
Lee et al. Journal of Cloud Computing (2024) 13:124
https://doi.org/10.1186/s13677-024-00687-9

RESEARCH

MDB-KCP: persistence framework
of in-memory database with CRIU-based
container checkpoint in Kubernetes
Jeongmin Lee1, Hyeongbin Kang1, Hyeon‑jin Yu1, Ji‑Hyun Na1, Jungbin Kim1, Jae‑hyuck Shin1 and
Seo‑Young Noh1*

Abstract

As the demand for container technology and platforms increases due to the efficiency of IT resources, various work‑
loads are being containerized. Although there are efforts to integrate various workloads into Kubernetes, the most
widely used container platform today, the nature of containers makes it challenging to support persistence for mem‑
ory‑centric workloads like in‑memory databases. In this paper, we discuss the drawbacks of one of the persistence
support methods used for in‑memory databases in a Kubernetes environment, namely, the data snapshot. To address
these issues, we propose a compromise solution of using container checkpoints. Through this approach, we can per‑
form checkpointing without incurring additional memory usage due to CoW, which is a problem in fork‑based data
snapshots during snapshot creation. Additionally, container checkpointing induces up to 7.1 times less downtime
compared to the main process‑based data snapshot. Furthermore, during database recovery, it is possible to achieve
up to 11.3 times faster recovery compared to the data snapshot method.

Keywords Container, Kubernetes, In‑memory database, Checkpoint/restore

Introduction
In the IT industry, enhancing the efficiency of computing
resources is recognized as a key goal. The choice of com-
puting technology to achieve this has become a major
concern within the industry [1]. Traditionally, efforts
were focused on improving resource efficiency through
virtualization technology. However, virtualization faced
performance degradation compared to bare-metal
machines due to issues such as hardware virtualization,
the computational overhead of additional virtualization
software, and increased complexity [2].

Container technology has emerged as an alternative to
address these challenges. Container technology provides

advantages such as lower performance degradation com-
pared to virtualization technology, thanks to environ-
ment isolation, while still improving resource efficiency
[3]. Furthermore, container technology, based on fea-
tures like environment isolation, lightweight design, and
high scalability, is increasingly recognized as an excellent
choice for achieving resource efficiency goals.

Currently, many IT services operate in container-based
environments, realizing efficient and flexible manage-
ment. Additionally, with the advancements in container
technology, various solutions for efficient container man-
agement have emerged [4].

Kubernetes stands out as the most widely utilized
platform today, serving as a container orchestration
tool that automates management tasks such as deploy-
ment and scaling of containerized applications [5]. It
has become a pivotal platform for effectively overseeing
container-based operational environments. Kubernetes
offers features like lifecycle management, automatic

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution‑NonCommercial‑NoDerivatives 4.0
International License, which permits any non‑commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by‑nc‑nd/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

*Correspondence:
Seo‑Young Noh
rsyoung@cbnu.ac.kr
1 Department of Computer Science, Chungbuk National University,
Cheongju 28644, South Korea

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00687-9&domain=pdf

Page 2 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

recovery, rolling updates, and rollback for containers,
going beyond simple container management to enhance
the high availability and fault tolerance of containerized
IT services.

Consequently, there is a growing trend towards inte-
grating diverse workloads into Kubernetes-based
environments. Particularly, there is a demand for con-
tainerizing and integrating stateful workloads, including
database applications, data processing applications, and
monolithic legacy services reliant on stateful configura-
tions [4].

For managing stateful workloads in a containerized
environment, Kubernetes provides a feature called Per-
sistentVolume (PV). This feature allows containers to
maintain persistence by storing the data they use in stor-
age volumes. However, this approach does not capture
the container’s internal state, including context, process
execution, library loading, cache, and memory state. In
essence, while PV is valuable for workloads that require
persistence by storing data in storage, it may not be effec-
tive for workloads that demand persistence while manag-
ing data in memory.

One prominent workload with such characteristics is
the in-memory database. Unlike disk-based databases
that store the primary data on disk and cache only a por-
tion of the critical data in memory, in-memory databases
store the entire primary data in memory. As the cost of
memory continues to decline and the input/output speed
of hard disks struggles to keep up with the performance
of other computing elements, in-memory databases that
can manage and provide data at a faster pace are gaining
attention [6]. Additionally, there is a growing use of in-
memory databases in IT service operations, driven by the
increasing demand for big data and real-time processing
applications [7].

The drawback of in-memory databases lies in their vol-
atile nature. In the event of a database server shutdown
or restart, the data present in the database is lost. Given
the nature of in-memory databases, maintaining persis-
tence is challenging. While some in-memory database
products partially support persistence by storing snap-
shots of data at specific points in time on disk, the pro-
cess of restoring these snapshots from disk to memory
can be time-consuming. Furthermore, there are meth-
ods of executing queries based on logs, but querying all
the data stored in the database results in significant time
consumption. In other words, extended downtime dur-
ing failure recovery is a significant implication, leading
to availability problem. Moreover, the conventional fork-
based data snapshot method employed by in-memory
databases poses an issue wherein additional memory, up
to twice the data size, is utilized when write operations
are initiated on the instance.

Since in-memory databases are primarily sought
after for applications requiring large volumes of data
and rapid data processing, extended downtime during
database failure and recovery processes can compro-
mise the reliability of applications. Therefore, efforts
to minimize downtime during failure recovery in in-
memory databases are crucial. Moreover, amidst the
trend of containerization and integration into Kuber-
netes environments for numerous workloads, it is
essential to explore the advantages of container-based
operations for in-memory databases operating in such
environments.

In this paper, we propose and validate the use of
container snapshots based on CRIU (Checkpoint/
Restore in Userspace) [8], a feature supported by Con-
tainer Runtime Interface – Open Container Initiative
(CRI-O) [9], one of the container runtime interfaces in
Kubernetes, as a method for maintaining persistence in
in-memory databases within the Kubernetes environ-
ment. We aim to compare the traditional approach of
loading data snapshots in in-memory databases with
the method of deploying container snapshots directly
as containers in Kubernetes. Our goal is to discuss the
advantages and applicability of these approaches. This
study contributes to the following aspects:

• Verification of the issues with the traditional fork-
based data snapshot approach in a Kubernetes
environment.

• Reduction of downtime in the checkpoint process
of in-memory databases by using container check-
points compared to the main process-based data
snapshot approach.

• Decreased recovery time compared to the data
snapshot approach by leveraging container check-
points in case of database failures.

The rest of this paper is organized as follows. First,
we present the background on the key technologies in
“Background” section. Next, “Related work” section
describe works related to the persistence of in-mem-
ory databases and studies concerning the CRIU-based
container checkpoint technology. “Problem statement”
section discusses the challenges associated with the
conventional data snapshot approach for maintaining
persistence in in-memory databases. In the “Proposed
method” section, we introduce the container check-
point approach as an alternative to the data snapshot
method and elaborate on its features and advantages.
Following that, performance evaluation is given in
“Experiments and performance analysis” section. Last,
“Conclusion” section concludes this paper and pro-
poses future work.

Page 3 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

Background
In this section, we describe the characteristics of the
methods used to maintain the persistence of in-mem-
ory databases and introduce the CRIU technology
underlying the container checkpoint methodology.

Persistence in in‑memory database
With the emergence of workloads demanding big data
and real-time processing, rapid data processing and
analysis have become crucial challenges. However,
traditional disk-based database systems faced difficul-
ties in guaranteeing fast response times due to disk
I/O being a primary performance bottleneck [10].
To address this, in-memory database systems have
been introduced. These systems store data in memory
rather than on disk, providing faster data access com-
pared to disk-based databases. However, the drawback
of in-memory databases is that the volatile medium,
memory, does not support persistence. Fundamen-
tally, databases are required to support ACID proper-
ties, but achieving durability in in-memory databases,
where data is stored in memory, is challenging. In other
words, in the event of a database failure where work-
load interruption or restart is inevitable, all data may be
lost. Therefore, many in-memory database products use
the following methods during database failure recovery
to ensure persistence [11, 12]:

• Data Snapshot: Periodically copying all data stored
in memory into a snapshot form on non-volatile
disk, and during database failure, reloading the snap-
shot from disk to memory after workload recovery.
However, this method has the issue of losing changes
made after snapshot creation.

• Transaction Logging: Storing a log file of all insert
and update operations performed by the database on
non-volatile disk, and during database failure, exe-
cuting all queries recorded in the log file to recover
data. The drawback of this approach is that recovery
takes a considerable amount of time since the data-
base needs to execute all queries.

In practical scenarios of in-memory database failure
recovery, a combination of the above methods is often
used to offset their respective drawbacks. Typically, a
data recovery through snapshots is performed initially,
and for changes made after snapshot creation, the trans-
action logging method is employed [13].

Another challenge in in-memory database failure
recovery is the data snapshot creation process. There
are various algorithms for creating data snapshots in in-
memory databases, and among them, Redis, the most

widely used in the market, employs two snapshot crea-
tion methods., each with its own problems:

• Main Process‑based Data Snapshot Creation:
Blocking the operation of the in-memory database,
saving a snapshot file of the current memory state to
disk. During the snapshot creation process, the data-
base blocks read/write commands requested by cli-
ents, leading to downtime in the workload.

• Fork‑based Data Snapshot Creation: Utilizing child
process forked from the main process for snapshot
creation. Although this method avoids downtime
during the snapshot creation process, it may lead to
a memory usage problem, as the database performs
copy-on-write when changes occur during the snap-
shot creation process, potentially doubling the mem-
ory usage. Running out of memory resources can
cause the database service to crash.

Figure 1 depicts the process of main process-based
data snapshot creation and fork-based data snapshot
creation. The most significant difference between the
two approaches lies in the occurrence of downtime in
the database service. In the main process-based data
snapshot method, the main process, responsible for
read/write operations in the database, directly performs
the snapshot creation. As a result, the database service
is unavailable during the snapshot creation period. In
contrast, the fork-based data snapshot creation method
utilizes a fork() system call to create a child process that
performs the snapshot creation [14]. Consequently, the
database service remains available even during the snap-
shot creation period.

Given the downtime issue during snapshot creation in
the main process method and the potential failure due
to excessive memory usage in the child process crea-
tion method, creating snapshots directly on a database
server where actual operations occur is deemed unstable.
Therefore, databases are structured in a Active-Standby
configuration, where the Active instance provides actual
services, and the Standby instance mirrors the data from
the Active while performing snapshot creation [15, 16].

Figure 2 illustrates the workflow for data snapshot
creation to maintain persistence when a write operation
occurs in the Active-Standby structure of an in-memory
database. When changes occur due to a write operation
on the Active instance, if the Standby instance is success-
fully connected, the write operation is directly executed
on the Standby instance as well. However, if the connec-
tion to the Standby instance is disrupted due to down-
time, the write operation is temporarily stored in the
Backlog Buffer of the Active. Data stored in the Back-
log Buffer has a replication offset, allowing for partial

Page 4 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

Fig. 1 Main process‑based data snapshot creation and fork‑based data snapshot creation

Fig. 2 Data snapshot creation workflow in active‑standby structure

Page 5 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

synchronization by forwarding the data from the buffer
when a normal connection is reestablished with the
Standby instance, without relying on snapshot-file-based
data synchronization.

Checkpoint / restore in userspace (CRIU)
CRIU is a Linux software that supports checkpoint/
restore functionality for Linux processes through mem-
ory dumps. It saves the current state of a process to disk
and performs restoration based on the stored archive.

CRIU’s checkpoint process involves maintaining the
consistency of processes by fetching the Process ID (PID)
of the target process, recursively collecting process infor-
mation (i.e. files descriptors, pipe parameters, memory
maps), and freezing it. During this checkpoint, it is cru-
cial that the process being dumped remains transpar-
ent, and any changes during the process state transition
should not be noticed. Hence, utilizing the ptrace() inter-
face, it transparently captures and freezes the process,
employing parasitic code injection techniques to obtain
the state of the target process without killing it [17].

Related work
In this section, we discuss research related to the persis-
tence of in-memory databases and studies concerning the
CRIU-based container checkpoint technology.

Firstly, there have been several studies focusing on
maintaining the persistence of in-memory databases [18]
conducted a performance evaluation and comparison
of the traditional fork-based data snapshot method and
the mainstream snapshot algorithm commonly used for
maintaining persistence in existing in-memory database
products. The study observed that the fork-based data
snapshot method performs better in update-intensive
workloads [19] proposed a checkpointing system using
Validity Tracking Compression (VTC), a technique that
tracks the validity of logs, to address the problem of
doubling memory usage in update-intensive workloads
caused by fork-based snapshots. This system ensures
that only an additional 2% of memory is required during
checkpointing.

There are also several studies on CRIU-based container
checkpointing technology.

Bhardwaj et al. [20] addresses challenges such as system
failures and load balancing in fog computing environ-
ments through the utilization of LXD container virtual-
ization technology and CRIU-based migration. Tran et al.
[21] proposes a framework for migrating containerized
services using CRIU technology in Kubernetes environ-
ments. In this study, Redis, an in-memory database prod-
uct, was also used as one of the benchmark targets.

Our research stands out from previous studies by
focusing on using CRIU for container checkpoint and

recovery specifically tailored to in-memory database
workloads. In particular, our research distinguishes itself
by leveraging container checkpoints, especially concern-
ing the persistence aspect of in-memory databases. This
paper analyzes the differences between the persistence
mechanisms inherent to in-memory database workloads
and the utilization of container checkpoints for maintain-
ing persistence. It explores the advantages of using con-
tainer checkpoints in achieving persistence.

Problem statement
In this section, we discuss the drawbacks of the con-
ventional data snapshot approach used for maintain-
ing persistence in in-memory databases. Specifically,
we elaborate on the issues related to additional memory
usage in the fork-based data snapshot method, which
allows snapshot creation without downtime, and experi-
mentally verify whether such problems arise in a Kuber-
netes environment.

Problem with Fork‑based data snapshots in Kubernetes
In the Fork-based data snapshot method, the main
process forks a child process to perform the snapshot
creation. Since the child process handles the snapshot
creation, it does not impact the main process responsi-
ble for operating the database, allowing operations on
the database. However, during the snapshot process,
if there are modifications to the database instance, the
main process copies the corresponding memory pages
before making modifications. In the case of a write oper-
ation on the database triggering modifications, additional
memory space is required to copy the memory pages. If
modifications occur in all memory pages, it necessitates
up to twice the maximum data size in memory space [18,
19]. If the additional memory required during the snap-
shot process is not allocated, an Out of Memory (OOM)
issue may occur, leading to system failure. The above
issues are the same when running container-based in-
memory databases in a Kubernetes environment. This
can be a concern in container environments where vari-
ous workloads, beyond the database instance, operate on
a single node. Furthermore, Kubernetes does not support
Swap memory, so even if the node’s memory resources
are insufficient, memory space cannot be allocated from
devices other than the main storage [22]. Therefore, in
Kubernetes environments, the need for efficient utiliza-
tion of memory resources is emphasized.

We conducted experiments to investigate additional
memory usage during the execution of fork-based check-
pointing in a Redis container, one of the most actively
used in-memory databases in the IT market, running
in a Kubernetes environment. Using the Yahoo! Cloud
Serving Benchmark (YCSB) [23] tool, we triggered write

Page 6 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

operations on the database to measure the additional
memory usage due to Copy-On-Write (CoW) compared
to the size of the stored data in the database.

The testbed on which this experiment was run is the
same as the testbed in the Experiments and performance
analysis section.

Table 1 shows the parameter configurations for the
YCSB workload used to benchmark the database in the
experiment. To assess the occurrence of CoW in various
workloads using the database, we adjusted the number of
records and the update operation ratio. The size of each
record stored in the database used the default record size
provided by YCSB. Additionally, to maintain consistency
in the number of commands generated in the database
during the checkpoint process in each experiment, the
thread count was standardized to 16.

Figure 3 presents the results of an experiment meas-
uring the additional memory usage due to CoW during
update operations with the YCSB benchmark during
the checkpoint process of a container-based in-mem-
ory database performed in a Kubernetes environment.
In Fig. 3a shows the additional memory usage due to
CoW as a percentage of data size for a read-oriented

workload with 10% update operations during the check-
point. This shows up to 22% additional memory usage
compared to the memory usage of the original Redis
instance. Figure 3b shows the additional memory usage
due to CoW in a workload balanced with 50% read and
50% update operations. It shows up to 55% additional
memory usage compared to the memory usage of the
original Redis instance. Figure 3c shows the memory
usage incurred due to CoW in a write-oriented work-
load with a 90% update job ratio. It shows up to 70%
additional memory usage compared to the memory
usage of the original Redis instance. As a result, for all
YCSB workload benchmarks, the additional memory
usage due to CoW increases as the number of records
increases, with more memory usage experienced in
write-oriented workloads.

Fork-based checkpointing provides the advantage of
not impacting database operations during the check-
point process, making it a favorable solution for per-
forming checkpoints in operational environments
where database downtime is undesirable. However, in
architectures like Active-Standby, where the opera-
tional instance and the instance performing the check-
point are separate, even if downtime occurs in the
checkpointing instance, it does not affect the database
service itself. In such a structure, there is no reason
to use fork-based checkpointing while tolerating inef-
ficient memory usage during the checkpoint process.
Therefore, an alternative checkpoint/restore solution
that efficiently utilizes memory resources in an envi-
ronment where the operational instance and check-
point instance are separated is needed.

Table 1 YCSB tool configuration

Parameters Values

Record Count 1M, 2M, 4M, 8M, 16M

Update Ratio 10%, 50%, 90%

Record Size default

Number of Threads 16

Distribution zipfian

Fig. 3 CoW occurrence during the checkpointing with Redis container in Kubernetes

Page 7 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

Loading time of data snapshot
The data snapshot method includes loading data from a
stored snapshot file on the disk when a database needs
to restart due to any unforeseen reason. In particular,
when operating an in-memory database as a container
on orchestration platforms like Kubernetes, if a failure
occurs in the database, it triggers a restart of the con-
tainer. In the event of a failure in the database container
resulting in a restart, during the loading process, the
database becomes temporarily inaccessible, becoming a
major factor in increased downtime for recovery in in-
memory databases.

For workloads where real-time performance is cru-
cial, as often seen in in-memory databases with faster
data input/output than disk-based databases, prolonged
recovery times can compromise the reliability of the ser-
vice. Therefore, a recovery solution is needed that can
quickly restore services in the event of a failure, pro-
cessed and prepared for fast recovery before the occur-
rence of a failure, rather than loading data at the time of
failure. This ensures both real-time capabilities and ser-
vice stability, minimizing the Recovery Time Objective
(RTO).

Proposed method
Our goal is to perform database checkpointing without
wasting memory resources due to CoW. The conventional
methods involve checkpointing through the main process
of the database. Checkpointing through the main process
essentially blocks operations during the checkpoint pro-
cess, rendering the database inaccessible. Therefore, the
entire checkpointing process results in database down-
time. In an independent structure where the operational
instance and checkpointing instance are separate, the
downtime of the checkpointing instance does not affect
database operations. However, as the checkpoint time
increases, the size of the backlog buffer used for synchro-
nization between the Active and Standby instances after
restoration grows. This leads to increased memory usage
in the Active Instance and longer synchronization times.
In cases where more data accumulates in the backlog
buffer than the configured size, creating a snapshot file
on the Active instance and loading the entire database
into memory are required for synchronizing the Active
and Standby instances.

Furthermore, we aim to provide fast database services
by minimizing downtime during the restore process for
efficient fault recovery. Traditional in-memory data-
bases create snapshot files during the checkpoint process
and go through the steps of restarting the instance after
a database failure and loading the snapshot file. During
the time it takes to load the snapshot file, the database
is unavailable, resulting in downtime for that instance.

Therefore, a solution is needed that focuses on quick
recovery before the occurrence of a fault, rather than
loading data at the time of the fault.

In-memory databases require periodic checkpointing
to maintain persistence, and fast restoring is essential to
ensure real-time responsiveness. Therefore, an efficient
solution is needed to minimize instance downtime and
restore time during the checkpointing process without
wasting memory resources. We propose the use of CRIU
for container-based in-memory databases operating
in a Kubernetes environment as a solution to maintain
persistence.

CRIU with Kubernetes environment
CRIU has been integrated with various container runtime
platforms such as LXC, LXD, Docker, Podman, and more.
Kubernetes, being one of the most widely used container
runtime platforms in the container market, supports
CRIU, providing container checkpoint and restore capa-
bilities. Both the low-level container runtime interfaces
in Kubernetes, namely runc and crun, and the high-level
container runtime interface, CRI-O, integrate with CRIU,
enabling the storage and restoration of container states.
In traditional container runtime platforms, CRIU was
primarily used for container migration purposes. Con-
sequently, when executing a checkpoint command, the
existing running container was stopped. For example, in
Docker, when creating a container checkpoint using the
docker checkpoint create command, the state of the exist-
ing running container transitions to the exited state [24].

However, CRIU with Kubernetes behaves differently.
CRIU with Kubernetes is developed for the purpose of
live container forensics [25]. When performing a con-
tainer checkpoint, it can recognize that the container is
being checkpointed and still proceed to store the con-
tainer snapshot without deleting the actively running
container. In other words, even when a checkpoint com-
mand is executed, the running container is not termi-
nated and continues its operation.

Figure 4 illustrates the container checkpoint workflow
using CRIU in a Kubernetes environment. Kubernetes
CRIU triggers the container snapshot request to the
kubelet, an agent process responsible for managing con-
tainer execution, using URL-based approach. The URL
specifies the container’s namespace, pod, and container.
Through this process, a checkpoint TAR archive for
the specified container is generated on the disk. Subse-
quently, the container checkpoint TAR archive is trans-
formed into the Open Container Initiative (OCI) image
using an external container build tool. During this trans-
formation, an annotation is added to the container image,
indicating that the container has been checkpointed.
Finally, the container is deployed into the Kubernetes

Page 8 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

environment using the same deployment method as the
existing Kubernetes container images.

In‑memory database checkpoint with container snapshot
The checkpoint process is essential to ensure data per-
sistence in in-memory databases. Traditional checkpoint
methods, such as fork-based data snapshots, incur sig-
nificant memory overhead due to the CoW mechanism.
Additionally, main process-based data snapshots result in
downtime for the entire checkpoint process. In contrast,
the container checkpoint method leverages CRIU to cap-
ture the state of the running container, minimizing the
impact on the operational database instance.

Checkpointing can be executed either on the opera-
tional instance or on a dedicated backup instance, with
each approach having distinct impacts on downtime and
memory usage. Operational Instance Checkpointing
involves performing checkpoints directly on the active
database instance. This method ensures continuous ser-
vice availability as key database operations continue
uninterrupted. However, due to the CoW mechanism,
memory usage may increase during the checkpointing
process. On the other hand, Backup Instance Check-
pointing offloads the checkpointing process to a sepa-
rate instance to mitigate its impact on the operational
instance. This method requires robust synchronization
to ensure that the backup instance accurately reflects the
state of the operational instance. The main advantages
are preventing additional memory usage and service

downtime on the active instance. Checkpointing an in-
memory database using CRIU-based container snapshots
offers several advantages over traditional data snapshot
methods:

Minimized Downtime: Traditional main process-
based data snapshots result in significant downtime
as the database service is entirely halted during the
checkpoint process. In contrast, the container check-
point method incurs downtime only during the
memory dump and tar archive creation phases, sig-
nificantly reducing service interruption compared to
main process-based data snapshots.
Optimized Memory Usage: Fork-based snapshots
can lead to substantial memory usage due to the
CoW mechanism when write operations occur on
the instance. The container checkpoint method pre-
vents additional memory usage on the instance. This
approach leverages Kubernetes’ capability to effi-
ciently manage containerized workloads, making the
checkpoint process both effective and resource effi-
cient.

Table 2 shows the distinctly differentiated character-
istics between the traditional data snapshot method and
the container checkpoint method for checkpointing in-
memory databases.

By adopting the container checkpoint method, the
checkpoint process for in-memory databases can

Fig. 4 Container checkpoint workflow with CRIU in a Kubernetes environment

Page 9 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

reduce downtime compared to the main process-based
data snapshot method and decrease memory usage
compared to the fork-based data snapshot method. This
approach enhances overall performance and reliability
in a Kubernetes environment, making it a suitable solu-
tion for modern containerized applications.

This structured approach ensures that in-memory
databases maintain high availability and performance,
leveraging Kubernetes’ capabilities for efficient work-
load management and minimizing downtime and mem-
ory usage during the checkpoint process.

In‑memory database recovery with container snapshot
In-memory databases are vulnerable to data loss dur-
ing failures or restarts because they store primary data
in memory. Unlike disk-based databases, which do not
require data reloading during recovery, in-memory data-
bases must reload data into memory during recovery,
potentially causing downtime. The traditional recovery
method involves loading data from snapshot files stored
on disk, which can take time and affect service avail-
ability. The traditional recovery methods for in-memory
databases, such as data snapshots, involve significant
challenges related to data volatility and downtime:

Data Volatility: In-memory databases store data in volatile
memory, leading to potential data loss during restarts or
failures. This necessitates reloading data from disk-based
snapshot files, a process that can be time-consuming.
Downtime: The process of loading data from snapshot
files during recovery incurs substantial downtime. The
database remains unavailable until the data loading pro-
cess is complete, which can severely impact applications
that require high availability and real-time performance.

This paper aims to address the challenges mentioned
above by using CRIU container checkpoints to perform
recovery of in-memory databases in case of failures. Recov-
ery of in-memory databases using CRIU container snap-
shots offers significant advantages over traditional methods:

Preloaded Data: Container snapshots capture the
state of the data already loaded in memory at the
time of the snapshot. This preloaded state allows for
the omission of the data loading step during recovery,
enabling faster restoration.

Reduced Downtime: By deploying a new container
using the pre-captured snapshot image, the data
loading step is bypassed, significantly reducing down-
time. This ensures that the database service is quickly
restored and able to handle client requests promptly.

Figure 5 illustrates the timeline of the recovery sce-
nario when a failure occurs in the in-memory database
instance. In the conventional container-based in-mem-
ory database, recovery involves restarting the instance at
the time of failure and loading data from the stored data
snapshot file. However, with container snapshot-based
in-memory database restoration, the process is per-
formed by deploying a container based on the workload
snapshot container image stored at the time of failure.

Therefore, the container checkpoint method pre-
includes the data to be loaded into memory during the
checkpoint process. While the container checkpoint may
take longer for snapshot creation compared to the tradi-
tional data snapshot method, considering Recovery Point
Objective (RPO), it offers an advantage in RTO by ena-
bling faster service restoration. Table 3 shows the char-
acteristics observed during the recovery of in-memory
databases using traditional data snapshots compared to
container checkpoints.

Checkpoint and restore with container checkpoint
for practical use: MDB‑KCP
The existing data snapshot method for maintaining the
persistence of in-memory databases is a feature provided
by the database application itself. This involves periodi-
cally creating snapshots and automatically loading the
data when the database needs to restart. In contrast, the
container checkpoint discussed in this paper is a manual
process in the Kubernetes environment. Administrators
need to send a checkpoint creation request directly to the
kubelet using curl, and the process of converting the gener-
ated TAR archive into an OCI image also needs to be done
manually through a container image builder. Furthermore,
since the state-saved container image is separate from the
default database container, it must be manually deployed
by specifying it in a separate YAML file. Therefore, to
automate container checkpoints similar to the data snap-
shot method, additional requirements need to be satisfied.
To maintain the persistence of an in-memory database, the
following functionalities are required:

Table 2 Characteristics of data snapshot and container checkpoint when checkpointing in‑memory database

Method Downtime during Checkpoint Additional Memory Usage Complexity

Main process‑based Data Snapshot High None Low

Fork‑based Data Snapshot None Up to 2 times (due to CoW) Moderate

CRIU Container Checkpoint Low None High

Page 10 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

• Periodic checkpointing of the database.
• Automatic detection of database failures and restora-

tion to the checkpointed state.

In this section, we propose the MDB-KCP (Memory
Database with Kubernetes Checkpoint) framework to
meet the requirements for maintaining the persistence of
in-memory databases using Kubernetes’ CRIU container
checkpoints [26]. First, the implementation of the Kuber-
netes CRIU container checkpoint method for in-memory
databases involves several steps:

1. Periodic Checkpoint Requests: Initiate the check-
point process for the target container by sending
requests to the Kubernetes kubelet.

2. Checkpoint Execution with CRIU: The kubelet uses
Checkpoint/Restore In Userspace (CRIU) to cap-
ture the container’s state, including memory, process
state, and file descriptors, and stores this state in a
TAR archive.

3. Conversion to OCI Image: Convert the TAR archive
into an Open Container Initiative (OCI) image using
container image build tools, and store this OCI image
for future restoration.

4. Backup Instance Deployment: Deploy the OCI
image as a backup instance within the Kubernetes
environment, ensuring that the backup instance

accurately reflects the state of the operational
instance through synchronization mechanisms.

5. Monitoring and Synchronization: Continuous mon-
itoring and synchronization between the operational
and backup instances are required. The synchroni-
zation mechanism ensures that the backup instance
remains consistent with the operational instance.

Algorithm 1 MDB‑KCP: Checkpointer

Initially, the administrator specifies the frequency at
which the database checkpoint should occur. MDB-KCP:
Checkpointer then sends a checkpoint request in the curl
format to the kubelet according to the specified interval.
The kubelet captures and dumps the database container
using the criu dump command, creating a stateful con-
tainer TAR archive. Subsequently, MDB-KCP: Check-
pointer builds the TAR archive into the OCI image format
through the container image builder. This enables the peri-
odic checkpointing of the database. Algorithm 1 shows

Fig. 5 In‑memory database checkpoint and recovery timeline with container snapshot approach and data snapshot approach

Table 3 Characteristics of data snapshot and container
checkpoint when restoring in‑memory database

Method Recovery
Time from
Failure

Service
Downtime
after Failure

Complexity

Data Snapshot High High Low

CRIU Container Check‑
point

Low Low High

Page 11 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

the process by which MDB-KCP: Checkpointer performs
checkpointing of an in-memory database container.

Monitoring whether failures occur in the container and,
if a failure is detected, redeploying the container using the
checkpointed state-saving OCI image are essential tasks.
Kubernetes can automatically redeploy a container if a
failure occurs, thanks to the liveness probe. However, for
container recovery using a checkpoint image, a different
automatic container deployment feature is required. This
is because it involves deploying a separate container image
that captures the state information of the actively running
database, rather than the default container image used
by the database. Implementing the container checkpoint
recovery process involves these steps:

1. Monitoring and Failure Detection: Continuously
monitor the state of the database container to promptly
detect failures. Utilize Kubernetes’ liveness probes to
monitor the health status of the container.

2. Initiating Recovery: Upon detecting a failure,
remove the failed container and deploy a new con-
tainer using the pre-captured OCI image.

3. Verifying Restoration: After deployment, verify
that the new container has been correctly restored.
Ensure that the database is ready to handle client
requests and that data integrity is maintained.

4. Synchronization and Finalization: Apply a syn-
chronization mechanism to ensure that changes
made after the snapshot creation are reflected in the
restored instance. This process may involve replaying
transaction logs or other methods.

To meet these requirements, we propose introducing
MDB-KCP: Restorer to interact with existing components,
providing an architecture that fulfills these functionalities.

Algorithm 2 MDB‑KCP: Restorer

Algorithm 2 shows the interaction between the com-
ponents required for the recovery of an in-memory data-
base through container checkpointing in the form of a
sequence diagram. Initially, MDB-KCP: Restorer must
continuously monitor the state of the target database
container through the Kubernetes API server. MDB-
KCP: Restorer periodically pulls the container’s state
metrics from the Kubernetes API server. In the event of
a failure in the database container, MDB-KCP: Restorer
detects it, removes the failed database container, and
deploys a new container using the specified Kubernetes
YAML file containing the stateful OCI image for recov-
ery. This enables the automatic recovery of in-memory
database containers in the Kubernetes environment.

Using the two modules mentioned above, container
checkpointing for maintaining the persistence of an in-
memory database can be implemented easily with shell
scripts or programming languages such as Python.

Experiments and performance analysis
In this section, we conduct experiments comparing the
checkpoint and restoration processes of traditional in-
memory databases using the data snapshot approach
with those using CRIU-based container snapshots in the
Kubernetes environment.

Testbed setup
We conducted all experiments by deploying in-memory
database containers in a Kubernetes environment with
a single node. The node is equipped with an Intel Xeon
Silver 4208 CPU running at 2.10 GHz; the CPU had 8
physical cores and 16 logical cores with hyperthreading
enabled. We use Dell 2TB 7.2K RPM SATA 6Gbps 512n
hard drive for storing and loading data snapshot and con-
tainer snapshot. The machine ran CentOS 9 distribution
with kernel 5.14. Additionally, we configured a single-
node Kubernetes 1.28.1 based on the CRI-O container
runtime interface.

Application setup
The in-memory database application utilized Redis 7.2.1.
Furthermore, the data snapshot protocol for maintain-
ing the persistence of the in-memory database employed
Redis’s RDB. The data stored in the in-memory database
was bulk-loaded with 10M, 20M, 40M, 80M, and 160M
records using Redis’s Debug Populate command.

Checkpointing time
First, we compared the data snapshot creation time in
Kubernetes-based in-memory database containers with

Page 12 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

the creation time of stateful OCI images in container
checkpoints. In the Redis in-memory database, the fol-
lowing data snapshot creation protocols exist:

• RDB‑BGSAVE: A forked child process performs the
data snapshot creation process in the background.
During this time, the operation of the database is not
interrupted.

• RDB‑SAVE: The main process performs the data
snapshot creation process. The operation of the data-
base is paused during the snapshot creation time.

In this experiment, we compare the snapshot creation
time and downtime incurred on the container for both
protocols, RDB-BGSAVE, RDB-SAVE, and the con-
tainer checkpoint approach. For container checkpoints,
we measured the downtime-inducing tar archive crea-
tion process time and the OCI image build process
time, which occurs in a separate process from the
instance and does not incur downtime.

Figure 6 shows the time taken for main process-
based and fork-based data snapshot creation, as well
as container checkpointing for checkpointing an in-
memory database container. Both the data snapshot
approach and the container checkpoint approach show
an increase in time proportional to the data size of the
in-memory database. In terms of snapshot creation
time, container checkpointing consumes up to 2 times

more time compared to the data snapshot approach.
Fork-based data snapshotting incurs no downtime for
the container, while the entire checkpoint time in the
main process-based data snapshot results in down-
time for the in-memory database container. Container
checkpointing incurs downtime only in the process that
captures the container and generates a tar archive by
dumping the memory. Therefore, in terms of downtime
incurred on the container, the container checkpointing
approach has up to 7.1 times less downtime compared
to the data snapshot approach. As a result, container
checkpointing consumes more time for snapshot crea-
tion compared to the data snapshot approach, but
incurs less downtime on the container compared to the
main process-based data snapshot approach.

Restoring time
Next, we compared the time required for each approach
to restore data in the in-memory database. Although
the processes for creating snapshots in RDB-SAVE and
RDB-BGSAVE, the snapshot generation protocols used
by Redis, differ, both protocols ultimately create data
snapshots in the RDB format. Therefore, in this experi-
ment, we compared the time required for database recov-
ery using the loading of RDB format data snapshots and
the deployment of container checkpoint images. The
criteria for recovery completion were based on the data-
base’s ability to process incoming requests from clients.

Fig. 6 Checkpointing time of data snapshot and container checkpoint

Page 13 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

Figure 7 shows the data recovery time for the in-memory
database container through data snapshots and container
checkpoint snapshots. Experimental results show that
recovery through container checkpoints is up to 11.3 times
faster than the data snapshot recovery method. The recov-
ery through the data snapshot method of the in-memory
database involves most of the time during the process of
deploying the base container and loading the data. The
loading time is proportional to the size of the data stored
in the in-memory database. On the other hand, in the
database recovery based on container checkpoint, the data
is already stored in the stateful container image during the
checkpoint process. Therefore, during the container rede-
ployment process, it is observed that relatively less time is
required compared to the data snapshot method.

Conclusion
In this paper, we validate the drawbacks of the traditional fork-
based data snapshot approach used for maintaining persis-
tence in in-memory databases in a Kubernetes environment.
As an alternative for ensuring persistence in in-memory data-
bases, we propose the use of Kubernetes container check-
points. To maintain the persistence of in-memory databases,
the container checkpoint used has the following characteris-
tics compared to the data snapshot approach:

• Low instance downtime compared to main process-
based data snapshot

• Extended checkpoint snapshot creation time
• Short service recovery time

For an in-memory database operating in a struc-
ture where the operational environment and backup
environment are separated, performing periodic
checkpoints with relatively less downtime seems advan-
tageous. Additionally, it enables checkpointing while
preventing memory waste due to CoW. Furthermore,
maintaining the persistence of in-memory databases
through container checkpoints can offer the advantage
of quick recovery speed, especially in workloads where
real-time performance must be ensured.

However, in the Kubernetes environment, CRIU-
based container checkpoints require conversion to the
OCI image format, introducing the drawback of need-
ing external container image build tools before deploy-
ment in Kubernetes. This process dominates most of
the time in container checkpointing, resulting in con-
tainer checkpoints taking up to twice as long as snap-
shot creation compared to the traditional data snapshot
approach.

Therefore, in future research, we plan to explore con-
tainer deployment approaches that can be managed in a
Kubernetes environment without converting the state-
saved container TAR archive to the OCI image format.
This is expected to minimize the checkpoint snapshot
creation time. Also, our experiments were conducted

Fig. 7 Restoring time of data snapshot and container checkpoint

Page 14 of 14Lee et al. Journal of Cloud Computing (2024) 13:124

with Kubernetes operating in a single-node environ-
ment to simplify the scenario. In the future, we plan to
investigate whether additional benefits exist by using
container checkpoints for maintaining the persistence
of in-memory databases in large-scale Kubernetes clus-
ter environments.

Abbreviations
PV Persistent Volume
CRIU Checkpoint/Restore in Userspace
ACID Atomicity, Consistency, Isolation, and Durability
OOM Out‑of‑Memory
PID Process ID
YCSB Yahoo! Cloud Serving Benchmark
CoW Copy‑on‑Write
RTO Recovery Time Objective
RPO Recovery Point Objective
OCI Open Container Initiative

Acknowledgements
The authors would like to extend their sincere thanks to the Global Science
Experimental Data Hub Center (GSDC) at the Korea Institute of Science Tech‑
nology Information (KISTI) for their support of our research.

Authors’ contributions
JL and HB designed the framework. JL drafted the manuscript. JL, HB, and JS con‑
tributed to the design of the experiments. JN and JK performed the experiments.
SN supervised this study. All authors contributed to the final version of the manu‑
script and data analysis. The authors read and approved the final manuscript.

Funding
This research was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) under grant number
NRF‑2008‑00458, and by the Basic Science Research Program through the NRF
funded by the Ministry of Education under grant number 2021R1I1A3053034.

Availability of data and materials
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Received: 2 April 2024 Accepted: 9 July 2024

References
 1. Beloglazov A, Buyya R, Lee YC, Zomaya A (2011) A taxonomy and survey

of energy‑efficient data centers and cloud computing systems. Adv
Comput 82:47–111

 2. Pelletingeas C (2010) Performance evaluation of virtualization with cloud
computing (Doctoral dissertation)

 3. Li Z, Kihl M, Lu Q, Andersson JA (2017) Performance overhead compari‑
son between hypervisor and container based virtualization. In: 2017 IEEE
31st International Conference on advanced information networking and
applications (AINA). Taipei, IEEE, p 955–962

 4. CNCF (2020) CNCF SURVEY 2020. https:// www. cncf. io/ wp‑ conte nt/ uploa
ds/ 2020/ 11/ CNCF_ Survey_ Report_ 2020. pdf. Accessed 14 Feb 2024

 5. Rodriguez MA, Buyya R (2019) Container‑based cluster orchestration
systems: a taxonomy and future directions. Softw Pract Exp 49(5):698–719

 6. Bergman K, Borkar S, Campbell D, Carlson W, Dally W, Denneau M et al
(2008) Exascale computing study: technology challenges in achieving
exascale systems. In: Defense Advanced Research Projects Agency Infor‑
mation Processing Techniques Office (DARPA IPTO), Tech. Rep, 15, 181

 7. Abourezq M, Idrissi A (2016) Database‑as‑a‑service for big data: an over‑
view. Int J Adv Comput Sci Appl 7(1):157–177

 8. CRIU. Checkpoint/Restore in Userspace. https:// criu. org/ Main_ Page.
Accessed 10 Dec 2023

 9. cri‑o. Lightweight container runtime for Kubernetetes. https:// cri‑o. io.
Accessed 10 Feb 2024

 10. Zhang H, Chen G, Ooi BC, Tan KL, Zhang M (2015) In‑memory big data
management and processing: a survey. IEEE Trans Knowl Data Eng
27(7):1920–1948

 11. Magalhaes A, Monteiro JM, Brayner A (2021) Main memory database
recovery: a survey. ACM Comput Surv (CSUR) 54(2):1–36

 12. Bao X, Liu L, Xiao N, Lu Y, Cao W (2016) Persistence and recovery for in‑
memory NoSQL services: a measurement study. In: 2016 IEEE Interna‑
tional Conference on Web Services (ICWS). San Francisco, IEEE, p 530–537

 13. Redis. Redis persistence, how Redis writes data to disk. https:// redis. io/
docs/ manag ement/ persi stence. Accessed 3 Jan 2024

 14. Park J, Lee Y, Yeom HY, Son Y (2020) Memory efficient fork‑based check‑
pointing mechanism for in‑memory database systems. In: Proceedings of
the 35th Annual ACM Symposium on Applied Computing. p 420–427

 15. EDUCBA (2023) Redis persistence. https:// www. educba. com/ redis‑ persi
stence. Accessed 10 Jan 2024

 16. Shrestha R (2017) High availability and performance of database in the
cloud‑traditional master‑slave replication versus modern cluster‑based
solutions

 17. CRIU. Checkpoint/Restore. https:// criu. org/ Check point/ Resto re. Accessed
10 Dec 2023

 18. Li L, Wang G, Wu G, Yuan Y (2018) Consistent snapshot algorithms for
in‑memory database systems: experiments and analysis. In: 2018 IEEE
34th International Conference on Data Engineering (ICDE). Paris, IEEE, p
1284–1287

 19. Lee K, Kim H, Yeom HY (2021) Validity tracking based log management
for in‑memory databases. IEEE Access 9:111493–111504

 20. Bhardwaj A, Gupta U, Budhiraja I, Chaudhary R (2023) Container‑based
migration technique for fog computing architecture. In: 2023 interna‑
tional conference for advancement in technology (ICONAT). Goa, India,
IEEE, p 1–6

 21. Tran MN, Vu XT, Kim Y (2022) Proactive stateful fault‑tolerant system for
kubernetes containerized services. IEEE Access 10:102181–102194

 22. Kubernetes (2023) Installing kubeadm. https:// kuber netes. io/ docs/ setup/
produ ction‑ envir onment/ tools/ kubea dm/ insta ll‑ kubea dm. Accessed 10
Dec 2023

 23. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010) Bench‑
marking cloud serving systems with YCSB. In: Proceedings of the 1st ACM
symposium on Cloud computing. p 143–154

 24. docker docs. docker checkpoint. https:// docs. docker. com/ engine/ refer
ence/ comma ndline/ check point. Accessed 8 Jan 2024

 25. Reber A (2022) Forensic container checkpointing in Kubernetes. https://
kuber netes. io/ blog/ 2022/ 12/ 05/ foren sic‑ conta iner‑ check point ing‑ alpha.
Accessed 11 Nov 2023

 26. MDB‑KCP. Available: https:// github. com/ CBNU‑ DCLab/ MDB‑ KCP.
Accessed 20 May 2024

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://criu.org/Main_Page
https://cri-o.io
https://redis.io/docs/management/persistence
https://redis.io/docs/management/persistence
https://www.educba.com/redis-persistence
https://www.educba.com/redis-persistence
https://criu.org/Checkpoint/Restore
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm
https://docs.docker.com/engine/reference/commandline/checkpoint
https://docs.docker.com/engine/reference/commandline/checkpoint
https://kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-alpha
https://kubernetes.io/blog/2022/12/05/forensic-container-checkpointing-alpha
https://github.com/CBNU-DCLab/MDB-KCP

	MDB-KCP: persistence framework of in-memory database with CRIU-based container checkpoint in Kubernetes
	Abstract
	Introduction
	Background
	Persistence in in-memory database
	Checkpoint restore in userspace (CRIU)

	Related work
	Problem statement
	Problem with Fork-based data snapshots in Kubernetes
	Loading time of data snapshot

	Proposed method
	CRIU with Kubernetes environment
	In-memory database checkpoint with container snapshot
	In-memory database recovery with container snapshot
	Checkpoint and restore with container checkpoint for practical use: MDB-KCP

	Experiments and performance analysis
	Testbed setup
	Application setup
	Checkpointing time
	Restoring time

	Conclusion
	Acknowledgements
	References

