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Abstract 

Because of its excellent properties of fault tolerance, efficiency and availability, the practical Byzantine fault tolerance 
(PBFT) algorithm has become the mainstream consensus algorithm in blockchain. However, current PBFT algorithms 
have problems such as inadequate security of primary node selection, high communication overhead and network 
delay in the process of consensus. To address these problems, we design a novel efficient Byzantine fault tolerance 
algorithm based on credit grouping, called CG-PBFT. First, we propose a new credit evaluation model to obtain nodes’ 
credit values and introduce an optimized three-way quick sorting algorithm to divide nodes into the master-node 
group, the consensus-node group and the observation-node group, which have different privileges. The nodes 
in the observation-node group are restricted from participating in consensus, which reduces the communication 
overhead and improves consensus efficiency. Second, we propose an optimized selection method for the primary 
node based on a voting mechanism whereby the consensus-node group and observation-node group vote to pro-
duce the primary node, which reduces the probability of malicious nodes acting as the primary node and improves 
the security of primary node selection. Finally, the identity conversion mechanism between node groups is designed, 
and the actual behavior of nodes within different groups is given credit rewards or punishment, so as to keep 
an incentive for nodes to participate in appropriate system behavior and improve the working enthusiasm of nodes. 
The experimental simulation results show that compared with existing PBFT algorithms, the CG-PBFT algorithm 
improves the average throughput by 51.3% and reduces the average delay by 64.5%; it greatly improves the operat-
ing efficiency of the system and can be more suitable for application in the consortium blockchain scenarios.
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Introduction
Blockchain is a decentralized, tamper-resistant, traceable, 
and highly transparent distributed ledger technology that 
uses a variety of techniques, such as timestamps, Mer-
kle trees, asymmetric key encryption algorithms, P2P 
transmission [1], consensus algorithms [2], and incentive 

mechanisms [3]. In particular, transactions do not rely on 
third-party organizations, and each node in the network 
has the right to produce or verify blocks [4]. At present, 
blockchain can effectively integrate IoT, artificial intelli-
gence, 5G, big data and other technologies, and it makes 
important contributions in the fields of health care [5], 
IoT [6], energy [7], and digital copyright authentication 
[8]. Generally, according to the scale and coverage of 
nodes in the blockchain, blockchain can be categorized 
into public blockchain, consortium blockchain and pri-
vate blockchain [9]. Among them, public blockchain 
allows all nodes to freely access the system and verify 
transactions in the chain. In contrast, private blockchain 
is generally used within an organization and is not dis-
closed to the public. However, consortium blockchain 

*Correspondence:
Xiaohong Deng
deng_xh@jxust.edu.cn
1 School of Information Engineering, Jiangxi University of Science 
and Technology, Ganzhou 341000, China
2 School of Electronics and Information Engineering, Gannan University 
of Science and Technology, Ganzhou 341000, China
3 Key Laboratory of Cloud Computing and Big Data, Ganzhou 341000, 
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00643-7&domain=pdf


Page 2 of 20Liu et al. Journal of Cloud Computing           (2024) 13:74 

is between the above two categories of blockchain, and 
only the internal personnel of organizations with a coop-
erative relationship can be authorized to join the consor-
tium blockchain. Compared with the public blockchain, 
the number and status of nodes in the consortium block-
chain are more controllable, so it has higher security. On 
the other hand, consortium blockchain has higher decen-
tralization than private blockchain. Therefore, consor-
tium blockchain has become the preferred framework for 
blockchain application systems.

As the core technology of blockchain, the consensus 
algorithm is crucial to ensure data consistency and cor-
rectness. In particular, it determines the throughput, 
delay, fault tolerance and applicable scenarios of the 
whole blockchain system [10]. For this reason, in the 
past 15 years, many researchers have studied consensus 
algorithms and have made good progress. For instance, 
Deng et al. [11] proposed a CCAC consensus algorithm 
applied to consortium blockchain, they designed a credit 
mechanism to evaluate nodes’ consensus behavior as the 
basis for selecting miner nodes, which solves the prob-
lem of low efficiency and insufficient incentive mecha-
nism of current consensus algorithms. Liu et  al. [12] 
proposed a new PoLe consensus mechanism, which used 
the meaningless computing power consumption of PoW 
for neural networks’ training, and it solves the problem 
of high computational demand of neural network mod-
els applied in blockchain. Li et al. [13] proposed a PBT-
BFT consensus algorithm, they designed a perfect binary 
tree communication topology to reduce the performance 
complexity of the consensus algorithm to linear and 
improve the efficiency of the consensus algorithm.

Currently, the PBFT algorithm [14] can tolerate faulty 
or malicious nodes, whose number is no more than 1/3. 
As a result, it has become a more popular consensus 
algorithm, which is widely used in consortium block-
chain. First, in each round of consensus, the PBFT algo-
rithm randomly selects a primary node based on the 
current view and the number of nodes. Then, the other 
nodes communicate with the primary node as slave 
nodes to complete the three-stage consensus process of 
pre-prepare, prepare and commit. Many studies have 
proven that the PBFT algorithm has high performance 
and practicality. For example, Qi et  al. [15] proposed a 
PBFT algorithm for IoT multi-scenarios, which grouped 
large-scale IoT nodes according to their geographical 
locations, so as to improve the applicability of the PBFT 
algorithm for IoT scenarios. Wang et  al. [16] proposed 
an improved PBFT algorithm for community govern-
ance, which set nodes with different roles in community 
activities to perform different consensus tasks with dif-
ferent permissions, so as to meet the community govern-
ance scenarios’s requirements. Zhong et al. [17] proposed 

an improved PBFT algorithm for intellectual property 
transaction, which divided nodes into groups accord-
ing to the nodes’ IP transaction type, and each group 
processed requests in parallel to reduce the consensus 
communication’s complexity. Liu et al. [18] proposed an 
improved PBFT algorithm which grouped nodes to per-
form consensus according to nodes’ response speed, so as 
to improve the availability for the drug tracking system.

However, the PBFT algorithm also suffers from the fol-
lowing two shortcomings: (1) The primary node’s selec-
tion is too random, so it is easy to select malicious nodes 
as the primary nodes, which wastes network resources. 
Although the malicious primary nodes can be replaced 
by view switching, continual view switching will reduce 
system’s consensus efficiency. (2) There is a lack of an 
eviction mechanism for malicious nodes, and malicious 
nodes may always exist in the system and participate in 
consensus, which increases security risks and communi-
cation overhead in the network.

To address the PBFT algorithm’s shortcomings, many 
researchers have introduced credit mechanisms to 
improve the system’s security. On the one hand, these 
mechanisms preferentially select the high credit values’ 
nodes as the primary nodes; on the other hand, they 
divide nodes according to their credit values and select 
high credit values’ groups to participate in consensus, 
which significantly improves the consensus efficiency. 
For example, Zheng et  al. [19] used the C4.5 algorithm 
to conduct credit evaluations and group nodes; the high 
credit values’ nodes were selected to form a master con-
sensus group, and an integral voting mechanism was 
used to determine the primary nodes to optimize the 
primary nodes’ selection. Wang et  al. [20] proposed a 
feature credit grouping model to divide nodes into mul-
tiple groups; afterward, the primary node only needed 
to send messages to each group of agent nodes. In this 
way, the communication overhead was reduced by intra-
group consensus through each independent group. Ren 
et  al. [21] divided nodes into a high-credit group and a 
low-credit group by voting among nodes. In the high-
credit group, the nodes were divided into consensus 
nodes and supervisory nodes. Conversely, nodes in the 
low-credit group were backup nodes. Thus, the com-
plexity of the system communication was reduced by 
restricting the participation of the supervisory nodes and 
the backup nodes in consensus. Liu et  al. [22] designed 
a credit and voting mechanism. More precisely, first, the 
nodes voted to generate the leaders of the groups based 
on the nodes’ credit values; next, this method grouped 
the remaining nodes according to the response speed 
of each group leader. Finally, the group leaders used 
the in-group’s consensus result to determine participa-
tion in the out-of-group’s consensus, which reduced the 
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frequency of internode communication and improves 
the reliability of nodes. Xu et al. [23] divided nodes into 
a consensus group and a candidate group according to a 
credit-scoring mechanism to restrict nodes from partici-
pating in consensus. Meanwhile, it optimized the consen-
sus process, which yielded higher efficiency. Wang et al. 
[24] randomly divided nodes into multiple node groups 
and introduced a credit mechanism to elect supervi-
sion nodes from each group to monitor the consensus 
nodes, which improved consensus security. Tang et  al. 
[25] divided the nodes into consensus node group and 
ordinary node group by introducing the credit scoring 
mechanism, reduced consensus’s scale, and simplified 
the pre-prepare phase of PBFT algorithm to improve the 
consensus’s efficiency.

As mentioned previously, the above algorithms all 
use the method of node grouping to optimize the PBFT 
consensus mechanism, which benefits the system’s secu-
rity and operation efficiency to a certain extent. How-
ever, few studies have been conducted on the following 
two points. First, when the credit mechanism is used to 
select the high credit values’ nodes as the primary nodes, 
the dynamic nature of the credit evaluation model is 
not taken into account, and a primary node with high 
credit value is prone to becoming an “oligarchy” node. 
In addition, the nodes with low credit values lack credit 
incentives, which can easily cause these nodes to lose 
consensus enthusiasm. Second, in the node credit group-
ing process, on the one hand, overly complex grouping 
methods are used, which generates new overhead prob-
lems for the system; for instance, if grouping is imple-
mented by mutual voting among nodes, this affects the 
algorithm’s efficiency. In contrast, the grouping method 
may be too simple; for example, if grouping is imple-
mented according to the number of nodes, this neglects 
grouping methods that may make the grouping more 
reliable.

Consequently, an efficient PBFT algorithm based on 
credit grouping (CG-PBFT) is proposed in this paper. 
The main contributions of this paper are as follows.

(1)	 We design a new credit evaluation model that gives 
credit rewards to good nodes and credit punish-
ments to malicious nodes. According to the nodes’ 
behavior, the credit evaluation model evaluates 
and dynamically updates the node credit values in 
each round. Afterward, the nodes enter into groups 
with different privileges through the credit value 
rewards and punishments, which not only realizes 
the dynamic transformation of the nodes among 
the different groups but also improves the reliabil-
ity and enthusiasm of the nodes participating in 
consensus.

(2)	 We propose a new credit grouping mechanism that 
uses an optimized three-way quick sorting algo-
rithm to divide the nodes into the master-node 
group, the consensus-node group and the obser-
vation-node group according to the nodes’ credit 
values. Furthermore, consensus is only carried out 
in the master-node group and the consensus-node 
group, which improves the grouping efficiency and 
reduces communication overhead.

(3)	 We propose a selection method for the primary 
node based on a voting mechanism. The consen-
sus-node group and the observation-node group 
both vote for a primary node from the master-
node group with a higher credit rating. Therefore, 
the selected primary node has a high credit value 
instead of being directly assigned by the highest 
credit value’s node. The randomness of primary 
node selection clearly improves the security of 
the system and avoids the generation of “oligarch” 
nodes.

Related works
PBFT consensus
As previously discussed, the PBFT algorithm can solve 
the problem of Byzantine generals well. In particular, 
assuming that the number of current view is v, the total 
number of nodes is n, and the malicious nodes’ number 
is f, then n and f need to satisfy 3f + 1 <  = n. Moreover, 
the identifier of the selected primary node is p = v mod n. 
For instance, assuming four nodes are numbered 0, 1, 2, 
and 3, where node 3 is the malicious node, which inten-
tionally does not respond to requests from other nodes. 
During the initial consensus, the view’s number is 0. 
According to the primary node selection rule, the num-
ber of the primary node in the current view is 0. Then, 
the system begins the consensus process. This process is 
shown in Fig. 1.

The consensus process is divided into five stages, three 
of which require the nodes to communicate with each 
other.

Stage 1: Request stage. The client sends a request 
message to the primary node 0. After the message 
is successfully validated, the system enters the pre-
preparation stage.
Stage 2: Pre-preparation stage. Primary node 0 
broadcasts the client request to nodes 1, 2, and 3 and 
sends a pre-preparation message. After these three 
nodes receive the pre-preparation message, they ver-
ify whether this message is correct, and then the sys-
tem enters the preparation stage.
Stage 3: Preparation stage. After nodes 1, 2, and 3 
receive and verify the pre-preparation message, they 
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enter the preparation stage to broadcast the prepara-
tion message. However, node 3 is malicious and does 
not send messages, so node 1 only receives messages 
from node 2, and node 2 only receives messages from 
node 1. After the nodes receive at least 2f prepara-
tion messages (including from themselves) that are 
identical to the pre-preparation messages, the system 
enters the next stage.
Stage 4: Commit stage. Nodes 0, 1, 2, and 3 broad-
cast the confirmation message to each other. In par-
ticular, because node 3 does not send the message, 
node 0 only receives the confirmation messages from 
nodes 1 and 2, node 1 only receives the confirma-
tion messages from nodes 0 and 2, and node 2 only 
receives the confirmation messages from nodes 0 and 
1. After the nodes receive at least 2f + 1 confirmation 
messages (including from themselves), the system 
enters the next stage.
Stage 5: Reply stage. Nodes 0, 1, and 2 update their 
logs and reply with a confirmation message to the 
client. After the client receives f + 1 reply messages, 
it concludes that the current view consensus is 
complete.

According to the PBFT algorithm’s consensus pro-
cess, the primary node role is taken by nodes in turn. In 
other words, the primary node selected by this selection 
method in the next round is predictable, which poses a 
threat to system’s security. Although the primary node 
can be reselected through view switching, this will con-
sume many network resources, which is the main rea-
son for the low throughput and high delay of the PBFT 
algorithm. In addition, communication is needed in the 

stages 2, 3 and 4, which is closely related to the number of 
nodes participating in consensus. However, the algorithm 
lacks an exit mechanism for malicious nodes, so they 
always remain in the system, which not only increases the 
communication overhead but also weakens the security 
of the system.

Three‑way quick sorting algorithm
Generally, introducing a credit scoring mechanism into 
the PBFT algorithm can effectively enhance the reliabil-
ity of nodes. For example, Zheng et al. [19] proposed that 
each node’s credit value should be assigned as 50 points 
during initialization. In the subsequent consensus pro-
cess, if a node can successfully produce a block, the sys-
tem will reward it with 10 credit points. Conversely, if the 
node acts maliciously, the system will deduct 10 points 
from its credit value. Therefore, in the case of a large 
number of nodes and consensus rounds, there will inevi-
tably be many nodes with the same credit values. When 
the nodes’ credit values need to be sorted and grouped, 
the three-way quick sorting algorithm can be adopted, 
which has a greater advantage in time complexity and 
efficiency when the data are already ordered or there are 
a lot of repetitive data. Furthermore, the three-way quick 
sorting algorithm can not only ensure the efficiency of 
the system but also quickly screen out the nodes with 
high and low credit values. In particular, it can avoid the 
problems of system burden caused by complex group-
ing methods and unreliable grouping caused by simple 
grouping methods.

Generally, the three-way quick sorting algorithm 
adopts the idea of “partitioning”. It selects a baseline 
element (x) and divides the set of data to be sorted into 

Fig. 1  The PBFT algorithm consensus process



Page 5 of 20Liu et al. Journal of Cloud Computing           (2024) 13:74 	

three intervals: less than x, equal to x, and greater than x. 
In the subsequent sorting process, only the intervals less 
than x and greater than x need to be sorted recursively, 
while the interval equal to x is not processed. The algo-
rithm is presented in Fig. 2.

The partition method traverses the array once from 
left to right. In particular, before partition, it main-
tains a pointer lt such that the elements to the left of lt 
are all greater than x. Similarly, it maintains a pointer gt 
such that the elements to the right of gt are all less than 
x. It also maintains a pointer i such that the elements in 
a[lt..i-1] are equal to x and those in a[i..gt] are waiting to 
be scanned. When partitioning, it compares a[i] and x 
and treats the elements differently according to the com-
parison result. If a[i] is greater than x, it swaps a[lt] with 
a[i] and moves lt and i one place back. If a[i] is less than 
x, it swaps a[gt] with a[i] and moves gt one place forward. 
Finally, if a[i] is equal to x, it moves i one place back. It 
should be noted that the scanning operation should be 
performed until i > gt. After partitioning, recursion is 
performed on the intervals greater than x and less than 
x. The algorithm needs to compare the elements in these 
two intervals and the baseline element; then, it performs 
the same operation as in partitioning. As a result, the 
final ordered three-interval array is obtained.

As mentioned above, the data in the middle interval are 
only a single value x. That is in the case of a mass of data, 
many data will be divided into the intervals less than x 
and greater than x. However, the same operation needs 
to be completed for these two intervals as in partition. 

Therefore, the algorithm needs to perform a large num-
ber of recursions to complete the final partition. Further-
more, the algorithm is more restrictive in the range of the 
middle interval data, so it faces some limitations in divid-
ing the data into three intervals.

Proposed CG‑PBFT algorithm
Algorithm model
The proposed CG-PBFT algorithm divides nodes into 
three groups according to their credit values and votes 
the primary node from the master-node group, which 
avoids the predictability of the primary node selection. 
Additionally, it limits the privileges of the observation-
node group to participate in consensus, which reduces 
the algorithm’s communication overhead. For clarity, we 
take 10 nodes in the system as an example, and the over-
all algorithm model is described in Fig. 3.

As presented in Fig. 3, there are 4 steps in the proposed 
CG-PBFT algorithm.

Step 1: Evaluate the nodes’ credit values. Before each 
round of consensus, 10 nodes’ credit values are eval-
uated by using the credit evaluation model, which 
will be discussed in detail below.
Step 2: Group nodes by their credit values. Through 
the optimized three-way quick sort algorithm, the 10 
nodes are first ranked according to their credit val-
ues. Then, the credit values of the nodes are divided 
into 3 intervals. As shown in Fig. 3, first, nodes 0 and 
1 are grouped into the master-node group. Second, 

Fig. 2  The three-way quick sorting algorithm division
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nodes 2 to 6 are grouped into the consensus-node 
group. Finally, nodes 7 to 9 are grouped into the 
observation-node group.
Step 3: Select the primary node. In CG-PBFT, the 
consensus-node group and the observation-node 
group vote for nodes in the master-node group. As 
shown in Fig. 3, in the consensus-node group, nodes 
2 to 5 vote for node 0, and node 6 votes for node 1. In 
the observation-node group, nodes 7 and 8 vote for 
node 0, and node 9 votes for node 1. According to the 
designed vote counting rules, the votes obtained by 
the nodes in the master-node group are counted, and 
node 0, with the most votes, is elected as the primary 
node; this method ensures the unpredictability of pri-
mary node selection.
Step 4: Begin the consensus process. Nodes 0 and 
1 in the master-node group and nodes 2 to 6 in the 
consensus-node group participate in consensus. 
After consensus, the numbers of times each of the 10 
nodes has been in each group is counted. In this case, 
node 9 has been in the observation-node group for a 
long time, and its credit value is ranked at the bottom 
of the list, so it is recognized as an “inactive” node 
and is removed from the system. Finally, all nodes’ 
credit values are recalculated to start the next round 
of consensus.

Credit evaluation model
The node’s credit evaluation indicators designed in this 
paper are divided into three categories: direct credit 
value, indirect credit value and historical credit value. 
The direct credit value is related to a node’s behavior of 
voting and consensus completion. The indirect credit 
value is related to the situation of a node in each group 
and its credit ranking. The historical credit value is 
related to the accumulated credit value of a node.

Definition 1 Consensus credit C_con. The consen-
sus credit is used to evaluate the consensus completion 
degrees of nodes. The consensus credit of node i C_coni 
is calculated by the following formula:

where Num_ci represents the number of times node i has 
successfully completed consensus and TNum_ci denotes 
the total number of times node i has participated in 
consensus. Whether a node can successfully complete 
consensus is the most important criterion by which to 
judge the quality of nodes. Therefore, the node’s con-
sensus credit holds the maximum weight in the credit 
value evaluation indicators, which has an obvious influ-
ence on the nodes’ credit values. In brief, the more times 
nodes successfully complete consensus, the higher the 

(1)C_coni =
Num_ci

TNum_ci

Fig. 3  The overall algorithm model
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consensus credit rewards they will receive. This makes 
it easier for the master-node group’s nodes to remain in 
this group for a long time. Additionally, it encourages the 
consensus-node group’s nodes to enter the master-node 
group to contest primary node election.

Definition 2 Voting credit C_vot. The voting credit is 
used to evaluate the voting completion degrees of nodes. 
The voting credit of node i, C_voti, is calculated by the 
following formula:

where Num_vi is the number of times node i has success-
fully completed voting and TNum_vi is the total num-
ber of times node i has participated in voting. Notably, 
the more times nodes successfully complete voting, the 
higher the voting rewards they will receive. In particular, 
the voting credit encourages the consensus-node group’s 
nodes to increase their credit rewards by actively vot-
ing in order to enter the master-node group. Similarly, 
observation-node group’s members have the opportu-
nity to enter the consensus-node group to obtain more 
privileges.

Definition 3 Direct credit value C_dir. The direct 
credit value evaluates nodes’ behavior during the whole 
consensus process. In this process, the main behavior of a 
node is to complete consensus and voting. As a result, its 
direct credit value is the weighted sum of the consensus 
credit and voting credit. The node i’s direct credit value, 
C_diri, is calculated by the following formula:

where λ is the consensus credit weight, μ is the voting 
credit weight, and these two weights satisfy λ + μ < 1.

Definition 4 Active credit C_act. The active credit esti-
mates nodes’ active status in each group. If a node exists 
in the master-node group or consensus-node group mul-
tiple times, then it is active and more likely to be a trusted 
node. The node i’s active credit, C_acti, is calculated by 
the following formula:

where Num_GMi is the number of times node i has been 
in the master-node group and Num_GCi is the number 
of times node i has been in the consensus-node group. 
γ is the weight of Num_GMi , and γ > 0.5, which means 
that the more times a node is in the master-node group, 
the more active it is, and the more active credit it will be 
awarded.

Definition 5 Incentive credit C_inc. The incentive 
credit estimates motivate nodes with lower credit values 

(2)C_voti =
Num_vi

TNum_vi

(3)C_diri = � ∗ C_coni + µ ∗ C_voti

(4)C_acti =
γ ∗ Num_GMi + (1− γ ) ∗ Num_GCi

TNum_ci

to work hard. For this reason, it is related to the credit 
ranking of nodes. The node i’s incentive credit value, C_
inci, is calculated by the following formula:

where C_ranki represents the node i’s credit ranking and 
n represents nodes’ total number in the system. More 
precisely, if a node with the highest credit value, then it 
is ranked 1, the incentive credit of this node is e−

n−1
n  . In 

contrast, the node with the lowest credit value is ranked 
n, then its incentive credit is 1. Notably, the lower the 
node ranking is, the higher the incentive credit the node 
receives. For example, nodes in the consensus-node 
group will receive higher incentive credit than nodes in 
the master-node group. As seen from the formula, the 
incentive credit range is [ e−

n−1
n  , 1], which is related to the 

number of nodes participating in the system.
Definition 6 Indirect credit value C_idir. The indirect 

credit value is the indirect evaluation of node consen-
sus behavior, which is used to reward nodes with good 
long-term performance and incentivize low credit val-
ues’ nodes in the system. The indirect credit value is the 
weighted sum of the active credit and incentive credit. 
The node i’s indirect credit value, C_idiri, is calculated by 
the following formula:

where α is the active credit weight, β is the incentive 
credit weight, and these two weights satisfy α + β < 1.

Definition 7 Comprehensive credit value C. The com-
prehensive credit value is a comprehensive evaluation of 
the direct, indirect and historical behavior of nodes used 
to give good nodes credit rewards and give malicious 
nodes a credit penalty. The comprehensive credit value 
is the weighted sum of the direct credit value, indirect 
credit value and historical credit value. The node i’s com-
prehensive credit value, Ci, is calculated by the following 
formula:

where C_hisi is node i’s historical credit value and η is its 
weight.

Definition 8 Credit value normalization. After the 
comprehensive credit value is calculated, data normaliza-
tion is used to make it fall in the range of [0,1]. The nor-
malization result is

(5)C_inci = e−
n−C_ranki

n

(6)C_idiri = α ∗ C_acti + β ∗ C_inci

(7)Ci =
C_diri + C_idiri + η ∗ C_hisi , if i is a good node
1
2
∗ C_hisi , if i is amalicious node

(8)Crediti =
Ci − Cmin i

Cmax i − Cmin i
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where Cmaxi is the maximum comprehensive credit value 
of nodes and Cmini is the minimum comprehensive credit 
value of nodes in each round of consensus.

Generally, by dynamically adjusting the values of λ, μ, 
α, β and η, the direct credit value, indirect credit value 
and historical credit value are adjusted. Moreover, it 
is worth mentioning that the weights need to satisfy 
λ + μ + α + β + η =1 and λ + μ > α + β, where λ is the larg-
est weight. The description of each credit evaluation 
indicator is shown in Table 1.

Credit grouping mechanism
After evaluating the node credit values according to the 
credit evaluation model, the nodes are divided into the 
master-node group, the consensus-node group and the 

observation-node group according to their credit values. 
The privileges for each node group are shown in Table 2 
below.

Master‑node group
The master-node group is the candidate group used to 
obtain the primary node. In other words, only nodes in 
the master-node group can serve as the primary nodes. 
Specifically, when the primary nodes need to be switched, 
nodes will be revoted from this group to replace them. 
In addition, nodes that are not selected as the primary 
nodes will participate in consensus together with the 
consensus-node group’s nodes. In particular, to ensure 
the fairness of consensus, this group’s nodes do not have 
the authority to vote for primary nodes.

Table 1  Credit evaluation indicators

Node type First-level 
evaluation 
indicators

Symbolic 
representation

Weight Second-level 
evaluation 
indicators

Symbolic 
representation

Weight Third-level 
evaluation 
indicators

Symbolic 
representation

Weight

Good nodes Direct credit 
value

C_diri λ + μ Consensus 
credit

C_coni λ Number 
of successful 
consensus 
completions

Num_ci -

Total number 
of consensus 
participation 
rounds

TNum_ci -

Voting credit C_voti μ Number 
of successful 
voting com-
pletions

Num_vi -

Total number 
of voting 
participation 
rounds

TNum_vi -

Indirect credit 
value

C_idiri α + β Active credit C_acti α Number 
of times the 
node exists 
in the master-
node group

Num_GMi γ

Number 
of times the 
node exists 
in the con-
sensus-node 
group

Num_GCi 1-γ

Total number 
of consensus 
participation 
rounds

TNum_ci -

Incentive 
credit

C_inci β Credit ranking C_ranki -

Number 
of nodes

n -

Historical 
credit value

C_hisi η - - - - - -

Malicious 
nodes

Historical 
credit value

C_hisi 1/2 - - - - - -
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Consensus‑node group
Nodes in this group participate in consensus and vote on 
the primary node selection. In particular, nodes in this 
group have high voting credibility.

Observation‑node group
In contrast to the consensus-node group, nodes in this 
group can only vote on nodes in the master-node group 
to select the primary nodes in the next round. In particu-
lar, nodes in this group have low voting credibility.

Grouping based on optimized three‑way quick sort‑
ing  After the credit evaluation mechanism is intro-
duced into the PBFT algorithm, since most nodes are 
good nodes, there will be more nodes’ credit values 
in the middle interval and more nodes with the same 
credit values. Similarly, in the credit mechanism pro-
posed by Zheng et  al. [19], after multiple rounds of 
consensus, a very few excellent nodes’ credit values 
will continue to rise to near the maximum threshold 
through the reward of 10 points per round, and a very 
few malicious nodes’ credit values will continue to fall 
to near the minimum threshold through the punish-
ment of 10 points per round. However, most normally 
behaving nodes’ credit values will be in the maximum 
interval centered on the initial credit value through the 
credit value reward and punishment. Therefore, it is dif-
ficult to meet the requirements by using the ordinary 
three-way sorting method. For this reason, an optimized 
three-way quick sorting algorithm is considered in this 
paper. In particular, it divides nodes’ credit values into 
three groups, which is more applicable to use a range 
instead of the intermediate threshold value. On the one 
hand, the optimized three-way quick sorting algorithm 
expands the range of the middle-of-the-road data. On 
the other hand, regardless of whether nodes are already 
in order or whether there are many nodes with the same 
credit values, the proposed algorithm can perform bet-
ter than the ordinary three-way quick sorting algorithm. 
More precisely, the optimized algorithm reduces the 

number of recursions to improve the system operation 
efficiency, and it can divide the array more efficiently.

As mentioned previously, the range of node credit values 
is [0,1]. To ensure the system’s security, we offset the ratio 
of the three groups to 2:5:3. More precisely, first, nodes 
with credit values in the interval (0.8,1] are divided into 
the master-node group, which ensures that the primary 
nodes have higher credit values and are more likely to be 
trusted nodes. Second, nodes with credit values in the 
interval [0.3,0.8) are divided into the consensus-node 
group, which ensures that enough nodes can participate 
in consensus. Finally, nodes with credit values in the 
interval [0,0.3) are classified into the observation-node 
group, which ensures that enough nodes can participate 
in voting. The specific grouping process of optimized 
three-way quick sorting is presented in Fig. 4 below.

As shown in Fig. 4, the optimized three-way quick sorting 
method traverses the credit array Cn once from left to right. 
More precisely, it determines the grouping interval [0.3, 
0.8]. It maintains a pointer lt such that all elements to the 
left of lt are greater than 0.8. It maintains a pointer gt such 
that all elements to the right of gt are less than 0.3. Finally, 
it maintains a pointer i such that all elements in Cn[lt..i-1] 
are less than or equal to 0.8 and greater than or equal to 0.3. 
In particular, the elements in Cn[i..gt] are the elements to 
be scanned. When grouping, the array Cn[i] is compared 
with the interval value. If Cn[i] is greater than 0.8, then 
Cn[lt] and Cn[i] will be exchanged; afterward, lt and i will 
be shifted one place back. Conversely, if Cn[i] is less than 
0.3, then Cn[gt] and Cn[i] will be exchanged; afterward, gt 
will be shifted one place forward. Significantly, if Cn[i] is in 
the interval, there is no need to process the element, and i 
is shifted forward one place until the end of scanning for 
i > gt. Once the grouping is completed, the three intervals 
are recursively sorted by the three ways of quick sorting, 
and the final credit-ordered three-interval grouping array is 
obtained. The credit-grouping algorithm for the optimized 
three-way method is described below.

According to the optimized grouping algorithm’s process, 
the algorithm’s time complexity is analyzed. In the worst 
case, when there is no node with the same credit values, 
each division requires comparing each element of the credit 
array and swapping its position, and the ith split requires n-i 
keyword comparisons to find the ith record, which is the 
pivot’s position. In this case, the time complexity is:

(9)
T (n) = C1n+ T (n− 1)=C1n+ C2(n− 1)+ T (n− 2)

= .... =
n−1
∑

i=1

(n− i)=O(n2)

Table 2  Node privileges

Node Group Privileges

Acting as 
the primary 
node

Participating 
in consensus

Participating 
in voting

Master-node group ✓ ✓
Consensus-node group ✓ ✓
Observation-node 
group

✓
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In the general case, that is, each division exactly divides 
the nodes into three equal parts, and in each equal part, 
each interval recurs separately, it can be analyzed that the 
optimized algorithm’s recursion tree is a ternary tree, and 
its tree height is log3 (n + 1), then the average time com-
plexity of the algorithm is:

Algorithm 1. Optimized three-way credit grouping algorithm

(10)
Tavg (n) = C1n+ 3Tavg (n/3)

=C1n+ 3(C2 ∗ n/3+ 3Tavg (n/9))

= C1n+ C2n+ 9Tavg (n/9) = .... = O(n log3 n)

Node group conversion  After node credit grouping, the 
identity conversion between different node groups is 
achieved based on nodes’ behavior in the whole consen-
sus process and the proposed credit evaluation model. 
The process of node identity conversion between the 
three groups is described in Fig. 5.

As mentioned previously, in the master-node group, 
the nodes’ credit values are higher than 0.8. As long as 
this group’s nodes complete consensus normally, they 

Fig. 4  The process of optimized three-way quick grouping
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can obtain consensus credit and active credit rewards, 
which can help them stay in this group for a long time. 
In addition, the more times they are in the master-node 
group and the more times they complete consensus, the 
higher the credit rewards they can obtain. For this rea-
son, it is easier for them to be voted as the next primary 
node. However, if they fail to reach a consensus or behave 
maliciously once, their credit values will be halved. As a 
result, they are first moved to the consensus-node group, 
which gives them the opportunity to participate in con-
sensus. In particular, it should be noted that if there are 
two consecutive instances of malicious behavior or fail-
ure, the node will be relegated to the observation-node 
group. Similarly, nodes in the consensus-node group can 
improve their credit values by actively completing con-
sensus and voting to enter the master-node group. How-
ever, once nodes in the consensus-node group behave 
maliciously, their credit values will be halved; as a result, 
they will be very likely to move into the observation-node 
group. Notably, in the observation-node group, nodes’ 
credit values are lower than 0.3, and they can only obtain 
credit rewards by actively voting for the primary node 
consistently to have the chance to enter the consensus-
node group or even the master-node group. In particular, 
nodes that have been in the observation-node group for 
a long time and have lower credit rankings will be judged 
as “inactive” nodes, and the system will remove them to 
reduce overhead.

Primary node selection
As previously discussed, to guarantee the fairness and 
randomness of the primary node selection, a voting 
mechanism is introduced. Interestingly, it is guaranteed 
that the primary nodes will be nodes with high credit 
values but not necessarily the highest credit value’s 
node. For this reason, the voting mechanism can avoids 
the emergence of “oligopoly” nodes. To ensure that the 
primary node selected by voting has higher credibility, 
we introduce voting weights. The number of votes for 
nodes is calculated by the following formula:

where Sum_vi represents the final count of votes received 
by the master-node group’s nodes, Sumv_GCi denotes the 
total number of votes received from the consensus-node 
group’s nodes, and Sumv_GOi represents the total num-
ber of votes received from the observation-node group’s 
nodes. Furthermore, Pc indicates the consensus-node 
group’s vote weight, Po indicates the observation-node 
group’s vote weight, and Pc + Po = 1. The consensus-node 
group should have more weight than the observation-
node group. Therefore, in this paper, we set the two vot-
ing weights according to their credit interval ratio of 5:3; 
that is, we set Pc as 0.625 and Po as 0.375.

Based on the voting rules for selecting the primary 
nodes, nodes that receive voting information also need 
to act as counting nodes for voting. In addition, the 

(11)Sum_vi = Pc ∗ Sumv_GCi + Po ∗ Sumv_GOi

Fig. 5  Node’s identity conversion between the three groups
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primary nodes must store not only transaction infor-
mation but also voting information during their term. 
More precisely, the voting information format is < vote, 
p, g, i > , where i denotes the voted node’s identifier, g 
denotes the voting node’s group, and p denotes the vot-
ing node’s identifier. When the voting message is broad-
cast to each node participating in voting, the nodes that 
receive the voting message calculate the final votes of 
the nodes according to Formula (11). Afterward, they 
broadcast to each other the node identifier with the 
most votes. In particular, it is worth mentioning that 
if there are nodes with the same number of votes, the 
node with the smaller identifier is broadcast. After the 
node identifier is broadcast, the nodes confirm whether 
the received voting results are consistent with each 
other. If more than half of the nodes receive the same 
node identifier information, then this node will become 
the primary node for the next round. Finally, the voting 
information will be saved in the local record.

The voting process is shown in Fig.  6. As mentioned 
previously, nodes store and send the voting information 
to the consensus-node group’s nodes and the observa-
tion-node group’s nodes. Afterward, nodes receiving the 
information perform vote counting and then broadcast 
and confirm the message to each other to select the pri-
mary node for the next round.

The main algorithm for the primary node’s selection 
is described below. Through the primary node selection 
algorithm, when there is a node in the master node group 
with the highest credit value and serving as the primary 
node for many times, the nodes in the consensus node 
group and the observation node group can jointly decide 
the next round of primary nodes. Doubtlessly, most of 
them will not choose to vote for the node that serves as 
the primary node for many times, which avoids the gen-
eration of “oligopoly” nodes and improves the enthusi-
asm of other nodes.

Algorithm 2. Primary node selection algorithm

CG‑PBFT algorithm flow
The CG-PBFT algorithm’s overall flow is described in 
Fig. 7 below. The initial credit values of all nodes are set 
to 0.7. In the first round, all nodes in the system are ran-
domly divided into two equal groups: the master-node 
group and the consensus-node group. After grouping is 
completed, since there is no observation-node group at 
this point, only the consensus-node group needs to vote 
for the master-node group’s nodes. Starting in the second 
round, when nodes already have different credit values, 
they are grouped by the optimized three-way quick sort-
ing algorithm and reselect the primary node.

In the whole voting process, if any node acts mali-
ciously, does not vote, votes incorrectly, or does not 
respond to the voting message, this node’s credit value 
is halved. As a result, the group and credit ranking of 
the nodes will be changed. Therefore, voting will be 
restarted after updating the local voting records Num_vi, 
TNum_vi, Num_GCi and C_ranki. After voting is com-
pleted, the CG-PBFT algorithm enters the consensus 
stage. To improve the consensus efficiency, the PBFT 
consensus process is optimized, and the commit stage 
is removed. Generally, when view switching occurs, the 
commit phase ensures the consistency of a node’s status 
in the system. Specifically, we use the transaction serial 
number and block height to determine the block state. 
More precisely, when the primary node acts maliciously 
or becomes unavailable, resulting in the need for view 
change, the system will begin the process of revoting to 
select the primary node. After a transaction request is 
successfully executed, each node will correspondingly 
update the successful records by adding 1 to the records 
Num_vi, TNum_vi, Num_ci, TNum_ci, Num_GMi, Num_
GCi and Num_GOi of nodes in different groups. After 
updating all the records, the system saves them in local. 
Next, the node credit values are calculated based on the 
credit evaluation model. Finally, the system determines 
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whether nodes have been in the observation-node group 
many times and have lower credit rankings; if so, they are 
excluded from the system. Furthermore, the number and 
the credit rankings of nodes are updated again. Finally, 
the current round ends, and we determine whether to 
continue consensus.

Algorithm analysis
Security analysis
The proposed CG-PBFT algorithm is an improved ver-
sion of the PBFT algorithm; Essentially, the fault toler-
ance is the same as PBFT algorithm, which tolerates no 
more than one-third of malicious nodes. Similar to the 
PBFT algorithm, its security relies on digital signature, 
time stamp and Merkle tree technologies to ensure the 
security of messages. In addition, the proposed CG-PBFT 
algorithm introduces a credit grouping model and a vot-
ing mechanism, which not only divide nodes into three 
groups but also assign different privileges to nodes in dif-
ferent groups. In particular, nodes with higher credit val-
ues are elected to act as the primary nodes. At the same 
time, this method prevents lower credit values’ nodes 
from entering consensus stage. Furthermore, it eliminates 
“stubborn” nodes to ensure the system’s reliability and 
security. According to Credit evaluation model section, 
as nodes’ credit values are a comprehensive evaluation 
of their behavior and status in consensus, this evaluation 
lasts from the start of voting to the completion of consen-
sus. The penalty mechanism for nodes’ credit values effec-
tively limits the malicious behavior of nodes. Through 
the above analysis method, we can conclude that the pro-
posed CG-PBFT algorithm is able to carry out consensus 
while ensuring the security of the system.

Communication overhead analysis
As the description in PBFT consensus section shows, 
messages need to be sent in three phases of the PBFT 

algorithm, and the communication overhead T1 for the 
whole consensus phase is the sum of these three phases:

In contrast, the communication overhead of the 
proposed CG-PBFT algorithm mainly lies in the vot-
ing process and consensus process. More precisely, 
assume that there are n nodes in the system, the num-
ber of nodes in the master-node group is n1, the num-
ber of nodes in the consensus-node group is n2, and 
the number of nodes in the observation-node group is 
n3, where a =

n1
n  , b =

n2
n  , and c = n3

n  . On the one hand, 
as described in Fig. 6, three stages of the voting process 
need to send messages. Therefore, when the voting 
information is sent to the counting nodes, the number 
of times of communications among nodes is (n2 + n3). 
When the voting results are broadcast after calculating 
the number of votes, the number of times of communi-
cations among nodes is (n2 + n3)*(n2 + n3-1). When the 
voting results are confirmed, the number of times of 
communications among nodes is (n2 + n3). As a result, 
the communication overhead of the voting process is:

On the other hand, during the consensus process, 
messages need to be sent in the pre-preparation and 
preparation phases. Similarly, the number of times 
of communications among nodes is (n1 + n2-1) and 
(n1 + n2-1)2. As a result, the communication overhead 
in the consensus process is:

In summary, the whole algorithm’s communication 
overhead T2 is:

(12)T1 = (n− 1)+ (n− 1)2 + n ∗ (n− 1)
= 2n ∗ (n− 1)

(13)
Tv = (n2 + n3)+ (n2 + n3) ∗ (n2 + n3 − 1)+ (n2 + n3)

= (n2 + n3) ∗ (n2 + n3 + 1)

(14)Tc = (n1 + n2 − 1)+ (n1 + n2 − 1)2

= (n1 + n2) ∗ (n1 + n2 − 1)

Fig. 6  The voting process
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According to Eqs.  12 and 15, the communication 
overhead ratio T between the proposed CG-PBFT algo-
rithm and PBFT algorithm is obtained:

(15)

T2 = Tv + Tc

= (n2 + n3) ∗ (n2 + n3 + 1)+ (n1 + n2) ∗ (n1 + n2 − 1)

= (a2 + b
2
+ 2b) ∗ n2 + (c − a) ∗ n

(16)T =
T2

T1
=

(a2 + b2 + 2b) ∗ n2 + (c − a) ∗ n

2n ∗ (n− 1)

(17)

≤
(a+ b)2 ∗ n2 + c ∗ n

2n ∗ (n− 1)
=

(1− c)2 ∗ n2 + c ∗ n

2n ∗ (n− 1)

Fig. 7  CG-PBFT algorithm flow
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where the value of c is in the range [0,1). We set the range 
of n from 4 to 28, and the three-dimensional surface dia-
gram of the communication overhead ratio is obtained, 
as shown in Fig. 8, the x-axis is c, the y-axis is n, and the 
z-axis is the T.

In the given range, regardless of how c and n change, 
the value of T’ is always less than 1, and the maximum 
value is no more than 0.7. In other words, the com-
munication overhead of the proposed CG-PBFT algo-
rithm is always less than that of the PBFT algorithm. 
In particular, as the number of nodes increases, the 
communication overhead ratio decreases. In addition, 
due to the introduction of a voting mechanism in the 
proposed CG-PBFT algorithm, the primary node selec-
tion method is more secure and reliable, which greatly 
reduces the view switching’s probability; thus, the pro-
posed CG-PBFT algorithm is more efficient in practical 
applications.

Simulation experiment results and analysis
The proposed CG-PBFT algorithm’s effectiveness is veri-
fied through simulation experiments, which include a 
performance analysis and comparison of the proposed 
credit evaluation model, the node identity conversion 
between node groups, and the algorithm’s throughput 
and delay. Specifically, the simulation experiments use an 

Intel(R) Core(TM) i7-7500U processor with a 2.70 GHz 
clock rate, an 8 GB memory environment, the Windows 
10 operating system and the Golang language to imple-
ment the simulation test. According to the the credit 
evaluation model’s requirements, direct credit value is 
the main evaluation index of a node’s credit value, which 
should be greater than indirect credit value and histori-
cal credit value. In the direct credit value, the consensus 
credit’s weight is the largest. In the indirect credit value, 
the weight of nodes in the master node group should be 
higher than that of nodes in the consensus node group. 
Different weight values only change the proportion of 
direct credit value, indirect credit value and historical 
credit value in the comprehensive credit value, and have 
little effect on the node’s identity conversion. Accord-
ing to this, Under the condition that λ + μ > α + β and λ is 
the largest, three different values of direct credit value’s 
weight λ + μ, indirect credit value weight’s α + β and his-
torical credit value’s weight η are tested, which are (0.4, 
0.35, 0.25), (0.5, 0.3, 0.2) and (0.6, 0.25, 0.15) respectively. 
When the three values change, the change of node’s 
credit value for 5 rounds of testing is shown in Fig. 9.

With the increase of consensus rounds, the node’s credit 
value shows an upward trend under different parameter 
values. Compared with the other two curves, when the 
node’s weight is set to (0.6, 0.25, 0.15), the credit value 

Fig. 8  3D surface of the communication overhead ratio
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changes the smoothest, indicating that its credit value 
evaluation is the most stable. Therefore, this paper sets the 
experimental parameters: direct credit value’s weight is 0.6, 
indirect credit value’s weight is 0.25, and historical credit 
value’s weight is 0.15. The individual values of λ, μ, α, β have 
little influence on the overall credit value, more precisely, 
the detailed parameters can be seen in Table 3 below.

Changes in the node credit value
To verify the validity of the credit evaluation model 
clearly, we set up four nodes with different attributes, 
namely, good nodes, malicious voting nodes, non-mali-
cious consensus failure nodes and malicious consen-
sus nodes. We test a total of 10 rounds of the consensus 
process and track the changes in credit values and the 
dynamic conversion between the four types of nodes.

More precisely, node 1 is a “good” node, which nor-
mally reaches consensus and votes in each consensus 
round. In contrast, node 2 is set to not vote in the sec-
ond and seventh rounds but always normally participates 
in consensus. Similarly, node 3 is set as a non-malicious 
consensus failure node, which becomes inactive in the 
fourth round but returns to normal in the later consen-
sus rounds. Node 4 is set as a Byzantine node, which con-
tinues to act maliciously from the fifth round onwards. 
The results of the credit value changes and intergroup 
dynamic conversions of the four types of nodes are 
shown in Fig. 10a and b, respectively.

As exhibited in Fig.  10a, the initial credit values of 
the four nodes are set to 0.7. Next, there is a significant 
change in the nodes’ credit values after the first round 
of consensus. Notably, the credit values of node 4 and 
node 1 rise by the same amount from the initial value. In 
contrast, the credit values of node 2 and node 3 decline 
from their initial values. This is because node 1 and node 
4 are randomly assigned to the consensus-node group, 
while node 2 and node 3 are randomly assigned to the 
master-node group; compared to node 1 and node 4, 
they lack voting credit rewards. For this reason, these 
results provide substantial evidence that the initial nodes 
randomly assigned to the master-node group will not 
always be in the master-node group; they may appear in 
the consensus-node group in the second round. Gener-
ally, they need to complete consensus through their own 

Fig. 9  Weight change test

Table 3  Detailed experimental parameters

Parameters Value

C_con weight λ 0.35

C_vot weight μ 0.25

C_act weight α 0.15

C_inc weight β 0.1

Num_GM weight γ 0.6

C_his weight η 0.15

Fig. 10  Node credit value changes
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efforts to move into the master-node group. This reduces 
the chance that nodes in the master-node group will act 
maliciously; while increases the node consensus motiva-
tion and dynamicity.

In each round of consensus, node 1 has no voting mis-
takes or malicious actions, and it performs well, so its 
credit value continues to rise steadily. Specifically, at the 
beginning, its credit value increases significantly and 
then slows down after the node moves into the master-
node group, but the node always remains in the mas-
ter-node group and its credit value is the highest. Node 
2 fails to vote in the second and seventh rounds, so its 
credit value decreases in these rounds. In addition, due to 
the failure of node 3 in the fourth round, its credit value 
quickly falls to the lowest point; however, it does not fail 
in subsequent rounds, so its credit value rises sharply at 
first and then slowly after rising to a certain height. Last, 
node 4 persistently acts maliciously after the fifth round, 
and its credit value drops rapidly, halving several times to 
approach zero.

In Fig. 10a, the changes in four different nodes confirm 
that the credit evaluation model can reliably assess the 
behavior of nodes. It can not only prevent some nodes’ 
credit values from being too high so that other nodes lose 
enthusiasm but also avoid over penalization of non-mali-
cious consensus nodes. Moreover, it gives the non-mali-
cious consensus nodes the opportunity to quickly recover 
their credit values to regain the right to participate in 
consensus and be elected as the primary node.

The Fig.  10b shows that nodes are all in the consen-
sus-node group at the beginning. Afterward, node 1 
enters the master-node group by performing well, and 
it remains in the master-node group for a long time. 

Conversely, the behavior of node 2 largely remains good; 
however, there are two voting failures, so it still stays 
in the consensus-node group and is unable to enter the 
master-node group. It should be noted that node 3 ini-
tially performs well, and it enters the master-node group 
from the consensus-node group. However, due to one 
consensus failure, it is moved to the consensus-node 
group. Interestingly, through continuous effort, it enters 
the master-node group again. However, node 4 continues 
to act maliciously; as a result, it is moved from the mas-
ter-node group to the consensus-node group and then 
to the observation-node group; finally, it remains in the 
observation-node group.

The node identity conversions between the three node 
groups are shown in Fig. 10b. This verifies that dynamic 
identity conversion between node groups can be effec-
tively realized by giving credit rewards and punishments 
to nodes through a credit evaluation mechanism.

The numbers of times the four different-attribute nodes 
appear in the different node groups are shown in Fig. 11.

Node 1 performs well; undoubtedly, it is most often 
in the master-node group. Node 3 breaks down once, so 
it has the second-highest frequency in the master-node 
group. Node 2 has the least frequency in the master-node 
group because of two nonvoting occurrences. Finally, 
node 4 continues to act maliciously after the 5th round, 
so it has the highest frequency in the observation-node 
group. The results in Fig. 11 provide substantial evidence 
that the proposed credit evaluation model can provide 
a good foundation for the credit grouping mechanism, 
which can strengthen the credibility of the primary 
node’s selection and continuously weaken the influence 
of malicious nodes.

Fig. 11  Numbers of times the 4 nodes are in each group
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Throughput
To verify the proposed CG-PBFT algorithm’s efficiency, 
we compared the throughput of several typical algo-
rithms, including the PBFT algorithm, the Paxos algo-
rithm [26], the HotStuff algorithm [27], and the GPBFT 
algorithm proposed in [20]. More precisely, the experi-
ments test the throughput of the five algorithms for 4, 8, 
12, 16, 20 and 24 nodes, and each group of experimental 
tests is conducted 50 times. The average results are pre-
sented in Fig. 12.

At the beginning, the throughput of the PBFT algo-
rithm decreases with the maximum degree, and that 
of the proposed CG-PBFT algorithm decreases with 
the minimum degree. Afterward, when the number of 
nodes varies from 4 to 24, the throughput of the five 
algorithms decreases continuously and remains stable 
eventually. In particular, the proposed CG-PBFT algo-
rithm maintains 35 TPS, with a 51.3% increase in aver-
age throughput over the PBFT algorithm. In addition, 
due to the need of pairwise communication between 
nodes and the lack of an exit mechanism for malicious 
nodes, the PBFT algorithm has the largest throughput 
decrease. Contrastively, HotStuff algorithm uses star 
topology communication to resist malicious nodes, 
which is greatly limited by hardware resources and 
devices, and it also lacks an exit mechanism for mali-
cious nodes, which leads to low throughput and an 
obvious downward trend in the experiment. In con-
trast, Paxos algorithm relies on a single primary node 
to collect and distribute messages, with the increase 
of the number of system nodes, the load pressure of 
the primary node increases, resulting in a continuous 
decline in throughput. the PBFT 、the Paxos and the 
HotStuff algorithm all exhibit an obvious decreasing 

trend of throughput. However, the GPBFT and the 
proposed CG-PBFT algorithm have a slow decrease 
in throughput, and the throughput eventually remains 
almost flat. It is worth mentioning that the GPBFT 
algorithm also uses credit grouping to improve the 
PBFT algorithm, but it has low throughput due to the 
lack of exit mechanism for nodes with low credit val-
ues. In particular, the experimental results show that 
the CG-PBFT algorithm has considerably high effi-
ciency; it can not only efficiently carry out fast group-
ing but also adjust the consensus scale to improve the 
system’s operation efficiency.

Delay
Under the same experimental conditions, we test the 
delay of the five algorithms and conduct a comparative 
analysis. The results are obtained by taking the average of 
50 tests, as shown in Fig. 13.

The five algorithms have little difference in delay at the 
beginning. However, when the number of nodes reaches 
16, due to the increase in internode communication, the 
delays of the PBFT, Paxos, and HotStuff algorithms start 
to increase rapidly and are much greater than those of 
the other two algorithms. Among them, the Paxos algo-
rithm’s communication complexity is lower than PBFT 
algorithm’s communication complexity, so its delay is 
lower than that of PBFT algorithm, and due to the chain 
consensus method and multi-master node consensus, 
the delay of HotStuff algorithm is lower than that of 
Paxos algorithm. However, due to the limitation of hard-
ware equipment, its delay enters the bottleneck period. 
Because the GPBFT and CG-PBFT algorithm use group-
ing consensus to optimizes the amount of communica-
tion between nodes, the system’s delay rises slowly and 

Fig. 12  Throughput test comparison
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eventually levels off gradually. Compared to the PBFT 
algorithm, the proposed CG-PBFT algorithm reduces 
the average latency by 64.5%. However, the GPBFT algo-
rithm is unable to evict malicious nodes from the system, 
and the number of groups increases with the number of 
nodes. Therefore, its delay is higher than that of the pro-
posed CG-PBFT algorithm. In particular, the experimen-
tal results show that the CG-PBFT algorithm can greatly 
improve system’s operation efficiency, which can enable 
the system’s transactions to be quickly completed.

Conclusion
In summary, we propose an efficient CG-PBFT algo-
rithm based on credit grouping. According to the node’s 
behavior in the system, we design a credit mechanism to 
accurately measure the quality of nodes. In addition, we 
use an optimized quick grouping mechanism to restrict 
node’s privileges and introduce a voting mechanism 
to increase the security of the selection of the primary 
nodes. Furthermore, we adopt a credit reward and pun-
ishment mechanism for nodes to encourage them to par-
ticipate in appropriate system behavior. The experimental 
results show that the proposed method has higher secu-
rity, higher throughput and lower delay, so it is able to 
improve the system’s operation efficiency. Moreover, it 
improves the system’s consensus positivity. In the face of 
application scenarios with a large number of nodes and 
the need to quickly complete the consensus, the CG-
PBFT algorithm is used for credit grouping, which can 
screen out high-quality consensus nodes, reduce the con-
sensus’s scale, and ensure system’s security and efficiency.

However, the proposed CG-PBFT algorithm still has 
deficiencies in terms of credit evaluation indicators and 
communication complexity and needs further investi-
gation. In future research, we will continue to optimize 

the credit evaluation indicators and the communica-
tion topology to reduce the algorithm’s communication 
complexity to the linear level. In addition, a direct proof 
of the usability of the proposed CG-PBFT algorithm in 
practical application scenarios was not obtained, and the 
detailed deployment process could be clarified and fur-
ther investigated.

Authors’ contributions
Juan Liu and Xiaohong Deng contributed the main ideas and wrote the main 
manuscript tests. Wangchun Li and Kangting Li established the evaluation 
and provided the simulation experimental ideas. All authors reviewed the 
manuscript.

Funding
This work was supported by the National Natural Science Foundation of 
China (No. 61762046, No.62166019), the National Natural Science Foundation 
of Jiangxi Province (No. 20224BAB202019) and the Science and Technol-
ogy Research Project of the Education Department of Jiangxi Province (No. 
GJJ218506).

Availability of data and materials
The coding data that support the findings of this study are available from the 
corresponding author upon request.

Declarations

Competing interests
The authors declare no competing interests.

Received: 6 November 2023   Accepted: 20 March 2024

References
	1.	 Seven S, Gang Y, Soran A, Onen A, Muyeen S (2020) Peer-to-peer energy 

trading in virtual power plant based on blockchain smart contracts. IEEE 
Access 8:175713–175726

	2.	 Xia Q, Dou W, Guo K, Liang G, Zuo C, Zhang F (2021) Survey on block-
chain consensus protocol. J Softw 32(2):277–299

Fig. 13  Delay test comparison



Page 20 of 20Liu et al. Journal of Cloud Computing           (2024) 13:74 

	3.	 Liu Y, Fang Z, Cheung MH, Cai W, Huang J (2022) An incentive mechanism 
for sustainable blockchain storage. IEEE Trans Netw 30(5):2131–2144

	4.	 Shao Q, Jin C, Zhang Z, Qian W, Zhou A (2018) Blockchain: architeture and 
research progress. Chin J Comput 41(5):969–988

	5.	 Rehman M, Javed IT, Qureshi KN, Margaria T, Jeon G (2023) A cyber secure 
medical management system by using blockchain. IEEE Trans Comput 
Soc Syst 10(4):2123–2136

	6.	 Yang Y, Zou Y, Xu M, Xu Y, Yu D, Cheng X (2022) Distributed consensus 
for blockchains in internet-of-things networks. Tsinghua Sci Technol 
27(5):817–831

	7.	 Woo J, Fatima RF, Kibert CJ, Newman RE, Tian Y, Srinivasan RS (2021) 
Applying blockchain technology for building energy performance meas-
urement, reporting, and verification (MRV) and the carbon credit market: 
a review of the literature. Build Environ 205(9):108199–108209

	8.	 Zhu C, Xu D, Ren N, Cui H, Zhao Y (2021) Model and implementation of 
geographic data transaction certificate and copyright protection based 
on blockchain and digital watermarking. Recent Adv Comput Sci Com-
mun 50(12):1694–1704

	9.	 Deng X, Wang Z, Li J, Wang J, Li K (2022) Comparative research on main-
stream blockchain consensus algorithms. Appl Res Comput 39(1):1–8

	10.	 Zhang S, Lee J (2020) Analysis of the main consensus protocols of block-
chain. ICT Express 6(2):93–97

	11.	 Li S, Huang L, Deng X, Wang Z, Liu H (2021) Consortium chain consensus 
algorithm based on credit. Appl Res Comput 38(08):2284–2287

	12.	 Liu Y, Lan Y, Li B, Miao C, Tian Z (2021) Proof of Learning (PoLe): empower-
ing neural network training with consensus building on blockchains. 
Comput Netw 201:108594

	13.	 Li S, Xiong W, Deng X (2023) Byzantine fault-tolerance consensus algo-
rithm based on perfect binary tree communication. J Electron Inf Technol 
45(07):2484–2493

	14.	 Castro M, Liskov B (2002) Practical byzantine fault tolerance and proactive 
recovery. ACM Trans Comput Syst 20(4):398–461

	15.	 Qi W, Si P, Gu C (2023) Improved PBFT consensus algorithm for multi-
scenario Internet of Things. Appl Res Comput 41(3):9–20

	16.	 Wang P, Wang X, Shen Y, Wang J, Xiong X (2023) PBFT optimiza-
tion algorithm based on community contribution. Math Biosci Eng 
20(6):10200–10222

	17.	 Zong W, Feng W, Huang M, Feng S (2023) ST-PBFT: an optimized PBFT 
consensus algorithm for intellectual property transaction scenario. Elec-
tronics 12(325):325

	18.	 Liu S, Zhang R (2023) P-PBFT: an improved blockchain algorithm to 
support large-scale pharmaceutical traceability. Comput Biol Med 
154:106590

	19.	 Zheng X, Feng W, Huang M, Feng S (2021) Optimization of PBFT algo-
rithm based on improved C4.5. Math Probl Eng 4(1):1–7

	20.	 Wang Y, Zhong M, Cheng T (2022) Research on PBFT consensus algorithm 
for grouping based on feature trust. Sci Rep 12(1):1–12

	21.	 Ren X, Tong X, Zhang W (2023) Improved PBFT consensus algorithm 
based on node role division. J Comput Commun 9(2):20–38

	22.	 Liu S, Zhang R, Liu C, Xu C, Zhou J, Wang J (2022) Improvement of the 
PBFT algorithm based on grouping and reputation value voting. Int J 
Digit Crime Forensics 14(3):1–15

	23.	 Xu G, Bai H, Xing J, Luo T, Xiong N, Cheng X, Liu S, Zheng X (2022) SG-
PBFT: a secure and highly efficient distributed blockchain PBFT consensus 
algorithm for intelligent Internet of vehicles. J Parallel Distrib Comput 
164(6):1–11

	24.	 Wang R, Xing C, Xu Q, Yuan S (2021) Efficient byzantine fault toler-
ant algorithm with supervsion mechanism. Comput Eng Appl 
57(18):142–148

	25.	 Tang S, Wang Z, Jiang J (2022) Improved PBFT algorithm for high-fre-
quency trading scenarios of alliance blockchain. Sci Rep 12(1):4426

	26.	 Lamport L (1998) The part-time parliament. ACM Trans Comput Syst 
16(2):133–169

	27.	 Yin M, Malkhi D, Reiter M, Gueta, G, Abraham I (2019) HotStuff: BFT con-
sensus with linearity and responsiveness. In: Proceedings of the annual 
ACM symposium on principles of distributed computing. p 347–356

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	CG-PBFT: an efficient PBFT algorithm based on credit grouping
	Abstract 
	Introduction
	Related works
	PBFT consensus
	Three-way quick sorting algorithm

	Proposed CG-PBFT algorithm
	Algorithm model
	Credit evaluation model
	Credit grouping mechanism
	Master-node group
	Consensus-node group
	Observation-node group

	Primary node selection
	CG-PBFT algorithm flow

	Algorithm analysis
	Security analysis
	Communication overhead analysis

	Simulation experiment results and analysis
	Changes in the node credit value
	Throughput
	Delay

	Conclusion
	References


