtasks. More 
specifically, when the task number increases from 20 
to 70, the DA-TODDPG outperforms the DA-RO, DA-
TODQN, and E-TODDPG by the improvements of 21.3% 
to 11.4%, 8.8% to 7.6%, and 13.2% to 17.8%. In addition, 

when the task number increases to 70, the performance 
of E-TODDPG drops sharply. This is because E-TOD-
DPG does not take into account the inter-task depend-
ency, thus MEC servers suffer from the computation 
resource contention caused by a large number of tasks.

2) Analysis on the Variety of MEC Server Number: In 
Fig.  8 illustrates the impact on the average processing 
delay by the number of MEC servers. Experiments are 
conducted with the number of MEC servers ranging from 
2 to 6, while the other variables remain unchanged. The 
figure shows that the average processing delay goes down 
as the number of MEC servers increases. This is because 
the increasing MEC servers can introduce more comput-
ing resources and communication bandwidth into the 
system. Especially, when the number of MEC servers is 
2, 3, 4, 5, and 6, the improvement of DA-TODDPG com-
pared to the DA-RO is 12.4%, 16.1%, 20.5%, 15.2%, and 
21%, the improvement of DA-TODDPG compared to the 
DA-TODQN is 7.8%, 11.6%, 13.6%, 12.4%, and 12.1%, the 
improvement of DA-TODDPG compared to the E-TOD-
DPG is 10.1%, 13.4%, 17.4%, 16.1%, and 18.8%, respec-
tively. The performance of DA-TODDPG is higher than 
other baselines due to DA-TODDPG both considering 
the dynamic environment and inter-task dependency, 
and utilizing DDPG to solve the problem of continued 
action space.

3) Analysis on the Variety of Average size of Input 
Data: In Fig.  9, the average processing delay with 
diversity in the average size of input data is analyzed. 

Table 4  Controlled Variables setting

Variable description Controlled value

Number of MEC servers 4

Number of tasks 40

Average size of raw data 50MB

Fig. 7  Comparison of average processing delay with variety in task number
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Experiments are conducted with the average size of raw 
data ranging from 25 to 60 MB, while the other vari-
ables remain unchanged. It can be seen that the aver-
age processing delay increases when the average size of 
input data, which is because the raw data of offloaded 
tasks should be transmitted to a MEC server or the 

cloud server, which results in increase of the time cost 
of transmission. Peculiarly, As the average size of input 
data increases from 25 to 60 MB, the DA-TODDPG 
outperforms the DA-RO, DA-TODQN, and E-TOD-
DPG by the improvements of 20.2%, 11.2%, and 20.9% 
on average. In addition, When the average size of input 

Fig. 8  Comparison of average processing delay with variety in MEC server number

Fig. 9  Comparison of average processing delay with variety in the average size of input data
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data increases to 60MB, the performance of E-TOD-
DPG drops sharply. This is reason that the E-TODDPG 
is a coarse-grained task offloading approach that does 
not consider the parallelism of sub-tasks on the vehicle, 
MEC servers and the cloud server, uploading all data to 
the MEC server and the cloud server which increases 
the transmission delay, Overall, we can see that the DA-
TODDPG always gains the optimal performance of the 
average processing delay under the different average 
size of input data.

Conclusion
In this paper, an efficient dependency-aware task off-
loading scheme is proposed for reducing the average 
processing delay of tasks with vehicle-edge-cloud col-
laborative computing. In this scheme, the directed acy-
clic graph technique is utilized to model the inter-subtask 
dependency. Then, a dependency-aware task offloading 
algorithm based on DDPG is designed to select the opti-
mal offloading strategy, in which the continuous control 
problems and allocation of edge server resources were 
considered. Simulation results show that our proposed 
dependency-aware offloading scheme can effectively 
reduce the average processing delay of tasks.

For future work, we will consider both the mobility of 
vehicles and data migration between edge servers during 
task offloading.

Acknowledgements
The authors would like to thank the staff and postgraduate students at the 
School of Big Data and Intelligent Engineering of Southwest Forestry Univer-
sity for their assistance and valuable advice.

Authors’ contributions
Guozhi Liu: Writing-Original draft preparation, Conceptualization, Methodol-
ogy, Software, Funding acquisition, Visualization, and Data Curation. Fei Dai: 
Conceptualization, Methodology, Writing-Reviewing and Editing, Fund-
ing acquisition, and Validation. Bi Huang: Writing-Reviewing and Editing, 
Resources, and Formal analysis. Zhenping Qiang: Supervision, and Validation. 
Shuai Wang: resource allocation, and supervision. Lecheng Li: Writing-Review-
ing and Editing, and Investigation. The author(s) read and approved the final 
manuscript.

Funding
This work has been supported by the Project of National Natural Science 
Foundation of China under Grant No. 62262063, the Project of Key Science 
Foundation of Yunnan Province under Grant No. 202101AS070007, Dou 
Wanchun Expert Workstation of Yunnan Province No.202205AF150013, Sci-
ence and Technology Youth lift talents of Yunnan Province, and the Project 
of Scientific Research Fund Project of Yunnan Education Department under 
Grant No. 2022Y561.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
The work is a novel work and has not been published elsewhere nor is it cur-
rently under review for publication elsewhere.

Consent for publication
Informed consent was obtained from all individual participants included in 
the study.

Competing interests
The authors declare that they have no competing interests.

Received: 28 July 2022   Accepted: 1 October 2022

References
	1.	 Ji H, Alfarraj O, Tolba A (2020) Artificial intelligence-empowered edge 

of vehicles: architecture, enabling technologies, and applications. IEEE 
Access 8:61020–61034

	2.	 Liu Y, Wang S, Zhao Q, Du S, Zhou A, Ma X, Yang F (2020) Dependency-
aware task scheduling in vehicular edge computing. IEEE Internet Things 
J 7(6):4961–4971

	3.	 Xu X, Shen B, Ding S, Srivastava G, Bilal M, Khosravi MR, Menon VG, Jan 
MA, Wang M (2020) Service offloading with deep q-network for digital 
twinning-empowered internet of vehicles in edge computing. IEEE Trans 
Ind Inform 18(2):1414–1423

	4.	 Chen Y, Zhang N, Zhang Y, Chen X, Wu W, Shen XS (2019) Toffee: Task 
offloading and frequency scaling for energy efficiency of mobile devices 
in mobile edge computing. IEEE Trans Cloud Comput 9(4):1634–1644

	5.	 Liu Y, Li Y, Niu Y, Jin D (2019) Joint optimization of path planning and 
resource allocation in mobile edge computing. IEEE Trans Mob Comput 
19(9):2129–2144

	6.	 Zhang J, Guo H, Liu J, Zhang Y (2019) Task offloading in vehicular edge 
computing networks: A load-balancing solution. IEEE Trans Veh Technol 
69(2):2092–2104

	7.	 Chen Y, Zhao F, Chen X, Wu Y (2021) Efficient multi-vehicle task offloading 
for mobile edge computing in 6g networks. IEEE Trans Veh Technol

	8.	 Nguyen D, Ding M, Pathirana P, Seneviratne A, Li J, Poor V (2021) Coop-
erative task offloading and block mining in blockchain-based edge 
computing with multi-agent deep reinforcement learning. IEEE Trans 
Mob Comput

	9.	 Dai F, Liu G, Mo Q, Xu W, Huang B (2022) Task offloading for vehicular 
edge computing with edge-cloud cooperation. World Wide Web:1–19

	10.	 Shakarami A, Ghobaei-Arani M, Shahidinejad A (2020a) A survey on 
the computation offloading approaches in mobile edge computing: A 
machine learning-based perspective. Comput Netw 182:107496

	11.	 Shakarami A, Ghobaei-Arani M, Masdari M, Hosseinzadeh M (2020b) A 
survey on the computation offloading approaches in mobile edge/cloud 
computing environment: a stochastic-based perspective. J Grid Comput 
18(4):639–671

	12.	 Shakarami A, Shahidinejad A, Ghobaei-Arani M (2020c) A review on the 
computation offloading approaches in mobile edge computing: A g 
ame-theoretic perspective. Softw Pract Experience 50(9):1719–1759

	13.	 Shakarami A, Shahidinejad A, Ghobaei-Arani M (2021) An autonomous 
computation offloading strategy in mobile edge computing: A deep 
learning-based hybrid approach. J Netw Comput Appl 178:102974

	14.	 Liu Y, Chen CS, Sung CW, Singh C (2017) A game theoretic distributed 
algorithm for feicic optimization in lte-a hetnets. IEEE/ACM Trans Netw 
25(6):3500–3513

	15.	 Guo H, Liu J (2018) Collaborative computation offloading for multiaccess 
edge computing over fiber-wireless networks. IEEE Trans Veh Technol 
67(5):4514–4526

	16.	 Xu X, Jiang Q, Zhang P, Cao X, Khosravi MR, Alex LT, Qi L, Dou W (2022) 
Game theory for distributed iov task offloading with fuzzy neural network 
in edge computing. IEEE Trans Fuzzy Syst

	17.	 Aceto L, Morichetta A, Tiezzi F (2015) Decision support for mobile cloud 
computing applications via model checking. In: 2015 3rd IEEE Interna-
tional Conference on Mobile Cloud Computing, Services, and Engineer-
ing. IEEE, pp 199–204

	18.	 Shu C, Zhao Z, Han Y, Min G, Duan H (2019) Multi-user offloading for 
edge computing networks: A dependency-aware and latency-optimal 
approach. IEEE Internet Things J 7(3):1678–1689



Page 15 of 15Liu et al. Journal of Cloud Computing           (2022) 11:68 	

	19.	 Yao L, Xu X, Bilal M, Wang H (2022) Dynamic edge computation offload-
ing for internet of vehicles with deep reinforcement learning. IEEE Trans 
Intell Transp Syst

	20.	 He X, Lu H, Du M, Mao Y, Wang K (2020) Qoe-based task offloading with 
deep reinforcement learning in edge-enabled internet of vehicles. IEEE 
Trans Intell Transp Syst 22(4):2252–2261

	21.	 Yang C, Liu Y, Chen X, Zhong W, Xie S (2019) Efficient mobility-aware 
task offloading for vehicular edge computing networks. IEEE Access 
7:26652–26664

	22.	 Wang J, Hu J, Min G, Zhan W, Zomaya A, Georgalas N (2021) Dependent 
task offloading for edge computing based on deep reinforcement learn-
ing. IEEE Trans Comput

	23.	 Zhang K, Mao Y, Leng S, He Y, Zhang Y (2017) Mobile-edge computing 
for vehicular networks: A promising network paradigm with predictive 
off-loading. IEEE Veh Technol Mag 12(2):36–44

	24.	 Ren Y, Yu X, Chen X, Guo S, Xue-Song Q (2020) Vehicular network edge 
intelligent management: A deep deterministic policy gradient approach 
for service offloading decision. In: 2020 International Wireless Communi-
cations and Mobile Computing (IWCMC). IEEE, pp 905–910

	25.	 Zhan Y, Guo S, Li P, Zhang J (2020) A deep reinforcement learning based 
offloading game in edge computing. IEEE Trans Comput 69(6):883–893

	26.	 Zhang Y, Lan X, Ren J, Cai L (2020) Efficient computing resource sharing 
for mobile edge-cloud computing networks. IEEE/ACM Trans Networking 
28(3):1227–1240

	27.	 Chen L, Wu J, Zhang J, Dai HN, Long X, Yao M (2020) Dependency-aware 
computation offloading for mobile edge computing with edge-cloud 
cooperation. IEEE Trans Cloud Comput

	28.	 Fan Y, Zhai L, Wang H (2019) Cost-efficient dependent task offloading for 
multiusers. IEEE Access 7:115843–115856

	29.	 Pan S, Zhang Z, Zhang Z, Zeng D (2019) Dependency-aware computa-
tion offloading in mobile edge computing: A reinforcement learning 
approach. IEEE Access 7:134742–134753

	30.	 Chen J, Yang Y, Wang C, Zhang H, Qiu C, Wang X (2021) Multi-task offload-
ing strategy optimization based on directed acyclic graphs for edge 
computing. IEEE Internet Things J

	31.	 Qu G, Wu H, Li R, Jiao P (2021) Dmro: A deep meta reinforcement 
learning-based task offloading framework for edge-cloud computing. 
IEEE Trans Netw Serv Manag 18(3):3448–3459

	32.	 Binh TH, Vo HK, Nguyen BM, Binh HTT, Yu S et al (2022) Value-based rein-
forcement learning approaches for task offloading in delay constrained 
vehicular edge computing. Eng Appl Artif Intell 113:104898

	33.	 Huang L, Feng X, Zhang C, Qian L, Wu Y (2019) Deep reinforcement 
learning-based joint task offloading and bandwidth allocation for multi-
user mobile edge computing. Digit Commun Netw 5(1):10–17

	34.	 Xu X, Fang Z, Qi L, Dou W, He Q, Duan Y (2021) A deep reinforcement 
learning-based distributed service off loading method for edge comput-
ing empowered internet of vehicles. Chin J Comput 44(12):2382–2405

	35.	 Chen X, Liu Z, Chen Y, Li Z (2019) Mobile edge computing based task off-
loading and resource allocation in 5g ultra-dense networks. IEEE Access 
7:184172–184182

	36.	 Wang Y, Fang W, Ding Y, Xiong N (2021) Computation offloading opti-
mization for uav-assisted mobile edge computing: a deep deterministic 
policy gradient approach. Wirel Netw 27(4):2991–3006

	37.	 Li M, Gao J, Zhao L, Shen X (2020) Deep reinforcement learning for 
collaborative edge computing in vehicular networks. IEEE Trans Cogn 
Commun Netw 6(4):1122–1135

	38.	 You C, Huang K, Chae H, Kim BH (2016) Energy-efficient resource alloca-
tion for mobile-edge computation offloading. IEEE Trans Wirel Commun 
16(3):1397–1411

	39.	 Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves 
A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015) Human-level control 
through deep reinforcement learning. Nature 518(7540):529–533

	40.	 Chen X, Zhang H, Wu C, Mao S, Ji Y, Bennis M (2018) Optimized computa-
tion offloading performance in virtual edge computing systems via deep 
reinforcement learning. IEEE Internet Things J 6(3):4005–4018

	41.	 Sun Y, Zhou S, Xu J (2017) Emm: Energy-aware mobility management for 
mobile edge computing in ultra dense networks. IEEE J Sel Areas Com-
mun 35(11):2637–2646

	42.	 Song F, Xing H, Wang X, Luo S, Dai P, Li K (2022) Offloading dependent 
tasks in multi-access edge computing: A multi-objective reinforcement 
learning approach. Futur Gener Comput Syst 128:333–348

	43.	 Xu YH, Yang CC, Hua M, Zhou W (2020) Deep deterministic policy gradi-
ent (ddpg)-based resource allocation scheme for noma vehicular com-
munications. IEEE Access 8:18797–18807

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	A collaborative computation and dependency-aware task offloading method for vehicular edge computing: a reinforcement learning approach
	Abstract 
	Introduction
	Related works
	System model and problem formulation
	Network model
	Task model
	Communication model
	Computation model
	Problem formulation

	Task offloading algorithm based on DDPG
	Algorithm setting
	Task offloading algorithm
	Reward evaluation algorithm
	Network upload algorithm

	Experimental performance
	Experimental setting
	Evaluation of train performance
	Performance evaluation and analysis

	Conclusion
	Acknowledgements
	References


