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to man-in-the-middle attacks [3]. In order to solve the 
above problems, the existing security solutions in the 
edge computing environment include encryption and IoT 
data protection, edge node reliability assessment, security 
authentication and authentication, enhanced network 
security measures, decentralized and distributed archi-
tectures, secure communication protocols, and security 
updates and vulnerability management. However, each 
of these schemes has its own shortcomings, such as the 
increased overhead of encryption and decryption pro-
cesses, the risk of miscalculation in the determination 
of trusted nodes, the increased complexity of the use of 
strong authentication, the failure of network security 
measures to eliminate all attack risks, the introduction of 
complexity in decentralized architectures, the possibil-
ity of attacks on secure communication protocols, and 
the possibility of new problems introduced by security 
updates. Therefore, trade-offs need to be integrated in 
practical applications, and continuous improvement and 
innovation to improve the security of the edge comput-
ing environment.

Introduction
The storage and sharing process of massive real-time 
data of the Internet of Things based on edge computing 
is carried out at the device end or edge end of the sen-
sor network to meet the requirements of low latency. 
However, due to the limitation of edge device resources, 
this scheme cannot support various complex algorithms 
to ensure data security. For example, sensitive data on 
edge devices will be processed by edge computing servers 
with incomplete security protection, which will increase 
the risk of IoT data disclosure [1], untrusted edge nodes 
may become the entrance for attackers to invade the net-
work [2], and frequent communication and data trans-
mission between intermediate devices are vulnerable 
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This paper utilizes technologies such as blockchain, 
secure multi-party computation, and Bloom filters to 
address the issue of secure data sharing between devices 
in the IoT perception layer. It proposes a trusted IoT data 
sharing method based on secure multi-party computa-
tion. This method transforms the data exchange problem 
between IoT devices into a secure multi-party computa-
tion feedback control problem. By leveraging technolo-
gies such as Pedersen [4] commitments, Shamir’s secret 
sharing [5], and blockchain, it constructs a publicly veri-
fiable IoT data sharing protocol that combines on-chain 
audit verification and off-chain secure multi-party com-
putation. Based on the audit verification results of the 
protocol behavior executed by perception layer devices, 
a Bloom filter is constructed to trace the trust status of 
perception layer devices. This filter screens out requests 
from devices with low trust values in the perception layer, 
ensuring the normal operation of trusted IoT devices in 
the perception layer, thereby enhancing the security and 
reliability of data sharing between IoT devices.

Related work
Blockchain and edge computing, along with secure 
multi-party computing, are three compelling technolo-
gies that have emerged and gradually become key drivers 
in the IoT space.

Blockchain technology, with its decentralized, immuta-
ble and trusted characteristics, provides a secure and reli-
able data exchange and sharing platform for the Internet 
of Things. There are many researches on the application 
of blockchain in the field of Internet of Things. For exam-
ple, Yuan Liu et al. [6]. proposed the application of block-
chain in the medical IoT physical network system. The 
authors also proposed a decentralized blockchain-based 
reputation system, providing a new secure data-sharing 
solution for IoT data sharing [6]. Yuan Liu et al. [7]. fur-
ther proposed a blockchain-based spatial crowdsourcing 
service (BlockSC) and verified the effectiveness of its task 
matching scheme. but most of their research focused on 
identity authentication and access control [8, 9]. Ouad-
dah A et al. [10] proposed a blockchain-based IoT data 
sharing framework for protecting IoT data in the Inter-
net of Things. The research team ensures the security and 
IoT data sharing by using blockchain technology for data 
encryption, anonymity, and access control. Liu CH et al. 
[11] realized blockchain-based secure data sharing in the 
IoT environment and introduced a fine-grained access 
control mechanism. By utilizing the characteristics of 
blockchain to ensure data integrity, trustworthiness and 
immutability, and adopting fine-grained access control 
policies, the security and IoT data are protected. This 
research provides new solutions for secure data sharing 
in the IoT field.

Edge computing technology pushes computing and 
data processing capabilities to the edge of the network, 
enabling lower latency and more efficient data process-
ing and decision making. Liang X et al. [12] proposed a 
secure data sharing architecture based on blockchain and 
edge computing. By using edge devices as data processing 
nodes and leveraging blockchain technology to ensure 
that data is secure and trusted, secure and efficient data 
sharing is achieved in the IoT environment.

Secure multi-party computing technology protects IoT 
data by allowing data to be encrypted and desensitized 
before being processed. By using secure multi-party com-
puting technology on edge devices, data can be processed 
at the source of data collection, avoiding the transmission 
of raw data to a central server and reducing the risk of 
data leakage. Yang Y et al. [13] proposed a collaborative 
intrusion detection system based on secure multi-party 
computing for network security monitoring in the Inter-
net of Things. By applying secure multi-party computing 
to intrusion detection algorithm, it realizes secure data 
sharing and collaboration among multiple parties and 
improves the network security of IoT.

Although the above research has improved the security 
of the Internet of Things, the content of the research is 
only aimed at specific security threats, and it is difficult 
to ensure security in the face of a threat model with mul-
tiple attacks. For example, the core feature of blockchain 
technology is open and transparent, and all data shar-
ing can be viewed by every authorized node on the net-
work. However, this leads to a situation that contradicts 
the protection of privacy [14–16]. In some application 
scenarios, users may need to protect their identity and 
transaction details, but the transparency of the block-
chain makes this information easy to infer and analyze. 
Edge computing involves processing and storing data 
locally, rather than sending it to the cloud. This can lead 
to an increased risk of data being stolen, tampered with 
or leaked during transmission [17–19]. Secure multi-
party computing requires data to be transferred to a 
compute node or service provider for processing, so the 
security of data is highly dependent on the trust of the 
compute node or service provider. If a compute node or 
service provider has a security breach or is attacked, it 
may lead to data leakage or tampering, which threatens 
the security and data of IoT systems.

Design of IoT data sharing protocol
This study aims to design a flexible and secure trusted 
data sharing method for the Internet of Things (IoT), 
leveraging the technological advantages of edge comput-
ing, secure multi-party computation (SMC), and block-
chain to address the information silo problem among 
IoT devices. To achieve this goal, a trusted third-party 
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service, namely an authorized blockchain network, is 
introduced into the edge servers.

As illustrated in Fig. 1, using the example of the auton-
omous vehicle “Luobo Kuaipao,” the vehicle, smart traf-
fic signals, additional parking lots, and mobile phones 
securely and reliably share IoT data in real-time. The 
IoT devices initiating tasks first register the computation 
relationships needed among participating IoT devices in 
the form of arithmetic circuits to the blockchain smart 
contract. This registration provides an interface for IoT 
data sharing. Although the third-party blockchain net-
work is considered trustworthy, it does not have access to 
the complete plaintext information of the IoT data.

Protocol execution process
As shown in Fig. 2, if the IoT device x of the task initiator 
wants to share IoT data with the participants of the arith-
metic gate by invoking the interface, it must first deter-
mine that the device is a trusted device after passing the 
identity review on the blockchain chain and Blum filter 
verification according to the device Id and PKI certifi-
cate, and perform the secure multi-party calculation task 
of the arithmetic gate on the blockchain. Wake up each 
IoT device participant of the arithmetic gate circuit and 
ask the participant’s IoT device to provide its IoT data 
information (IoT data information includes: The local 
IoT device uses Shamir secret sharing to cut its own IoT 
data into n secret shards (n is the number of arithmetic 
gate participants) and generate Pedersen promises of n 

secret shards. The Paillier public key of the arithmetic 
gate participant is used to encrypt the n secret fragments 
and n blind factors that generate Pedersen promise, and 
n ciphertext fragments and n blind factor ciphertext are 
obtained. The IoT data information of all participants is 
distributed twice on the chain, and the IoT data infor-
mation after the secondary fragmentation is distributed 
to the off-chain IoT device participants, and then the 
off-chain IoT device participants submit the Pedersen 
commitment of revenue secret sharding, and the coarse-
grained audit on the chain verifies whether the total 
revenue expenditure is balanced. After the verification 
is passed, the on-chain smart contract layer sends cal-
culation instructions to the participants of the off-chain 
IoT device according to the arithmetic gate circuit, and 
the IoT devices of each participant perform calculation, 
obtain the arithmetic gate circuit result fragment accord-
ing to the calculation result of the secret fragment, and 
submit the result fragment to the on-chain to recover 
the execution result of the arithmetic gate circuit on the 
chain. Finally, the on-chain smart contract returns the 
result to the IoT device of the task initiator.

In the above process, Pedersen commitment, Paillier 
homomorphic encryption and Shamir secret sharing 
are the core algorithms to ensure on-chain and off-chain 
cooperation. In the IoT data sharing method based on 
secure multi-party computing, the principle and imple-
mentation process of these algorithms are as follows:

Fig. 1 Overall architecture
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Fig. 2 Execution flow of IoT data sharing service
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Pedersen Commitments: Pedersen commitments are 
a cryptographic scheme used to conceal the value of 
data while ensuring its integrity and immutability. In the 
trusted secret sharing method studied in this paper, the 
distribution and reception of IoT data fragments among 
participating IoT devices during a round of data shar-
ing are viewed as a data transaction. Each participant 
submits the ciphertext fragments of the IoT data to the 
consensus layer, which is regarded as the expenditure of 
a data transaction. The receipt of ciphertext fragments 
from the consortium blockchain consensus layer by 
each participant is considered as the income of a data 
transaction. Each participant generates their Pedersen 
commitments for expenditure and income and submits 
them to the on-chain smart contract layer. The on-chain 
smart contract audits and verifies the legality of the IoT 
data sharing by calculating whether the data transaction 
income and expenditure are balanced.

Assume there are n  IoT device participants, 
and participant x  selects n  blinding factors 
rxi ∈ Fn (i = 1,2, . . . , n). During the expenditure 
phase, participant x  calculates the commitment values 
CommxList of the n secret fragments and submits them 
as part of the IoT data information to the on-chain smart 
contract layer. The Pedersen commitment for generating 
the IoT data fragments Sxi (i ∈ 1,2, . . . , n)involves the 
following two steps:

Step 1: Choose a cyclic subgroup G  of a large prime 
order q , and select two generators g  and h  from G
. The public tuple (g, h, q) serves as the system’s public 
parameters.

Step 2: Commitment generation phase: The com-
mitting party selects a random number r  as the blind-
ing factor and computes the commitment value 
(CommSxi = gSxi · hrmod q).After computation, 
CommxList  is sent to the on-chain smart contract layer 
as part of the IoT data information.

Shamir Secret Sharing: In the IoT data sharing service 
process based on secure multi-party computation, off-
chain IoT devices use Shamir’s secret sharing Sharding 
algorithm to split data, and the on-chain smart contract 
layer uses Shamir’s secret sharing Re algorithm to recon-
struct the actual arithmetic circuit results from the off-
chain computation result fragments.

Sharding: Based on Shamir’s secret sharing (n, t) 
threshold data splitting, IoT device participants exchange 
their data ciphertext fragments through the trusted on-
chain smart contract layer and decrypt to obtain data 
fragments. Here, n represents the number of participants. 
If there are n  participants in this data sharing, they split 
their data into n  fragments using the Sharding algorithm. 
The parameter t  denotes the minimum number of frag-
ments needed to reconstruct the data, and the value of t  
is set to n  by default in this data sharing design. Assume 

the private value of a participant is Sx . The Sharding 
algorithm executes as follows:

Secret Distribution Algorithm Sharding: Let F be a 
finite field with sufficiently large characteristic, and F [x] 
be the polynomial ring over F  The participant randomly 
selects a polynomial f (x) of degree n − 1 from F [x] :

 f (x) = a0 + a1x + . . . + an−1x
n−1 (1)

with f (0) = Sx.For xi ∈ {1,2, . . . , n} , com-
pute f (xi)to obtain the list of secret fragments 
Sx = {Sx1, Sx2, . . . , Sxn}.
Re : After receiving the result fragments from then  

IoT device participants, the on-chain smart contract 
layer executes the Re algorithm to reconstruct the actual 
result fragments, returning the final arithmetic circuit 
computation result to the IoT data sharing service caller.

Secret Reconstruction Algorithm Re: Given n  distinct 
points (xi, f (xi))  on f (x), where i ∈ {1, 2, . . . , n}
, reconstruct f (x)using the Lagrange interpolation 
formula

 
f (x) =

∑ n

i=1
f (xi)

∏ n

j=1,j �= i

x− xj
xi − xj

 (2)

where f (0)= result represents the desired arithmetic cir-
cuit execution result.

SM2 Asymmetric Encryption: To ensure the physi-
cal security of IoT data, this study stipulates that plain-
text data must not leave the IoT device holder, and the 
plaintext value of data fragments can only be exposed to 
assigned IoT device participants. Asymmetric encryp-
tion further ensures the data security of fragments on 
the chain. Each of the n IoT device participants gener-
ates a public-private key pair (SKi, PKi) . Taking device 
x  as an example, after Sharding, x  splits its data Sx  into 
secret fragments Sxi (i = 1,2, . . . , n)and encrypts each 
fragmentSxi with the public key PKi  of devicei .

Protocol audit verification
In Fig.  2, during the implementation of secure multi-
party computation, the on-chain smart contract layer 
acts as a transfer station for ciphertext fragment sending 
and receiving between the participants of the IoT device 
who execute the arithmetic gate circuit. On the chain, the 
behavior of the participants of the IoT device sending and 
receiving ciphertext fragments will be audited and veri-
fied as follows:

Coarse-grained audit verification: After each partici-
pant of the IoT device divides its IoT data into n secret 
shards, n Pedersen commitment values of these n secret 
shards are generated as the expenditure of the participant 
of the IoT device, and the corresponding Paillier public 
key of the participant of the IoT device is used to encrypt 
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these n blind factors to obtain n blind factor ciphertext. 
The n expenditure commitment values of each partici-
pant of the IoT device and the ciphertext of the n blind 
factors corresponding to the generated commitment 
value (the blind factor is a random number) are sent to 
the blockchain along with the n ciphertext fragments, and 
the total expenditure commitment value is calculated on 
the chain. After the secondary fragment ciphertext allo-
cation on the blockchain, the allocated ciphertext frag-
ment, the corresponding secret fragment’s expenditure 
commitment value, and the ciphertext of the blind factor 
generating the commitment value are sent to the corre-
sponding participant of the IoT device. The participant 
of the IoT device uses the Paillier private key to decrypt 
the blind factor ciphertext and the ciphertext fragment to 
obtain the blind factor plaintext and the secret fragment 

corresponding to the blind factor plaintext, generate 
the promise value of the secret fragment as the income 
promise value and send it to the chain. On the chain, the 
comparison between the total income promise value and 
the total expenditure promise value is calculated. If the 
total expenditure equals the total income, the partici-
pant’s sending and receiving operations are correct.

Fine-grained audit verification: The fine-grained audit 
verification supplements the coarse-grained audit veri-
fication. If the coarse-grained audit verification fails, 
the fine-grained audit verification locates the IoT device 
participants that fail to implement the protocol. After 
receiving the message that fails the coarse-grained veri-
fication, the participant generates the Pedersen commit-
ment value and compares the expenditure commitment 
value according to the blind factor and ciphertext frag-
ments received and decrypted. If they are not equal, the 
spender sends and receives private data ciphertext frag-
ments according to the protocol to reduce the spender’s 
trust and update the Bloom filter.

Figure  3 shows the behavior audit process of partici-
pants of IoT devices in the process of private data sharing 
service.

Bloom filter design that can trace the trust state of 
the sensing layer
Storage structure design
In this research scheme, the on-chain smart contract 
layer is based on PKI architecture to control the access 
of participants of IoT devices. In addition, the on-chain 
smart contract layer can be embedded with other ser-
vice interfaces for IoT devices to invoke due to flexibility 
considerations, and IoT devices can invoke other service 
interfaces on the chain with unique identity certificates 
except for IoT data sharing services. For the IoT data 
sharing service with high security requirements, the IoT 
device shall pass the verification of the Blum filter that 
can trace its trust status according to the device Id num-
ber in its certificate. After the verification is passed, the 
on-chain smart contract layer will process the IoT data 
sharing request of the IoT device of the task initiator. The 
invocation is shown in Fig. 4:

The Bloom filter [21] is a spatially efficient data struc-
ture that supports fast insertion and query and can be 
used to retrieve whether an element exists in a collection.

Specifically, the Bloom filter contains an array of bits, 
all of which are initially set to 0. When an element is to 
be added to the set, the element is hashed through mul-
tiple hash functions to obtain multiple hash values. Then 
set the position of the corresponding bit array to 1. When 
checking whether an element exists, the element is also 
hashed through the hash function to obtain multiple 
hash values. If the position of the corresponding bit array 
is 1, it indicates that the element may exist; If one of these Fig. 3 Audit Process for IoT Device Participant Behavior
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positions is 0, the element does not exist. The Bloom fil-
ter is suitable for situations where you can quickly deter-
mine the presence or absence of an element in large-scale 
data. The traditional Bloom filter only has a mechanical 
judgment of whether a certain element exists, and can-
not adapt to the complex application scenarios of the 
real Internet of Things system. To this end, this paper 
constructs a Blum filter that can trace the trust status of 
IoT devices, dynamically updates the trust degree of IoT 
device participants according to the implementation of 
the IoT data sharing protocol of IoT devices, and syn-
chronizes it to the on-chain smart contract layer of the 
global edge server through the consensus mechanism. 
The next time an IoT device with low trust initiates a 
request for private data sharing, The on-chain smart con-
tract layer rejects the task request.

The Blum filter that can trace the trust status of the 
layer is composed of three layers of Blum filters. The Id of 
the IoT device goes through the first layer Blum filter to 
confirm whether the IoT device has registered the arith-
metic gate circuit. After passing the first layer, it goes 
through the second layer Blum filter to confirm the trust 
status of the IoT device. If the IoT device can pass the 
first two layers of Blum filter screening, it indicates that it 
is a trusted IoT device, if it passes the first layer but does 
not pass the second layer of screening, it indicates that 
the IoT device is not trustworthy, and at the same time, 
the number of illegal access is recorded in the third layer 
of Blum filter.

The third layer Bloom filter essentially subscripts two 
bits of the original bit array to one bit of the third layer, so 
that the third layer represents three state values.

Table 1 below shows the status values of the three lay-
ers of Bloom filters on the chain that can be traced to the 
trust state of the sensing layer and their corresponding 
ones.

Non-registered device: The IoT device has not regis-
tered the arithmetic gate circuit at the on-chain smart 
contract layer, and the device has no need to call private 
data sharing services, and it can normally call other ser-
vices at the on-chain smart contract layer with an identity 
certificate.

Trusted device: The IoT device is normally registered 
with the arithmetic gate and honestly executes the agree-
ment whether it is the initiator or the participant of the 
private data sharing task.

Suspicious device: As a participant or initiator of a pri-
vate data sharing task, a device that does not honestly 
execute in accordance with the agreement retains its 
right to call other services of the smart contract layer on 
the chain.

Malicious device: If a suspicious device illegally invokes 
the private data sharing interface twice or more, its PKI 
certificate is revoked and services are denied.

Table 1 Bloom filter state values definition for traceable 
perception layer trust states
3Layer 
1,2Layer

0 0 0 1 1 0 1 1

0 Unregistered 
Device

Undefined Suspicious 
Equipment

Trusted 
Device

1 Undefined Undefined Suspicious 
Equipment

Unde-
fined

2 Undefined Undefined Malicious 
Device

Unde-
fined

Fig. 4 IoT device request verification
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Figure 5 shows a storage structure of Bloom filter with 
the first two layers being 32-bit Bitmap and the third 
layer being 16-bit Bitmap, which is traceable and aware of 
device trust status:

Analysis of misjudgment rate
Because the Blum filter that can trace the trust state of 
the device at the sensing layer has three layers and the 
structure update mode of the third layer is different from 
that of the traditional Blum filter, the misjudgment rate 
needs to be re-analyzed and calculated.

Suppose n device ids are inserted into the first two lay-
ers as initial trusted IoT devices, and each device Id is 
input into k hash functions at each layer. Since the first 
layer is a traditional Bloom filter structure, the error rate 
of the first two layers is as follows:

 
fp1 = fp2 =

(
1− e−kn/m

)k
 (3)

For the third layer Bloom filter, the quality function of the 
probability distribution of its subscript l is defined as:

 
b

(
l, kn,

1

m

)
=

(
kn

l

)(
1

m

)l(
1− 1

m

)kn−l

 (4)

The misjudgment rate of the hash mapped device Id with 
the corresponding value of l is expressed as:

 
Pfp (θ , k, n,m) =

(
1−

∑
l<κ

b

(
l, kn,

1

m

))k

 (5)

Its θ represents the state value of the third layer.

The binomial distribution is replaced by the Poisson 
distribution and the Poisson distribution cumulative 
mass function is substituted

 
fp (θ = 1) =

(
1− Γ (1, κ )

Γ (1,0)

)k

 (6)

If the three state values of the third layer Bloom filter are 
0,1,2, if an element exists in the set of Bloom filters, it will 
never be misjudged as not existing. So you only need to 
plug in two state values, 1,2.

 
fp (θ = 1) =

(
1− Γ (1, κ )

Γ (1,0)

)k

 (7)

 
fp (θ = 2) =

(
1− Γ (2, κ )

Γ (2,0)

)k

 (8)

Therefore, the misjudgment rate of the third layer Bloom 
filter is:

 
fp3 =

(
1− Γ (1, κ )

Γ (1,0)

)k

+

(
1− Γ (2, κ )

Γ (2,0)

)k

 (9)

Since each layer is related to the access control rights of 
the IoT device, the overall error rate is:

 fp = max (fp1, fp2, fp3) (10)

Table  2 below shows the overall misjudgment rate of 
Blum filter in the traceable sensing layer device trust 
state:

Fig. 5 Storage structure of the traceable trust state bloom filter for perception layer devices
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As can be seen from the table, when the occupancy rate 
n/m is low, the misjudgment rate is negligible. Therefore, 
selecting the appropriate size of Bloom filter in the actual 
application scenario can effectively and quickly manage 
the access control requests of IoT devices off the chain.

Program analysis and evaluation
Scheme analysis
Correctness Analysis: The IoT data sharing method 
based on secure multiparty computation is conducted 
in the form of data transactions. Among the N data 
transaction parties involved, during the data collection 
phase of IoT devices, each party shares its non-IoT data 
secret fragments with other IoT devices. The IoT device 
x of the sharing party generates the secret fragment 
Sxi (where i ∈ {1, 2, . . . , N})and its Pedersen commit-
ment CommxPay (Sxi, rxi) = gSxihrxi mod q (where rxi  is 
a random number as the blinding factor for the Peder-
sen commitment, and (g, h, q) are the generators of the 
multiplicative group G of order q , which is a large prime 
number, with G = ?g ? = ?h ?  being publicly known).

During the secondary allocation phase, the IoT device 
x as the recipient generates an income commitment 
CommxAck (Six, rxi) = gSixhrxi mod q . The on-chain 
smart contract layer, acting as a trusted third-party audi-
tor, verifies whether the total income and expenditure 
of the N data transaction participants are balanced and 
whether the commitment values satisfy:

 Comm1Pay · . . . · CommNPay = Comm1Ack · . . . · CommNAck

If this holds true, the input and output values of the 
transaction are equal, and no specific transaction data 
is leaked to the on-chain smart contract layer, complet-
ing the audit. If not, the recipient of the data transaction 
restores the expenditure commitment value of the secret 
fragment using the blind factor and the secret fragment 
received during the expenditure phase. If the restored 
expenditure commitment value does not match the 
received expenditure commitment value, it confirms that 
the sender of the secret fragment did not follow the pro-
tocol as required, and the on-chain smart contract layer 
will adjust the sender’s trust value. Therefore, this proto-
col ensures the correctness of IoT data sharing.

Simulation implementation and experimental analysis
This section presents the simulation implementation and 
introduces the specific process for the on-chain smart 
contract layer and the off-chain IoT device perception 
layer. For the multiple nodes involved in the IoT percep-
tion layer, Docker container technology is used to set up 
a single-machine multi-node microservice system for 
simulation. For the smart contract layer, the Hyperledger 
Fabric consortium blockchain platform is used to build a 
consortium network. The IoT data sharing protocol and 
the Bloom filter for the traceable perception layer trust 
states are integrated into Hyperledger Fabric as chain-
code. Hyperledger Fabric uses Docker containers to run 
various types of nodes ( Peer nodes, Orderer nodes, and 
CA nodes). Peer nodes typically run one or more chain-
codes (smart contracts), and containerization ensures 
that each chaincode executes in its own isolated environ-
ment, thereby avoiding potential conflicts and security 
issues. Therefore, this section uses two computers as host 
machines to build and deploy the microservice simula-
tion system.

On-chain Smart Contract Layer: The on-chain smart 
contract layer uses a single-machine multi-node setup to 
build a Hyperledger Fabric permissioned blockchain net-
work configured with PBFT consensus. Docker is used 
to isolate the running environments of the nodes. One 
host is used as the edge server to build the consortium 
network, create a unique channel within the network, 
and set up different organizations to join the channel for 
simulation. Each organization is assigned a unique digi-
tal identity—an organizational key and root certificate, a 
TLS communication key, and a TLS root certificate. The 
organizational key and TLS key can issue identity certifi-
cates and TLS certificates for the nodes or users under 
that organization. The experiment is set up with one Peer 
node per organization, and certificates are issued for 
each. Each organization has its own certificate manage-
ment module and Orderer node to manage the validity of 
its issued certificates and perform state synchronization 
during block creation. Chaincode for the IoT data sharing 
service is written, installed, and instantiated.

Off-chain IoT Device Perception Layer: Another com-
puter is used to write a Vue-SpringBoot backend man-
agement program that generates different numbers of 
user IDs as IoT device IDs and registers corresponding 
MSP certificates with the on-chain smart contract layer. 
The backend management program uses the Fabric SDK 
for JAVA to manage the invocation of these users’ IoT 
data sharing services. The on-chain smart contract lay-
er’s three-layer Bloom filter initializes these user IDs as 
trusted devices.

As shown in Table 3, the hardware and software con-
figuration table, and Fig. 6, the simulation system archi-
tecture diagram.

Table 2 Analysis of the overall misjudgment rate
n/m Misjudgment rate
0.1 3.563E-8
0.2 1.933E-6
0.3 1.869E-5
0.4 8.926E-5
0.5 2.897E-4
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Peer nodes are the core components of the Hyperledger 
Fabric network. They are responsible for maintaining 
the ledger state, executing smart contracts, validating 
transactions, and providing query and event notification 
functions. Orderer nodes are responsible for packaging 
transactions signed by Peer nodes into blocks.

This section defines the following standards to evaluate 
the performance of the solution:

Response Time: The time delay from the initiation of 
the data sharing request by the IoT device to the receipt 
of the response result. Based on the transaction process 
of Hyperledger Fabric, the response time consists of 
communication time and CPU time.

Execution Time: The time spent by IoT device partici-
pants in executing secure multiparty computation.

As shown in Fig. 7, the system’s response time for com-
pleting all task requests when simultaneously initiat-
ing different numbers of secure multiparty computation 
tasks is tested. This test involves different numbers of 
IoT device users (n = 3, 5, 10) performing (n, n) threshold 
secret sharing addition operations.

From Fig. 7, it can be seen that as the number of secure 
multi-party computation task requests increases, the 
response time for completing all secure multi-party com-
putation tasks does not significantly increase when the 
number of participants remains the same. This is because 
the IoT data sharing protocol requires Fabric to gener-
ate multiple blocks. Each block carries task information 
and event information to advance the secure multi-party 
computation tasks. The amount of task information that 
can be contained in a single block in Fabric is controlled 
by the parameters AbsoluteMaxBytes and PreferredMax-
Bytes. By setting these parameters, each block can con-
tain a large amount of task information. Therefore, when 
multiple secure multi-party computation requests are 
received simultaneously, Fabric’s batching mechanism 
allows multiple task requests to be completed simultane-
ously during one round of the IoT data sharing protocol. 
However, the more participants there are, the longer it 
takes to reach consensus on task status among the partic-
ipants, resulting in longer response times. In this experi-
ment, the transaction frequency of the task requests has 
not yet reached MaxMessageCount. Therefore, the factor 
that most significantly affects the task response time is 
still the block generation interval BatchTimeout, leading 
to longer response times.

As shown in Fig. 8, based on the experiment in Fig. 7, 
MaxMessageCount is reset to 50 to test the average 
response time for completing a single task request when 
different numbers of IoT device users (n = 3, 5, 10) simul-
taneously initiate 50 data sharing requests. From Fig. 8, 
it can be seen that when the number of task requests 
reaches 50, the transaction frequency for this number 

Table 3 Hardware and software configuration
Hardware/Software environment Configuration model/Version
Operating System Ubuntu20.04
Processor Intel Core i7
Memory 32GB
Hyperledger Fabric V1.4.12
Hyperledger Fabric CA V1.4.4
Fabric SDK for JAVA V2.2.1
Paillier Key Length 512bit

Fig. 6 Experimental architecture diagram
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Fig. 8 Average response time of each secure multi-party computing task (Addition operation) with different numbers of participants

 

Fig. 7 Response time of secure multi-party computing task (Addition operation) under different task request quantities
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of tasks exceeds MaxMessageCount: 50. Therefore, the 
block generation time is primarily affected by the Max-
MessageCount parameter. The block generation time 
is significantly shorter than under the conditions of the 
experiment in Fig. 7. In this case, the more participants 
there are, the higher the transaction frequency, and the 
longer the response time. The number of IoT device users 
has the most significant impact on the response time.

For multiplication, Shamir’s secret sharing has lim-
ited homomorphism. This is because secret sharing is 
achieved by selecting points on a polynomial of fixed 
degree, and multiplication of linear secret shares gener-
ated by polynomials will result in a higher degree poly-
nomial. Different schemes have different strategies to 
address this issue. As shown in Fig. 9, the execution time 
for different numbers of IoT device users (n = 3, ?, 10)  
cooperating to complete a multiplication gate operation 
(i.e., n computing nodes cooperating to execute the mul-
tiplication operation between two (n, n) threshold IoT 
data secret shares) is presented under different schemes.

The blockchain-based secure multi-party computation 
scheme proposed by PS-MPC [23] uses a log-depth for-
mula with constant-sized MPC gates to simulate n-party 
secure protocols, reducing the communication com-
plexity of multiplication from quadratic to linear. This 
scheme is an off-chain computation scheme. The secure 
multi-party computation scheme proposed by Ghad-
amyari [21] adopts an on-chain computation approach 

and originally used Paillier homomorphic encryption to 
protect secret shares. However, Paillier encryption sup-
ports only scalar multiplication homomorphism for 
ciphertext shares, which limits the functionality of the 
scheme to some extent. To address this issue, this paper 
opts to replace Paillier with the BFV fully homomorphic 
encryption (FHE) algorithm. BFV is a more powerful 
fully homomorphic encryption algorithm that supports 
homomorphic multiplication, meaning that data can 
still be multiplied in its encrypted state without expos-
ing the original information. Therefore, by introducing 
the BFV algorithm, this on-chain computation scheme 
is upgraded to perform more complex computations 
while protecting data privacy, with a key length set to 
512 bits. BSCEN uses proactively generated Beaver triple 
shards to achieve homomorphic multiplication of secret 
shares, and BSCEN’s scheme is an off-chain computation 
scheme.

As can be seen from Fig.  9, although PS-MPC [23] 
reduces the communication complexity of multiplica-
tion from quadratic to linear and, like the BSCEN scheme 
in this paper [20], belongs to off-chain computation, the 
trade-off is an increase in parallel computation complex-
ity, resulting in lower execution efficiency compared to 
this paper’s scheme. Ghadamyari-FHE [21] is an on-chain 
computation scheme, which involves on-chain node con-
sensus, thus making its communication efficiency lower 
than that of off-chain computation. Furthermore, while 

Fig. 9 Execution time of different numbers of IoT user nodes cooperating to complete a multiplication gate operation
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Ghadamyari-FHE [21] uses homomorphic ciphertext 
multiplication for multiplication operations, this paper’s 
scheme directly uses plaintext secret shares to execute 
multiplication operations based on Beaver triples. Con-
sequently, the computational complexity of Ghadamyari-
FHE [21] is significantly higher than that of this paper’s 
scheme. Therefore, the scheme proposed in this paper 
has a certain computational efficiency advantage in per-
forming multiplication operations.

As shown in Fig.  10, the execution time for different 
numbers of IoT device users cooperating to complete an 
addition gate operation is presented. For addition opera-
tions, since Shamir’s secret sharing inherently possesses 
homomorphism [22], when executing an addition gate 
operation, the scheme proposed in this paper, like PS-
MPC [23] and Ghadamyari [21], only requires IoT nodes 
to complete their respective computation tasks in paral-
lel. However, to test the execution time, it is still neces-
sary to interact once to restore the common addition gate 
operation result from the secret shares among the execu-
tion parties. We plan to further explore how to optimize 
the data sharing and model training processes through 
advanced mechanisms such as hierarchical Stackelberg 
games, to achieve higher efficiency and fairness [21].

From the perspective of computational efficiency, 
both the IoT nodes in this paper’s scheme and PS-MPC 
[23] perform secure multi-party addition operations 
on plaintext secret shares off-chain, while Ghadamyari 

[21] performs secure multi-party addition operations on 
ciphertext secret shares based on Paillier homomorphic 
encryption, which has higher computational complex-
ity. Therefore, in terms of computational efficiency, this 
paper’s method and PS-MPC [23] are more efficient than 
Ghadamyari [21]. For Ghadamyari-FHE, which replaces 
Paillier homomorphic encryption with the BFV fully 
homomorphic encryption algorithm, the computational 
complexity of fully homomorphic encryption is the high-
est, making its computational efficiency the lowest under 
this method.

In summary, considering the overall computational 
efficiency of IoT nodes, the method proposed in this 
paper has higher computational efficiency compared to 
other methods.

Conclusion
This paper proposes a feasible IoT data sharing scheme 
based on the application scenario of IoT combined with 
edge computing, utilizing blockchain and secure multi-
party computation technology. The scheme constructs 
an off-chain collaborative secure multi-party computa-
tion protocol for IoT data sharing, allowing trusted IoT 
devices to exchange and share IoT data securely and 
controllably in a multi-party computing environment. 
Through comparative analysis and performance evalu-
ation, this scheme can effectively integrate IoT data 
into off-chain secure data sharing, with relatively high 

Fig. 10 The Execution time of different numbers of iot user nodes cooperating to complete an addition gate operation
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computational efficiency in the application scenario of 
IoT systems, and has practical value. In the future, we 
plan to further explore how to optimize the IoT data-
sharing model through advanced mechanisms such as 
hierarchical Stackelberg games, to achieve higher effi-
ciency and security [24].
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