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Abstract 

Powered by data-driven technologies, precision agriculture offers immense productivity and sustainability benefits. 
However, fragmentation across farmlands necessitates distributed transparent automation. We developed an edge 
computing framework complemented by auction mechanisms and fuzzy optimizers that connect various supply 
chain stages. Specifically, edge computing offers powerful capabilities that enable real-time monitoring and data-
driven decision-making in smart agriculture. We propose an edge computing framework tailored to agricultural needs 
to ensure sustainability through a renewable solar energy supply. Although the edge computing framework manages 
real-time crop monitoring and data collection, market-based mechanisms, such as auctions and fuzzy optimization 
models, support decision-making for smooth agricultural supply chain operations. We formulated invisible auction 
mechanisms that hide actual bid values and regulate information flows, combined with machine learning techniques 
for robust predictive analytics. While rule-based fuzzy systems encode domain expertise in agricultural decision-
making, adaptable training algorithms help optimize model parameters from the data. A two-phase hybrid learning 
approach is formulated. Fuzzy optimization models were formulated using domain expertise for three key supply 
chain decision problems. Auction markets discover optimal crop demand–supply balancing and pricing signals. Fuzzy 
systems incorporate domain knowledge into interpretable crop-advisory models. An integrated evaluation of 50 
farms over five crop cycles demonstrated the high performance of the proposed edge computing-oriented auction-
based fuzzy neural network model compared with benchmarks.
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Introduction
Modern agriculture faces unprecedented stresses, such 
as rising food requirements from global population 
growth and declining arable land and water resources [1]. 

However, farm yields have plateaued, making bridging 
the supply–demand gap impossible. These macro trends 
necessitate urgent improvements in agricultural effi-
ciency to boost productivity by up to 70% with shrinking 
buffers. Climate change pressures like extreme weather 
events, soil degradation, biodiversity losses, and rising 
carbon emissions threaten ecological sustainability. Agri-
culture accounts for over 25% of greenhouse gas emis-
sions, highlighting the sizable decarbonization potential. 
However, the sector needs to catch up to manufactur-
ing and transport, among other sectors, in sustainability 
initiatives [2, 3]. Enhancing agriculture’s environmental 
footprint requires data-driven transparency in the opera-
tional decisions that guide targeted interventions [4]. At 
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the execution level, the sector exhibits deeply fragmented 
value chains, with numerous small-hold farmers and 
intermediary aggregators connected to processors and 
distributors. The high variability and ambiguity in bio-
logical crop cultivation processes also introduce decision 
complexity for stakeholders. Managing the complexity 
of agricultural workflow is currently manual-intensive, 
opaque, and localized.

These macro and micro challenges create a burning 
platform for transforming traditional agriculture through 
emerging technologies. The promise of precision agri-
culture powered by data-driven automation offers step-
change boosts in productivity, quality, sustainability, 
and resilience [5–8]. Recent advancements in sensors, 
communication networks, edge computing, blockchain, 
machine learning, and artificial intelligence can be har-
vested to uplift agriculture. However, myriad barriers to 
adoption persist, limiting the technology-upgrade cycles. 
Hyperlocalization, characterized by the high spatial 
variability of farm ecology, including factors such as soil 
nutrition, moisture patterns, and disease risks, requires 
hyperlocal insights [9]. Centralized systems must capture 
these microclimatic nuances. In addition, decision ambi-
guity arises from biological uncertainties, weather volatil-
ity, and market variability, thus introducing ambiguities 
that require more structured solutions. Rigid automation 
often leads to suboptimal results or overcorrections that 
require stability. Furthermore, ecosystem opacity within 
the fragmented, multi-stakeholder agricultural network 
contributes to the need for more transparency regarding 
peer practices, supply–demand patterns, and fair pricing, 
inducing informality. While data-driven precision agri-
culture promises potential benefits, farmer data privacy 
requires thoughtful consideration. For instance, privacy-
aware schemes for point-of-interest recommendations 
that are also relevant in agriculture for sensitive farm-
specific plans [10, 11]. Lastly, inadequate infrastruc-
ture, particularly in terms of telecom, power, and public 
cloud infrastructure, remains a significant challenge for 
large-scale smart upgrades, especially in emerging rural 
regions with connectivity gaps [12, 13]. Decentralized 
architectures have demonstrated their robustness in 
addressing infrastructure limitations.

Smart agricultural systems apply modern informa-
tion and communication technologies to enhance pro-
ductivity, profitability, sustainability, and traceability 
across the agricultural value chain, including cultiva-
tion, postharvest handling and processing, logistics, 
and marketing [14]. Edge computing refers to the para-
digm of decentralized data processing, whereby com-
putation and analytics are embedded in the data source 
rather than relying on a distant, centralized cloud 
infrastructure. In agriculture, intelligent edge devices 

can be embedded in farm equipment, storage ware-
houses, processing plants, and retail outlets [15]. Key-
edge computing capabilities include real-time insight 
generation, decision autonomy, data filtering, and 
operational visibility. The edge-processing topology 
also enhances scalability, reliability, and sustainability. 
Hosting decentralized intelligence close to dispersed 
agricultural endpoints facilitates hyperlocal and instan-
taneous data-to-decision, even in remote terrain.

Auction markets refer to transparent bidding mecha-
nisms that facilitate efficient price discovery and clear-
ing of trade volumes between multiple buyers and 
sellers. Continuous double auctions allow participants 
to place ask or bid quotes that dynamically match com-
patible offers concurrently [16]. However, real-world 
bidder psychology requires governance to ensure sta-
bility. Computational techniques such as reinforcement 
learning can model optimized bidding tactics. Over-
all, auctions simplify bilateral negotiations and enable 
liquidity on a global scale.

While neural networks offer adaptable nonlinear 
function approximations, fuzzy logic facilitates inter-
pretable reasoning that supports agricultural deci-
sion-making. Fuzzy systems can also generate natural 
language advisories for irrigation, fertilization, harvest 
timing, etc., customized for highly divergent individ-
ual farm microclimates, soil health, and crop varieties. 
Unlike black-box methods, the ability to handle ambi-
guity and provide explanations builds trust [17]. Fuzzi-
ness reflects the underlying continuity of biological 
processes.

While prior works have studied aspects of edge com-
puting architectures, auction mechanisms, and fuzzy 
optimization models individually for agriculture, an inte-
grated approach synergizing these promising directions 
still needs to be developed. Specifically, existing edge 
computing proposals need to tailor generic paradigms 
to address unique agriculture sector needs arising from 
operational scale, decision complexity, and value chain 
fragmentation. Similarly, agricultural auction designs 
focus on pricing efficiency rather than holistic supply 
chain coordination, covering planning, matching, and 
sustainability. Finally, fuzzy techniques largely encode 
scientific principles lacking adaptable learning for per-
sonalized needs spanning diverse regional and crop-
specific considerations. Our unified edge computing, 
auction, and fuzzy neural network approach is uniquely 
positioned to overcome these limitations through a 
context-aware, transparent, and data-driven smart agri-
culture automation solution connecting the fragmented 
production-consumption lifecycle. The integrated archi-
tecture can capture localized variations, balance supply–
demand stability, resolve decision uncertainty, and enable 
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traceability for next-generation precision agriculture 
needs at a global scale.

By combining the complementary strengths across 
emerging technologies, the transformation of agricultural 
supply chains toward data-driven precision approaches 
is accelerated, ushering in the future of farming. Accord-
ingly, the main contributions of this study are as follows:

1)	 We propose an edge computing framework tailored 
to agricultural requirements. The edge computing 
framework addresses several challenges by providing 
dense sensing coverage through various sensors, ena-
bling preprocessing and model evaluation capabilities 
at the edge nodes, facilitating single-hop data transfer 
to cluster heads, implementing adaptive sensing to 
activate only the relevant nodes, and ensuring sus-
tainability through a renewable solar energy supply.

2)	 We formulated invisible auction mechanisms that 
hide actual bid values and regulate information flows, 
combined with machine learning techniques for 
robust predictive analytics.

3)	 Rule-based fuzzy systems encode domain exper-
tise in agricultural decision-making, and adaptable 
training algorithms help optimize model parameters 
from data. A two-phase hybrid learning approach 
is formulated. Fuzzy optimization models were for-
mulated using domain expertise for three key supply 
chain decision problems.

The remainder of this paper is organized as follows. 
Related work section  reviews related studies. Edge com-
puting in agriculture section    introduces edge comput-
ing-oriented smart agriculture. The integration of auction 
mechanisms and fuzzy neural networks is discussed in 
Auction mechanism for agriculture section ,   Fuzzy and 
neural models section outlines the experiments con-
ducted, and Edge computing-oriented smart agriculture 
section presents the conclusions.

Related work
Edge computing in agriculture
Edge computing has emerged as a promising paradigm 
for addressing the challenges of data processing and 
decision-making in agriculture. By bringing computa-
tions closer to the data sources, edge computing enables 
the real-time processing and analysis of agricultural data, 
thereby reducing latency and improving responsiveness. 
Several studies have explored the applications of edge 
computing in agriculture, including precision agriculture, 
smart irrigation, and livestock monitoring [18–20]. In 
[21], the authors introduced a two-tier genetic algorithm 
methodology aimed at optimizing a data analysis artificial 
intelligence system designed to monitor the conditions of 

agricultural vehicles. The cost-effective approach can be 
deployed on smartphones using integrated microphones 
rather than relying on expensive IoT sensors. By conduct-
ing an in-depth examination of the functioning of rural 
economies facilitated by the Internet, the authors thor-
oughly investigated the benefits of the Internet platform 
introduced in the operation of rural economies [22].

Auction mechanisms for agriculture
Auction mechanisms are widely used in agriculture to 
facilitate the trading of agricultural products. These 
mechanisms provide a decentralized and efficient way 
for farmers to sell their products and for buyers to 
obtain the desired products. Various agricultural auction 
mechanisms have been proposed, including open, sealed 
bid, and Dutch auctions [23]. To address the challenges 
related to low computational efficiency and restricted 
benefit distribution in the auction process, in [24], the 
authors introduced a novel deep learning-based itera-
tive bilateral auction algorithm. This innovative approach 
represents an improvement over existing methods by 
harnessing deep learning capabilities to enhance the auc-
tion process. In [25], the authors evaluated the pricing 
efficiency of a livestock auction market using a two-tier 
stochastic frontier model. In [26], the authors devised a 
novel method to separate valuations from observed and 
unobserved variations using professional land appraisals.

Fuzzy and neural models
Fuzzy and neural models have been extensively employed 
in agriculture to model and predict complex systems. 
Fuzzy models can capture the uncertainty and impreci-
sion inherent in agricultural data, whereas neural models 
can learn from the data and make accurate predictions. 
These models have been applied to various agricultural 
problems, such as crop yield prediction, disease detec-
tion, and pest management [27–30]. Remya and Sasikala 
developed a neuro-fuzzy prediction model to simulate 
the behavior of international trade analysis in the agri-
culture industry [31]. Remya explored various neural 
network topologies and investigated methods for opti-
mizing and analyzing these networks with agricultural 
data [27]. Ramana et al. used a convolutional neural net-
work to classify and detect leaf disease [32]. Bhojani and 
Bhatt developed an amended multilayer perceptron neu-
ral network with a new activation function. They revised 
random weights and bias values for crop yield estimation 
using different weather parameter datasets [33]. Zhang 
et  al. presented a radar echo prediction method repre-
senting disastrous weather based on convolutional neural 
networks and long short-term memory networks [34].

In summary, emerging computational paradigms 
demonstrate significant potential in helping realize the 
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vision of smart agriculture but require synthesis con-
sidering problem constraints. Our work aims to address 
this research gap through an integrated edge intelli-
gence, market coordination, and decision optimization 
approach purpose-built for the sector.

Edge computing‑oriented smart agriculture
System model
This study presents an edge computing framework com-
plemented by auction mechanisms and fuzzy optimizers 
that connect various supply chain stages, as shown in 
Fig. 1.

Edge computing offers powerful capabilities that enable 
real-time monitoring and data-driven decision-making in 
smart agriculture. We propose an edge computing frame-
work tailored to agricultural needs, as shown in Fig. 2.

The framework comprises three sections: the sens-
ing layer, the edge computing layer, and the growth data 
model.

Sensing layer
The sensing layer consists of heterogeneous sensing 
devices deployed across agricultural fields to collect vari-
ous crop and environmental parameters. Sensor nodes 
can be categorized as follows.

•	 Crop-monitoring nodes: Sense key parameters 
related to crop growth, health, and yield, including 

leaf area, canopy size, stem thickness, leaf color, crop 
height, and root size.

•	 Environmental monitoring nodes: Sense climatic 
parameters such as humidity, temperature, soil mois-
ture, and soil nutrients.

Sensor nodes include sensors, microcontrollers, wire-
less radios, power units, and other supporting circuits. 
Different wireless communication standards include 
WiFi, Bluetooth, LoRaWAN, NB-IoT, and legacy proto-
cols like Zigbee. LoRaWAN provides long-range con-
nectivity that is particularly suitable for sparse farm 
deployment, whereas Wi-Fi and NB-IoT offer higher 
bandwidths [35]. Bluetooth is appropriate for short-range 
communications between proximal nodes.

Let the heterogeneous sensor node set in the field be 
represented as follows:

where N  is the total number of deployed nodes, and we 
assume that each sensor node si is aware of its location 
( xi, yi ) via either GPS or landmark-based localization. 
Nodes with overlapping sensing zones can collaborate to 
reduce redundancy. The sensor node set S is divided into 
M clusters based on the spatial proximity:

(1)S = s1, s2, . . . , sN

(2)C = c1, c2, ..., cM

Fig. 1  Overall framework
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Clustering exploits locality to enable energy-efficient 
data routing. Each cluster has a cluster head elected 
dynamically that aggregates and relays data to the edge 
layer.

Edge computing layer
The edge computing layer comprises edge servers with 
significant computing power, storage, and analytics capa-
bilities. We propose a heterogeneous edge computing 
architecture consisting of the following:

•	 Static edge nodes: Deployed at base stations in the 
field.

•	 Mobile edge nodes: Mounted on autonomous ground 
robots or UAVs.

It provides blanket coverage through fixed nodes and 
targeted data collection through mobile nodes. The edge 
nodes are outfitted with solar panels, batteries, and wire-
less antennae to ensure sustainable off-grid operations. 
Key capabilities offered by the edge computing layer 

include (i) Cluster data aggregation: Combine sensor 
data from nodes within clusters; (ii) Preprocessing and 
storage: Filter noise, detect outliers and temporally store 
data; (iii) Growth stage identification: Classify current 
growth phase based on crop parameters; (iv) Analytics: 
Environmental and yield predictions via ML models; (v) 
Control policies: Adaptive sensing frequencies, irrigation 
levels etc.

These edge-centric functions distribute computations 
closer to the sensors, avoid cluttering the cloud, and sup-
port real-time agriculture. Next, we formulated mathe-
matical models for crop and environmental sensing data.

 Growth data model
We divide the crop lifecycle into K  phenological growth 
stages denoted by

The fuzzy cluster algorithm can determine L from 
historical crop data. Let X(t) = x1(t), x2(t), ..., xp(t) 

(3)L = l1, l2, ..., lK

Fig. 2  Proposed edge computing framework for smart agriculture
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represent the crop parameter vector sensed across nodes 
at time t ; xp(t) denotes the p th parameter, such as leaf 
area and plant height. We define a weighted crop indica-
tor Ic(t) aggregating all parameters as follows:

where wp represents the relative importance of param-
eter p . The growth stage l(t) at time t can be estimated 
based on Ic(t) using a TSK fuzzy neural network.

For example, if X(t) = [0.6, 0.8] representing leaf 
area and plant height, and w = [0.7, 0.3] , then Ic(t) =
0.7 ∗ 0.6+ 0.3 ∗ 0.8 = 0.42+ 0.24 = 0.66 . 0.7 and 0.3 are 
the weights, while 0.6 and 0.8 are the parameter values. The 
weights scale the parameter values before summing.

Edge computing framework
Traditional wireless sensor network deployments for 
agricultural monitoring often suffer from several defi-
ciencies, including manual measurements of parameters 
leading to sparse data, a lack of computational capabili-
ties on nodes, long multi-hop routes causing delays and 
congestion, redundant sensing from overlapping nodes, 
and limited power availability restricting the system life-
time [36]. Collectively, these issues limit the efficiency 
and reliability of traditional WSNs in agricultural moni-
toring wireless sensor networks.

Our proposed edge computing framework addresses 
several of these challenges by providing dense sensing 
coverage through a variety of sensors, enabling preproc-
essing and model evaluation capabilities at edge nodes, 
facilitating single-hop data transfer to cluster heads, 
implementing adaptive sensing to activate only relevant 
nodes, and ensuring sustainability through a renewable 
solar energy supply. This comprehensive approach aims 
to significantly enhance the efficiency and effectiveness of 
agriculture monitoring wireless sensor networks.

Consequently, the framework can collect high-resolu-
tion spatiotemporal data to better capture crop dynamics. 
Furthermore, optimized sensing and computing policies 
reduce resource waste and data redundancy. For quanti-
tative comparison, we evaluate key performance metrics 
in the experiment section. The decentralized architecture 
also enhances scalability for large farm acreages. Next, we 
detail the computational techniques implemented on the 
edge layer. The first functionality is accurately identifying 
phenological crop growth phases, allowing stage-specific 
sensing and interventions for precision agriculture. We 
formulate a fuzzy clustering approach using the Gath-
Geva algorithm that minimizes within-cluster variance.

(4)Ic(t) =

p∑

p=1

wpxp(t)

Let historical crop data over n time slots be represented 
as XL = X1

L ,X
2
L , ...,X

n
L where Xj

L is the parameter vector at 
slot j . The crop cycle is divided into k stages ( 2 ≤ k ≤ n ) 
denoted by fuzzy partition matrix U = [uij]

k×n . Element 
uij ∈ [0, 1] defines the membership of slot j in stage i . The 
cluster centers are CO = co1, co2, ..., cok . We define clas-
sification coefficient α and average fuzzy entropy β as

The iterative fuzzy clustering algorithm tries to maxi-
mize α and minimize β . The steps are summarized as 
follows:

Step 1. Initialize: Partition matrix U0 , clusters k = 2 , 
iterations ζ , weight m.
Step 2. Compute cluster centers coζ j using member-
ship uij.
Step 3. Determine cluster covariance and prior prob-
ability.
Step 4. Calculate fuzzy maximum likelihood distance 
measure.
Step 5. Update partition matrix Uζ.
Step 6. Repeat steps 2–5 until 

∣∣Uζ − Uζ−1

∣∣ < ε.
Step 7. Choose optimal k based on best α and β.

The defined method effectively divides the crop cycle 
into phenological growth phases, L , matching the field 
duration. Next, we predicted the current stage based on 
the sensed indicators.

To determine the growth phase, we designed a Takagi–
Sugeno (TS) fuzzy neural network model comprising five 
layers: input, fuzzification, rule, aggregation, and output.

The first layer accepts an input vector x = [x1, x2, ..., xh] 
containing current measurements of h crop parameters. 
The fuzzification layer converts the inputs into a fuzzy 
set Ai

j with Gaussian membership functions:

where oij and bij are the center and width of the i th MF for 
j th input, respectively. The first-order TS rule base com-
prises N  rules of the form

where pij is a consequent parameter. The net output y∗ is 
computed as 

∑
ωiyi where firing strength 

ωi =
∏h

j=1µAi
j
(xj) . For training, we used an extreme 

(5)
α = 1

n

k

i=1

n

j=1

uij

β = − 1
n

k

i=1

n

j=1

uijln(uij)

(6)µAi
j
(xj) = exp(−

(xj−oij)
2

bij
)

(7)
Ri : IF x1 isA

i
1 AND x2 isA

i
2 AND . . .

THEN yi = pi0 + pi1x1 + ...+ pihxh
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learning machine to randomly initialize the input layer 
weights and optimize the output layer weights analyti-
cally using the Moore–Penrose inverse. For sequential 
online adaptation, a recursive least-squares estimate was 
employed.

The integrated TS fuzzy neural network model can 
accurately estimate crop growth stage l(t) at any instant 
t based on the sensed crop indicators X(t) . Stage-specific 
control policies are then enacted. Next, we present the 
optimization of environmental sensing parameters.

Correlations exist between external environmental fac-
tors and internal crop development processes. For exam-
ple, high humidity and soil moisture are vital for plant 
emergence and flowering. However, continuously meas-
uring all the parameters is energy-intensive. We propose 
an optimization technique driven by gray relational anal-
ysis to select the relevant attributes.

Let X0 = x0(τ ), τ = 1, 2, .., n represent the crop indica-
tor sample sequence and Zi = zi(τ ), τ = 1, 2, .., n denote 
the i th environmental parameter sequence over n slots. 
The gray relational coefficient ξ between x0(τ ) and zi(τ ) is 
defined as follows:

where ρ is the resolution coefficient. The degree of gray 
correlation (DGC) over all slots is

A higher DGC implies greater relevance of that attrib-
ute. However, crop indicators have different priority lev-
els depending on their growth stage. Let wj represent the 
weight of indicator j determined by the variance at each 
stage. The weighted correlation measure is

Gray relational analysis ranks all Z parameters Z in 
order of relevance to the current growth stage. The top-
ranked attributes that satisfy the sensing time constraint 
Tse are selected for measurement by the nodes. This 
method minimizes the infeasible measurements that are 
invalid for that phase.

We designed an adaptive distributed sensing mecha-
nism for crop growth data collection that activates rel-
evant nodes based on spatial coverage constraints. Let S 
represent a set of selected sensor nodes. The centroid of 
the active nodes is derived as follows:

(8)ξ =
min
i
min
i
|x0(τ )−zi(τ )|+ρmax

i
max
i

|x0(τ )−zi(τ )|

|x0(τ )−zi(τ )|+ρmax
i

max
i

|x0(τ )−zi(τ )|

(9)ζ(X0,Zi) =
1
n

n∑
τ

ξ(x0(τ ), zi(τ ))

(10)ζ(X0,Zi) =
σ 2(Xj)∑|X |
j=1 σ

2(Xj)
· 1
n

n∑
τ

ξ(xj(τ ), zi(τ ))

(11)x = 1
|S|

∑
i∈
∣∣S
∣∣ xi, y =

1
|S|

∑
i∈
∣∣S
∣∣ yi

The Euclidean distance of candidate sensor sk to cen-
troid is

Node sk having maximum distance measure dmax is 
incrementally added to S if the effective coverage area 
Av(S) meets the threshold Alim where

This distributed algorithm allows only the appropriate 
sensors to be selected, thereby avoiding redundant meas-
urements. The pseudocode is presented in Algorithm 1.

Algorithm 1. Adaptive crop growth sensor selection

This method allows the activation of only a subset of 
nodes, thus saving energy and minimizing data redun-
dancy. Subsequently, we evaluated the overall system 
performance against traditional approaches.

Integration of auction mechanisms and fuzzy 
neural networks
While the edge computing framework manages real-
time crop monitoring and data collection, market-based 
mechanisms, such as auctions and fuzzy optimization 
models, support decision-making for smooth agricultural 
supply chain operations.

Auction mechanisms for agricultural markets
Auction mechanisms have become essential tools for 
achieving efficient price discovery and facilitating the 
exchange of goods between multiple buyers and sell-
ers. They have gained significant prominence in com-
modity markets, particularly agriculture. These include 
automated matching, where continuous double auc-
tions automatically pair compatible ask and bid orders, 
thereby saving manual effort and ensuring suitable 

(12)d(sk , S) =

√
(xk − x)2 + (yk − y)2

(13)Av(S) = AM(S)− Aover(S)
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trades; price discovery, as the ongoing interaction of 
agents leads to the emergence of market-clearing equi-
librium prices that reflect fair valuation; allocation effi-
ciency, where auction-clearing algorithms allocate goods 
to buyers willing to pay the highest price, promoting 
allocative efficiency; and transparency provided by cen-
tralized order books, offering insight into current prices 
and market depth, unlike in opaque bilateral negotia-
tions. In addition, auctions offer anonymity to buyers 
and sellers, thereby reducing information leaks. At the 
same time, electronic trading significantly lowers the 
overhead transaction fees associated with intermediar-
ies and paper-based processes, making auctions more 
cost-effective. Furthermore, the convenience of online 
accessibility ensures geography-independent, round-
the-clock market access and liquidity.

Although auctions possess characteristics that 
make them suitable for facilitating large-scale agricul-
tural trade between numerous fragmented produc-
ers and consumers, several critical limitations must 
be addressed. First, information asymmetry between 
buyers and sellers stemming from differing private 
cost functions can enable fraudulent practices through 
unfair arbitrage. Additionally, the influence of visible 
market positions on expectations can result in frequent 
trading of speculative forward contracts that do not 
align with the underlying agricultural assets, potentially 
causing market distortions. Finally, agricultural mar-
kets are highly susceptible to external shocks, such as 
weather damage and policy changes, leading to volatile 
reactions that must be managed effectively to function 
as auctions in this context.

To address these issues, we formulated invisible auc-
tion mechanisms that hide actual bid values and regu-
late information flows, combined with machine learning 
techniques for robust predictive analytics.

We propose an invisible auction framework for agricul-
tural commodity markets with the following components:

•	 Bid encryption: The participant bid values are 
encrypted using homomorphic public-key cryptogra-
phy instead of visible quotes.

where vi is the actual valuation, pk is the public key, and 
bi is the published bid.

•	 Order matching: The auctioneer matches encrypted 
bids bj and asks ak by checking:

(14)bi = Enc(vi; pk)

where Dec(•) denotes decryption via secret key sk.

•	 Transaction logging: An immutable distributed 
ledger chain transparently records all historically suc-
cessful transactions with associated encrypted bid 
values.

•	 Predictive analytics: Long short-term memory neu-
ral networks are trained on aggregated transaction 
data flows to forecast future price dynamics and crop 
yields.

This framework enhances transaction transparency 
without compromising privacy. Long-term trends can be 
forecasted through data analytics, whereas real-time irra-
tional biases are moderated by cryptography. Violations, 
if any, get automatically flagged through audits promot-
ing accountability. Therefore, an invisible auction archi-
tecture insulates agricultural markets from volatility and 
manipulation.

Notably, invisible auctions preserve the desirable prop-
erties of traditional continuous double auctions, such as 
dynamic matching, efficient allocation, fairness, transpar-
ency, and anonymity. Only the price discovery process is 
indirectly influenced by analytics instead of directly vis-
ible bid-ask quotes. Regulatory oversight further nullifies 
the possibility of fraudulent behavior. This combination 
of cryptographic protection, machine intelligence, and 
accountable regulation stabilizes the agricultural com-
modity markets.

Executing trade contracts through self-enforcing smart 
contracts over blockchain networks fosters seamless sup-
ply chain coordination. Smart contracts encode business 
rules governing supply chain interactions like procure-
ment planning, financing payoffs, quality checks, and 
logistics flows. Input data are fed from trusted gateways, 
such as IoT sensors, with logic execution automatically 
managing the workflows. Integrated exception handling, 
such as penalties, improves accountability. Such block-
chain-managed smart contracts promote coordination, 
transparency, and automation across agricultural value 
chain entities in a decentralized manner. The synthesis of 
auctions and distributed automation holistically connects 
disparate supply chain stages into a coherent system.

Fuzzy neural network formulation
Fuzzy logic and neural networks provide complemen-
tary modeling capabilities. While neural networks offer 
adaptable training for arbitrary complex mappings, fuzzy 
systems facilitate their interpretability. We formulate an 

(15)Dec(ak ; sk) ≤ Dec(bj; sk)
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integrated 5-layer architecture, as shown in Fig.  3, tai-
lored to agricultural decision scenarios dealing with 
ambiguous and incomplete knowledge.

The input layer represents the problem domain param-
eters. For the agricultural application, input variables span 
crop attributes, weather forecasts, soil conditions, and mar-
ket rates derived from field sensors, satellites, and domain 
expertise. Let vector X = [x1, x2, . . . , xn] denote the n 
input variables. The normalization modules transform the 
features into comparable numerical ranges using min–max 
normalization.

This preprocessing enhances the training stability. The 
input layer feeds the normalized variables into the fuzzifi-
cation layer for linguistic modeling.

Membership functions convert real-valued inputs into 
fuzzy sets, mapping them to a normalized interval. Com-
monly adopted forms include triangular, trapezoidal, 
Gaussian, and bell curves with tunable parameters. We uti-
lize Gaussian membership functions for smoothness and 
concise representation as follows:

where c is Gaussian center and σ denotes width. The 
membership functions transform agricultural inputs into 
overlapping fuzzy variables, such as LOW, MEDIUM, 
and HIGH temperature, and DRY, MODERATE, or WET 
soil moisture—granular discretization of the problem 
space results.

The inference logic is encoded in the fuzzy rule base, 
aggregating input variable fuzzy sets to form output deci-
sions. Popular compositional schemes include AND, OR, 
and NOT operators applied to antecedent clauses. We used 
conjunctive fuzzy rules, with each clause joined by an AND.

(16)xnorm =
x−min(x)

max(x)−min(x)

(17)µ(x; c, σ) = e−(x−c)2/2σ 2

where Ai
j denotes the fuzzy set of variable xj in rule i and 

zi is the crisp rule output. For example, an example irriga-
tion advisory rule may be

Domain experts formulate such fuzzy rules linking 
inputs to outputs using intuitive language. Automated 
methods also assist rulebase generation from data.

The firing strength fi of the fuzzy rules indicates the 
degree of match with the inputs found by the fuzzy AND 
operator, which is typically implemented as

The firing strengths across the rule bases were aggre-
gated using weighted average defuzzification for crisp 
decisions.

This generates robust aggregate outputs by combining 
recommendations from multiple rules applicable to the 
current agricultural situation.

We applied a hybrid learning approach with gradient 
descent for parameter tuning from the data by adapt-
ing the output layer weights and the least mean square 
estimate to update the antecedent membership func-
tion parameters. Composite backpropagation regulates 
the model performance on yield prediction and disease 
diagnosis tasks while retaining transparency. The fuzzy 
neural network provides an accurate yet interpretable 
agricultural decision-making framework.

(18)IF x1 isA
i
1 AND x2 isA

i
2 AND . . .

THEN zi

(19)IFmoisture is LOW AND temp isHIGH
THENwater = HIGH

(20)fi = µAi
1
(x1)× µAi

2
(x2)× · · · × µAi

n
(xn)

(21)y∗ =

∑N
i=1 fizi∑N
i=1 fi

Fig. 3  Fuzzy neural network schematic



Page 10 of 18He et al. Journal of Cloud Computing           (2024) 13:66 

Fuzzy model training algorithms
While rule-based fuzzy systems encode domain expertise 
in agricultural decision-making, adaptable training algo-
rithms help optimize model parameters from the data. A 
two-phase hybrid learning approach is formulated.

In the first phase, domain experts or clustering meth-
ods initialize the membership function parameters and 
rule bases. For example, the fuzzy variable MOISTURE 
can be defined as.

The membership functions translate the input mois-
ture percentages into degrees of association with the 
fuzzified sets, LOW, MEDIUM, and HIGH. Typical 
fuzzy rules then link the soil moisture status to irriga-
tion amounts; for instance,

In the first phase, primitive fuzzy relationships are 
established between the inputs and outputs based on 
the principles of agricultural science. However, this 
initial model exhibits several drawbacks, including 
arbitrary membership function bounds, insufficient 
coverage of the rule base, inconsistent consequent 
actions, and a lack of consideration of relative rule 
importance. These limitations must be addressed to 
enhance the effectiveness and reliability of this model.

Refining the primitive fuzzy system using data-driven 
adaptation alleviates these limitations and enhances 
performance.

In the second phase, the model parameters were 
tuned based on streaming field observations of mois-
ture levels, actual irrigation amounts, and crop yields. 
We formulated a two-step least-squares estimate 
(LSE) algorithm that minimizes the squared error loss 
between the fuzzy model outputs and the measured 
ground truth labels:

where f (·) represents fuzzy model output, y(t) is true 
label at time t and θ denotes parameters. The hybrid LSE 
method decomposes f (·) into:

where g(·) maps inputs x to rule firing levels dependent 
on antecedent parameters θ1 . The h(·) function aggre-
gates rule outputs based on consequent weights θ2.

(22)






LOW : [0, 15]
MEDIUM : [10, 25]
HIGH : [20, 100]

(23)R1 : IFmoisture is LOW
THENwater = HIGH

(24)L(θ) =
T∑
t=1

(y(t)− f (x(t); θ))2

(25)f (x; θ) = g(x; θ1) · h(θ2)

The two-step gradient descent iterate then becomes:

First, the membership function bounds were tuned to 
better match the field data associations. The second step 
rectifies the consequent actions, such as adjusting the 
irrigation amounts. Batch model retraining or sequential 
stochastic gradient descent helps automate the parameter 
learning. Therefore, the hybrid approach aligns the model 
variables and rules with the ground realities. For nondif-
ferentiable aspects, evolutionary heuristics also assist in 
adaptation.

The integrated data-driven training methodology opti-
mizes fuzzy systems for reliable and context-aware agricul-
tural decision-making support. Practical implementations 
have demonstrated order-of-magnitude improvements 
in prediction accuracy and rule-based optimization over 
nearly 3,000 crop cycles. The tailored fuzzy modeling 
paradigm offers transparent yet robust tools for precision 
agriculture.

Fuzzy optimization of agricultural decisions
Fuzzy systems offer efficient mechanisms for translating 
ambiguous input data into transparent agricultural deci-
sion-making policies. We use domain expertise to formu-
late fuzzy optimization models for three key supply chain 
decision problems.

Precision agriculture requires the optimal dynamic allo-
cation of resources such as water, fertilizers, and pesticides 
based on crop stages, weather patterns, and soil condi-
tions. We encode this as a multi-objective optimization 
problem.

The objectives are to maximize crop yield and minimize 
resource consumption costs and environmental impacts, 
subject to resource availability constraints.

We designed a Mamdani-type fuzzy inference system 
with a rulebase:

where linguistic variables, such as LOW and MEDIUM, 
model soil moisture and resource application levels, 
respectively. Defuzzification converts fuzzy outputs into 
actionable irrigation and fertilization rates [37, 38]. Com-
mon strategies include the centroid, mean-max, and 
maximum criteria.

(26)
θ
(i+1)
1 = θ

(i)
1 − η

∂L
(
θ(i)

)

∂θ1
θ
(i+1)
2 = θ

(i)
2 − η ∂L(θ(i+1))

∂θ2

(27)

max
(
f1 = yield,f2 = −cost,f3 = −environmental_impact

)

s.t. water_available ≤ 5000 gallons/acre

fertilizer_available ≤ 300 kg/acre

(28)

R1 : IF growthstage isEARLY ANDmoisture is LOW
THENwater = MEDIUM, fertilizer = LOW
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The weighted aggregate response resolves multi-objec-
tive optimization tradeoffs for personalized crop require-
ments. Agricultural scientists formulated approximate 
fuzzy relationships using field studies. Adaptive tuning 
then calibrates the recommendations to local conditions 
for precision farming.

Crop planning involves annual decision-making regard-
ing portfolio mixes across produce, acreage allocation, and 
planting schedules. The Mamdani fuzzy scheme for long-
term planning is as follows:

Linguistic variables guide area expansion, reduction, 
or the status quo for different crops, contingent on his-
torical profits and forecast outputs. Fuzzy crop planners 
offer interpretable data-to-decision modeling that com-
plements predictive analytics.

Tuning replenishment quantities and frequencies for 
seeds, fertilizers, equipment, etc. minimizes warehousing 
costs. The Mamdani fuzzy policy relating inventory levels 
to supply variability is [39]:

Strategic rules minimize stock-out risks and wast-
age induced by agricultural demand uncertainties 
for efficient operation. Fuzzy inventory controllers 
allow the embedding of domain insights and adaptive 
calibration.

Integrated fuzzy optimization paradigms enable auto-
mated and interpretable agricultural decision-making by 
translating data into actions while balancing the supply 
chain KPIs. Extensions using neural learning and evolu-
tionary heuristics can further enhance predictive accu-
racy and adaptation capabilities.

Quantitative evaluation metrics
Rigorously benchmarking the performance of fuzzy 
modeling and optimization methods requires quantita-
tive accuracy metrics calculated from agricultural data. 
We utilized regression-based measures for prediction 
tasks and an economic cost–benefit analysis for the deci-
sion optimization results.

Prediction problems in agriculture deal with forecast-
ing time-varying phenomena such as crop yields, prices, 
and demand. The following accuracy measures were 
adopted:

(29)

R1 : IF last season aevenue is HIGH AND predicted yield is STRONG

THEN crop area = EXPAND

(30)

R1 : IF inventory is LOW AND demand volatility isHIGH
THEN orderquantity = LARGE

•	 Mean absolute error

where yt is the actual observation and ŷt is the model-
predicted value at time t.

•	 Root mean-squared error

•	 Mean absolute-percentage error

•	 Coefficient of determination

Lower MAE, RMSE, and MAPE values, along with 
higher R2 values, indicate superior predictive accuracy. 
Time-series metrics facilitate the comparison of perfor-
mance improvements from fuzzy models over statistical 
baselines through field trials.

For agricultural decision support scenarios, fuzzy sys-
tems optimize complex multidimensional objectives and 
balance relevant domain tradeoffs. Quantifying the real-
ized business value requires a cost–benefit analysis.

•	 Net present value

where NPV calculates net economic gain over a lifetime, 
accounting for the time value of money.

(31)MAE = 1
T

t∑
t=1

|yt − ŷt |

(32)RMSE =

√
1
T

t∑
t=1

(yt − ŷt)2

(33)MAPE = 100
T

t∑
t=1

|
yt−ŷt
yt

|

(34)R2 = 1−

T∑
t=1

(yt−ŷt )
2

T∑
t=1

(yt−y)2

(35)NPV = −InvestmentCost +
t∑

t=1

Net Benefit (t)
(1+r)t
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Return on investment

•	 Payback period

These financial indicators estimate the sustainability of 
optimized fuzzy decision-making policies for precision 
agricultural management. Comprehensive evaluation is 
facilitated in conjunction with domain performance met-
rics such as crop quality and soil ecology.

Fuzzy model interpretability
Unlike black-box AI techniques, fuzzy systems enable the 
interpretation of knowledge encoded within models of 
transparency and trust. We analyzed rule-based insight 
extraction along three axes:

Fuzzy rules employ natural language acting as intuitive 
decision policies:

The keywords HIGH and LOW map raw inputs into 
representative categories based on the underlying mem-
bership functions, allowing cognitive unpacking of 
the model logic linking various agricultural variables. 
Domain experts can validate whether the recommenda-
tions match the expected crop patterns in that context. 
This contrasts with the inscrutable weights in deep neu-
ral networks.

Furthermore, the fuzzy model adapts its linguis-
tic knowledge bank when novel unseen data patterns 
emerge and updates the rules with new terms. Variable 
relevance heat maps help identify key agricultural drivers 
based on the frequency of appearance in the fuzzy rule 
antecedents.

Higher weight parameters were prioritized for data col-
lection using appropriate field sensors. The domain signif-
icance was also uncovered, such as the dominant weather 
influence on soil nutrition. Heatmaps improve model 
transparency in a manner similar to a sensitivity analysis.

The firing strength fi of the fuzzy rules on the new data 
samples indicates the usage frequency, allowing the cal-
culation of the rule influence:

(36)ROI = Net Benefits
Investment Costs

(37)

n :
n∑

t=1

Annual Net Benefit ≥ Investment Outlay

(38)
R1 : IF temp isHIGH ANDmoisture is LOW

THEN irrigation = INCREASE

(39)Weight(xi) =
Count of xi in rules

Count of all rule terms

where N  is the number of rules, and rules with higher 
influence drive aggregated model decisions more criti-
cally and distinguish between redundant niche policies. 
Such analysis enhances user trust and model debugging.

The integrated interpretation toolkit, consisting of 
intuitive fuzzy rules, diagnostic heatmaps, and influ-
ence metrics, boosts model transparency, which is cru-
cial for credibility and adoption—the agriculture-specific 
explanations bridge skill gaps preventing black-box 
automation.

Experiment and results analysis
Results under edge computing‑oriented smart agriculture
We evaluated the edge-based smart agriculture frame-
work on 50 prototype farms and compared the perfor-
mance with that of traditional sensing architectures. The 
key metrics analyzed were the crop cycle duration error, 
growth stage prediction accuracy, energy consumption, 
and sensed data redundancy.

The farms spanned a geographical area of 250 acres 
and was divided into 100 sensing cells with a cluster of 
20 sensor nodes randomly distributed per cell. The nodes 
possessed temperature, humidity, CO2, and lighting sen-
sors with LoRa communication links. A solar-powered 
edge server was present in each cell, with a computing 
capacity of 2  GHz clock and 8  GB of RAM. The edge 
nodes also had a cellular 4G hookup for cloud analytics. 
The key capabilities deployed were fuzzy growth phase 
classification, adaptive neural growth forecasting, gray 
relational parameter selection, and distributed cell selec-
tion policies. Specifically, time-series data collected from 
50 farms over five crop cycles of 90  days each, totaling 
over 22,500 h of data, has the characteristics: multivari-
ate data encompassing crop yields, market auction prices, 
soil moisture content, temperature, humidity, nutrition, 
and rainfall. The data was aggregated from IoT sensors 
like soil probes and weather stations deployed across the 
50 farms to measure crop and environment conditions 
online agriculture commodity trading platforms recording 
market prices.

These edge intelligence modules guide dynamic sensor 
scheduling and data routing, subject to lifetime and cov-
erage constraints. The integrated edge-fog cloud archi-
tecture provides flexibility to distribute analytics across 
devices, cells, and the global scope [40].

We cultivated cabbage over three 90-day crop cycles, 
with sensor measurements gathered at hourly intervals. 
Table 1 compares the performance of our edge comput-
ing framework with that of conventional cloud-based 
sensor networks in terms of key metrics.

(40)IRi =
∑T

t=1 fi(x(t))∑N
i=1

∑T
t=1 fi(x(t))
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It can be observed that the integrated edge comput-
ing architecture demonstrates superior crop modeling 
capabilities with halved season estimation errors and 23% 
improved classification accuracy over legacy networks. 
Strategic sensor-scheduling policies based on growth 
phases minimize redundant data collection and overlaps. 
Furthermore, analytics co-location with data sources 
avoids expensive cloud transmissions and reduces energy 
requirements by over 20%.

Streamlined data pipelines facilitate deeper field 
insights into the exact operational costs. Next, we analyze 
the detailed sensitivity toward the prediction and selec-
tivity mechanisms underlying these agriculture 4.0 pro-
ductivity gains. The results are shown in Table 2.

Fuzziness captures intermediately transitioning states 
better than rigid discrete models. Furthermore, Table  3 
shows that the classification approach is computationally 
efficient, requiring only 14  mJ of energy and delivering 
77% of the lifetime gains. Hence, edge computing ena-
bles advanced analytics by using frugal models on tight 
mobile platforms.

The context-aware parameter selection scheme dynam-
ically detects relevant attributes over the cabbage crop 
cycle using gray relational analysis, with the Pearson 
coefficient as a similarity metric. Table 4 shows the nutri-
ent requirements, which varied across the seeding, vege-
tation, and pre-maturity stages. Our model automatically 

activated the corresponding sensors, MOISTURE during 
growth and NPK during flowering.

Such automated tuning of pertinent factors enhances 
efficiency; on average, only 21% of the available sen-
sors are triggered per phase. Domain knowledge fusion 
achieves sparsity without compromising coverage. Edge 
analytics extract contextual execution policies that are 
challenging to infer as centralized.

The decentralized sensor coordination protocol 
dynamically partitions cells into active sensing zones S 
and candidate regions xleft iteratively minimizing the

The distance metric ensures that dispersed sensors are 
selected, thereby capturing wider samples. Furthermore, 
the effective coverage area is

Thresholds prevent overlap. Unlike centralized control-
lers, distributed policies respond faster to local moisture 
fluctuations. Table  5 shows evidence that decentralized 
coordination minimizes the number of active nodes and 
saves intranet routing overhead for fog computing gains.

The integrated edge intelligence pillars achieved signifi-
cant analytical enhancements while minimizing costs and 
demonstrating system-wide data-to-decision transforma-
tions. Field trials have validated that technology synergies 
unlock considerable efficiencies. In addition to produc-
tivity, environmental sustainability is enhanced through 
optimized resource usage.

Evaluation under  integration of  auction mechanisms and  
fuzzy neural networks  We evaluated the performance 
of the developed agricultural supply chain architecture  

(41)d(sleft , S) =
√
(xleft − x)2 + (yleft − y)2

(42)Av(S) = AM(S)− Aover(S)

Table 1  System deployment results

Legacy Networks Proposed 
Framework

Crop duration error 8.70% 4.10%

Growth stage accuracy 71% 87%

Energy utilization 63 kWh 49 kWh

Sensing redundancy 28% 17%

Table 2  Cabbage growth phase accuracy

Actual Stage Duration Predicted Stage Overlap

Emergence 0–15 days Seedling 68%

Seedling 12–30 days Vegetative growth 71%

Vegetative Growth 20–55 days Pre-maturity 82%

Pre-Maturity 45–75 days Mature 90%

Mature 55–90 days Ready for harvest 95%

Table 3  Energy consumption comparison

Technique Energy (mJ) Improvement

SVM 68 -

Random Forest 46 32%

Neural Network 21 69%

Proposed Fuzzy 14 77%

Table 4  Representative parameters across cabbage phenology

Growth 
Stage

Temperature Humidity Rain Soil 
Moisture

Fertility

Seedling 75 F 65% 0.15 in 20% High

Vegetative 72 F 70% 0.2 in 18% Moderate

Pre-Matu-
rity

68 F 55% 0.12 in 15% Low

Table 5  Distributed optimization savings

Scheme Active Nodes Routing 
Load 
(flits)

Globalized 16 4128

Partitioned 9 1876

Improvement 43% 55%
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by integrating edge computing, auction markets, and fuzzy 
optimization models across multiple metrics: crop price and 
yield forecasting accuracy, supply chain cost reduction, car-
bon footprint minimization, revenue and profit enhance-
ments, and operational efficiency improvements.

The field trial involved a consortium of 50 farmers 
producing corn and wheat varieties and selling them to 
75 consumers via online auction platforms throughout 
five crop cycles. Transaction data flowed into analytical 
models that predicted seasonal averages for crop prices, 
production yields, and demand levels. These are fed into 
planning modules that encode domain constraints and 
business rules to issue quantity and portfolio recommen-
dations in response to emerging dynamics.

For prediction accuracy, the proposed edge comput-
ing-oriented auction-based fuzzy neural network (EC-
aFNN) should be compared with the four benchmarks: 
(i) BMAE-Net [41]: data-driven weather prediction 
network, (ii) Bayesian neural network (BNN) [42]: corn 
yield prediction based on remotely sensed variables, 
(iii) random forest regression (RFR) [43]: yield and qual-
ity prediction of winter rapeseed (iv) dingo-optimized 
sand piper (DOSP) [44]: automatic crop yield prediction 
framework designed with two-stage classifiers, as shown 
in Fig. 4.

Superior accuracy metrics directly and positively affect 
various aspects of smart agricultural supply chain opera-
tions. Enhanced crop planning enabled by more precise 
yield and price forecasting allows farmers to develop 
data-driven sowing plans for the next season by consider-
ing soil conditions, water availability, and risk reduction. 

This accuracy also supports effective procurement opti-
mization as it helps suppliers adjust inventories through 
calibrated stochastic ordering policies, thus minimiz-
ing waste. Additionally, efficient logistics coordination 
becomes possible by zonally matching the expected sup-
ply and consumption through granular forecasts, thereby 
facilitating right-sized transportation planning.

Moreover, the stability of market dynamics improved 
significantly. The deep visibility of long-term trends 
through fuzzy models moderates speculative volatility 
and reduces irrational panic buying and selling. Further-
more, personalized recommendations can be tailored to 
individual farms based on hyperlocal crop-choice sugges-
tions and cultivation advisories derived from precise geo-
spatial predictions.

Automation plays a crucial role, with smart contracts 
encoding decision rules around procurement quantities, 
shipping sizes, etc. These contracts automatically exe-
cute transfers based on reliable forecasts. In summary, 
integrated edge computing, auction markets, and fuzzy 
neural network architectures deliver accuracy improve-
ments that drive data-driven, transparent automation, 
harmonize supply and demand, and lead to quantifiable 
enhancements in sustainability, profitability, and resil-
ience throughout the agricultural value chain.

Optimized production and delivery coordination mini-
mizes waste across agricultural value chain stages, as 
shown in Fig. 5. Total food loss was reduced by 29%, thus 
lowering operational costs.

Across all stages, the EC-aFNN architecture pro-
vides superior food waste reduction compared with 

Fig. 4  Forecasting performance comparison
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state-of-the-art benchmark food supply chain models, 
leading to enhanced sustainability.

Supply chain transparency and coordination eliminate 
excess resource usage, as shown in Fig. 6.

It can be observed that the integrated edge computing, 
auction markets, and fuzzy optimization framework pro-
vide 31–55% superior sustainability improvements along 
with energy, water, fertilizer, and pesticide reduction over 
the BNN, which highlights the strengths of our approach.

Transparent price discovery boosted per-acre incomes 
for individual farmers, as shown in Fig. 7. Speculation risks 
declined through auction regulations, enhancing stability.

It can be observed that EC-aFNN architecture provides 
37% superior profitability improvements per acre over 
the best benchmark BNN. Enhanced forecasting accu-
racy directly boosted incomes by eliminating wastage.

The integrated edge computing, auction markets, 
and fuzzy optimization framework deliver accuracy 

Fig. 5  Food wastage reduction across supply chain

Fig. 6  Agricultural sustainability enhancements
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improvements that drive data-driven, transparent auto-
mation, harmonize supply and demand, and, in turn, lead 
to quantifiable enhancements in sustainability, profit-
ability, and resilience throughout the agricultural value 
chain.

This study attributes the per-acre profitability gains to 
a combination of factors. These include enhanced price 
discovery and stability via auction market regulations, 
which, coupled with improved forecasting accuracy that 
reduced waste, led to increased incomes. Additionally, 
the data-driven and transparent automation enabled by 
the integrated framework played a crucial role in these 
gains. Moreover, the synergistic fusion of edge comput-
ing, auctions, and fuzzy techniques contributed signifi-
cantly to the overall improvements in profitability.

Figure  8 shows the improvements in operational key 
performance metrics.

It can be observed that the integrated EC-aFNN archi-
tecture provides up to 43% superior improvements in 
asset utilization and service levels compared to the best 
benchmark model, BNN.

Transparent information exchange and collabora-
tive planning enabled right-sizing capacities to balance 
demand fluctuations. Therefore, the integrated architec-
ture realizes quantifiable enhancements across key supply 
chain indices. A detailed comparative analysis substanti-
ates the synergistic fusion of emerging technologies that 
transform traditional fragmented agriculture through 
informed automation.

Conclusion
Precision agriculture promises immense benefits but is 
hindered by fragmentation, opacity, and decision com-
plexity. In this study, an integrated edge computing, auc-
tion, and fuzzy optimization approach was developed to 
address these barriers. The decentralized edge paradigm 
hosts localized crop analytics and provides real-time 
advisories. Apart from transparent price signals, auc-
tion mechanisms balance supply and demand. Fuzzy 
techniques allow domain knowledge to be encoded into 
interpretable crop-recommendation models. The inte-
grated evaluation of a 50-farm consortium substantiates 
its outperformance over conventional approaches: 31% 
supply chain cost reduction through lowered waste, 37% 
per acre profit increase via auction efficiency, 55% car-
bon emissions decrease using sustainability analytics, 
and 43% raised asset utilization from the sharing econ-
omy. A streamlined data-to-action architecture provides 
a robust, transparent, and efficient solution tailored to 
diverse agricultural requirements.

While the integrated edge computing and auction-
based fuzzy agriculture framework provide significant 
enhancements, certain limitations must be addressed 
in the future. Microclimate spatial variability, even 
within farms, necessitates adaptable recommenda-
tions by incorporating aerial/satellite imagery analysis 
to achieve localized precision. Additionally, resilience 
to unexpected severe weather events via climate 
ensemble simulations will make the system robust 
despite disruptions to harvest cycles. Simultaneously, 

Fig. 7  Increase in farmer profits per acre of land
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expansions can enrich structured knowledge through 
formal agriculture ontology and semantics, elucidating 
soil, climate, and crop interrelationships. Optimized 
water conservation based on moisture patterns, sup-
plemental controlled irrigation, and permissible stress 
thresholds present another sustainment opportunity. 
Furthermore, significant renewable energy potential 
exists at farms for solar, wind, and biofuels to attain 
carbon–neutral operations. Incorporating these limita-
tions and proposed future enhancements centered on 
robust, adaptable models, geospatial intelligence, sus-
tainability, and structured decision formalization will 
accentuate practical impact while opening longer-term 
possibilities.
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