
Yang et al. Journal of Cloud Computing (2024) 13:118
https://doi.org/10.1186/s13677-024-00681-1

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Adaptive scheduling‑based fine‑grained
greybox fuzzing for cloud‑native applications
Jiageng Yang1, Chuanyi Liu1* and Binxing Fang1 

Abstract 

Coverage-guided fuzzing is one of the most popular approaches to detect bugs in programs. Existing work
has shown that coverage metrics are a crucial factor in guiding fuzzing exploration of targets. A fine-grained coverage
metric can help fuzzing to detect more bugs and trigger more execution states. Cloud-native applications that writ-
ten by Golang play an important role in the modern computing paradigm. However, existing fuzzers for Golang still
employ coarse-grained block coverage metrics, and there is no fuzzer specifically for cloud-native applications, which
hinders the bug detection in cloud-native applications. Using fine-grained coverage metrics introduces more seeds
and even leads to seed explosion, especially in large targets such as cloud-native applications.

 Therefore, we employ an accurate edge coverage metric in fuzzer for Golang, which achieves finer test granular-
ity and more accurate coverage information than block coverage metrics. To mitigate the seed explosion problem
caused by fine-grained coverage metrics and large target sizes, we propose smart seed selection and adaptive task
scheduling algorithms based on a variant of the classical adversarial multi-armed bandit (AMAB) algorithm. Extensive
evaluation of our prototype on 16 targets in real-world cloud-native infrastructures shows that our approach detects
233% more bugs than go-fuzz, achieving an average coverage improvement of 100.7%. Our approach effectively
mitigates seed explosion by reducing the number of seeds generated by 41% and introduces only 14% performance
overhead.

Keywords  Coverage-guided fuzzing, Cloud-native application, Fine-grained coverage metric, Scheduling algorithm,
Exploration-exploitation problem

Introduction
Fuzzing is one of the most successful vulnerability detec-
tion techniques. Coverage-guided greybox fuzzing, a
state-of-the-art category of fuzzing, is the most popular
and effective approach to finding bugs in various soft-
ware and hardware. For example, as a classic coverage-
guided fuzzer, AFL [1] has found thousands of security
bugs and has been optimized in various aspects by aca-
demic researchers. Most existing fuzzers focus on finding
memory corruption bugs in targets written in low-level

languages like C or C++. With the development of fuzz-
ing, some solutions such as go-fuzz [2], python-afl [3],
and RULF [4], pay attention to fuzzing in high-level
languages.

Most coverage-guided greybox fuzzing can be mod-
elled as a fuzzing loop that mutates a selected seed to
generate new inputs, as shown in Fig. 1. First, the target
application is analyzed and probes are instrumented to
monitor code coverage. As the instrumented application
is executed, the probes will modify the data structure
(typically a fixed-size bitmap) that maps the execution
space of the target to reflect the coverage. This mecha-
nism is called the coverage metric. Then, the new inputs
are executed as test cases in the instrumented applica-
tion. Depending on the coverage metrics applied, the
fuzzing loop stores interesting test cases as new seeds

*Correspondence:
Chuanyi Liu
liuchuanyi@hit.edu.cn
1 School of Computer Science and Technology, Harbin Institute
of Technology, Shenzhen 518055, Guangdong, People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00681-1&domain=pdf

Page 2 of 22Yang et al. Journal of Cloud Computing (2024) 13:118

in the corpus for future iterations. For coverage-guided
fuzzing, coverage measurement is a critical metric for
distinguishing outstanding test cases. Code coverage
quantitatively measures the degree of testing for the tar-
get application, which is used to select seeds that trigger
new execution states. The simplest coverage metric is
block coverage. A typical block coverage metric maps all
basic blocks to a fixed-size bitmap and records the hit of
blocks by enabling the corresponding bit of the triggered
block. However, it cannot track the order of blocks, espe-
cially when a block has multiple precedents, resulting in
a loss of coverage information. Meanwhile, the fixed size
bitmap may not be sufficient to represent all the blocks,
especially for large applications. Unfortunately, existing
fuzzers for Golang (such as go-fuzz and Go Fuzzing [5])
still use coarse-grained block coverage metrics, which
hampers the effectiveness of fuzzing.

As the fuzzing loop iterates, new seeds are continu-
ously added to the corpus, waiting to be scheduled for
future mutations. The more sensitive the coverage met-
rics applied, the more frequently new seeds are added. In
most fuzzers, a scheduled seed is mutated and executed
in a fixed pattern, which determines the process capabil-
ity of a fuzzer. Therefore, with a high-sensitive coverage
metric, a sequential seed scheduler will be faced with
too many new seeds to select the best seeds, i.e., the seed
explosion problem.

A selected seed is mutated to generate inputs that can
trigger new execution states. But simple random-based
mutation leads to limited exploration of the test cases.
Some work has employed adaptive mutation strategies to
improve the efficiency of exploration [6–9]. For example,
as shown in Fig. 1, go-fuzz uses three mutation strate-
gies to help fuzzing break hard branches such as CRC32
checksum. Specifically, go-fuzz uses a mutation strategy
called sonar to find associations between input bytes and
unique branching behaviors, and uses a mutation strat-
egy called versify to generate structural inputs. However,

go-fuzz employs a fixed manner to arrange three muta-
tion strategies for each seed, which is unsuitable for all
seeds and thus limits the exploitation of the seeds.

Wang et al. [10] propose a concept of sensitivity to
estimate the impact of a coverage metric on bug detec-
tion. The evaluation result of [10] shows that more sen-
sitive coverage metrics do not always give better results,
although a sensitive coverage metric distinguishes more
states. A more sensitive coverage metric will generate
more seeds to select, which may exceed the fuzzer’s abil-
ity to schedule. Similarly, using more complex mutation
strategies results in higher overhead and more seeds,
which reduces the scheduling ability of the fuzzers. Espe-
cially, the larger the size of the target to be tested, the
more seeds in the corpus, leading to a more serious seed
explosion problem. Wang et al. [11] model the fuzzing as
a multi-armed bandit problem and propose a hierarchi-
cal scheduler to solve the seed explosion caused by highly
sensitive coverage metrics. Unfortunately, this work does
not consider more smart mutation strategies to solve
hard branch of targets.

Our observation is that cloud-native applications are
much larger than the normal test targets written by Gol-
ang. Existing coverage metrics of fuzzers for Golang [2, 5]
are simple block coverage metrics implemented with fixed
size bitmaps, resulting in the coarse test granularity and
inaccurate coverage information. Gan et al. [12] point out
that inaccurate coverage results in loss of code coverage
and even misses potential vulnerabilities. In this work,
we propose an accurate edge coverage metric to optimize
the test granularity of fuzzers for Golang. Specifically, we
apply a hashing scheme similar to CollAFL [13], which
considers the control flow information of all edges, and
design an adaptive bitmap to capture accurate coverage
information.

On the one hand, the accurate edge coverage metric
leads to many more seeds and even seed explosion, espe-
cially for large targets such as cloud-native applications.

Fig. 1  The main fuzzing process of coverage-guided fuzzing. The components in yellow represent the focus of our solution. The green elements
signify the inputs to the fuzzing process

Page 3 of 22Yang et al. Journal of Cloud Computing (2024) 13:118 	

On the other hand, applying more complex mutation
strategies further reduces the processing capability of
the fuzzers, resulting in more severe seed explosion. In
order to address the seed explosion problem, we regard
the fuzzing loop as an adversarial multi-armed ban-
dits problem [14], and propose smart seed and adaptive
task schedulers to balance exploration and exploitation.
More specifically, our smart seed scheduler selects a seed
achieved high coverage to trigger more code region as
exploitation and a fresh seed to discover surprising new
branches as exploration. The adaptive task scheduler
arranges flexible task strategies to mutate and execute
seeds that generate new test cases tending towards explo-
ration or exploitation.

To validate and evaluate our solution, we implemented
a prototype, CloudFuzz based on go-fuzz. We performed
a series of evaluation experiments on 16 targets from
real-world cloud-native infrastructures. Compared to go-
fuzz, CloudFuzz can find more bugs in real-world cloud-
native applications. CloudFuzz achieved better coverage
in all targets and improved coverage by more than 50%
in most of targets. And CloudFuzz can achieve the same
coverage faster than go-fuzz. Compared to go-fuzz with
our accurate edge coverage metric, our seed and task
schedulers significantly reduce the number of seeds in
the corpus, mitigating the seed explosion problem caused
by fine-grained coverage metrics.

Contributions. Our main contributions are:

•	 We propose and implement an accurate edge cover-
age metric that can achieve finer-grained and precise
fuzzing in greybox fuzzers for Golang.

•	 We design smart seed selection and adaptive task
scheduling algorithms based on a variant of the clas-
sical AMAB algorithm that balances exploration and
exploitation for fuzzing, mitigating the seed explo-
sion problem caused by highly sensitive coverage
metrics.

•	 We implement our prototype CloudFuzz based on
go-fuzz, which is suitable for bug detection in large
cloud-native applications.

•	 We evaluate CloudFuzz on 16 targets from real-
world cloud-native applications. The results show
that CloudFuzz can detect more bugs and achieve
higher code coverage, and effectively mitigate seed
explosion in the process of fuzzing cloud-native
applications. Compared to go-fuzz, CloudFuzz intro-
duces only about 14% performance overhead.

Motivation
Coverage‑guided fuzzing in cloud‑native application
Fuzzing detects vulnerabilities in applications by feed-
ing collected or generated random data into a target.

Coverage-guided fuzzing is one of the most popular
techniques for finding bugs. Coverage-guided fuzzing
utilizes a heuristic scheduling algorithm to select inter-
esting seeds for higher code coverage. Figure 1 illustrates
the coverage-guided fuzzing process in more detail.
Given a program and an initial corpus, the fuzzing pro-
cess involves a sequence of fuzzing loops. In each fuzz-
ing loop, the seed scheduler selects an interesting seed
to mutate. The scheduled seed will be mutated to gener-
ate different test cases. The fuzzing process captures the
coverage through instrumentation when a new test case
is tested. If a test case triggers new coverage, it will serve
as a seed for future rounds. However, there is a serious
problem in the above fuzzing process, which is the seed
explosion problem.

The seed explosion problem in fuzzing refers to a situ-
ation where the number of new seeds increases dra-
matically and uncontrollably. More specifically, a single
mutation of a seed consists of multiple variation opera-
tors (such as bitflip operator, arithmetic operator, splicing
operator, havoc operation and so on), which generates
a large number of test cases. If the coverage metric is
too fine-grained, a slight difference in execution will be
measured as new coverage, resulting in most of these test
cases triggering new coverage and being served as new
seeds. In addition, if the size of the target application is
too large, there will be too many execution states of the
target, which will also result in many test cases being
served as new seeds. These are the two potential causes
of the seed explosion problem. Thus, a single mutation
can add multiple seeds to the corpus, causing the num-
ber of new seeds to grow unrestrainedly, even exponen-
tially, making it difficult to manage or prioritize seeds. In
Fig. 2, to better illustrate the seed explosion problem, we
show the growth curve of seeds in the corpus when go-
fuzz (using a fine-grained coverage metric) tests cloud-
native applications within 24 hours. In these targets, the
number of new seeds continues to grow without a trend
towards convergence.

There are many practical coverage-guided fuzzers for
unsafe languages such as C or C++. The concept of fuzz-
ing is useful for type-safe languages such as Golang. The
fuzzers for C/C++ detect memory corruption vulner-
abilities, such as heap overflow, Use-after-Free, and so on,
which can be exploited to cause security problems such
as code execution or privilege escalation. The fuzzers for
Golang try to find bugs like out-of-bounds, null pointers
and so on. Since Golang is memory-safe language, these
bugs cannot lead to serious security issues, but can cause
the unexpected behaviors/results of applications. In most
cases, the fuzzer for Golang are used for unit testing. The
fuzzing results demonstrate that go-fuzz is an effective
tool for finding bugs in a single function or a group of

Page 4 of 22Yang et al. Journal of Cloud Computing (2024) 13:118

functions in a unit. However, the situation is quite differ-
ent for cloud-native applications. Although the majority
of cloud-native applications are composed of type-safe
languages like Golang. But the large size and multiple
component interactions of cloud-native applications
bring about new problems for most fuzzing techniques.

Firstly, most fuzzers for Golang use block coverage
metrics, which is an appropriate metric for a test unit.
But some research [10, 13] have shown that fine-grained
coverage metrics like edge coverage metrics make fuzz-
ers more sensitive and thus find more vulnerabilities.
Second, the large size of cloud-native applications leads
to severely inaccurate coverage measurement by cover-
age metric implementations, as demonstrated by [13].
Thirdly, numerous execution states frequently generate
new seeds, exceeding the scheduling capabilities of fuzz-
ers. These factors affect the effectiveness and efficiency of
greybox fuzzing in cloud-native applications.

Coverage metrics for greybox fuzzing
As aforementioned, coverage-guided greybox fuzzing
detects bugs or vulnerabilities via a feedback loop. The
fuzzing process preserves test cases that trigger new cov-
erage in the corpus and selects new seeds from the cor-
pus to mutate and generate test cases for higher coverage.
In the feedback loop, coverage is the most important
indicator to measure the quality of test cases. There are
many research works on new solutions for coverage met-
rics [11, 13, 15]. Go-fuzz [2] and VUzzer [16] utilize block
coverage metrics to track whether new basic blocks are
triggered. AFL-families [1, 17, 18] use edge coverage met-
rics to achieve more sensitivity. Wang et al. [10] proposed

a formal definition of sensitivity to evaluate the impact of
coverage metrics on the fuzzing process. Edge coverage
metrics are more sensitive than block coverage metrics,
contain sufficient coverage information, and introduce
less overhead than more sensitive coverage metrics.

In fact, edge coverage metrics lead to finding more
bugs than block coverage metrics, and finding bugs faster
than block coverage metrics. In general, edge coverage
metrics will increase the acceptable memory overhead
and runtime overhead more than block coverage met-
rics. Edge coverage metrics strike a balance between effi-
ciency and sensitivity [13]. Other more sensitive coverage
metrics will cause more memory overhead and runtime
overhead, but gain limited improvement in vulnerability
detection. The previous research [10] shows that there is
no grand slam coverage metric that can beat the others.
In addition, we need to consider the more serious perfor-
mance overhead caused by coverage metrics for fuzzing
large cloud-native applications. Therefore, we apply an
edge coverage metric to optimize go-fuzz for better vul-
nerability discovery capability.

Problem of coverage measurement
Coverage information is utilized to construct a fuzzing feed-
back loop. Inaccurate coverage information will reduces the
effectiveness of the fuzzing feedback loop. Researchers have
designed coverage metrics that take into account different
critical objectives, such as memory access [19] or context
information [20, 21]. Unfortunately, the implementation of
coverage metrics is often limited. For instance, AFL applies
a 64KB bitmap to capture all triggered edges during the
fuzzing process. CollAFL [13] described the serious hash

Fig. 2  The growth curve of the number of seeds in the corpus when fuzzing the real-world cloud-native application within 24 hours. Each subplot
shows time on the horizontal axis and the number of seeds in the corpus on the vertical axis

Page 5 of 22Yang et al. Journal of Cloud Computing (2024) 13:118 	

collision problem since the implementation of coverage
measurement in AFL. AFL-sensitive [10] proposed several
coverage metrics that considered multiple aspects of code
and memory. However, the implementation of these cover-
age metrics still relies on different hash algorithms to repre-
sent the coverage in a fixed bitmap.

In popular fuzzers for Golang such as go-fuzz, the
implementation of the coverage metric is similar to AFL.
Go-fuzz uses a 64KB bitmap to calculate block cover-
age. As discussed above, the code coverage information
measured by this approach is non-deterministic due to
hash collisions. The larger the target size, the higher the
hash collision rate in go-fuzz. Especially, for cloud-native
applications, the size of most cloud-native applications
far exceeds the coverage measurement capabilities of go-
fuzz. As shown in Table 1, to accurately assess the hash
collision problem in cloud-native applications, we calcu-
lated the hash collision rate of go-fuzz in typical cloud-
native applications. The results show that if we fuzz the
common targets in Table 1 using go-fuzz, the average
of the hash collision rates in coverage measurement is
72.39%, which means that the measured coverage infor-
mation is very inaccurate. The number of basic blocks
for all targets is much larger than the bitmap size of go-
fuzz. In kubelet internals components, the hash collision
rate of the bitmap even exceeds 90% . The hash collision
problem causes the accuracy of coverage to decrease to
only one-tenth. Therefore, we employ an adaptive cover-
age measurement approach to avoid inaccurate coverage
through the hash collision problem.

Scheduling strategy in greybox fuzzing
Fuzzers maintain a seed queue, scheduling interesting
seeds one by one, and executing them to trigger bugs.
The processing capability of a fuzzer is limited, so it is
essential to prioritize some favored seeds to maximize
code coverage. In other words, the fuzzer must schedule

appropriate seeds to traverse as much code as possible
in a limited amount of time. There are two factors that
affect the scheduling ability of a fuzzer. First, the sensitiv-
ity of applied the coverage metric determines the num-
ber of new test cases generated. The more sensitive the
coverage metric, the more test cases will be reserved in
a round of the fuzzing loop. Secondly, the processing
capability of a fuzzer determines how many test cases can
be tested in a given time, i.e. the thoughput. The higher
the thoughput, the higher the scheduling capability of a
fuzzer. The above two factors will be more obvious for
large fuzzed targets. Obviously, a larger fuzzed target will
generate a larger seed queue and introduce more perfor-
mance overhead. In cloud-native applications, this prob-
lem can significantly affect the scheduling capability of
go-fuzz, as most cloud-native applications are too large
to effectively select appropriate seeds for fuzzing.

To address the side effects of excessive seeds generated
by the fuzzer, some work has attempted to model seed
scheduling as an exploration and exploitation problem, and
to utilize learning approaches to solve this problem. To be
specific, the seed scheduler should select some fresh seeds
to explore whether these new seeds could lead to crucial
new coverage, and should also prioritize the exploration
of some valuable seeds that have brought more new cov-
erage in recent rounds than others. Wang et al. [11] mod-
elled the fuzzing process as a multi-armed bandit problem
and utilized a classical UCB1 algorithm to optimize the
seed scheduler. The scheme regarded the generated seeds
as arms and calculated the reward of each seed for seed
scheduling. However, there are two problems that need
attention in this scheme. First, the traditional MAB prob-
lem assumes a fixed number of arms, but the number of
generated seeds increases as the fuzzer progresses. Second,
the reward probability of each arm is fixed, which is differ-
ent from the fuzzing process, where the probability of find-
ing a new coverage decreases. EcoFuzz [22] proposed to

Table 1  Statistics of components in the common cloud-native applications

Statistics includes the number of basic blocks and the corresponding collision ratio in go-fuzz’s bitmap

Application Component Basic blocks Collision

argo-cd util-db 473259 86.15%

argo-cd project 530052 87.64%

containerd config 88782 26.18%

etcd api_marshal 166591 60.66%

etcd etcdserver 159082 58.80%

kubernetes apiextension 159919 59.02%

kubernetes api_marshal 366502 82.12%

kubernetes api_roundtrip 274873 76.16%

kubernetes kubelet 741863 91.17%

kubernetes kublet-server 509396 87.13%

Page 6 of 22Yang et al. Journal of Cloud Computing (2024) 13:118

model the process of searching seeds and assigning energy
as a variant of the Adversarial MAB (AMAB) problem. In
the AMAB problem, it is assumed that the reward of each
arm is arbitrary during each play, which is similar to the
probability of discovering a new path during the fuzzer
processing. SYZVEGAS [23] applied reinforcement learn-
ing to kernel fuzzing by modelling the fuzzing process as an
AMAB problem. It proposed an automated way to identify
the most promising task and invoked the best seed associ-
ated with the task. Overall, a sophisticated seed scheduler is
essential for establishing the coverage-guided fuzzing feed-
back. It should balance the trade-off between fresh seed
exploration and high coverage seed exploitation. Our con-
tribution is to apply reinforcement learning to cloud-native
applications for fuzzing processing and attempt to make
use the AMAB model to schedule the most important tasks
and the most promising seeds during the fuzzing feedback.

Design
We propose CloudFuzz, a dynamic fuzzing approach that
applies a fine-grained coverage metric to improve the bug
detection capacity of go-fuzz, which is suitable for cloud-
native applications, by selecting appropriate seeds and
scheduling optimal tasks.

Accurate fine‑grained coverage metric
As aforementioned, coverage is one of the most impor-
tant indicators to guide a fuzzer in exploring target appli-
cations and detecting bugs. Applying a proper coverage
metric could help the fuzzing process to better under-
stand the execution states of the fuzzed target. It is deter-
mined by appropriate coverage granularity and accurate
coverage measurements.

Typical coverage solutions
The coverage metric a critical factor in coverage-guided
fuzzing. A better coverage metric can improve the effec-
tiveness of fuzzers. From the perspective of test granular-
ity, there are three common types of coverage metrics,
i.e., block coverage, edge coverage and path coverage.
Many fuzzers use block coverage, such as VUzzer, lib-
Fuzzer, etc., because block coverage is the simplest way
to measure. But, as mentioned above, block coverage
loses the precedent information of a block. Edge coverage
addresses this common situation, where a block has mul-
tiple precedents blocks. The edge coverage metric tracks
the hit count of edges consisting of two adjacent blocks
during program execution. Edge coverage is widely used
by many fuzzers, such as the famous AFL. However, edge
coverage cannot infer the execution order of each edge,
which loses some of the coverage information. The path
coverage metric tracks the order of edges, including the

most complete coverage information. Another important
factor in determining which coverage metrics to apply
in our fuzzer is the performance overhead of measur-
ing coverage. Although path coverage provides the most
complete coverage information, but storing and captur-
ing path coverage information will introduce an unac-
ceptable overhead. Therefore, it is not a wise choice to
apply path coverage to a common fuzzer. Edge coverage
metrics achieve a trade-off between efficiency and cov-
erage information. Many studies have shown that edge
coverage metrics are a proven and reliable solution. Some
work [10, 13] proposed the hash collision problem in the
implementation of edge coverage in AFL. Furthermore,
AFL utilizes a 64KB bitmap to represent all triggered
edges during fuzzing. A triggered edge A → B is mapped
into the bitmap by a simple hash formula as follows:

The edge_trans is used as the key to index into the bitmap
to access the hit count of this edge. prev and cur are the
key values of the blocks A and B that make up edge A → B.
This oversimplified hash formula and the too small bit-
map setting bring about a serious hash collision problem.

Go-fuzz uses a regular block coverage metric in go-fuzz.
Similar to AFL, go-fuzz also employs a 64KB bitmap to cap-
ture all blocks and computes the hash for block A as follows:

The cur is the key value of block A. Go-fuzz utilizes
the sha1 algorithm to hash this buffer and translates the
hashed data into a 32-bit unsigned integer that is used
as the index of block A in the bitmap.

CloudFuzz’s solution
Since an accurate edge coverage measurement will
improve the effectiveness and efficiency of fuzzers, we
argue that avoiding hash collisions in coverage track-
ing is a proper approach to address the fuzzing solution
in cloud-native applications. In summary, we propose
a solution that applies an accurate edge coverage met-
ric to optimize the coverage tracking feature of go-fuzz
and absolutely avoids inaccurate coverage due to com-
promised implementations. One observation is that the
hash of an edge is determined by the current block and
its precedents. Obviously, since an edge of a program is
directed, if two edges end with different current blocks,
they must be different edges. Moreover, if two edges
end with the same current block, the necessary infor-
mation to distinguish them is the difference between
them, i.e., the precedents of the current block. There-
fore, we discuss the edge coverage as two cases.

(1)edge_trans = (prev ≪ 1)⊕ cur.

(2)block_trans = sha1{cur | cur ≫ 8 | cur ≫ 16 | cur ≫ 24}.

Page 7 of 22Yang et al. Journal of Cloud Computing (2024) 13:118 	

Algorithm 1 CloudFuzz’s Coverage Solution

Case 1: Blocks with a single precedent. If a block has
only one precedent, we could directly assign a identifier
to this edge. Since the triggering the ending block of this
edge belongs to only one situation, we do not need to
distinguish which block is the precedent. We only need
to find and assign a unique identifier to the block with
a single precedent. To reduce the runtime overhead of
coverage tracking, the unique identifier of blocks could
be resolved as a constant at compile-time. In this case,
the hit count of an edge can be recorded with only one
array access operation, which greatly reduces the runtime
overhead compared to AFL’s hash calculation.

Case 2: Blocks with multiple precedents. If a block
A has multiple precedents, we are unable to rely only
on block A to distinguish edges ending up with block A.
We have to compute the hashes of edges ending up with
block A depending on block A and its execution prece-
dent at runtime. If we use a fixed hash formula to com-
pute the hashes of all edges, it is difficult to guarantee

that we will definitely avoid the hash collision problem.
Therefore, similar to [13], we utilize a dynamic hash
formula to calculate the hashes of the edges as follows:

where (x, y, z) are parameters to be determined, which
may be different for different edges. The (x, y) parameters
heuristically explore the bitmap to find unmapped space,
then the z parameter is used to trim the proper bits for
the block with multiple precedents. We use a heristical
algorithm to traverse bitmap to find suitable parameters
as Algorithm 1. If we cannot find the correct parameters
for the edges within a certain window period to avoid a
hash collision, we use the indexes of the free bits to assign
identifiers to these edges. Specifically, we utilize a sepa-
rate dictionary to record the identifiers (as the value) of
these edges (as the key). In this case, coverage tracking
involves two steps: searching for relevant identifier as an
index and recording the hit count in the bitmap.

Overall. Algorithm 1 gives an overview of this solu-
tion. It starts by parsing the the Abstract Syntax Tree
(AST) of the target application to extract the Control
Flow Graph (CFG), assigning unique identifiers to each
block, and counting the number of edges. This infor-
mation is used to define the size of the bitmap and to
distinguish between blocks with a single predeces-
sor (SingleBB) or those with multiple predecessors
(MultiBB). The exploration space required for coverage
tracking is then determined (line 2). Next, the algorithm
focuses on MultiBBs and computes appropriate hash
parameters to facilitate efficient coverage tracking (lines
4 ∼11). We design a function to refine the hash param-
eters selection process (lines 13∼29). This function
starts by extracting (x, y) parameters from the explora-
tion space (line 15) and continues by constraining the
z parameter within a given window based on the lower
half-space of block b’s identifier (line 17). It proceeds
to assess all incoming edges to block b, ascertaining if
the corresponding bits defined by the (x, y, z) tuple are
unoccupied. If the bits are available, CalcParas returns
the (x, y, z) tuple as the block’s hash parameters and
adds block b into the SolvBB set (line 9). In the event
that suitable hash parameters are not found within the
specified window, block b is placed into the UnsolvBB
collection (line 7). Then, the algorithm seeks unused
bits in the bitmap to track hit count of these blocks.
It ensures that the remaining free bits are allocated to
blocks within a single precedent. Finally, the algorithm
inserts probes with varied parameters into each block
type, culminating in the generation of the instrumented
application. This process optimizes the allocation of bit-
map space, ensuring that each basic block is monitored
accurately for execution during testing.

(3)edge_trans = (cur ≪ x)⊕ (prev ≪ y)+ z.

Page 8 of 22Yang et al. Journal of Cloud Computing (2024) 13:118

It is worth noting that the goal of this solution is to
analyzes and insert probes into the target application.
Furthermore, it only requires to update the size of the
bitmap by modifying the corresponding variable of the
instrumentation library. This means that the fuzzer itself
does not need to be recompiled. Once the edges of the
target application are defined and the corresponding bit-
map size is set, only the instrumented target application
needs to be recompiled. This process ensures that the
fuzzer remains unchanged, while the target application is
adapted to reflect the new instrumented probes.

Gain and cost assessment
As mentioned above, we model the fuzzing process as an
AMAB problem, where the seeds in the corpus are consid-
ered to be arms of bandits. In the AMAB problem, the costs
and gains incurred in the round depend on which arm is
chosen. On the one hand, during the fuzzing loop, when a
seed is selected to participate in the next round, the results
of various tasks based on this seed determine the gain of
this seed selection. On the other hand, the execution time
of these scheduled tasks implies a cost of this seed selection.
In order to model and solve the AMAB problem of fuzzing,
we need to reasonably estimate the costs and gains of a seed
selection and assign a reward to each seed selected.

First, there is no doubt that coverage is the most impor-
tant factor in determining the effectiveness of coverage-
guided fuzzing. Thus, in CloudFuzz, we consider the new
edge coverage(i.e., the number of new edges covered)
triggered by a seed as a factor that affects round-specific
gains. It is worth noting that vulnerabilities in real-world
applications can be caused by a number of factors. These
factors would help fuzzers to improve their ability to
detect bugs. Our solution does not include these factors
in the seed gain calculation, as we focus on solving the
most fundamental and critical AMAB model to explore
the approach to the optimal scheduling of fuzzing. Our
solution can be easily be extended to cover these factors.
Furthermore, the execution time of the seeds is the most
critical factor to decide the efficiency of coverage-guided
fuzzing. Similarly, we consider the execution time of a
seed as the cost of it in a given round.

Gain estimation
Based on the above two factors, we estimate the gain
of a seed in a given round. Let csi be the number of new
edges covered (i.e., the coverage improvement) by the
seed si selected in the ith round, and tsi be the time cost
in the ith round. Thus, the total coverage is denoted as
C = n

i=1 csi , and the total elapsed time as T =
∑n

i=1 tsi .
We can calculate the average energy efficiency ratio
for discovering a new path as ē = C

T
 . According the

parameters ē , we can estimate the expected coverage

improvement in the ith round is ē · tsi . In summary, we
define the gain of the seed si in the ith round as:

through the actual coverage improvement minus the
expected coverage improvement. However, the average
energy efficiency ratio ē does not accurately describe the
complexity of finding new paths in any one phase.

The reasons are as follows: 1) the number of total paths
that can be executed of a program is finite; 2) the prob-
ability of a test case triggering a new path will decreases
as the number of paths discovered increases. As a result,
the energy efficiency ratios of finding a new path at dif-
ferent phases varies greatly. [22] proposed a relationship
between the number of paths and the number of total
executions in a typical fuzzing. During an actual fuzz-
ing process, the trend in the number of paths found by
a fuzzer is similar to the Curve S in Fig. 3. In the early
phase ( 0 ∼ t1 ), the fuzzer quickly discovered a number of
paths. Then, in the next phase ( t1 ∼ t2 ), the probability of
a test case finding a new path was decreasing until a criti-
cal seed makes a breakthrough (at time t2 ). The Curve S
( t2 ∼ t4 ) then repeats the trend of the above two stages
until all paths are found or the coverage upper limit of
the fuzzer is reached.

In order to precisely calculate the energy efficiency
ratio at a given moment, we consider the Curve S as a
function between total paths and total executions. Cal-
culating the energy efficiency ratio at a moment ti will
translate into solving for the derivative of the function S
at ti . The energy efficiency ratio gti at ti is calculated as:

Unfortunately, when fuzzing real-world programs, it
is impossible to calculate the energy efficiency ratio at
all moment precisely. Therefore, we use a compromising

(4)gi = csi − ē · tsi .

(5)gti = lim
t→ti

S(t)− S(ti)

t − ti
.

Fig. 3  A relationship between the number of paths and execution
time during the fuzzing process

Page 9 of 22Yang et al. Journal of Cloud Computing (2024) 13:118 	

solution that defining a variable average energy efficiency
ratio ê . The initial ê is calculated as

Then, updating ê with ê = e(n, n+ k ·�T) when the
following conditions are satisfied:

where the current ê = e(m,n) and the parameters π could
be configured to adjust the runtime overhead. Finally, we
calculated the gain of seed si as:

In the fuzzing process of go-fuzz, a seed could be used
for triage, mutation, verifier and sonar tasks. Depend-
ing on task scheduling strategies, different seeds may
go through different handling processes, but they must
accomplish the four tasks listed above without excep-
tion. Based on the results of these tasks, we utilize Eq. 8
to estimate the rewards of the seeds over their life cycle.

Triage
First, a newly generated seed would be added to triage
queue and await triage processing. The triage task con-
tains two steps: minimization and smashing. The mini-
mization step attempts to trim some bytes from seeds
to reduce the size of the seeds while maintain the same
coverage. Reducing the size of seeds saves some of the
execution time in subsequent tasks. That is, in our model,
minimization could cut off some of cost in subsequent
executions, but there is no concern about a negative
impact on the gain of seeds. Let the execution time of
a seed s′ (i.e., the cost of s′ ) is ts

′

exec , then s′ is minimized
to a new seed s in one execution as �ts

′

exec = ts
′

exec − tsexec .
Obviously, reducing the size of seed s′ has benefits for all
tasks that involve seed s′ , saving the cost of those tasks.
All types tasks involve handling seeds with correspond-
ing approach and executing them. For example, a muta-
tion task mutates a seed firstly and then executes the
generated test case. The smaller size of seeds also saves
significant cost arising from handling. Cost savings in
one handling of seeds are positively correlated with seed
size reduction. It is not possible or necessary to accu-
rately calculate the cost savings for each handling. We
estimate the cost savings of seed s in one handling as
�tsexec = σ(ts

′

exec − tsexec) , where σ ∈ (0,+∞) is a weight in
order to indicate the correlation between handling cost
and execution cost. Formally, we estimate the total cost
savings resulting from minimization the seed s′ as

(6)ê = e(0,�T) =
S(�T)− S(0)

�T
.

(7)
|ê − e(n,n+k·�T)|

ê
≥ π .

(8)gi = csi − ê · tsi .

where m denotes the total times of handling seed s and
n denotes the total times of executing seed s. In terms of
calculating the gain of minimizing a seed S, we convert
the cost savings into the desired coverage improvement
using the parameters ê and esmin(m, n) . In contrast, we
should consider the cost savings of minimization as the
gains of minimization. Let tsmin be the cost of minimiza-
tion seed s. Finally, we calculate the total gain from mini-
mizing the seed s′ after m times handling and n times
execution as:

Another step in the triage phase is smashing. Smashing is
a type of high-priority mutation that gives each new seed a
minimal amount of attention. It is worth noting that smash-
ing performs multiple deterministic mutating algorithms
on a fresh seed, which is more efficient than absolute ran-
dom mutating in the mutation phases. As a result, the gain
of smashing is usually higher than the gain of mutation. Let
cssmh(i) be the gain (i.e., the number of new edges covered)
of seed s in the ith variation of the smashing phase, tssmh be
the total cost of smashing seed s. The total gain of smashing
is the sum of the gains from each variation in the smashing
phase. Formally, we calculate the total gain from smashing
the seed s after n times variations as:

Finally, we calculate the total gain from triage for any
one seed s as: gstri = gsmin + gssmh , which quantitatively
reflects the coverage improvement and runtime overhead
from triaging one seed s.

Mutation
Mutation is one of the most important and frequent tasks in
the fuzzing process. According to the definition of fuzzing,
a fuzzer needs to execute tested targets several times which
relies on different random data generated by the mutation
task. Furthermore, in go-fuzz, mutation tasks are performed
nine times more than verification tasks, and one thousand
times more often than sonar tasks. Through fresh test cases
generated by mutating existing seeds, the fuzzing process
will explore new execution states and trigger new vulner-
abilities. Therefore, when a test case covers new edges, it
indicates that a mutation task has produced a valuable test
case, which serves as an important factor in measuring the
gain of mutation tasks. More specifically, a mutation task
consists of two operations: first, mutating a scheduled seed

(9)
esmin(m, n) = m ·�tshld + n ·�tsexec

= (m · σ + n)(ts
′

exec − tsexec).

(10)gsmin = ê · esmin(m, n)− ê · tsmin.

(11)gssmh =

(
n∑

i=1

cssmh(i)

)
− ê · tssmh.

Page 10 of 22Yang et al. Journal of Cloud Computing (2024) 13:118

from the corpus to generate a new test case; second, execut-
ing the new test case in the target application, measuring
coverage information and whether a crash occurs.

Let tS
mut1

(i) be the cost of step 1 in ith round of muta-
tion tasks on seed s, and tS

mut2
(i) be the cost of step 2 in ith

round of mutation tasks on seed s. The cost of a mutation
task in ith round tSmut(i) = tS

mut1
(i)+ tS

mut2
(i) . In theory,

what really makes a difference to the coverage improve-
ment is the mutation operation on the seeds (the first
step). Executing test cases generated by mutations is used
to check whether the test cases have improved cover-
age. In essence, the execution operation (step 2) does not
improve coverage. Let csmut(i) be the coverage improve-
ment of ith mutating the seed s, in a narrow sense, the
gain of ith mutating the seed s can be calculated as:

In this formula, we only consider the cost of the true
mutation operation and do not include the execution
operation, which only serves as a check. In this approach,
our policy favours mutating seeds to explore the tar-
get application more often. Otherwise, in a generalized
sense, we consider the execution operation in a mutation
task to define the gain of ith mutating the seed s as:

In this approach, our policy incorporates the expense
of executions due to mutate a seed, which focuses on a
balance of exploration and exploitation. In summary,
we calculate the total gain from mutation tasks when n
mutations are made to seed s as:

where tS(i) is decided on our policy, which could be tS
mut1

(i)
(based on formula 12) or tSmut(i) (based on formula 13).

Versify and sonar
Versify and sonar serve a similar purpose and apply anal-
ogous ideas to achieve their goals. The versify task uses
a heuristic algorithm to recognize internal structures of
seeds in the corpus and generate new test cases contain-
ing similar structures. The experimental results shows
that versify task could help go-fuzz find more seeds and
cover more basic blocks. Unlike the mutation task, the
versify task only performs a series of continuous variant
operations on the current seed. This allows us to estimate
the gain of a versify task as a whole. Let cSver be coverage
improvement of seed S in a versify task, and tSver be the
total cost of versifying seed S. We calculate the grow of
versifying seed S as: gsver = csver − ê · tSver.

(12)gsmut = cSmut(i)− ê · tS
mut1

(i).

(13)gsmut = cSmut(i)− ê · tSmut(i).

(14)gsmut =

n∑

i=1

csmut(i)− ê · tS(i).

Similar to the versify task, a sonar task includes a series
of constant variant operations. A sonar task consists of
two phases of operations. The sonar task identifies cru-
cial comparison statements where both operands are
dynamic and marks these statements as sonar sites at
complier-time, replacing the left value of a sonar site with
its right value at runtime. Fortunately, most of the cost of
a versify task is caused by its first phase, namely the cost
in complier-time, which has no impact on the runtime
overhead. Thus, we do not need to take into account the
overhead of the first phase when calculating gains. Let
cSsor be coverage improvement of seed S in a sonar task,
and tSsor2 be the runtime cost of the second phase in the
corresponding sonar task. We calculate the grow of sonar
a seed S as: gssor = cSsor − ê · tSsor2.

Smart seed selection policy
Existing seed selection policies
Seed selection is a crucial step in determining which
seeds will be prioritized for the next rounds. Existing
studies have shown that, a good seed selection policy
could improve the efficiency of the fuzzer and find more
bugs in finite fuzzing rounds. There are two major cate-
gories of seed selection policies: constant feature policies
and feedback-based trade-off policies.

First, constant feature policies cause the fuzzer to pref-
erentially select seeds according to some runtime fea-
tures that are of interest to the established policies. For
instance, VUzzer [16] believed that deeper basic blocks
are more difficult to be triggered and prioritized seeds
which traversed deeper blocks. FIFUZZ [24] proposed a
context-sensitive SFI-based approach to guide fuzzing
exploring error handling code. Policy in this category typ-
ically direct fuzzers to exercise paths with fixed features
that are considered prone to producing bugs or vulner-
abilities. Related works have theoretically demonstrated
that these proposed features do correlate to some degree
with the occurrence of bugs, and have shown experimen-
tally a positive correlation with bugs. However, these poli-
cies applied to the fuzzers limit the accessible, interesting
regions of the target application. The fuzzers focus on
exploring only the specified regions that are defined in the
applied policies, but igonre valuable regions that are not
defined in the applied policies, reducing the fuzzers’ abil-
ity to find bugs.

Second, feedback-based trade-off policies make the
fuzzer to select a few high-quality seeds that have exer-
cised significantly more new coverage in historical
rounds as exploitation, and to select fresh seeds that have
rarely been selected but may lead to surprising new cov-
erage as exploration. The most important objective of
policies in this category is to strike a balance between
exploitation and exploration. For instance, AFLFast [18]

Page 11 of 22Yang et al. Journal of Cloud Computing (2024) 13:118 	

attempted to assign different energy to different seeds
based on the frequency at which the seeds were chosen
and the distribution density of the paths exercised by the
seeds, thus avoiding excessive exercise of high-freqnency
paths. EcoFuzz [22] proposed a scheme that models seed
selection as a variant of adversarial MAB problem, which
assigns different energies to seeds by estimating their
reward probabilities, assigning the appropriate energy
to each arm to achieve a trade-off between exploita-
tion and exploration. Similarly, SYZVEGAS [23] applied
an Exp3-IX-like algorithm to solve the AMAB problem
of seed selection. Unlike constant feature policies, feed-
back-based trade-off policies not only explot seeds with
expected features, but also explore fresh seeds to achieve
unintended but valuable new coverage. Recent work
has shown that feedback-based trade-off policies utiliz-
ing learning-based algorithms to address seed selection,
modelled as an exploitation and exploration problem, are
effective and efficient, improving the speed of exercise
applications and bug detection.

Algorithm 2 Seed Selection Algorithm

CloudFuzz’s seed selection policy
As aforementioned, feedback-based seed selection poli-
cies can obviously improve fuzzer’s ability to detect
bugs. Based on this observation, we construct a feedback
mechanism between the historical gain of the selected
seeds and the preference of the selection strategies,
which helps CloudFuzz to select proper seeds to strike a
balance of exploration and exploitation. Similar to exist-
ing work [22, 23], we model the seed selection process
as an Adversarial MAB (AMAB) problem. Each seed in
the corpus is regarded as an arm of bandits, and the goal
of seed selection is to obtain the maximum of the sum
of the gains from all the selected seeds. Fortunately, the
Exp3 algorithm is a proven solution for complex AMAB
problems. In this work, we have adapted the typical Exp3
algorithm to suit our gain assessment method, as shown
in Algorithm 2.

The Exp3 algorithm assigns a weight to each arm
in every round (line 6). The weights determine which
arm will be selected for next round (line 10). Then, the
weights will change depending on the reward earned in
each game (line 20). In a word, we have implemented
a feedback loop between the choices of arms and the
rewards of arms. The core step of seed selection algo-
rithm is to draw a seed it to participate the next round
according to the distribution {p1(t), p2(t), ..., pi(t)} that
is the distribution of estimated reward probabilities for
each seed in round t (line 10). Then, we calculate the total
reward of the selected seed it from achieved all tasks in
round t (line 11). The CalcGain function in Algorithm 2
consists of two steps: 1. Calculate cumulatively the total
reward of seed it in round t; 2. Normalize the total reward
of seed it . Following formulas in the previous section,
we calculate the total reward git (t) of a seed it through
accumulating the gains of all tasks (including mutation,
versify and sonar, in the case of fresh seed ti , a triage task)
in round t. The total reward git (t) can take values from
( −∞,+∞ ). However, the Exp3 algorithm requires the
reward of each arm to take values in the range [0, 1]. So,
the second step of CalcGain function is normalizing the
total reward git (t) to [0, 1]. We apply a common logistic
function to normalize the total reward as follows:

In this step, we excluded the most common Z-score
normalization or max-min normalization, because these
methods require maintenance and traversal of the histor-
ical gain data, which can cause a significant performance
overhead. In addition, we calculate the estimated reward

(15)Git (t) =
1

1+ e−git (t)
.

Page 12 of 22Yang et al. Journal of Cloud Computing (2024) 13:118

Ĝi(t) for each seed i based on its reward and reward
probability (line 12∼16). The estimated reward of each
seed will affect the weight of each seed in the next round
(line 20), which achieves the feedback mechanism.

Adaptive task scheduling strategy
As mentioned earlier, go-fuzz contains four tasks for
different goals: triage, mutation, versify and sonar. In
go-fuzz, it assigns different weights to the seeds in the
corpus to select the appropriate seeds for the next round
fuzzing. However, there is no scheduling algorithm that
can judge which tasks should be given priority. Some
work has pointed out that allocating different amounts of
energy to the task being performed based on the cover-
age features of the seeds could result in significant energy
savings.

Similar to seed selection, the task scheduler can be
modelled as a series of exploitation and exploration
behaviours. For exploitation, we should prioritize tasks
that generate more high-value seeds, which will promise
the fuzzing process attains a higher coverage in a short
period of time. For exploration, we should also attempt to
make use of high-cost but potentially effective tasks that
may help the fuzzing process break through bottlenecks
that are being experienced (e.g., hard-to-guess branches,
etc.). Invoking different tasks for the same seed will result
in the seed triggering diverse coverage and execution
results. We are concerned with a trade-off task schedul-
ing strategy that accomplishes as high coverage as pos-
sible with finite resources and time.

In order to ensure the robustness of CloudFuzz, we
reuse the exploitation-exploration strategies decision unit
to reduce the redundant and complexity of CloudFuzz.
More specifically, we also utilize the Exp3 algorithm to
achieve the adaptive task scheduling strategy. The Exp3
algorithm is a classic and useful approach of addressing
the trade-off between exploitation and exploration. Com-
pared to the Exp3 algorithm in the seed selection, there
are two differences with the Exp3-like algorithm in the
task scheduling. First, the number of arms in the task
scheduling scenario is a constant as there are only four
fixed tasks. But in the case of the seed selection, since the
number of seeds is increasing, the number of arms is also
escalating. Second, the calculation of rewards is differ-
ent for each arm when it is selected. In the seed selec-
tion scenario, the rewards of seeds are assigned as the
sum of reward from all tasks in current round. But in the
task scheduling scenario, the reward of the task fits per-
fectly with our novel gain assessment approach. Our gain
assessment is built on the increased coverage and time
cost per task.

Implementation
We implemented CloudFuzz on top of go-fuzz, as go-
fuzz still one of the most popular fuzzers for Golang. Our
implementation consists of approximately 2,000 lines of
code. It is worth noting that, our coverage metric solu-
tion and AMAB-based exploration &exploitation strate-
gies could be applied to any coverage-guided fuzzer for
Golang. Existing work shows that these approaches could
improve the efficiency of fuzzers for the C language.

As aforementioned, at compiler-time, our implemen-
tation obtains the number of nodes in ASTs (Abstract
Syntax Tree) of fuzzed targets and traverses these nodes
to build appropriate instrumented functions for differ-
ent coverage cases, as shown in Accurate fine-grained
coverage metric section. It is different from the fixed size
bitmap in go-fuzz’s implementation, we make use of a
dynamically sized slice as the coverage bitmap to adapt
to our coverage metric. In addition, we rebuilt the instru-
mented runtime library using Golang assembly, which
improves the execution efficiency of CloudFuzz.

We implemented an Exp3-like algorithm to achieve
an AMAB-based seed slection policy and task schedul-
ing strategy. As shown in Gain and cost assessment sec-
tion when a seed T is tested, we will estimate its gains by
counting the coverage improvement and runtime over-
head caused by seed T. In order to achieve fine-grained
task scheduling, we will also collect information on the
coverage increasing and time spent from seed T at differ-
ent stages of the fuzzing process. Eventually, our Exp3-
like algorithm allows CloudFuzz to balance exploration
and exploitation behaviors through the smart seed selec-
tion policy and the adaptive task scheduling strategy.

Evaluation
In this section, we evaluate our prototype CloudFuzz, to
validate whether our improvement have boosted fuzzing
performance. Considering with our improvement solu-
tions, we conducted a series of experiments in CloudFuzz
with different configurations on various cloud-native
applications to answer following questions.

•	 RQ1: Can CloudFuzz achieve higher coverage than
the baseline on cloud-native applications?

•	 RQ2: How much overhead of an impact does our
improvement compared to the baseline?

•	 RQ3: Can CloudFuzz detect more bugs than the
baseline on cloud-native applications?

•	 RQ4: How effective is our smart seed selection policy
in solving the state explosion problem in cloud-native
application?

•	 RQ5: Can our task scheduling strategy improve the
fuzzing performance compared to the baseline?

Page 13 of 22Yang et al. Journal of Cloud Computing (2024) 13:118 	

Experiments setup. We fuzzed each target for 24 hours
(on two cores) and repeated each experiment 10 times
to reduce the effects of randomness. All evaluation
experiments were done on 64-bit machine with 24-core,
48-thread CPU@2.1GHz, 64GB of RAM, and Ubuntu
20.04 as server OS. The version of Golang is 1.18.

Dataset. Our dataset includes 16 real-world cloud-
native utilities. These utilities were selected from
cncf-fuzzing test suits based on the importance of the
cloud-native infrastructure, popularity in the community
and diversity of categories. See Table 2 for details of the
dataset.

Fuzzers. We selected four different fuzzers for our
experimental evaluation. These include the baseline
fuzzer and variants that belong to our CloudFuzz frame-
work. The CloudFuzz variants enable different optimi-
zations, which separately and intuitively evaluate the
impact of the proposed optimizations on the testing pro-
cess described in this paper. See Table 3 for details of the
fuzzers in the following evaluation.

Code coverage in CloudFuzz
Results from the analysis of experiments results on 16
real-world cloud-native applications demonstrates that
CloudFuzz outperforms existing fuzzers in terms of
code coverage. In particular, CloudFuzz consistently
overcomes coverage bottlenecks that often hinder the
baseline fuzzer, allowing for more comprehensive code

exploration. In addition, CloudFuzz quickly reaches the
coverage upper limit of the baseline compared to the
baseline fuzzer.

Code coverage is one of the important metrics to eval-
uate the effectiveness of the coverage-guided fuzzer. We
ran CloudFuzz and go-fuzz on 16 cloud-native applica-
tions for 24 hours, and compared their coverage metrics
and path exploration capabilities.

Total coverage improvement
Table 4 shows the mean maximum coverage achieved by
different fuzzers within 24 hours on targets of Table 2.
The results of Table 4 show that CloudFuzz significantly
improve the maximum coverage achieved by fuzzers on
real-world targets compared to go-fuzz. In the last col-
umn of Table 4, it indicates the coverage increase rate of
CloudFuzz compared to go-fuzz. Experimental results
show that compared to go-fuzz, CloudFuzz achieved an
average coverage improvement of 100.7% on the 16 tar-
gets, meaning that CloudFuzz outperformed go-fuzz. In
addition, CloudFuzz achieved at least 50% higher code
coverage on most of the 16 real-world targets. With the
exception of the No 10 target, where CloudFuzz achieved
a 5.16% improvement in code coverage, the remaining
targets showed significant coverage gains. For all other
targets, CloudFuzz delivered coverage improvements
in excess of 30%. Impressively, for more than a third of
the targets, CloudFuzz achieved maximum coverage that
were over 100% higher than the baseline.

Furthermore, the third column illustrates the maxi-
mum coverage achieved by go-fuzz-well. Go-fuzz-well
employed the identical seed selection algorithm and
task scheduling strategy as go-fuzz. Thus, a comparison
between go-fuzz and go-fuzz-well can see the impact of
the coverage metric that employs an adaptive bitmap.

The results demonstrate that the use of our coverage
metric in go-fuzz-well leads to significant improvements
in code coverage. On average, go-fuzz-well consistently
outperforms go-fuzz across most targets. For instance,
in target No 2, go-fuzz-well achieves a coverage improve-
ment of 33.08% over go-fuzz. Notably, target No. 14 dem-
onstrates a remarkable increase in coverage of 46.68%,
indicating that our coverage metrics can yield substantial
enhancements in specific scenarios. In the majority of
targets (10 out of 16), go-fuzz-well achieves more than a
10% increase in coverage.

This analysis highlights the importance of adopting
advanced coverage metrics in fuzzing tools to achieve
superior results. Moreover, when compared to go-fuzz-
well, CloudFuzz and CF-seed exhibit even more sig-
nificant coverage improvements. This indicates that
the smart seed selection and adaptive task scheduling

Table 2  The dataset from cncf-fuzzing

This table contains the tested functions as the targets in the last column,
the corresponding components and version information in the cloud-native
applications where these targets are located. To facilitate the description of
the evaluation results, we assign a number to each target, as shown in the first
column

Number Application Version Component Function

No 1 argo-cd 2.5.11 db CreateRepoCertificate

No 2 argo-cd 2.5.11 diff StateDiff

No 3 argo-cd 2.5.11 normalizer Normalize

No 4 argo-cd 2.5.11 server CreateToken

No 5 argo-cd 2.5.11 server ValidateProject

No 6 containerd 1.6.18 docker ParseHostsFile

No 7 etcd 3.5.7 api api_marshal

No 8 etcd 3.5.7 server V3Server

No 9 istio 1.17.0 mesh ParseMeshNetworks

No 10 istio 1.17.0 mesh ValidateMeshConfig

No 11 kubernetes 1.24.10 apiextension ConvertToTable

No 12 kubernetes 1.24.10 api api_marshal

No 13 kubernetes 1.24.10 api api_roundtrip

No 14 kubernetes 1.24.10 kubelet HandlePodCleanups

No 15 kubernetes 1.24.10 kubelet Server

No 16 kubernetes 1.24.10 kubelet SyncPod

Page 14 of 22Yang et al. Journal of Cloud Computing (2024) 13:118

proposed in this study result in more effective coverage
enhancements.

In total, empirical evidence shows that CloudFuzz out-
performs go-fuzz in terms of state exploration. Our solu-
tion is specifically designed to excel in testing scenarios
within cloud-native applications, enabling CloudFuzz to
uncover a greater number of execution states, thereby
enhancing its effectiveness in detecting potential bugs.

Coverage growth over time
Figure 4 shows the coverage growth of various fuzzers
within 24 hours on 16 targets from Table 2. It reveals an

interesting fact via the coverage growth curve. On the
one hand, we can observe that the coverage of Cloud-
Fuzz grows faster than go-fuzz in the early stages of fuzz-
ing. Figure 4 shows how quickly CloudFuzz reaches the
upper coverage limit of the baseline fuzzer in 24 hours.
We can see that, with the exception of two targets (No 3,
No 10), CloudFuzz achieved the same coverage in 1 hour
as go-fuzz did in 24 hours for all the remaining targets
in Table 2. For target No 10, CloudFuzz did not open a
significant gap with go-fuzz in terms of coverage growth.
Overall, CloudFuzz exhibits faster coverage growth than
go-fuzz, and even in the short term, CloudFuzz triggers a

Table 3  The fuzzers used in the evaluation experiments and the optimizations they enabled

This table presents the selected fuzzers for evaluation in the first column, the corresponding optimizations in the middle column, the goals and the reasons for their
selection in the last column. The “Optimizations” column includes three optimizations proposed in this paper: fine-grained coverage metric (denoted as Cov), smart
seed selection (denoted as Seed), and adaptive task scheduling (denoted as Task)

Fuzzer Optimizations Description

Cov Seed Task

go-fuzz Using go-fuzz as the baseline fuzzer because go-fuzz is a common fuzzer for Golang and we implemented
CloudFuzz by enabling optimizations on top of go-fuzz.

go-fuzz-well ✔ A variant of go-fuzz that enables our coverage solution to observe the influence of our fine-grained coverage
metric.

CF-seed ✔ ✔ A variant of CloudFuzz that enhances seed selection optimization based on go-fuzz-well to evaluate the effec-
tiveness of our seed selection strategy.

CloudFuzz ✔ ✔ ✔ The prototype of our solution that enables all optimizations proposed in our paper to evaluate the effectiveness
and efficiency of our solution. Especially, compared with CF-seed to evaluate the impact of the task scheduling
optimization.

Table 4  The mean of the maximum coverage in evaluation experiments

The maximum coverage achieved by CloudFuzz, CF-seed, go-fuzz-well, and go-fuzz on the targets listed in Table 2. The coverage increase rates for CloudFuzz, CF-seed
and go-fuzz-well over go-fuzz are denoted as Cov Inc CloudFuzz, Cov Inc CF-seed and Cov Inc go-fuzz-well, respectively

Num go-fuzz go-fuzz-well Cov Inc
go-fuzz-well

CF-seed Cov Inc CF-seed Cloud-Fuzz Cov Inc CloudFuzz

No 1 2015 2341 16.18% 2676 32.80% 4318 114.29%

No 2 1578 2100 33.08% 5950 277.06% 5658 258.56%

No 3 4439 4984 12.28% 6381 43.75% 6877 54.92%

No 4 3391 3728 9.94% 7551 122.68% 8421 148.33%

No 5 503 665 32.21% 991 97.02% 1073 113.32%

No 6 1296 1411 8.87% 1743 34.49% 1924 48.46%

No 7 15541 19025 22.42% 24559 58.03% 25932 66.86%

No 8 3905 4117 5.43% 4869 24.69% 11509 194.72%

No 9 3573 4075 14.05% 4741 32.69% 6957 94.71%

No 10 6317 6317 0.00% 6316 -0.02% 6643 5.16%

No 11 2890 3011 4.19% 3118 7.89% 4135 43.08%

No 12 40210 45800 13.90% 52694 31.05% 66631 65.71%

No 13 36729 47862 30.31% 69555 89.37% 70762 92.66%

No 14 1823 2674 46.68% 3468 90.24% 3671 101.37%

No 15 5262 5418 2.96% 5683 8.00% 7249 37.76%

No 16 1473 2203 49.56% 4289 191.17% 4003 171.76%

Page 15 of 22Yang et al. Journal of Cloud Computing (2024) 13:118 	

greater number of execution states than go-fuzz triggers
over a longer period of time, as our scheduling strategy
tends to apply exploitation at an early stage to achieve
higher coverage quickly.

On the other hand, we can observe that for most tar-
gets go-fuzz discovered more new coverage in the early
stages, but go-fuzz’s coverage growth rate decreased over
time. Eventually, go-fuzz’s coverage growth rate con-
verges to zero, i.e., go-fuzz has reached its coverage bot-
tleneck and can no longer find new coverage. Instead, it
is evident that in the 75% of the targets CloudFuzz has
been able to break through the previous bottlenecks and
has explore more new coverage. For instance, in target
No 16, we observe that go-fuzz was unable to trigger
the true working logic of the target’s code, as evidenced
by the low coverage of go-fuzz, whereas CloudFuzz fre-
quently triggered new coverage (i.e., new code regions) in
all phases of fuzzing, suggesting that CloudFuzz’s explo-
ration strategies were effective. For example, in target No
4, we can see that CloudFuzz reached the first bottleneck
at around 2 hours into the run, which CloudFuzz broke
it after 3 hours of exploration, and then broke the bot-
tlenecks twice in a row. Eventually, CloudFuzz achieved
an improvement in coverage of almost 100% compared to
the coverage of the first bottle.

CloudFuzz’s coverage growth curves reflect the balance
of exploitation and exploration attained by our solution,
demonstrating the effectiveness and efficiency of our
AMAB-based seed selection and task scheduling solu-
tion. In the early stages of fuzzing, CloudFuzz tends to
exploit interesting seeds to trigger as many code regions
as possible. When it encounters a puzzle that has pre-
vented the fuzzer from finding new coverage, CloudFuzz
turns back to exploration, looking for fresh seeds to cover
new features.

Bug detection in CloudFuzz
In order to address RQ1, we conducted a series of experi-
ments using real-world cloud-native applications. The
experiments conducted on our dataset 2 demonstrated
that CloudFuzz outperformed the baseline by identifying
a greater number of unique crashes. In particular, Cloud-
Fuzz successfully crashed all target applications, whereas
the baseline fuzzer fail to detect crashes in most of the
evaluated targets.

In these experiments, we evaluate the ability of fuzz-
ers to detect unknown bugs in real-world applications.
Table 5 shows the number of crashes in cloud-native
applications observed over ten iterations of the experi-
ments. It is important to emphasize that the targets

Fig. 4  The average coverage growth on targets from Table 2 discovered by each fuzzer over 24 hours

Page 16 of 22Yang et al. Journal of Cloud Computing (2024) 13:118

tested in our experiments represent the latest versions
of the respective products. These cloud-native applica-
tions have been extensively tested by the vendors, either
through the CNCF-fuzzing project or by using the Gol-
ang’s fuzzing functionality. On average, go-fuzz only
detects crashes in two targets, while CloudFuzz suc-
cessfully crashes all targets. In the two targets that are
crashed by go-fuzz, the number of crashes triggered by
CloudFuzz significantly surpasses that of go-fuzz. Specif-
ically, in targets of Kubernetes, CloudFuzz found nearly
ten times as many unique crashes compared to go-fuzz.
In targets of etcd, CloudFuzz detected 233% more unique
crashes than go-fuzz. The unique crashes identified by
go-fuzz in these two specified targets were also observed
within the unique crashes triggered by CloudFuzz. In
the remaining targets, CloudFuzz detected 160 unique
crashes, while go-fuzz found no bugs in these targets.

It should be emphasized that the programs in which
these targets reside perform a critical infrastructure
functions within the cloud-native ecosystem, such as
kubernetes and etcd, among others. Finally, we analyzed
these unique crashes, and found that CloudFuzz found
10 bugs in real-world targets and go-fuzz only found 3
bugs in same targets. CloudFuzz detected 233% more
bugs than go-fuzz. The bugs identified by CloudFuzz
have the potential to precipitate Denial of Service attacks
on cloud-native systems. The results obtained show that
our seed scheduling and task scheduling approaches
effectively identify more bugs than the baseline in cloud-
native applications. This implies that our proposed solu-
tion skilfully balances exploration and exploitation. As a
result, CloudFuzz outperforms the baseline in detecting
unique bugs in critical cloud-native applications.

Performance overhead in CloudFuzz
Results on real-world applications show that the over-
head of our AMAB-based seed selection and task sched-
uling solution is acceptable. Surprisingly, CloudFuzz is
slightly more efficient and better than go-fuzz in terms
of overhead and throughput when we enable only the
smart seed selection optimization on CloudFuzz. When
CloudFuzz is set to enable both seed selection and task

scheduling optimizations, CloudFuzz introduces only a
means of 15% runtime overhead. The CloudFuzz’s over-
head is very competitive considering its excellent cover-
age improvement effects.

Performance overhead is a important factor for fuzzers as
it directly determines the fuzzing throughput. In essence,
it determines the level of iteration achieved during the
fuzzing process. In CloudFuzz, the performance overhead
comes from two sources: 1) collecting and computing more
accurate and finer-grained coverage measurements which
are required by our coverage metric and 2) measuring
and computing gains and probabilities for each seed and
updating the energies for different tasks. In addition, our
seed selection and task scheduling strategies improve the
execution efficiency of the CloudFuzz process, which off-
sets some of the overhead from the above aspects. There-
fore, when enabling seed selection and/or task scheduling
optimization, we should consider the overall overhead and
throughput of CloudFuzz at this point, rather than just the
overhead that comes with the optimization.

Overhead of coverage metrics
To quantify the positive and negative impact on per-
formance overhead for our AMAB-based solution, we
should understand the overhead difference between the
coverage metric of go-fuzz and CloudFuzz. First, we
investigated the proportion of the overhead caused by
our fine-grained coverage metric. The results on targets
of our dataset are shown in Fig. 5a, where the x-axis rep-
resents the individual runs of the targets (10x×16=160 in
total) and the y-axis represents the overhead proportion
of the coverage metrics applied by the fuzzers. For most
targets, our coverage metric solution introduces a runt-
ime overhead of less than 40%. For about one in five tar-
gets, the overhead proportion for our more accurate and
finer-grained coverage metric is above 60%, but below
140%. The average of the overhead proportion for our
coverage metric is around 35%, as shown in the box plot
on the right-hand side of Fig. 5a.

Overhead of seed selection
Next, we measured the performance overhead of CF-
seed versus go-fuzz on Table 2 by the throughput of the
fuzzers. Figure 5b shows the ratio of the increase in the
overhead of CF-seed in an ascending order, which is
the difference in throughput between go-fuzz and CF-
seed as a proportion of the throughput of go-fuzz. It is
worth noting that if the throughput of CF-seed is greater
than the average throughput of go-fuzz, then the differ-
ence between the average throughput of go-fuzz minus
the throughput of CF-seed will be a negative number, in
which case the increased overhead of CF-seed will show
up as a negative number based on our calculation.

Table 5  Number of unique crashes detected by go-fuzz and
CloudFuzz

Application go-fuzz CloudFuzz

argo-cd 0 124

containerd 0 24

etcd 6 20(233%)

istio 0 12

kubernetes 55 566(929%)

Page 17 of 22Yang et al. Journal of Cloud Computing (2024) 13:118 	

As shown in Fig. 5b, the throughput of CF-seed exceeds
that of go-fuzz on a third of the targets. More specifically,
CF-seed has a throughput improvement of more than
50% on about 10% of the targets, and improves runtime
performance by more than 25% on a fifth of the targets.
The total overhead of CF-seed is less than 25% on more
than 80% of the targets. The average of overhead ratio
for CF-seed is negative 3%, as shown in the box plot of
Fig. 5b. This means that CF-seed achieves better overall
throughput in 160 runs of 16 real-world targets.

Overhead of task scheduling
Similar to the overhead measurement for CF-seed, we
measured the overhead of CloudFuzz, which enables
two AMAB-based optimizations. Figure 5c shows the
overhead ratio of CloudFuzz over 160 runs, which is cal-
culated in the same way as Fig. 5b. We can see that Cloud-
Fuzz achieved more throughput than go-fuzz on about
30% of the targets. And CloudFuzz introduced below 25%
runtime overhead on half of the targets. On the remain-
ing targets, CloudFuzz bring about more overhead than
CF-seed. CloudFuzz increased overhead by more than
50% on a third of the targets. The average overhead ratio
of CloudFuzz is about 14%, which is higher than the over-
head ratio of CF-seed but lower than that of go-fuzz-well.
It is easy to see that our task scheduling optimization
needed to measure and record finer-grained coverage
information at each stage of fuzzing, which caused more
overhead than the seed selection optimization. Accord-
ing to the average overhead caused by the seed selection
optimization, the average overhead caused by the task
scheduling optimization is approximately 17%.

Effectiveness of smart seed selection
Experiment results on dataset I show that our smart seed
selection optimization significantly improves the capabil-
ity and efficiency of fuzzing. More specifically, our smart
seed selection optimization helps the fuzzer to achieve
higher code coverage faster and reducees the number
of seed candidates caused by highly sensitive coverage
metrics.

Code coverage
First, we evaluate the impact of smart seed selection on
code coverage. Figure 4 illustrates the coverage growth
trends through the green curves marked as CF-seed.
Intuitively, CF-seed achieves higher coverage than go-
fuzz across all targets. Table 4 Columns 2 and 3 list the
maximum coverage achieved by CF-seed and the specific
coverage increase rates compared with go-fuzz, respec-
tively. The results demonstrate a consistent increase in
maximum coverage, thereby evidencing the enhanced
effectiveness of the smart seed selection optimization.
With a few exceptions, CF-seed shows significant gains
over go-fuzz, as is particularly evident in test cases such
as No. 2 and No. 14, where the increase exceeds 90%.

On the other hand, CF-seed achieves slightly lower
maximum coverage than CloudFuzz on three out of four
of the targets. However, CF-seed achieves higher cover-
age than CloudFuzz on targets No. 2 and No. 16, possi-
bly due to higher throughput. As previously mentioned,
CF-seed also achieves a higher throughput than both go-
fuzz and CloudFuzz. For these targets, the coverage gains
derived from task scheduling optimization are less than
the detrimental effects caused by the task scheduling

Fig. 5  Performance overhead rate caused by different optimizations of CloudFuzz

Page 18 of 22Yang et al. Journal of Cloud Computing (2024) 13:118

overhead. In the case of target No. 13, CF-seed achieved
the same coverage as CloudFuzz, but CloudFuzz reached
the coverage upper limit faster. In terms of code cover-
age, our smart seed selection optimization enables the
fuzzer to discover more interesting states and explore
wider regions of the code, thereby increasing the likeli-
hood of finding more bugs in the targets.

Seed in the corpus
Second, we investigate the number of seeds gener-
ated by the fuzzers to deduce whether the smart seed
selection optimization can find more execution states
than the baseline and can also inhibit the seed explo-
sion problem caused by highly sensitive coverage met-
rics. Figure 6 shows the statistics of the seeds generated
by the fuzzer over 160 (16×10) runs in the targets of
Table 2, and we have labelled the average of them. On
the one hand, the number of seeds in CF-seed’s corpus
is almost 3 times than that of go-fuzz, illustrating that
CF-seed can trigger more execution states than go-
fuzz. Similarly, go-fuzz-well produced almost 4 times
as many seeds as go-fuzz. However, given the inferior
throughput of go-fuzz-well, too many seeds put a heavy
load on a fuzzer’s scheduler. On the other hand, CF-
seed reduced the number of seed candidates by about
22%, mitigating the burden on the scheduler. From the
results of 24 hours, we can see that CF-seed has solved
the seed explosion problem that can occur in go-fuzz-
well. Through the above analysis of seeds generated by
fuzzers, we explain that our smart seed selection opti-
mization can inhibit the seed explosion problem caused
by high-sensitive coverage metrics.

Effectiveness of adaptive task scheduling
Experiments results on our dataset show that our adap-
tive task scheduling optimization significantly improves
the upper bound of code coverage. Furthermore, com-
pared to CF-seed, seeds generated by CloudFuzz opti-
mized with adaptive task scheduling achieve higher code
coverage at the same cost.

Code coverage
Table 6 shows the statistics of the target applications
tested by CF-seed (denoted as CFs) and CloudFuzz
(denoted as CF). First, we compare the coverage incre-
ment to evaluate the impact of adaptive task scheduling
in terms of code coverage. On most of targets (14/16),
the coverage of CloudFuzz is better than that of CF-
seed. It means that our adaptive task scheduling opti-
mization can help fuzzers to trigger more code based
on CF-seed. On half of the targets, our task scheduling
optimization could improve coverage by at least 10% over
CF-seed with smart seed selection optimization enabled.
Compared with CF-seed, the average coverage incre-
ment brought by adaptive task scheduling optimization
is 23.5%. In particular, CloudFuzz triggered over 60%
more code regions than CF-seed on target No 1, No 8.
The results of the code coverage experiments show that
our task scheduling optimiation using a finer-grained
gain estimation solution could more accurately guide the
fuzzing process to balance exploration and exploitation.
Compared to CloudFuzz, CF-seed only coarsely balances
exploration and exploitation. As a result, CloudFuzz out-
performs CF-seed in terms of coverage.

Average‑cost
As aforementioned, CloudFuzz achieved higher coverage
than baseline fuzzers, and improved the overall efficiency
of the fuzzing process. Since the seeds have a direct effect
on fuzzers, our AMAB-based optimization affects fuzz-
ers by controlling the process associated with seeds.
Therefore, we focused on the number of seeds generated
by fuzzers and the quality of the seeds to evaluate the
efficiency of our task scheduling optimization.

As shown in Fig. 5c, though task scheduling optimiza-
tion, CloudFuzz further mitigates the number of seeds to
solve the seed explosion problem. In total, compared to
go-fuzz-well, CloudFuzz’s solution reduced the number
of seeds by 41%. Compared to CF-seed, our adaptive task
schedluing optimization reduces the number of gener-
ated seeds by about 10%. Our task scheduling optimiza-
tion has a positive impact on controlling the size of the
corpus. In order to quantitatively assess the quality of
seeds generated by fuzzers, we calculated the average-
cost of the CloudFuzz (denoted as AC CF) and that of
CF-seed (denoted as AC CFs) in different targets. The

Fig. 6  Average number of seeds generated by different fuzzers
on the 16 targets in Table 2

Page 19 of 22Yang et al. Journal of Cloud Computing (2024) 13:118 	

average-cost is defined as the average coverage improved
by a single seed. In the last column of Table 6, it shows
the average-cost of CloudFuzz and demonstrating the
improvement of average-cost compared to CF-seed. For
more than 60% of the targets, the average-cost of Cloud-
Fuzz is better than that of CF-seed. On target No 7, No 8,
and No 14, the average-cost of CloudFuzz was more than
100% and even 770% than that of CF-seed. Although CF-
seed outperformed CloudFuzz on average cost for some
targets, CloudFuzz achieved better coverage.

Related work
Coverage‑guided greybox fuzzing
Coverage-guided fuzzing is one of the most effective and
popular techniques for finding bugs in practice. AFL [1],
LIBFUZZER [25] and honggfuzz [26] are widely used in
the OSS-Fuzz [27] service, which has detected over 8800
vulnerabilities and 28800 bugs across 850 open source
projects. As its effectiveness and simplicity, coverage-
guided fuzzing has been optimized by academic research
in several areas. On the one hand, some work has applied
program analysis to understand the behaviour of tested
targets, which helps fuzzing to adapt different programs.
For instance, taint analysis [16, 20, 28], concolic execution
[6, 29, 30], static analysis [31–33], deep learning [34, 35]
and reinforcement learning [11, 22, 36] are used to boost
fuzzer performance. On the other hand, some work has
attempted to transform fuzzing to better test specific
types of targets, such as JIT compilers [37–40], OS kernel
[23, 41–43], protocol [44, 45], rounter [46, 47], and smart

contracts [48, 49]. For example, to find JIT compiler vul-
nerabilities, some fuzzers use an abstract syntax tree to
represent and generate JavaScript code as seeds. Cloud-
Fuzz utilizes an accurate fine-grained coverage metric,
which has been proven to be more effective in improving
fuzzer’s performance. Meanwhile, for the cloud-native
application of Golang targets, CloudFuzz proposes an
AMAB-based seed and task scheduler to help fuzzing bal-
ance exploration and exploitation in large targets.

Coverage metric for fuzzing
Coverage metrics as one of the most important factors
for coverage-guided fuzzing, which guides fuzzers to gen-
erate and select proper seeds to test as much of the code
as possible. VUzzer [16] considered fundamental prop-
erties of the application as a part of the coverage metric
to implement an application-aware strategy to maximize
coverage. However, the block coverage metric used by
VUzzer provides much less information than edge cov-
erage metrics and cannot even distinguish between
blocks with different predecessors. AFL [1] achieved an
efficient edge coverage metric, making AFL as the most
successful fuzzer. Thus, a lot of work have improved cov-
erage metrics based on the edge coverage metric. Angora
[20] found the edge coverage metric of AFL is context-
insensitive, and proposed a context-sensitive edge cov-
erage metric to distinguish the same edge in different
contexts. Matryoshka [31] combined the edge coverage
metric with different types of conditional statements to
find inputs that satisfy deeply nested branches. However,

Table 6  Maximum coverage and average-cost value of CF-seed and CloudFuzz on targets in Table 2

The 2nd and 3rd columns of this table show the maximum coverage achieved by CF-Seed and CloudFuzz respectively. The 4th and 5th columns show the number of
new seeds discovered by CF-Seed and CloudFuzz respectively, while the last two columns illustrate the average costs for CF-Seed and CloudFuzz

No Cov CFs Cov CF Seeds CFs Seeds CF AC CFs AC CF

No 1 2676 4318(61.36%) 35 62 76.45 69.65(-8.9%)

No 2 5950 5658(-4.91%) 2025 2726 2.93 2.08(-29.16%)

No 3 6381 6877(7.77%) 2344 2778 2.72 2.48(-8.99%)

No 4 7551 8421(11.52%) 184 104 41.03 80.97(97.35%)

No 5 991 1073(8.27%) 288 164 3.44 6.54(90.19%)

No 6 1743 1924(10.38%) 233 615 7.48 3.13(-58.18%)

No 7 24559 25932(5.59%) 9696 4933 2.53 5.26(107.54%)

No 8 4869 11509(136.37%) 515 226 9.45 50.92(438.64%)

No 9 4741 6957(46.74%) 952 1733 4.98 4.01(-19.39%)

No 10 6316 6643(5.18%) 1237 1875 5.11 3.54(-30.61%)

No 11 3118 4135(32.62%) 1764 1278 1.77 3.24(83.05%)

No 12 52694 66631(26.45%) 17180 15720 3.07 4.24(38.19%)

No 13 69555 70762(1.74%) 838 738 83.00 95.88(15.52%)

No 14 3468 3671(5.85%) 404 49 8.58 74.92(772.75%)

No 15 5683 7249(27.56%) 55 53 103.33 136.77(32.37%)

No 16 4289 4003(-6.67%) 335 278 12.80 14.40(12.47%)

Page 20 of 22Yang et al. Journal of Cloud Computing (2024) 13:118

they did not implement a solution to address the poten-
tial seed explosion problem when applying the more
sensitive coverage metrics. CollAFL [13] found the hash
collision problem in AFL and proposed an accurate solu-
tion for edge coverage metrics, and their results showed
a significant improvement. FAIRFUZZ [50] defined the
concept of rare branches that are rarely hit by inputs, and
guided fuzzing through the rare branch coverage metric.
Jiang, et al. [21] proposed a context-sensitive concur-
rency coverage metric to detect specific data races that
are difficult to find using context-insensitive coverage.
Wang, et al. [15] proposed a coverage accounting based
on memory operations to evaluate security impacts of
coverage. These papers introduced different factors of
bug detection and code exploration and demonstrated
these coverage metrics are effective.

Wang, et al. [10] evaluated multiple coverage metrics
and showed that there is no grand slam coverage metric
that can beat others. The normal edge coverage metric
can still beat more sensitive coverage metrics on some
targets. Thus, considering the overhead of additional
analysis by more sensitive edge coverage metrics, Cloud-
Fuzz employs an accurate edge coverage metric for large
cloud-native applications. Our coverage metrics strike
a balance between the coverage information and cover-
age measurement overhead. Wang, et al. [11] proposed a
multi-level coverage metric to collect coverage informa-
tion and introduced the MAB model to mitigate the seed
explosion problem. It was shown that fuzzing should
consider scheduling algorithms, especially when highly
sensitive coverage metrics are applied. This is because
more sensitive coverage metrics introduced more seeds
and overhead, which created a more serious seed explo-
sion problem. Therefore, CloudFuzz introduces the
AMAB-based scheduling algorithm to mitigate too many
seeds needed to handle.

Improving power scheduling
Some work has paid attention to power scheduling,
assigning different powers to seeds and tasks, which
helps fuzzing make the most correct decision at differ-
ent phases. AFLFAST [18] regarded the fuzzing pro-
cess as a Markov chain model and assigned more power
to seeds that triggered low-frequency paths. Similarly,
VUzzer [16] observed that a large percentage of seeds fell
into the error-handling code and allocated less power to
these seeds, reducing the energy of high-frequency paths.
Mopt [51] focused on the scheduling strategies for muta-
tion operations, selecting different mutation operations
for different seeds. CollAFL [13] prioritized the seeds
with untouched neighbour descendants to mutate, which
has a higher probability of exploring untouched paths.

Woo, et al. [52] modelled the scheduling problem as
an instance of the classical Multi-Armed Bandit (MAB)
problem to maximize the number of unique bugs in time.
However, this work ignored the fact that in the classic
MAB the number of arms is fixed, but the number of
seeds is increased during fuzzing, which is different from
the classic MAB problem. Wang, et al. [11] also modelled
the seed scheduling problem as the classical MAB prob-
lem, but they introduced the rareness of seeds as a factor
in the reward calculation to resolve the above contradic-
tion. EcoFuzz [22] used a variant of the Adversarial MAB
model to schedule seeds, but prioritized exploitation
rather than balancing exploration and exploitation, thus
failing to address the seed exploration problem. Consid-
ering the features of kernel fuzzing, Syzvegas [23] applied
the AMAB model for seed scheduling and task schedul-
ing stages respectively. MobFuzz [36] modeled multiple
objective optimizations as a multi-player multi-armed
bandit problem to allocate energy for objective combina-
tion and seeds.

Conclusion
Coverage metrics play an important role in coverage-
guided fuzzing. Accurate and fine-grained cover-
age metrics could help fuzzing to find more bugs and
achieve higher coverage. Unfortunately, fine-grained
coverage metrics lead to more seeds to select, and
even seed explosion. Existing fuzzers for Golang still
use simple and coarse-grained block coverage met-
rics, which hinders detect bugs in cloud-native appli-
cations written with Golang. In this work, we apply an
accurate edge coverage metric with go-fuzz to achieve
fine-grained testing for cloud-native applications. To
mitigate the seed explosion problem caused by fine-
grained coverage metrics and large targets, we pro-
pose smart seed selection and adaptive task scheduling
algorithm based on a variant of the classical AMAB
algorithm. The results of evaluation experiments show
that our approach significantly outperforms go-fuzz on
real-world targets.

Abbreviations
AMAB	� Adversarial multi-armed bandit
MAB	� Multi-armed bandit

Acknowledgements
We sincerely thank the Reviewers and the Editor for their valuable suggestions.

Authors’ contributions
Jiageng Yang wrote the main manuscript text and Chuanyi Liu proposed the
method and revised the manuscript. All authors reviewed the manuscript.

Availability of data and materials
All fuzzer drivers and the dataset used in this paper are available from: https://​
github.​com/​yangj​iageng/​Cloud​Fuzz_​FuzzD​river.

https://github.com/yangjiageng/CloudFuzz_FuzzDriver
https://github.com/yangjiageng/CloudFuzz_FuzzDriver

Page 21 of 22Yang et al. Journal of Cloud Computing (2024) 13:118 	

Declarations

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals
performed by any of the authors.

Consent for publication
The authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Received: 19 February 2024 Accepted: 17 June 2024

References
	1.	 Zalewski M (2014) American fuzzy lop. https://​lcamt​uf.​cored​ump.​cx/​afl.

Accessed 17 Feb 2024
	2.	 Vyukov D (2021) go-fuzz: randomized testing for go. https://​github.​com/​

dvyuk​ov/​go-​fuzz. Accessed 17 Feb 2024
	3.	 Wilk J (2019) Python-afl. https://​jwilk.​net/​softw​are/​python-​afl. Accessed

17 Feb 2024
	4.	 Jiang J, Xu H, Zhou Y (2021) Rulf: Rust library fuzzing via api dependency

graph traversal. In: 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, Melbourne, pp 581–592

	5.	 Google (2021) Go fuzzing. https://​go.​dev/​secur​ity/​fuzz. Accessed 17 Feb
2024

	6.	 Aschermann C, Schumilo S, Blazytko T, Gawlik R, Holz T (2019) Redqueen:
Fuzzing with input-to-state correspondence. In: Network and Distributed
Systems Security (NDSS) Symposium, vol 19. The Internet Society, San
Diego, pp 1–15

	7.	 Fioraldi A, Maier D, Eißfeldt H, Heuse M (2020) Afl++ combining incre-
mental steps of fuzzing research. In: Proceedings of the 14th USENIX
Conference on Offensive Technologies. {USENIX} Association, pp 10–10

	8.	 Pham VT, Böhme M, Santosa AE, Căciulescu AR, Roychoudhury A (2019)
Smart greybox fuzzing. IEEE Trans Softw Eng 47(9):1980–1997

	9.	 Schumilo S, Aschermann C, Gawlik R, Schinzel S, Holz T (2017) kafl: Hardware-
assisted feedback fuzzing for os kernels. In: 26th USENIX Security Symposium
(USENIX Security 17). USENIX Association, Vancouver, pp 167–182

	10.	 Wang J, Duan Y, Song W, Yin H, Song C (2019) Be sensitive and collabora-
tive: Analyzing impact of coverage metrics in greybox fuzzing. In: Pro-
ceedings of the 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID’19). USENIX Association, Beijing, pp 1–15

	11.	 Wang J, Song C, Yin H (2021) Reinforcement learning-based hierarchical
seed scheduling for greybox fuzzing. In: Network and Distributed Sys-
tems Security (NDSS) Symposium, The Internet Society, virtual, vol 2021

	12.	 Gan S, Zhang C, Qin X, Tu X, Li K, Pei Z, Chen Z (2020) Path sensitive
fuzzing for native applications. IEEE Trans Dependable Secure Comput
19(3):1544–1561

	13.	 Gan S, Zhang C, Qin X, Tu X, Li K, Pei Z, Chen Z (2018) Collafl: Path sensi-
tive fuzzing. In: 2018 IEEE Symposium on Security and Privacy (SP). {IEEE}
Computer Society, San Francisco, pp 679–696

	14.	 Auer P, Cesa-Bianchi N, Freund Y, Schapire RE (1995) Gambling in a rigged
casino: The adversarial multi-armed bandit problem. In: Proceedings
of IEEE 36th annual foundations of computer science. {IEEE} Computer
Society, Milwaukee, pp 322–331

	15.	 Wang Y, Jia X, Liu Y, Zeng K, Bao T, Wu D, Su P (2020) Not all coverage
measurements are equal: Fuzzing by coverage accounting for input
prioritization. In: Network and Distributed Systems Security (NDSS) Sym-
posium. The Internet Society, San Diego

	16.	 Rawat S, Jain V, Kumar A, Cojocar L, Giuffrida C, Bos H (2017) Vuzzer: Applica-
tion-aware evolutionary fuzzing. In: Network and Distributed Systems Security
(NDSS) Symposium. The Internet Society, San Diego, vol 17. pp 1–14

	17.	 Böhme M, Pham VT, Nguyen MD, Roychoudhury A (2017) Directed
greybox fuzzing. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. Association for Computing
Machinery, New York, pp 2329–2344

	18.	 Böhme M, Pham VT, Roychoudhury A (2016) Coverage-based greybox
fuzzing as markov chain. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. Association for
Computing Machinery, New York, pp 1032–1043

	19.	 Coppik N, Schwahn O, Suri N (2019) Memfuzz: Using memory accesses to
guide fuzzing. In: 2019 12th IEEE Conference on Software Testing, Valida-
tion and Verification (ICST). IEEE, Xi’an, pp 48–58

	20.	 Chen P, Chen H (2018) Angora: Efficient fuzzing by principled search.
In: 2018 IEEE Symposium on Security and Privacy (SP). {IEEE} Computer
Society, San Francisco, pp 711–725

	21.	 Jiang ZM, Bai JJ, Lu K, Hu SM (2022) Context-sensitive and directional
concurrency fuzzing for data-race detection. In: Proceedings of the 29th
Network and Distributed System Security Symposium (NDSS). The Inter-
net Society, San Diego, pp 1–18

	22.	 Yue T, Wang P, Tang Y, Wang E, Yu B, Lu K, Zhou X (2020) Ecofuzz: Adaptive
energy-saving greybox fuzzing as a variant of the adversarial multi-armed
bandit. In: Proceedings of the 29th USENIX Conference on Security Sym-
posium. USENIX Association, Boston, pp 2307–2324

	23.	 Wang D, Zhang Z, Zhang H, Qian Z, Krishnamurthy SV, Abu-Ghazaleh NB
(2021) Syzvegas: Beating kernel fuzzing odds with reinforcement learn-
ing. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Vancouver, pp 2741–2758

	24.	 Jiang, Zu-Ming and Bai, Jia-Ju and Lu, Kangjie and Hu, Shi-Min (2020)
Fuzzing error handling code using context-sensitive software fault
injection. In: Proceedings of the 29th USENIX Conference on Security
Symposium. USENIX Association, Boston, pp 2595–2612

	25.	 Google (2015) Libfuzzer: a library for coverage-guided fuzz testing.
https://​llvm.​org/​docs/​LibFu​zzer.​html. Accessed 17 Feb 2024

	26.	 Swiecki R (2017) Honggfuzz. https://​hongg​fuzz.​dev. Accessed 17 Feb
2024

	27.	 Google (2016) Oss-fuzz: Continuous fuzzing for open source software.
https://​github.​com/​google/​oss-​fuzz. Accessed 17 Feb 2024

	28.	 Wang T, Wei T, Gu G, Zou W (2010) Taintscope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In:
2010 IEEE Symposium on Security and Privacy. {IEEE} Computer Society,
Oakland, pp 497–512

	29.	 Stephens N, Grosen J, Salls C, Dutcher A, Wang R, Corbetta J, Shoshi-
taishvili Y, Kruegel C, Vigna G (2016) Driller: Augmenting fuzzing through
selective symbolic execution. In: Network and Distributed Systems
Security (NDSS) Symposium, vol 16. The Internet Society, San Diego, pp
1–16

	30.	 Zhao L, Duan Y, Yin H, Xuan J (2019) Send hardest problems my way:
Probabilistic path prioritization for hybrid fuzzing. In: Network and Distrib-
uted Systems Security (NDSS) Symposium. The Internet Society, San
Diego, pp 1–18

	31.	 Chen P, Liu J, Chen H (2019) Matryoshka: fuzzing deeply nested branches.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing Machinery, New
York, pp 499–513

	32.	 Han H, Cha SK (2017) Imf: Inferred model-based fuzzer. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. Association for Computing Machinery, New York, pp 2345–2358

	33.	 Peng H, Shoshitaishvili Y, Payer M (2018) T-fuzz: fuzzing by program trans-
formation. In: 2018 IEEE Symposium on Security and Privacy (SP). {IEEE}
Computer Society, San Francisco, pp 697–710

	34.	 Godefroid P, Peleg H, Singh R (2017) Learn &fuzz: Machine learning for
input fuzzing. In: 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). {IEEE} Computer Society, Urbana,
pp 50–59

	35.	 She D, Pei K, Epstein D, Yang J, Ray B, Jana S (2019) Neuzz: Efficient fuzzing
with neural program smoothing. In: 2019 IEEE Symposium on Security
and Privacy (SP). {IEEE} Computer Society, San Francisco, pp 803–817

	36.	 Zhang G, Wang P, Yue T, Kong X, Huang S, Zhou X, Lu K (2022) Mobfuzz:
Adaptive multi-objective optimization in gray-box fuzzing. In: Network
and Distributed Systems Security (NDSS) Symposium, vol 16. The Internet
Society, San Diego, pp 1–18

	37.	 Bernhard L, Scharnowski T, Schloegel M, Blazytko T, Holz T (2022) Jit-pick-
ing: Differential fuzzing of javascript engines. In: Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’22. Association for Computing Machinery, New York, pp 351–364

https://lcamtuf.coredump.cx/afl
https://github.com/dvyukov/go-fuzz
https://github.com/dvyukov/go-fuzz
https://jwilk.net/software/python-afl
https://go.dev/security/fuzz
https://llvm.org/docs/LibFuzzer.html
https://honggfuzz.dev
https://github.com/google/oss-fuzz

Page 22 of 22Yang et al. Journal of Cloud Computing (2024) 13:118

	38.	 Groß S, Koch S, Bernhard L, Holz T, Johns M (2023) Fuzzilli: Fuzzing for
javascript jit compiler vulnerabilities. In: Network and Distributed Systems
Security (NDSS) Symposium. vol 2023. The Internet Society, San Diego, pp
1–18

	39.	 Wang J, Chen B, Wei L, Liu Y (2017) Skyfire: Data-driven seed generation
for fuzzing. In: 2017 IEEE Symposium on Security and Privacy (SP). {IEEE}
Computer Society, San Jose, pp 579–594

	40.	 Wang J, Zhang Z, Liu S, Du X, Chen J (2023) Fuzzjit: Oracle-enhanced fuzz-
ing for javascript engine jit compiler. In: Proceedings of the 32nd USENIX
Conference on Security Symposium. USENIX Association, Anaheim, CA,
pp 1865–1882

	41.	 Corina J, Machiry A, Salls C, Shoshitaishvili Y, Hao S, Kruegel C, Vigna G
(2017) Difuze: Interface aware fuzzing for kernel drivers. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. Association for Computing Machinery, New York, pp 2123–2138

	42.	 Google (2015) syzkaller is an unsupervised coverage-guided kernel
fuzzer. https://​github.​com/​google/​syzka​ller. Accessed 17 Feb 2024

	43.	 Xu W, Moon H, Kashyap S, Tseng PN, Kim T (2019) Fuzzing file systems
via two-dimensional input space exploration. In: 2019 IEEE Symposium
on Security and Privacy (SP). {IEEE} Computer Society, San Francisco, pp
818–834

	44.	 Banks G, Cova M, Felmetsger V, Almeroth K, Kemmerer R, Vigna G (2006)
Snooze: toward a stateful network protocol fuzzer. In: Information Secu-
rity, vol 4176. Springer Berlin Heidelberg, Berlin, pp 343–358

	45.	 Maier D, Bittner O, Munier M, Beier J (2022) Fitm: Binary-only coverage-
guided fuzzing for stateful network protocols. In: Workshop on Binary
Analysis Research (BAR), vol 2022. The Internet Society, San Diego, pp 1–11

	46.	 Chen L, Wang Y, Cai Q, Zhan Y, Hu H, Linghu J, Hou Q, Zhang C, Duan H,
Xue Z (2021) Sharing more and checking less: Leveraging common input
keywords to detect bugs in embedded systems. In: USENIX Security
Symposium. {USENIX} Association, pp 303–319

	47.	 Qin C, Peng J, Liu P, Zheng Y, Cheng K, Zhang W, Sun L (2023) Ucrf: Static
analyzing firmware to generate under-constrained seed for fuzzing soho
router. Computers & Security, vol 128, pp 103–157

	48.	 Ma F, Chen Y, Ren M, Zhou Y, Jiang Y, Chen T, Li H, Sun J (2023) Loki:
State-aware fuzzing framework for the implementation of blockchain
consensus protocols. In: Network and Distributed Systems Security
(NDSS) Symposium, vol 2023. The Internet Society, San Diego, pp 1–18

	49.	 Zuo F, Luo Z, Yu J, Liu Z, Jiang Y (2021) Pavfuzz: State-sensitive fuzz testing
of protocols in autonomous vehicles. In: 2021 58th ACM/IEEE Design
Automation Conference (DAC). IEEE, San Francisco, pp 823–828

	50.	 Lemieux C, Sen K (2018) Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage. In: 2018 33rd IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), ACM,
Montpellier, pp 475–485

	51.	 Lyu C, Ji S, Zhang C, Li Y, Lee WH, Song Y, Beyah R (2019) Mopt: Optimized
mutation scheduling for fuzzers. In: 28th USENIX Security Symposium
(USENIX Security 19). USENIX Association, Santa Clara, pp 1949–1966

	52.	 Woo M, Cha SK, Gottlieb S, Brumley D (2013) Scheduling black-box
mutational fuzzing. In: Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security. Association for Computing
Machinery, New York, pp 511–522

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/google/syzkaller

	Adaptive scheduling-based fine-grained greybox fuzzing for cloud-native applications
	Abstract
	Introduction
	Motivation
	Coverage-guided fuzzing in cloud-native application
	Coverage metrics for greybox fuzzing
	Problem of coverage measurement
	Scheduling strategy in greybox fuzzing

	Design
	Accurate fine-grained coverage metric
	Typical coverage solutions
	CloudFuzz’s solution

	Gain and cost assessment
	Gain estimation
	Triage
	Mutation
	Versify and sonar

	Smart seed selection policy
	Existing seed selection policies
	CloudFuzz’s seed selection policy

	Adaptive task scheduling strategy

	Implementation
	Evaluation
	Code coverage in CloudFuzz
	Total coverage improvement
	Coverage growth over time

	Bug detection in CloudFuzz
	Performance overhead in CloudFuzz
	Overhead of coverage metrics
	Overhead of seed selection
	Overhead of task scheduling

	Effectiveness of smart seed selection
	Code coverage
	Seed in the corpus

	Effectiveness of adaptive task scheduling
	Code coverage
	Average-cost

	Related work
	Coverage-guided greybox fuzzing
	Coverage metric for fuzzing
	Improving power scheduling

	Conclusion
	Acknowledgements
	References

