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Abstract 

This paper presents a novel approach to time series forecasting, an area of significant importance across diverse fields 
such as finance, meteorology, and industrial production. Time series data, characterized by its complexity involving 
trends, cyclicality, and random fluctuations, necessitates sophisticated methods for accurate forecasting. Traditional 
forecasting methods, while valuable, often struggle with the non-linear and non-stationary nature of time series data. 
To address this challenge, we propose an innovative model that combines signal decomposition and deep learning 
techniques. Our model employs Generalized Autoregressive Conditional Heteroskedasticity (GARCH) for learning 
the volatility in time series changes, followed by Complete Ensemble Empirical Mode Decomposition with Adaptive 
Noise (CEEMDAN) for data decomposition, significantly simplifying data complexity. We then apply Graph Convolu-
tional Networks (GCN) to effectively learn the features of the decomposed data. The integration of these advanced 
techniques enables our model to fully capture and analyze the intricate features of time series data at various interval 
lengths. We have evaluated our model on multiple typical time-series datasets, demonstrating its enhanced predic-
tive accuracy and stability compared to traditional methods. This research not only contributes to the field of time 
series forecasting but also opens avenues for the application of hybrid models in big data analysis, particularly 
in understanding and predicting the evolution of complex systems.
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Introduction
Navigating the intricate seas of time series forecasting is 
no small feat, considering its vast applications in domains 
like traffic management, finance, hydrology, and more 
[1]. The fusion of cutting-edge sensor technology, com-
puting prowess, and advanced communication chan-
nels has bestowed upon us a treasure trove of rich time 
series data, reshaping the very fabric of how we monitor 
and control complex real-world systems [2]. In the eco-
nomic realm, economists ride the waves of stock price 
fluctuations, foreseeing market trends. Medical maestros 
employ biological time series data to decipher diseases 
and gauge patient well-being. Meteorologists, armed 
with atmospheric time series data, predict the capricious 
dance of climate changes. Even in the realm of industrial 
production, time series data orchestrates a symphony to 
monitor product quality.

Yet, peering into the future isn’t a stroll in the park. 
Time series data, with its intricate dance of trends, 
cycles, seasons, and unpredictable whims, poses a 
formidable challenge. Unraveling these intricacies 
demands a profound understanding to accurately pre-
dict the twists and turns that lie ahead. The history of 
time series forecasting is a rich tapestry, woven with 
threads of linear regression, autoregressive and mov-
ing average models, and the contemporary marvels of 
deep learning and neural networks [2–4]. However, as 
the data at hand often boasts nonlinearity and non-
stationarity, existing methods struggle to extract suffi-
cient features for precise forecasting. Here steps in the 
unsung hero—signal decomposition. Signal decom-
position, akin to an alchemical process, breaks down 
the complexity of time series data into digestible com-
ponents—trends, cycles, and random noise. Classical 
methods like Fourier transform, wavelet transform, 
and empirical mode decomposition have peeled back 
the layers, offering glimpses into the intrinsic struc-
ture of time series data, becoming indispensable refer-
ences for forecasting.

Enter the disruptor, deep learning—a juggernaut 
capable of plumbing the depths of input data with its 
nonlinear modules [5, 6]. As each module transforms 
representation levels, deep learning unfurls a multi-level 
tapestry of understanding, applied with resounding suc-
cess in realms like computer vision [7, 8], speech recogni-
tion [9], and natural language processing [10]. However, 
the challenge persists, especially with nonlinear and non-
stationary datasets. To surmount this, our paper unveils a 
novel time series forecasting model, seamlessly integrat-
ing signal processing and deep learning. A unique net-
work structure emerges, designed to pluck features from 
sequence data at varying intervals.

Here lie our contributions:

•	 We propose a groundbreaking time series forecasting 
model, marrying the realms of signal processing and 
deep learning. Our custom-designed network struc-
ture is the maestro orchestrating the symphony of 
feature extraction.

•	 We harness GARCH to unravel the volatility nuances 
of time series changes. The processed data undergoes 
a transformative dance with CEEMDAN, a signal 
decomposition virtuoso, significantly decluttering 
the complexity. Finally, the baton passes to GCN, 
orchestrating the learning of data features.

•	 Our model faces the crucible of assessment against 
several typical time-series datasets, emerging with 
enhanced predictive accuracy and heightened stabil-
ity. The results affirm the transformative potential of 
our proposed fusion model in the intricate realm of 
time series forecasting.

Related work
Embarking on the realm of time series data predic-
tion unveils a rich tapestry woven with three distinc-
tive approaches—one delving into statistical forecasts, 
another navigating the terrain of machine learning, and 
the third boldly venturing into the uncharted waters of 
hybrid models. Within the expansive domain of machine 
learning, a dual landscape emerges, encompassing both 
traditional methods and the sophisticated depths of 
deep learning. Simultaneously, hybrid predictive models 
take center stage, harmonizing the symphony of signal 
decomposition within time series data and the orchestra-
tion of predictive prowess.

In the early stages of time series forecasting explo-
ration, intrepid researchers turned to the tried-and-
true path of statistical principles. Burlando P and team 
unfurled the Autoregressive Moving Average (ARMA) 
model, forecasting short-term rainfall with commendable 
success [11]. However, grappling with the tumultuous 
seas of strongly non-stationary data, the ARMA model 
faced limitations. To surmount this challenge, a strate-
gic evolution unfolded, giving rise to the Autoregressive 
Integrated Moving Average (ARIMA) model. This model, 
showcased by Meyler A in predicting inflation in Ireland, 
exhibited prowess in dissecting the periodicity and vola-
tility of time series data [12]. Further refinements, such 
as the Seasonal ARIMA (SARIMA) model by Williams 
et al., adorned with a seasonal pattern, paved the way for 
predicting single variable automobile traffic data [13]. 
Yet, statistical-based models, despite their achievements, 
found their capabilities somewhat constrained in the face 
of increasingly complex time series data tasks.

The rise of machine learning heralded a new era, 
offering a diverse arsenal of solutions. Following this 
trajectory, Chen et  al. and Tay FEH, Cao L introduced 
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Support Vector Machines (SVMs) [14, 15] to forecast 
financial time series data, showcasing superior perfor-
mance in nonlinear feature extraction and resilience to 
data noise [16]. LV et  al. embraced the simplicity and 
adaptability of the K-Nearest Neighbors (KNN) method 
for short-term power load prediction [17]. Mean-
while, the realm of Artificial Neural Networks (ANNs) 
unfolded as a powerful tool, with Hung N Q successfully 
predicting rainfall in Bangkok and Maleki and Goudarzi 
using ANNs for air AQI sequence data [18–20]. The 
prowess of deep learning, riding the waves of big data 
and computational power, unfolded with Recurrent 
Neural Networks (RNNs). Tokgöz A and Ünal G dem-
onstrated its effectiveness in predicting Turkey’s power 
load [21]. However, challenges of vanishing or exploding 
gradients led to the optimization of RNNs, birthing the 
Long Short-Term Memory networks (LSTM). Chang Y 
S et  al. harnessed LSTM’s capabilities in predicting air 
pollution data [22, 23]. Integration with Convolutional 
Neural Networks (CNN) further enhanced predictions, 
exemplified by Zha et al.’s work in predicting natural gas 
production [24]. The artistry of Graph Convolutional 
Networks (GCN) found expression in predicting road 

traffic speed, as demonstrated by Yu B et al. [25]. Bhatti 
et  al. identifies importance of GCN and its variants in 
the field of science [26].

In recent years, a cadre of scholars has embraced the 
avant-garde—hybrid models. These models, fusing sig-
nal analysis and prediction, promise superior perfor-
mance. Mainstream signal decomposition methods such 
as Empirical Mode Decomposition (EMD), Ensemble 
EMD (EEMD) [27], and Variational Mode Decomposi-
tion (VMD) [28] took the stage. Scholar Zhang W et  al. 
wielded EMD coupled with SVM for short-term power 
load prediction [29]. Shu and team, innovators, blended 
EMD with CNN and LSTM, achieving superior predic-
tive results [30]. Experimental validations substantiate 
the supremacy of such hybrid models over their singular 
counterparts. Addressing the mathematical gaps in EMD, 
an improved version emerged Ensemble EMD with Adap-
tive Noise (EEMDAN). Yan Y et al. harnessed EEMDAN 
with LSTM to predict wind speed with precision [31]. Zhu 
Q et al. navigated the challenges of non-stationary signals, 
combining Variational Mode Decomposition (VMD) with 
Bi-GRU for rubber futures time series prediction [32]. A 
further evolution, Complementary Ensemble Empirical 

Table 1  Advantages and disadvantages of several common sequence decomposition methods

Series Decomposition Methods

Method Advantage Disadvantage

VMD Featuring rigorous theoretical derivation, widespread application, 
and relatively low computational complexity [34].

the decomposed results are heavily restricted to the selection 
of the penalty parameter a and the number of sub-modes K [35].

EMD Able to decompose signals adaptively [36]. mode mixing, end effect, poor noise immunity [37].

EEMD Has strong adaptability, effectively overcoming the phenomenon 
of mode mixing [38].

its reconstruction error is large and its integrity is poor [39].

CEEMD Ensure decomposition effectiveness, while reducing reconstruction 
errors caused by white noise [40].

There is a loss of information for high frequency components [41].

CEEMDAN Successfully resolved the issue of white noise transmission from high 
frequency to low frequency [42].

There exist noise after decomposing complex sequential data [43].

Table 2  Advantages and disadvantages of several commonly used sequence prediction methods

Prediction Methods

Method Advantage Disadvantage

SVM Possessing good generalization ability and being insensitive to noisy 
data [44].

difficulty occurs in selecting suitable kernel [45].

KNN The principle is simple and there are few influencing factors [46]. The computational complexity is high, and the algorithm perfor-
mance is easily affected by the samples [17].

ANN Able to learn non-linear features of data [47]. Easily trapped in local optima [48].

LSTM Has the ability to capture long-term sequence features [49]. difficult to balance the depth and operation time complexity of its 
model [50].

CNN-LSTM Reducing the risk of overfitting can uncover more feature informa-
tion [51, 52].

There is a problem of neural network model degradation [53].

GCN High efficiency, possessing the ability to effectively learn data rela-
tionships, and providing interpretability [54].

There is a problem of excessive smoothing [55].
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Mode Decomposition with Adaptive Noise (CEEMDAN), 
resolved the white noise transmission conundrum. Zhou 
F et al. showcased the power of CEEMDAN and LSTM, 
painting a portrait of carbon price forecasts [33]. We 
have compiled and summarized the above methods, and 
Table 1 and 2 display these summaries.

Considering the advantages and disadvantages of sev-
eral methods, this study opts for CEEMDAN for the 
decomposition of time series. This is because, compared 
to VMD and EEMD, CEEMDAN has stronger adaptabil-
ity and stability. Compared with models such as SVM, 
KNN, and ANN, the GCN has a stronger ability to learn 
data relationships and higher computational efficiency. 
Compared with LSTM and CNN-LSTM, the GCN has 
fewer parameters and a simpler structure. Considering all 
this, we chose the GCN model as the predictive model.

Proposed methodology
Prior to discussing the forecasting method of the 
GARCH-CEEMDAN-GCN combination model for 
time series data, our first step is to provide a succinct 
account of the foundational theories applied in the estab-
lishment of this aforementioned hybrid model. This 
involves detailing the principles and practicalities of the 
Autoregressive Conditional Heteroskedasticity model 
(GARCH), the Complete Ensemble Empirical Mode 
Decomposition with Adaptive Noise (CEEMDAN), and 
the Graph Convolutional Neural Network (GCN).

GARCH
Bollerslev, building on the idea of ARMA modeling, con-
structed the Generalized Autoregressive Conditional 
Heteroscedasticity model (GARCH). The GARCH model 
is commonly utilized for modeling financial time series 
in investment and financial management. It’s specifically 
designed for varying volatility, meaning we can predict 
different degrees of volatility for different points in time.

The basic form of the GARCH model is as follows:
Assume that the disturbance series ut has the following 

structure:

In which, σ 2
∈ = 1 , and α0 > 0,αi ≥ 0,βi ≥ 0 。 Since 

{ǫt} is a white noise process and is independent of the 
past values of ut−i , both the conditional and uncondi-
tional mean of ut are zero. However, the conditional 
variance of ut equals Et−1u

2
t  , which is ht . This model, 

which allows for conditional heteroscedasticity with 
both autoregressive terms and moving average terms, 

(1)ut = htǫt

(2)

ht = α0 +
∑q

i=1
αiu

2
t−i +

∑p

j=1
βjht−j , ǫt ∼ N (0, 1)

is called the Generalized Autoregressive Conditional 
Heteroskedasticity model, denoted as GARCH(p, q). 
Clearly, if p = 0, q = 1, then GARCH(0, 1) is the same 
as the ARCH(1) model. If all βt are zero, then the 
GARCH(p, q) is equivalent to the ARCH(q) model. 
Therefore, the GARCH model can be seen as a generali-
zation of the ARCH model, or the ARCH model can be 
seen as a special case of the GARCH model.

Introduce the lag operator polynomial:

Thus, the GARCH (p, q) model can be represented as:

If the roots of 1-β(B) = 0 are all outside the unit circle, then

where B is the one-step lag operator at time t, 
a∗0 =

a0
1−β(1)

 , δj is the coefficient of Bj in the expansion of 
α(β)

1−β(B).
Therefore, it can be seen that if a series follows a 

GARCH(p, q) process, under certain conditions, it can 
be represented by an infinite order ARCH process with 
a reasonable lag structure. Thus, in practical applications, 
for a high-degree ARCH model, it can be represented 
by a relatively simple GARCH model, which reduces the 
estimation parameters and facilitates the identification 
and estimation of the model.

CEEMDAN
CEEMDAN, standing for Complete Ensemble Empiri-
cal Mode Decomposition with Adaptive Noise, is an 
enhanced version of the EEMD algorithm. It employs a 
partitioned approach to signal processing and gives rise to 
the intrinsic mode functions (IMFs) of the signal by way of 
several decompositions, as demonstrated in Algorithm 1. 
The unique feature of CEEMDAN, as compared to EEMD, 
is its adaptive noise generation during the decomposition 
phase, allowing the process to be steadier and more pre-
cise. Furthermore, it capably addresses the endpoint effect 
and mode mixing issues inherent in conventional EMD. 
The sequence of operations in the CEEMDAN algorithm 
is presented in Fig. 1. The procedures for the CEEMDAN 
algorithm are outlined as follows:

1. Incorporate Gaussian white noise into the initial sig-
nal f (t) , as demonstrated in Eq. (7):

(3)α(B) = α1B+ · · · + αqB
q

(4)β(B) = β1B+ · · · + βqB
q

(5)ht = α0 + α(B)u2t + β(B)ht

(6)ht =
a0

1− β(1)
+

α(β)

1− β(B)
u2t = a∗0 +

∞∑

j=1

δju
2
t−j

(7)fi(t) = y(t)+ ε0ni(t), i = 1, 2, · · · ,N
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The symbol ε0 denotes the ratio of signal-to-noise, ni(t) 
symbolizes the Gaussian white noise introduced during 
the i-th cycle, and N stands for the count of cycles.

2. Carry out EMD decomposition on the newly added 
signal fi(t) , which is interleaved with Gaussian white 
noise, to ascertain the first intrinsic mode function, 
designated as IMF1 , along with its associated residual 
component r1 . These are represented in Eqs. (8) and (9).

In formula (6), E represents the EMD decomposition 
operation.

3. Add ε1E1[ni(t)] to r1(t) , perform EMD decomposi-
tion, and then perform summation and averaging to 
obtain IMF2 , as shown in formula (10):

(8)IMF1 =
1

N

∑N

i=1
E1[fi(t)]

(9)r1(t) = x(t)− IMF1

(10)IMF2 =
1

N

∑N

i=1
E1{r1(t)+ ε1E1[ni(t)]}

4. When k = 2, 3, · · · ,K  , use the corresponding intrin-
sic mode function to compute the k-th residual compo-
nent rk(t) , as depicted in Eq. (11):

5. At every stage, introduce Gaussian white noise to 
produce a fresh signal, subsequently determine its pri-
mary intrinsic mode component, and employ this as 
a novel mode component for the original signal. Con-
sequently, the k-th mode component in this stage is 
IMFk+1 , as shown in formula (12):

6. Carry out the procedures detailed in steps 4 and 5 
repeatedly. Once the signal is no longer susceptible to 
EMD decomposition, the ultimate k mode components 
and the final residual component of the signal will be 
realized, as depicted in Eq. (13):

(11)rk(t) = rk−1(t)− IMFk

(12)IMFk+1 =
1

N

∑N

i=1
E1{rk(t)+ εkEk [ni(t)]}

(13)R(t) = f (t)−
∑K

k=1
IMFk

Fig. 1  The flowchart of CEEMDAN
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7. The ultimate result of the CEEMDAN decomposi-
tion of the signal f(t) is represented in Eq. (14):

Algorithm 1. CEEMDAN

GCN
A graph can be defined as: G = (V, E), where V repre-
sents the collection of all nodes within the graph, and E 
represents the set of all edges connecting nodes within 
the graph. The fundamental purpose of a Graph Convo-
lutional Network (GCN) is to discern and extract specific 
features within graph data. This distinguishes it from tra-
ditional Convolutional Neural Networks (CNNs) because 
a GCN has the capacity to identify and extract spatial fea-
tures from non-Euclidean topological graphs, determin-
ing correlations among the different data points within 
the graph structure. The principle at the heart of the GCN 
is to build a system akin to a message-passing mechanism. 
It starts by drawing from the original graph-structured 
data, continuously identifying features and transmit-
ting data, with ongoing updates made to the information 
related to both the target node itself and its associated 
spatial domain. The equation for GCN is as follows:

(14)f (t) =
∑K

i=k
IMFk+1 + R(t)

(15)Dii =
∑

j
Aij

(16)H (0) = X

(17)H (1) = σ(D−1/2(A+ I)D−1/2XW (0))

In the provided equation, A stands for the adjacency 
matrix, which outlines the spatial relations of the original 
data points. I denote the identity matrix. Furthermore, 
A+ I represents an augmented adjacency matrix where 
self-loops or self-connections have been introduced. D is 
the degree matrix that signifies the relationship between 
each node and its neighbors within the graph. The value 
corresponding to a particular node in the degree matrix 
is higher if the node is connected to more nodes in the 
graph. The quantity D−1/2(A+ I)D−1/2 pertains to 
the normalization procedure applied to the adjacency 
matrix. The utility of this operation is to alleviate issues 
frequently encountered in deep learning, such as the gra-
dient vanishing or exploding problem. The matrix X is a 
compilation of vertex feature data, embodying the fea-
ture matrix. Lastly, W signifies the weight of every edge 
connection in the graph; H (1) symbolizes the outcome 
derived from the initial message propagation round, 
while H (l+1) denotes the results accumulated from the 
(l + 1)-th round of updates. W (l) corresponds to the 
connection weight parameter that’s been updated and 
aggregated at the current state. The initialization of the 
W parameter within the context of the Graph Convolu-
tional Network (GCN) algorithm isn’t overly stringent. In 
contrast with other deep learning models, a GCN allows 
effective node feature updates through the stacking of 
shallow layers. This results in a lower volume of parameters 
and reduces the computational time complexity.

(18)H (l+1) = σ(D−1/2(A+ I)D−1/2H (l)W (l))
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In the context of the raw graph-structured data, con-
tinuous feature extraction and data relay processes act 
on the information within the target node and its adja-
cent nodes, resulting in dynamic updates. This concept is 
depicted in Fig. 2.

Proposed methodology
The model introduced in this paper achieves highly accu-
rate prediction of time series data by integrating the 
GARCH model, the CEEMDAN signal decomposition 
method, and the GCN deep learning method. Time series 
data has complex characteristics such as high nonlinear-
ity, non-stationarity, and inherent noise in the data itself. 
The effect is often less than ideal when using a single 
model for prediction. The GARCH model possesses the 
ability to capture the dynamic volatility of the time series 
data. The inputted time series data will become easier to 
analyze after processing with the GARCH model. The 
residuals of the GARCH model are further analyzed 
using the CEEMDAN method, which decomposes the 
complex signal into a series of intrinsic mode functions 
(IMFs), contributing to unveiling various frequency com-
ponents hidden behind the data and can further reduce 
the complexity of the time series data. Finally, feature 
extraction from the decomposed IMFs is performed 
using the Graph Convolutional Neural Network model 
and predictions are made based on this. The detailed 
modeling steps are as follows:

•	 Preprocess the raw data, fill the missing values in the 
data with the average value, standardize the data, and 
arrange all serial data in a uniform chronological order.

•	 Process the sequence data to be predicted with the 
GARCH model.

•	 Decompose the data processed by the GARCH 
model using the CEEMDAN algorithm to get their 
modal components, IMFs.

•	 Use the modal components obtained from the 
decomposition to build input features for the GCN, 
then use the GCN network model for prediction to 
get the final prediction results. The overall structure 
diagram is shown in the Fig. 3.

Dataset and evaluation metrics
Dataset
This research utilizes three comprehensive public data-
sets—Energy, Traffic, and Air Quality—to conduct a thor-
ough analysis. The Air Quality dataset, in particular, plays a 
pivotal role in this study. Sourced from the China National 
Environmental Monitoring Center’s website (www.​cnemc.​
cn), it provides an extensive record of daily air quality meas-
urements from Guangzhou, Guangdong Province, China. 
This dataset covers a significant period, from January 1, 
2017, to August 14, 2021, offering a rich temporal range for 
analysis. The dataset is equipped with sensor-based meas-
urements that capture various environmental parameters, 
providing insights into the air quality trends and patterns 
over the years. Figure 4 in the study offers a detailed visu-
alization of this dataset, presenting the data in a format that 
is both informative and accessible. To complement this, 
Table  3 systematically presents the statistical information 
derived from the dataset, offering a quantitative overview 
that includes metrics such as mean values, standard devia-
tions, and other relevant statistical measures.

Fig. 2  Structure diagram of GCN

http://www.cnemc.cn
http://www.cnemc.cn
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These datasets collectively facilitate a multi-faceted explo-
ration of environmental factors, allowing for a compre-
hensive understanding of the interplay between air quality, 
energy consumption, and traffic patterns. The Air Quality 
dataset, with its extensive coverage and detailed measure-
ments, is particularly instrumental in shedding light on the 
environmental dynamics of Guangzhou, thereby contributing 
significantly to the broader objectives of the study.

The Energy dataset, sourced from Kaggle, encompasses 
energy data logged by sensors from August 4, 2022, through 
April 23, 2023, at a quarter-hourly sampling frequency. A 
visual representation of this dataset is provided in Fig.  5, 
while its statistical overview can be found in Table 4.

The Traffic dataset, also obtained from Kaggle, comprises 
data related to traffic flow captured hourly through road 
sensors between November 1, 2015, and June 30, 2017. A 
graphic representation of the Traffic dataset is displayed in 
Fig. 6, with comprehensive statistics provided in Table 5.

Figure  7 illustrates box plots for all three datasets: Air 
Quality, Energy, and Traffic. The parameter configurations 
used in this study are furnished in Table 6.

Evaluation metrics
This study makes use of four distinct evaluation indices, 
namely MAE, MSE, MAPE, and R2, to assess the effi-
cacy of the introduced prediction model. The acronyms 
represent Mean Absolute Error, Mean Square Error, 
Mean Absolute Percentage Error, and R Squared in 

order. The mathematical representations of these met-
rics are provided below:

In the computation of the four appraisal measures, 
namely, Mean Absolute Error (MAE), Mean Squared 
Error (MSE), Mean Absolute Percentage Error (MAPE), 
and the Coefficient of Determination (R2), yi stands for 
the true value of the model’s input sample, while ŷi indi-
cates the prediction rendered by the model. The term n 
denotes the quantity of input samples and i signifies the 
index of each sample. For the indicators MAE, MSE, and 
MAPE, a lower value denotes superior model perfor-
mance. As for R2, its range is between 0 and 1, inclusive. 
An R2 value closer to 1 signifies a superior performance 
attributed to the model.

(19)MAE =
1

n

∑n

i=1

∣∣̂yi − yi
∣∣

(20)MSE =
1

n

∑n

i=1

(
ŷi − yi

)2

(21)MAPE =
1

n

∑n

i=1

∣∣̂yi − yi
∣∣

yi

(22)R2 = 1−

∑n
i=1

(
ŷi − yi

)2
∑n

i=1

(
y− yi

)

Fig. 3  The flow chart of the proposed model
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Fig. 4  Visualization of air quality data set display
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Results
We have carried out experimental investigations on 
three distinct datasets, namely, Air Quality, Energy, and 
Traffic, comparing the output of five diverse models –  
GCN, EMD-GCN, EEMD-GCN, EMD-CEEMDAN-
GCN, and the newly proposed model GARTCH-CEEM-
DAN-GCN. Figure  8 illustrates the performance of  
the models when applied to the Air Quality dataset. 
Similarly, the models’ performance against Energy 
and Traffic datasets can be observed in Figs. 9 and 10 
respectively.

Figure  8 shows the evaluation performances of differ-
ent models on the AQI dataset. Compared with other 
models, the MAE metric of GARCH-CEEMDAN-GCN 
is 7.5% better than GCN, 6.5% worse than EMD-GCN, 
10.6% worse than EEMD-GCN, and 7.2% better than 
EMD-CEEMDAN-GCN. The MSE metric of GARCH-
CEEMDAN-GCN is 9.9% better than GCN, 19.6% worse 
than EMD-GCN, 32.4% worse than EEMD-GCN, and 

9.9% better than EMD-CEEMDAN-GCN. The MAPE 
metric of GARCH-CEEMDAN-GCN is 17.5% better 
than GCN, 2.6% worse than EMD-GCN, 1.8% better than 
EEMD-GCN, and 8.4% better than EMD-CEEMDAN-
GCN. The R2 metric of GARCH-CEEMDAN-GCN is 
24.1% better than GCN, 23.4% worse than EMD-GCN, 
30.8% worse than EEMD-GCN, and 24.1% better than 
EMD-CEEMDAN-GCN.

Figure  9 shows the evaluation performances of dif-
ferent models on the ENERGY dataset. Compared 
with other models, the MAE metric of GARCH-
CEEMDAN-GCN is 61.1% better than GCN, 53.3% 
better than EMD-GCN, 54.9% better than EEMD-
GCN, and 13.6% better than EMD-CEEMDAN-
GCN. The MSE metric of GARCH-CEEMDAN-GCN 
is 86.9% better than GCN, 74.5% better than EMD-
GCN, 73.4% better than EEMD-GCN, and 19.7%  
better than EMD-CEEMDAN-GCN. The MAPE metric  
of GARCH-CEEMDAN-GCN is 56.2% better than 

Table 3  Statistical description of AQI and air pollutant patterns 2017–2021

Statistical analysis of air pollutants Mean change from previous year (%)

Year Analysis

AQI CO NO2 O3 PM10 PM2.5 AQI CO NO2 O3 PM10 PM2.5

max 278.42 2.44 264.33 155.04 380.71 223.54

min 13.23 0.21 14.08 5.88 8.00 5.92

2021 mean 51.57 0.74 40.76 58.47 55.57 28.90 15.81% -5.13% 0.41% 17.96% 18.83% 17.22%

std 29.09 0.27 27.90 27.21 41.59 23.21

median 44.65 0.68 34.88 55.00 44.03 22.29

max 127.83 1.56 119.25 130.42 197.21 89.38

min 11.13 0.39 12.17 2.91 5.63 3.83

2020 mean 44.52 0.78 40.61 49.61 46.76 24.66 -18.97% -17.03% -11.93% -13.12% -19.74% -27.02%

std 18.90 0.20 17.67 25.25 25.80 14.00

median 41.44 0.74 37.81 47.21 40.44 21.72

max 136.71 1.83 155.33 176.8 181.78 102.79

min 18.86 0.45 2.70 3.14 8.42 7.92

2019 mean 54.87 0.94 46.08 57.08 58.20 33.80 -7.33% 6.83% -23.05% 26.85% -3.81% -13.17%

std 21.97 0.26 28.49 34.11 32.38 17.29

median 50.42 0.88 45.53 54.63 50.00 30.54

max 245.5 2.78 264.43 121.92 263.54 195.63

min 18.17 0.48 15.71 2.00 10.94 7.96

2018 mean 59.21 0.88 59.84 45.02 60.51 38.89 -6.06% -4.36% 32.79% -10.21% -8.27% -6.79%

std 29.78 0.25 25.16 26.24 33.40 24.33

median 53.20 0.85 54.84 42.10 51.96 32.67

max 278.71 2.35 213.46 126.00 294.75 229.92

min 17.42 0.37 4.13 2.33 7.67 7.13

2017 mean 63.00 0.92 45.09 50.15 65.95 41.67

std 33.90 0.27 32.70 27.26 39.32 27.96

median 57.04 0.90 39.92 48.46 58.06 35.70
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GCN, 38.2% better than EMD-GCN, 50.5% better than 
EEMD-GCN, and 17.4% better than EMD-CEEMDAN-
GCN. The R2 metric of GARCH-CEEMDAN-GCN is  

3.1% better than GCN, 1.0% better than EMD-GCN, 1.0% 
better than EEMD-GCN, and is the same as EMD- 
CEEMDAN-GCN.

Fig. 5  Visualization of energy data set display
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Figure  10 shows the evaluation performances of dif-
ferent models on the TRAFFIC dataset. Compared with 
other models, the MAE (Mean Absolute Error) metric of 
GARCH-CEEMDAN-GCN is 70.0% better than GCN, 
18.4% better than EMD-GCN, 13.6% better than EEMD-
GCN, and 9.6% better than EMD-CEEMDAN-GCN. 
The MSE (Mean Squared Error) metric of GARCH-
CEEMDAN-GCN is 90.5% better than GCN, 26.2% bet-
ter than EMD-GCN, 17.1% better than EEMD-GCN, and 

14.9% better than EMD-CEEMDAN-GCN. The MAPE 
(Mean Absolute Percentage Error) metric of GARCH-
CEEMDAN-GCN is 74.7% better than GCN, 19.0% bet-
ter than EMD-GCN, 15.4% better than EEMD-GCN, 
and 7.5% better than EMD-CEEMDAN-GCN. The R2 
(R Squared) metric of GARCH-CEEMDAN-GCN is 
111.1% better than GCN, 2.2% better than EMD-GCN, 
1.1% better than EEMD-GCN, and 1.1% better than 
EMD-CEEMDAN-GCN.

The experiments on these three datasets show that 
the proposed model performs poorly on the Air Quality 
dataset in terms of MAE, MSE, MAPE, and R2 metrics. 
However, on the Energy and Traffic datasets, the pro-
posed model performs optimally in all indicators. Taken 
together, the performance of the proposed GARCH-
CEEMDAN-GCN hybrid forecasting model is superior 
to GCN, EMD-GCN, EEMD-GCN, EMD-CEEMDAN-
GCN, and GARCH-CEEMDAN-GCN models. This also 
verifies that using the GARCH model to further preproc-
ess the data can enhance the analytical power of subse-
quent parts of the model.

Discussion
In our study on time series forecasting using a hybrid 
model of deep learning and GARCH for non-stationary 
series, we found that the integration of deep learning 
significantly enhances pattern recognition capabilities, 
particularly in complex and evolving datasets where 
traditional models fall short. The inclusion of GARCH 
modeling proved invaluable for handling the inherent 
variability and volatility, a feature especially pertinent 
in financial markets. While the model outperforms 
traditional methods in certain aspects, challenges such 

Fig. 6  Visualization of transportation data set display

Table 5  Statistical description of vehicles 2015–2017

Statistical analysis 
of vehicles

Mean change 
from previous 
year (%)

Year Analysis

Vehicles Vehicles

max 156

min 14

2017 mean 64.94 65.28%

std 22.85

median 61

max 120

min 5

2016 mean 39.29 90.35%

std 16.82

median 36

max 50

min 6

2015 mean 20.64

std 7.78

median 19



Page 14 of 19Han et al. Journal of Cloud Computing            (2024) 13:2 

as model complexity, computational demands, and 
the risk of overfitting were notable. These limitations 
underscore the need for careful data preprocessing 
and model tuning. The model’s practical applications 
are broad, offering potential benefits in sectors like 
finance, energy, and retail for improved forecasting 
and decision-making. However, its practical deploy-
ment necessitates balancing its sophisticated capabili-
ties with its computational and expertise requirements. 
Future research should focus on enhancing interpret-
ability, reducing computational overhead, and explor-
ing adaptability to various types of non-stationary 
data, considering the ethical and societal implications 
in sensitive applications like economic forecasting. 
This study opens avenues for more nuanced and robust 
forecasting methods in the face of increasingly com-
plex data landscapes.

The practical implications of a time series-forecast-
ing model that combines deep learning with GARCH 
modeling for non-stationary series are significant 

and diverse. This approach offers a powerful tool for 
extracting intricate patterns from complex and evolv-
ing data, which is highly relevant in areas like finance, 
where market volatility and economic indicators show 
non-stationary behaviors. By leveraging deep learn-
ing, the model can identify and learn from underlying 
patterns and relationships in the data that traditional 
models might miss. This leads to potentially more 
accurate and nuanced forecasts, essential for risk man-
agement, investment strategies, and economic plan-
ning. The use of GARCH modeling adds the ability to 
understand and predict the variability and volatility in 
the time series, a crucial aspect in financial forecasting 
and decision-making processes. Moreover, this hybrid 
modeling technique can be beneficial in other sectors 
like weather forecasting, energy consumption analysis, 
and demand forecasting in retail, where understanding 
and predicting complex, non-linear patterns is crucial. 
However, its practical application requires careful con-
sideration of its complexity, computational demands, 

Fig. 7  Shows the statistical description of three datasets: A AQI, B Fossil Gas, and C Vehicles

Table 6  Parameters setting for the algorithms used in this study

Parameters GCN EMD-GCN EEMD-GCN EMD-CEEMDAN-GCN GARCH-CEEMDAN-GCN

Batch size 64 64 64 64 64

Learning rate 0.01 0.01 0.01 0.01 0.01

Epochs 100 100 100 100 100
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and the need for expert knowledge in both deep learning 
and time series analysis.

The proposed method of time series forecasting for 
non-stationary series using deep learning and GARCH 
(Generalized Autoregressive Conditional Heteroske-
dasticity) modeling, while innovative and potentially 
powerful, does have several limitations:

•	 Complexity and Computation Requirements: The 
integration of deep learning with GARCH mod-
eling results in a complex model structure. This 
complexity requires significant computational 
resources for training and inference, especially 
with large datasets, making it less accessible for 
smaller organizations or individuals with limited 
computational capacity.

•	 Overfitting Risks: Deep learning models, due to their 
high parameter count and flexibility, are prone to 
overfitting, especially when the available data is not 
sufficiently large or diverse. This can lead to models  
that perform well on training data but poorly on 
unseen data.

•	 Data Sensitivity and Preprocessing: The performance 
of this approach heavily depends on the quality and 
preprocessing of the input data. Non-stationary 
time series data often require careful preprocessing, 
such as detrending and deseasonalization, to ensure 
meaningful patterns are learned.

•	 Model Interpretability: Deep learning models, par-
ticularly those with complex architectures, suffer 
from a lack of interpretability. Understanding the 
internal workings and decision processes of these 
models can be challenging, which may be a critical 
drawback in fields where explainability is crucial.

•	 Parameter Tuning and Model Selection: The suc-
cess of the model heavily depends on the choice of 
architecture for the deep learning component and 
the parameters of the GARCH model. Finding the 
optimal configuration requires extensive experimen-
tation and expertise, which can be time-consuming 
and resource-intensive.

•	 Sensitivity to Market Conditions (for financial time 
series): In financial applications, the model’s perfor-
mance can be highly sensitive to market conditions. 

Fig. 8  Evaluation results of various models on the Air Quality dataset
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Non-stationary series in finance are often influenced 
by unpredictable external factors, which can lead to 
significant forecast errors.

•	 Generalization Across Different Domains: While 
the model might be effective for specific types of 
non-stationary time series, its performance may 
not generalize well across different domains or 
types of time series data.

•	 Dependency on Historical Data: GARCH models  
and deep learning both rely heavily on histori-
cal data. In  situations where historical data may 
not fully capture future trends or patterns (such as 
unprecedented economic events), the model’s pre-
dictions may be less accurate.

•	 Training Time: Due to the complex nature of com-
bining deep learning with GARCH models, the 
training time can be significantly longer than more 
traditional time series forecasting methods.

•	 Requirement for Expert Knowledge: Implement-
ing and tuning this hybrid model requires a deep 
understanding of both deep learning and econo-
metric models like GARCH. This expertise may not 
be readily available in all organizations.

•	 These limitations highlight the need for careful 
consideration and possibly the integration of addi-
tional techniques or methodologies to address spe-
cific challenges when applying this model to real-
world time series forecasting problems.

Fig. 9  Evaluation results of various models on the Energy dataset
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Conclusion
This study explores a hybrid time series prediction model 
that combines the GARCH-CEEMDAN-GCN model. 
The model uses a novel approach to preprocess input 
data for better analysis, then utilizes CEEMDAN for fur-
ther data decomposition, reducing the complexity of the 
sequence data and enhancing the ability of the predic-
tive model to learn data correlations and characteristics. 
In selecting the predictive model, we chose the GCN for 
its fewer parameters and excellent data learning abilities. 
Through observing the experimental results, we can find 
out the following:

•	 In predicting time series data, the hybrid prediction 
model with the GARCH data handling and signal 
decomposition steps produces better experimental 
results than single prediction models.

•	 When input data is preprocessed through the GARCH 
model, the convenience of data analysis is further 
enhanced.

•	 The application of the signal decomposition 
method allows the predictive model to handle input 
data with reduced complexity without having to 

deal directly with complex raw data, making it eas-
ier for the predictive model to learn data relation-
ships and extract features.

•	 Comparative experimental results show that our 
proposed GARCH-CEEMDAN-GCN based hybrid 
model offers the best prediction accuracy, is stable, 
and has strong data fitting capabilities. Furthermore, 
this model that we proposed can be used to predict 
time series data in other practical applications, such 
as forecasting stock prices and temperature changes, 
demonstrating its significant practical value.
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