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Abstract 

As the demand for container technology and platforms increases due to the efficiency of IT resources, various work‑
loads are being containerized. Although there are efforts to integrate various workloads into Kubernetes, the most 
widely used container platform today, the nature of containers makes it challenging to support persistence for mem‑
ory‑centric workloads like in‑memory databases. In this paper, we discuss the drawbacks of one of the persistence 
support methods used for in‑memory databases in a Kubernetes environment, namely, the data snapshot. To address 
these issues, we propose a compromise solution of using container checkpoints. Through this approach, we can per‑
form checkpointing without incurring additional memory usage due to CoW, which is a problem in fork‑based data 
snapshots during snapshot creation. Additionally, container checkpointing induces up to 7.1 times less downtime 
compared to the main process‑based data snapshot. Furthermore, during database recovery, it is possible to achieve 
up to 11.3 times faster recovery compared to the data snapshot method.
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Introduction
In the IT industry, enhancing the efficiency of computing 
resources is recognized as a key goal. The choice of com-
puting technology to achieve this has become a major 
concern within the industry [1]. Traditionally, efforts 
were focused on improving resource efficiency through 
virtualization technology. However, virtualization faced 
performance degradation compared to bare-metal 
machines due to issues such as hardware virtualization, 
the computational overhead of additional virtualization 
software, and increased complexity [2].

Container technology has emerged as an alternative to 
address these challenges. Container technology provides 

advantages such as lower performance degradation com-
pared to virtualization technology, thanks to environ-
ment isolation, while still improving resource efficiency 
[3]. Furthermore, container technology, based on fea-
tures like environment isolation, lightweight design, and 
high scalability, is increasingly recognized as an excellent 
choice for achieving resource efficiency goals.

Currently, many IT services operate in container-based 
environments, realizing efficient and flexible manage-
ment. Additionally, with the advancements in container 
technology, various solutions for efficient container man-
agement have emerged [4].

Kubernetes stands out as the most widely utilized 
platform today, serving as a container orchestration 
tool that automates management tasks such as deploy-
ment and scaling of containerized applications [5]. It 
has become a pivotal platform for effectively overseeing 
container-based operational environments. Kubernetes 
offers features like lifecycle management, automatic 
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recovery, rolling updates, and rollback for containers, 
going beyond simple container management to enhance 
the high availability and fault tolerance of containerized 
IT services.

Consequently, there is a growing trend towards inte-
grating diverse workloads into Kubernetes-based 
environments. Particularly, there is a demand for con-
tainerizing and integrating stateful workloads, including 
database applications, data processing applications, and 
monolithic legacy services reliant on stateful configura-
tions [4].

For managing stateful workloads in a containerized 
environment, Kubernetes provides a feature called Per-
sistentVolume (PV). This feature allows containers to 
maintain persistence by storing the data they use in stor-
age volumes. However, this approach does not capture 
the container’s internal state, including context, process 
execution, library loading, cache, and memory state. In 
essence, while PV is valuable for workloads that require 
persistence by storing data in storage, it may not be effec-
tive for workloads that demand persistence while manag-
ing data in memory.

One prominent workload with such characteristics is 
the in-memory database. Unlike disk-based databases 
that store the primary data on disk and cache only a por-
tion of the critical data in memory, in-memory databases 
store the entire primary data in memory. As the cost of 
memory continues to decline and the input/output speed 
of hard disks struggles to keep up with the performance 
of other computing elements, in-memory databases that 
can manage and provide data at a faster pace are gaining 
attention [6]. Additionally, there is a growing use of in-
memory databases in IT service operations, driven by the 
increasing demand for big data and real-time processing 
applications [7].

The drawback of in-memory databases lies in their vol-
atile nature. In the event of a database server shutdown 
or restart, the data present in the database is lost. Given 
the nature of in-memory databases, maintaining persis-
tence is challenging. While some in-memory database 
products partially support persistence by storing snap-
shots of data at specific points in time on disk, the pro-
cess of restoring these snapshots from disk to memory 
can be time-consuming. Furthermore, there are meth-
ods of executing queries based on logs, but querying all 
the data stored in the database results in significant time 
consumption. In other words, extended downtime dur-
ing failure recovery is a significant implication, leading 
to availability problem. Moreover, the conventional fork-
based data snapshot method employed by in-memory 
databases poses an issue wherein additional memory, up 
to twice the data size, is utilized when write operations 
are initiated on the instance.

Since in-memory databases are primarily sought 
after for applications requiring large volumes of data 
and rapid data processing, extended downtime during 
database failure and recovery processes can compro-
mise the reliability of applications. Therefore, efforts 
to minimize downtime during failure recovery in in-
memory databases are crucial. Moreover, amidst the 
trend of containerization and integration into Kuber-
netes environments for numerous workloads, it is 
essential to explore the advantages of container-based 
operations for in-memory databases operating in such 
environments.

In this paper, we propose and validate the use of 
container snapshots based on CRIU (Checkpoint/
Restore in Userspace) [8], a feature supported by Con-
tainer Runtime Interface – Open Container Initiative 
(CRI-O) [9], one of the container runtime interfaces in 
Kubernetes, as a method for maintaining persistence in 
in-memory databases within the Kubernetes environ-
ment. We aim to compare the traditional approach of 
loading data snapshots in in-memory databases with 
the method of deploying container snapshots directly 
as containers in Kubernetes. Our goal is to discuss the 
advantages and applicability of these approaches. This 
study contributes to the following aspects:

• Verification of the issues with the traditional fork-
based data snapshot approach in a Kubernetes 
environment.

• Reduction of downtime in the checkpoint process 
of in-memory databases by using container check-
points compared to the main process-based data 
snapshot approach.

• Decreased recovery time compared to the data 
snapshot approach by leveraging container check-
points in case of database failures.

The rest of this paper is organized as follows. First, 
we present the background on the key technologies in 
“Background” section. Next, “Related work” section 
describe works related to the persistence of in-mem-
ory databases and studies concerning the CRIU-based 
container checkpoint technology. “Problem statement” 
section discusses the challenges associated with the 
conventional data snapshot approach for maintaining 
persistence in in-memory databases. In the “Proposed 
method” section, we introduce the container check-
point approach as an alternative to the data snapshot 
method and elaborate on its features and advantages. 
Following that, performance evaluation is given in 
“Experiments and performance analysis” section. Last, 
“Conclusion” section concludes this paper and pro-
poses future work.
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Background
In this section, we describe the characteristics of the 
methods used to maintain the persistence of in-mem-
ory databases and introduce the CRIU technology 
underlying the container checkpoint methodology.

Persistence in in‑memory database
With the emergence of workloads demanding big data 
and real-time processing, rapid data processing and 
analysis have become crucial challenges. However, 
traditional disk-based database systems faced difficul-
ties in guaranteeing fast response times due to disk 
I/O being a primary performance bottleneck [10]. 
To address this, in-memory database systems have 
been introduced. These systems store data in memory 
rather than on disk, providing faster data access com-
pared to disk-based databases. However, the drawback 
of in-memory databases is that the volatile medium, 
memory, does not support persistence. Fundamen-
tally, databases are required to support ACID proper-
ties, but achieving durability in in-memory databases, 
where data is stored in memory, is challenging. In other 
words, in the event of a database failure where work-
load interruption or restart is inevitable, all data may be 
lost. Therefore, many in-memory database products use 
the following methods during database failure recovery 
to ensure persistence [11, 12]:

• Data Snapshot: Periodically copying all data stored 
in memory into a snapshot form on non-volatile 
disk, and during database failure, reloading the snap-
shot from disk to memory after workload recovery. 
However, this method has the issue of losing changes 
made after snapshot creation.

• Transaction Logging: Storing a log file of all insert 
and update operations performed by the database on 
non-volatile disk, and during database failure, exe-
cuting all queries recorded in the log file to recover 
data. The drawback of this approach is that recovery 
takes a considerable amount of time since the data-
base needs to execute all queries.

In practical scenarios of in-memory database failure 
recovery, a combination of the above methods is often 
used to offset their respective drawbacks. Typically, a 
data recovery through snapshots is performed initially, 
and for changes made after snapshot creation, the trans-
action logging method is employed [13].

Another challenge in in-memory database failure 
recovery is the data snapshot creation process. There 
are various algorithms for creating data snapshots in in-
memory databases, and among them, Redis, the most 

widely used in the market, employs two snapshot crea-
tion methods., each with its own problems:

• Main Process‑based Data Snapshot Creation: 
Blocking the operation of the in-memory database, 
saving a snapshot file of the current memory state to 
disk. During the snapshot creation process, the data-
base blocks read/write commands requested by cli-
ents, leading to downtime in the workload.

• Fork‑based Data Snapshot Creation: Utilizing child 
process forked from the main process for snapshot 
creation. Although this method avoids downtime 
during the snapshot creation process, it may lead to 
a memory usage problem, as the database performs 
copy-on-write when changes occur during the snap-
shot creation process, potentially doubling the mem-
ory usage. Running out of memory resources can 
cause the database service to crash.

Figure  1 depicts the process of main process-based 
data snapshot creation and fork-based data snapshot 
creation. The most significant difference between the 
two approaches lies in the occurrence of downtime in 
the database service. In the main process-based data 
snapshot method, the main process, responsible for 
read/write operations in the database, directly performs 
the snapshot creation. As a result, the database service 
is unavailable during the snapshot creation period. In 
contrast, the fork-based data snapshot creation method 
utilizes a fork() system call to create a child process that 
performs the snapshot creation [14]. Consequently, the 
database service remains available even during the snap-
shot creation period.

Given the downtime issue during snapshot creation in 
the main process method and the potential failure due 
to excessive memory usage in the child process crea-
tion method, creating snapshots directly on a database 
server where actual operations occur is deemed unstable. 
Therefore, databases are structured in a Active-Standby 
configuration, where the Active instance provides actual 
services, and the Standby instance mirrors the data from 
the Active while performing snapshot creation [15, 16].

Figure  2 illustrates the workflow for data snapshot 
creation to maintain persistence when a write operation 
occurs in the Active-Standby structure of an in-memory 
database. When changes occur due to a write operation 
on the Active instance, if the Standby instance is success-
fully connected, the write operation is directly executed 
on the Standby instance as well. However, if the connec-
tion to the Standby instance is disrupted due to down-
time, the write operation is temporarily stored in the 
Backlog Buffer of the Active. Data stored in the Back-
log Buffer has a replication offset, allowing for partial 
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Fig. 1 Main process‑based data snapshot creation and fork‑based data snapshot creation

Fig. 2 Data snapshot creation workflow in active‑standby structure
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synchronization by forwarding the data from the buffer 
when a normal connection is reestablished with the 
Standby instance, without relying on snapshot-file-based 
data synchronization.

Checkpoint / restore in userspace (CRIU)
CRIU is a Linux software that supports checkpoint/
restore functionality for Linux processes through mem-
ory dumps. It saves the current state of a process to disk 
and performs restoration based on the stored archive.

CRIU’s checkpoint process involves maintaining the 
consistency of processes by fetching the Process ID (PID) 
of the target process, recursively collecting process infor-
mation (i.e. files descriptors, pipe parameters, memory 
maps), and freezing it. During this checkpoint, it is cru-
cial that the process being dumped remains transpar-
ent, and any changes during the process state transition 
should not be noticed. Hence, utilizing the ptrace() inter-
face, it transparently captures and freezes the process, 
employing parasitic code injection techniques to obtain 
the state of the target process without killing it [17].

Related work
In this section, we discuss research related to the persis-
tence of in-memory databases and studies concerning the 
CRIU-based container checkpoint technology.

Firstly, there have been several studies focusing on 
maintaining the persistence of in-memory databases [18] 
conducted a performance evaluation and comparison 
of the traditional fork-based data snapshot method and 
the mainstream snapshot algorithm commonly used for 
maintaining persistence in existing in-memory database 
products. The study observed that the fork-based data 
snapshot method performs better in update-intensive 
workloads [19] proposed a checkpointing system using 
Validity Tracking Compression (VTC), a technique that 
tracks the validity of logs, to address the problem of 
doubling memory usage in update-intensive workloads 
caused by fork-based snapshots. This system ensures 
that only an additional 2% of memory is required during 
checkpointing.

There are also several studies on CRIU-based container 
checkpointing technology.

Bhardwaj et al. [20] addresses challenges such as system 
failures and load balancing in fog computing environ-
ments through the utilization of LXD container virtual-
ization technology and CRIU-based migration. Tran et al. 
[21] proposes a framework for migrating containerized 
services using CRIU technology in Kubernetes environ-
ments. In this study, Redis, an in-memory database prod-
uct, was also used as one of the benchmark targets.

Our research stands out from previous studies by 
focusing on using CRIU for container checkpoint and 

recovery specifically tailored to in-memory database 
workloads. In particular, our research distinguishes itself 
by leveraging container checkpoints, especially concern-
ing the persistence aspect of in-memory databases. This 
paper analyzes the differences between the persistence 
mechanisms inherent to in-memory database workloads 
and the utilization of container checkpoints for maintain-
ing persistence. It explores the advantages of using con-
tainer checkpoints in achieving persistence.

Problem statement
In this section, we discuss the drawbacks of the con-
ventional data snapshot approach used for maintain-
ing persistence in in-memory databases. Specifically, 
we elaborate on the issues related to additional memory 
usage in the fork-based data snapshot method, which 
allows snapshot creation without downtime, and experi-
mentally verify whether such problems arise in a Kuber-
netes environment.

Problem with Fork‑based data snapshots in Kubernetes
In the Fork-based data snapshot method, the main 
process forks a child process to perform the snapshot 
creation. Since the child process handles the snapshot 
creation, it does not impact the main process responsi-
ble for operating the database, allowing operations on 
the database. However, during the snapshot process, 
if there are modifications to the database instance, the 
main process copies the corresponding memory pages 
before making modifications. In the case of a write oper-
ation on the database triggering modifications, additional 
memory space is required to copy the memory pages. If 
modifications occur in all memory pages, it necessitates 
up to twice the maximum data size in memory space [18, 
19]. If the additional memory required during the snap-
shot process is not allocated, an Out of Memory (OOM) 
issue may occur, leading to system failure. The above 
issues are the same when running container-based in-
memory databases in a Kubernetes environment. This 
can be a concern in container environments where vari-
ous workloads, beyond the database instance, operate on 
a single node. Furthermore, Kubernetes does not support 
Swap memory, so even if the node’s memory resources 
are insufficient, memory space cannot be allocated from 
devices other than the main storage [22]. Therefore, in 
Kubernetes environments, the need for efficient utiliza-
tion of memory resources is emphasized.

We conducted experiments to investigate additional 
memory usage during the execution of fork-based check-
pointing in a Redis container, one of the most actively 
used in-memory databases in the IT market, running 
in a Kubernetes environment. Using the Yahoo! Cloud 
Serving Benchmark (YCSB) [23] tool, we triggered write 
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operations on the database to measure the additional 
memory usage due to Copy-On-Write (CoW) compared 
to the size of the stored data in the database.

The testbed on which this experiment was run is the 
same as the testbed in the Experiments and performance 
analysis section.

Table  1 shows the parameter configurations for the 
YCSB workload used to benchmark the database in the 
experiment. To assess the occurrence of CoW in various 
workloads using the database, we adjusted the number of 
records and the update operation ratio. The size of each 
record stored in the database used the default record size 
provided by YCSB. Additionally, to maintain consistency 
in the number of commands generated in the database 
during the checkpoint process in each experiment, the 
thread count was standardized to 16.

Figure 3 presents the results of an experiment meas-
uring the additional memory usage due to CoW during 
update operations with the YCSB benchmark during 
the checkpoint process of a container-based in-mem-
ory database performed in a Kubernetes environment. 
In Fig.  3a shows the additional memory usage due to 
CoW as a percentage of data size for a read-oriented 

workload with 10% update operations during the check-
point. This shows up to 22% additional memory usage 
compared to the memory usage of the original Redis 
instance. Figure 3b shows the additional memory usage 
due to CoW in a workload balanced with 50% read and 
50% update operations. It shows up to 55% additional 
memory usage compared to the memory usage of the 
original Redis instance. Figure  3c shows the memory 
usage incurred due to CoW in a write-oriented work-
load with a 90% update job ratio. It shows up to 70% 
additional memory usage compared to the memory 
usage of the original Redis instance. As a result, for all 
YCSB workload benchmarks, the additional memory 
usage due to CoW increases as the number of records 
increases, with more memory usage experienced in 
write-oriented workloads.

Fork-based checkpointing provides the advantage of 
not impacting database operations during the check-
point process, making it a favorable solution for per-
forming checkpoints in operational environments 
where database downtime is undesirable. However, in 
architectures like Active-Standby, where the opera-
tional instance and the instance performing the check-
point are separate, even if downtime occurs in the 
checkpointing instance, it does not affect the database 
service itself. In such a structure, there is no reason 
to use fork-based checkpointing while tolerating inef-
ficient memory usage during the checkpoint process. 
Therefore, an alternative checkpoint/restore solution 
that efficiently utilizes memory resources in an envi-
ronment where the operational instance and check-
point instance are separated is needed.

Table 1 YCSB tool configuration

Parameters Values

Record Count 1M, 2M, 4M, 8M, 16M

Update Ratio 10%, 50%, 90%

Record Size default

Number of Threads 16

Distribution zipfian

Fig. 3 CoW occurrence during the checkpointing with Redis container in Kubernetes
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Loading time of data snapshot
The data snapshot method includes loading data from a 
stored snapshot file on the disk when a database needs 
to restart due to any unforeseen reason. In particular, 
when operating an in-memory database as a container 
on orchestration platforms like Kubernetes, if a failure 
occurs in the database, it triggers a restart of the con-
tainer. In the event of a failure in the database container 
resulting in a restart, during the loading process, the 
database becomes temporarily inaccessible, becoming a 
major factor in increased downtime for recovery in in-
memory databases.

For workloads where real-time performance is cru-
cial, as often seen in in-memory databases with faster 
data input/output than disk-based databases, prolonged 
recovery times can compromise the reliability of the ser-
vice. Therefore, a recovery solution is needed that can 
quickly restore services in the event of a failure, pro-
cessed and prepared for fast recovery before the occur-
rence of a failure, rather than loading data at the time of 
failure. This ensures both real-time capabilities and ser-
vice stability, minimizing the Recovery Time Objective 
(RTO).

Proposed method
Our goal is to perform database checkpointing without 
wasting memory resources due to CoW. The conventional 
methods involve checkpointing through the main process 
of the database. Checkpointing through the main process 
essentially blocks operations during the checkpoint pro-
cess, rendering the database inaccessible. Therefore, the 
entire checkpointing process results in database down-
time. In an independent structure where the operational 
instance and checkpointing instance are separate, the 
downtime of the checkpointing instance does not affect 
database operations. However, as the checkpoint time 
increases, the size of the backlog buffer used for synchro-
nization between the Active and Standby instances after 
restoration grows. This leads to increased memory usage 
in the Active Instance and longer synchronization times. 
In cases where more data accumulates in the backlog 
buffer than the configured size, creating a snapshot file 
on the Active instance and loading the entire database 
into memory are required for synchronizing the Active 
and Standby instances.

Furthermore, we aim to provide fast database services 
by minimizing downtime during the restore process for 
efficient fault recovery. Traditional in-memory data-
bases create snapshot files during the checkpoint process 
and go through the steps of restarting the instance after 
a database failure and loading the snapshot file. During 
the time it takes to load the snapshot file, the database 
is unavailable, resulting in downtime for that instance. 

Therefore, a solution is needed that focuses on quick 
recovery before the occurrence of a fault, rather than 
loading data at the time of the fault.

In-memory databases require periodic checkpointing 
to maintain persistence, and fast restoring is essential to 
ensure real-time responsiveness. Therefore, an efficient 
solution is needed to minimize instance downtime and 
restore time during the checkpointing process without 
wasting memory resources. We propose the use of CRIU 
for container-based in-memory databases operating 
in a Kubernetes environment as a solution to maintain 
persistence.

CRIU with Kubernetes environment
CRIU has been integrated with various container runtime 
platforms such as LXC, LXD, Docker, Podman, and more. 
Kubernetes, being one of the most widely used container 
runtime platforms in the container market, supports 
CRIU, providing container checkpoint and restore capa-
bilities. Both the low-level container runtime interfaces 
in Kubernetes, namely runc and crun, and the high-level 
container runtime interface, CRI-O, integrate with CRIU, 
enabling the storage and restoration of container states. 
In traditional container runtime platforms, CRIU was 
primarily used for container migration purposes. Con-
sequently, when executing a checkpoint command, the 
existing running container was stopped. For example, in 
Docker, when creating a container checkpoint using the 
docker checkpoint create command, the state of the exist-
ing running container transitions to the exited state [24].

However, CRIU with Kubernetes behaves differently. 
CRIU with Kubernetes is developed for the purpose of 
live container forensics [25]. When performing a con-
tainer checkpoint, it can recognize that the container is 
being checkpointed and still proceed to store the con-
tainer snapshot without deleting the actively running 
container. In other words, even when a checkpoint com-
mand is executed, the running container is not termi-
nated and continues its operation.

Figure 4 illustrates the container checkpoint workflow 
using CRIU in a Kubernetes environment. Kubernetes 
CRIU triggers the container snapshot request to the 
kubelet, an agent process responsible for managing con-
tainer execution, using URL-based approach. The URL 
specifies the container’s namespace, pod, and container. 
Through this process, a checkpoint TAR archive for 
the specified container is generated on the disk. Subse-
quently, the container checkpoint TAR archive is trans-
formed into the Open Container Initiative (OCI) image 
using an external container build tool. During this trans-
formation, an annotation is added to the container image, 
indicating that the container has been checkpointed. 
Finally, the container is deployed into the Kubernetes 
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environment using the same deployment method as the 
existing Kubernetes container images.

In‑memory database checkpoint with container snapshot
The checkpoint process is essential to ensure data per-
sistence in in-memory databases. Traditional checkpoint 
methods, such as fork-based data snapshots, incur sig-
nificant memory overhead due to the CoW mechanism. 
Additionally, main process-based data snapshots result in 
downtime for the entire checkpoint process. In contrast, 
the container checkpoint method leverages CRIU to cap-
ture the state of the running container, minimizing the 
impact on the operational database instance.

Checkpointing can be executed either on the opera-
tional instance or on a dedicated backup instance, with 
each approach having distinct impacts on downtime and 
memory usage. Operational Instance Checkpointing 
involves performing checkpoints directly on the active 
database instance. This method ensures continuous ser-
vice availability as key database operations continue 
uninterrupted. However, due to the CoW mechanism, 
memory usage may increase during the checkpointing 
process. On the other hand, Backup Instance Check-
pointing offloads the checkpointing process to a sepa-
rate instance to mitigate its impact on the operational 
instance. This method requires robust synchronization 
to ensure that the backup instance accurately reflects the 
state of the operational instance. The main advantages 
are preventing additional memory usage and service 

downtime on the active instance. Checkpointing an in-
memory database using CRIU-based container snapshots 
offers several advantages over traditional data snapshot 
methods:

Minimized Downtime: Traditional main process-
based data snapshots result in significant downtime 
as the database service is entirely halted during the 
checkpoint process. In contrast, the container check-
point method incurs downtime only during the 
memory dump and tar archive creation phases, sig-
nificantly reducing service interruption compared to 
main process-based data snapshots.
Optimized Memory Usage: Fork-based snapshots 
can lead to substantial memory usage due to the 
CoW mechanism when write operations occur on 
the instance. The container checkpoint method pre-
vents additional memory usage on the instance. This 
approach leverages Kubernetes’ capability to effi-
ciently manage containerized workloads, making the 
checkpoint process both effective and resource effi-
cient.

Table  2 shows the distinctly differentiated character-
istics between the traditional data snapshot method and 
the container checkpoint method for checkpointing in-
memory databases.

By adopting the container checkpoint method, the 
checkpoint process for in-memory databases can 

Fig. 4 Container checkpoint workflow with CRIU in a Kubernetes environment
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reduce downtime compared to the main process-based 
data snapshot method and decrease memory usage 
compared to the fork-based data snapshot method. This 
approach enhances overall performance and reliability 
in a Kubernetes environment, making it a suitable solu-
tion for modern containerized applications.

This structured approach ensures that in-memory 
databases maintain high availability and performance, 
leveraging Kubernetes’ capabilities for efficient work-
load management and minimizing downtime and mem-
ory usage during the checkpoint process.

In‑memory database recovery with container snapshot
In-memory databases are vulnerable to data loss dur-
ing failures or restarts because they store primary data 
in memory. Unlike disk-based databases, which do not 
require data reloading during recovery, in-memory data-
bases must reload data into memory during recovery, 
potentially causing downtime. The traditional recovery 
method involves loading data from snapshot files stored 
on disk, which can take time and affect service avail-
ability. The traditional recovery methods for in-memory 
databases, such as data snapshots, involve significant 
challenges related to data volatility and downtime:

Data Volatility: In-memory databases store data in volatile 
memory, leading to potential data loss during restarts or 
failures. This necessitates reloading data from disk-based 
snapshot files, a process that can be time-consuming.
Downtime: The process of loading data from snapshot 
files during recovery incurs substantial downtime. The 
database remains unavailable until the data loading pro-
cess is complete, which can severely impact applications 
that require high availability and real-time performance.

This paper aims to address the challenges mentioned 
above by using CRIU container checkpoints to perform 
recovery of in-memory databases in case of failures. Recov-
ery of in-memory databases using CRIU container snap-
shots offers significant advantages over traditional methods:

Preloaded Data: Container snapshots capture the 
state of the data already loaded in memory at the 
time of the snapshot. This preloaded state allows for 
the omission of the data loading step during recovery, 
enabling faster restoration.

Reduced Downtime: By deploying a new container 
using the pre-captured snapshot image, the data 
loading step is bypassed, significantly reducing down-
time. This ensures that the database service is quickly 
restored and able to handle client requests promptly.

Figure  5 illustrates the timeline of the recovery sce-
nario when a failure occurs in the in-memory database 
instance. In the conventional container-based in-mem-
ory database, recovery involves restarting the instance at 
the time of failure and loading data from the stored data 
snapshot file. However, with container snapshot-based 
in-memory database restoration, the process is per-
formed by deploying a container based on the workload 
snapshot container image stored at the time of failure.

Therefore, the container checkpoint method pre-
includes the data to be loaded into memory during the 
checkpoint process. While the container checkpoint may 
take longer for snapshot creation compared to the tradi-
tional data snapshot method, considering Recovery Point 
Objective (RPO), it offers an advantage in RTO by ena-
bling faster service restoration. Table  3 shows the char-
acteristics observed during the recovery of in-memory 
databases using traditional data snapshots compared to 
container checkpoints.

Checkpoint and restore with container checkpoint 
for practical use: MDB‑KCP
The existing data snapshot method for maintaining the 
persistence of in-memory databases is a feature provided 
by the database application itself. This involves periodi-
cally creating snapshots and automatically loading the 
data when the database needs to restart. In contrast, the 
container checkpoint discussed in this paper is a manual 
process in the Kubernetes environment. Administrators 
need to send a checkpoint creation request directly to the 
kubelet using curl, and the process of converting the gener-
ated TAR archive into an OCI image also needs to be done 
manually through a container image builder. Furthermore, 
since the state-saved container image is separate from the 
default database container, it must be manually deployed 
by specifying it in a separate YAML file. Therefore, to 
automate container checkpoints similar to the data snap-
shot method, additional requirements need to be satisfied. 
To maintain the persistence of an in-memory database, the 
following functionalities are required:

Table 2 Characteristics of data snapshot and container checkpoint when checkpointing in‑memory database

Method Downtime during Checkpoint Additional Memory Usage Complexity

Main process‑based Data Snapshot High None Low

Fork‑based Data Snapshot None Up to 2 times (due to CoW) Moderate

CRIU Container Checkpoint Low None High
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• Periodic checkpointing of the database.
• Automatic detection of database failures and restora-

tion to the checkpointed state.

In this section, we propose the MDB-KCP (Memory 
Database with Kubernetes Checkpoint) framework to 
meet the requirements for maintaining the persistence of 
in-memory databases using Kubernetes’ CRIU container 
checkpoints [26]. First, the implementation of the Kuber-
netes CRIU container checkpoint method for in-memory 
databases involves several steps:

1. Periodic Checkpoint Requests: Initiate the check-
point process for the target container by sending 
requests to the Kubernetes kubelet.

2. Checkpoint Execution with CRIU: The kubelet uses 
Checkpoint/Restore In Userspace (CRIU) to cap-
ture the container’s state, including memory, process 
state, and file descriptors, and stores this state in a 
TAR archive.

3. Conversion to OCI Image: Convert the TAR archive 
into an Open Container Initiative (OCI) image using 
container image build tools, and store this OCI image 
for future restoration.

4. Backup Instance Deployment: Deploy the OCI 
image as a backup instance within the Kubernetes 
environment, ensuring that the backup instance 

accurately reflects the state of the operational 
instance through synchronization mechanisms.

5. Monitoring and Synchronization: Continuous mon-
itoring and synchronization between the operational 
and backup instances are required. The synchroni-
zation mechanism ensures that the backup instance 
remains consistent with the operational instance.

Algorithm 1  MDB‑KCP: Checkpointer

Initially, the administrator specifies the frequency at 
which the database checkpoint should occur. MDB-KCP: 
Checkpointer then sends a checkpoint request in the curl 
format to the kubelet according to the specified interval. 
The kubelet captures and dumps the database container 
using the criu dump command, creating a stateful con-
tainer TAR archive. Subsequently, MDB-KCP: Check-
pointer builds the TAR archive into the OCI image format 
through the container image builder. This enables the peri-
odic checkpointing of the database. Algorithm  1 shows 

Fig. 5 In‑memory database checkpoint and recovery timeline with container snapshot approach and data snapshot approach

Table 3 Characteristics of data snapshot and container 
checkpoint when restoring in‑memory database

Method Recovery 
Time from 
Failure

Service 
Downtime 
after Failure

Complexity

Data Snapshot High High Low

CRIU Container Check‑
point

Low Low High
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the process by which MDB-KCP: Checkpointer performs 
checkpointing of an in-memory database container.

Monitoring whether failures occur in the container and, 
if a failure is detected, redeploying the container using the 
checkpointed state-saving OCI image are essential tasks. 
Kubernetes can automatically redeploy a container if a 
failure occurs, thanks to the liveness probe. However, for 
container recovery using a checkpoint image, a different 
automatic container deployment feature is required. This 
is because it involves deploying a separate container image 
that captures the state information of the actively running 
database, rather than the default container image used 
by the database. Implementing the container checkpoint 
recovery process involves these steps:

1. Monitoring and Failure Detection: Continuously 
monitor the state of the database container to promptly 
detect failures. Utilize Kubernetes’ liveness probes to 
monitor the health status of the container.

2. Initiating Recovery: Upon detecting a failure, 
remove the failed container and deploy a new con-
tainer using the pre-captured OCI image.

3. Verifying Restoration: After deployment, verify 
that the new container has been correctly restored. 
Ensure that the database is ready to handle client 
requests and that data integrity is maintained.

4. Synchronization and Finalization: Apply a syn-
chronization mechanism to ensure that changes 
made after the snapshot creation are reflected in the 
restored instance. This process may involve replaying 
transaction logs or other methods.

To meet these requirements, we propose introducing 
MDB-KCP: Restorer to interact with existing components, 
providing an architecture that fulfills these functionalities.

Algorithm 2 MDB‑KCP: Restorer

Algorithm  2 shows the interaction between the com-
ponents required for the recovery of an in-memory data-
base through container checkpointing in the form of a 
sequence diagram. Initially, MDB-KCP: Restorer must 
continuously monitor the state of the target database 
container through the Kubernetes API server. MDB-
KCP: Restorer periodically pulls the container’s state 
metrics from the Kubernetes API server. In the event of 
a failure in the database container, MDB-KCP: Restorer 
detects it, removes the failed database container, and 
deploys a new container using the specified Kubernetes 
YAML file containing the stateful OCI image for recov-
ery. This enables the automatic recovery of in-memory 
database containers in the Kubernetes environment.

Using the two modules mentioned above, container 
checkpointing for maintaining the persistence of an in-
memory database can be implemented easily with shell 
scripts or programming languages such as Python.

Experiments and performance analysis
In this section, we conduct experiments comparing the 
checkpoint and restoration processes of traditional in-
memory databases using the data snapshot approach 
with those using CRIU-based container snapshots in the 
Kubernetes environment.

Testbed setup
We conducted all experiments by deploying in-memory 
database containers in a Kubernetes environment with 
a single node. The node is equipped with an Intel Xeon 
Silver 4208 CPU running at 2.10 GHz; the CPU had 8 
physical cores and 16 logical cores with hyperthreading 
enabled. We use Dell 2TB 7.2K RPM SATA 6Gbps 512n 
hard drive for storing and loading data snapshot and con-
tainer snapshot. The machine ran CentOS 9 distribution 
with kernel 5.14. Additionally, we configured a single-
node Kubernetes 1.28.1 based on the CRI-O container 
runtime interface.

Application setup
The in-memory database application utilized Redis 7.2.1. 
Furthermore, the data snapshot protocol for maintain-
ing the persistence of the in-memory database employed 
Redis’s RDB. The data stored in the in-memory database 
was bulk-loaded with 10M, 20M, 40M, 80M, and 160M 
records using Redis’s Debug Populate command.

Checkpointing time
First, we compared the data snapshot creation time in 
Kubernetes-based in-memory database containers with 
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the creation time of stateful OCI images in container 
checkpoints. In the Redis in-memory database, the fol-
lowing data snapshot creation protocols exist:

• RDB‑BGSAVE: A forked child process performs the 
data snapshot creation process in the background. 
During this time, the operation of the database is not 
interrupted.

• RDB‑SAVE: The main process performs the data 
snapshot creation process. The operation of the data-
base is paused during the snapshot creation time.

In this experiment, we compare the snapshot creation 
time and downtime incurred on the container for both 
protocols, RDB-BGSAVE, RDB-SAVE, and the con-
tainer checkpoint approach. For container checkpoints, 
we measured the downtime-inducing tar archive crea-
tion process time and the OCI image build process 
time, which occurs in a separate process from the 
instance and does not incur downtime.

Figure  6 shows the time taken for main process-
based and fork-based data snapshot creation, as well 
as container checkpointing for checkpointing an in-
memory database container. Both the data snapshot 
approach and the container checkpoint approach show 
an increase in time proportional to the data size of the 
in-memory database. In terms of snapshot creation 
time, container checkpointing consumes up to 2 times 

more time compared to the data snapshot approach. 
Fork-based data snapshotting incurs no downtime for 
the container, while the entire checkpoint time in the 
main process-based data snapshot results in down-
time for the in-memory database container. Container 
checkpointing incurs downtime only in the process that 
captures the container and generates a tar archive by 
dumping the memory. Therefore, in terms of downtime 
incurred on the container, the container checkpointing 
approach has up to 7.1 times less downtime compared 
to the data snapshot approach. As a result, container 
checkpointing consumes more time for snapshot crea-
tion compared to the data snapshot approach, but 
incurs less downtime on the container compared to the 
main process-based data snapshot approach.

Restoring time
Next, we compared the time required for each approach 
to restore data in the in-memory database. Although 
the processes for creating snapshots in RDB-SAVE and 
RDB-BGSAVE, the snapshot generation protocols used 
by Redis, differ, both protocols ultimately create data 
snapshots in the RDB format. Therefore, in this experi-
ment, we compared the time required for database recov-
ery using the loading of RDB format data snapshots and 
the deployment of container checkpoint images. The 
criteria for recovery completion were based on the data-
base’s ability to process incoming requests from clients.

Fig. 6 Checkpointing time of data snapshot and container checkpoint
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Figure 7 shows the data recovery time for the in-memory 
database container through data snapshots and container 
checkpoint snapshots. Experimental results show that 
recovery through container checkpoints is up to 11.3 times 
faster than the data snapshot recovery method. The recov-
ery through the data snapshot method of the in-memory 
database involves most of the time during the process of 
deploying the base container and loading the data. The 
loading time is proportional to the size of the data stored 
in the in-memory database. On the other hand, in the 
database recovery based on container checkpoint, the data 
is already stored in the stateful container image during the 
checkpoint process. Therefore, during the container rede-
ployment process, it is observed that relatively less time is 
required compared to the data snapshot method.

Conclusion
In this paper, we validate the drawbacks of the traditional fork-
based data snapshot approach used for maintaining persis-
tence in in-memory databases in a Kubernetes environment. 
As an alternative for ensuring persistence in in-memory data-
bases, we propose the use of Kubernetes container check-
points. To maintain the persistence of in-memory databases, 
the container checkpoint used has the following characteris-
tics compared to the data snapshot approach:

• Low instance downtime compared to main process-
based data snapshot

• Extended checkpoint snapshot creation time
• Short service recovery time

For an in-memory database operating in a struc-
ture where the operational environment and backup 
environment are separated, performing periodic 
checkpoints with relatively less downtime seems advan-
tageous. Additionally, it enables checkpointing while 
preventing memory waste due to CoW. Furthermore, 
maintaining the persistence of in-memory databases 
through container checkpoints can offer the advantage 
of quick recovery speed, especially in workloads where 
real-time performance must be ensured.

However, in the Kubernetes environment, CRIU-
based container checkpoints require conversion to the 
OCI image format, introducing the drawback of need-
ing external container image build tools before deploy-
ment in Kubernetes. This process dominates most of 
the time in container checkpointing, resulting in con-
tainer checkpoints taking up to twice as long as snap-
shot creation compared to the traditional data snapshot 
approach.

Therefore, in future research, we plan to explore con-
tainer deployment approaches that can be managed in a 
Kubernetes environment without converting the state-
saved container TAR archive to the OCI image format. 
This is expected to minimize the checkpoint snapshot 
creation time. Also, our experiments were conducted 

Fig. 7 Restoring time of data snapshot and container checkpoint
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with Kubernetes operating in a single-node environ-
ment to simplify the scenario. In the future, we plan to 
investigate whether additional benefits exist by using 
container checkpoints for maintaining the persistence 
of in-memory databases in large-scale Kubernetes clus-
ter environments.
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