Privacy-Preserving Data Sharing in High Dimensional Regression and Classification Settings
Main Article Content
Abstract
We focus on the problem of multi-party data sharing in high dimensional data settings where the number of measured features (or the dimension) p is frequently much larger than the number of subjects (or the sample size) n, the so-called p >> n scenario that has been the focus of much recent statistical research. Here, we consider data sharing for two interconnected problems in high dimensional data analysis, namely the feature selection and classification. We characterize the notions of ``cautious", ``regular", and ``generous" data sharing in terms of their privacy-preserving implications for the parties and their share of data, with focus on the ``feature privacy" rather than the ``sample privacy", though the violation of the former may lead to the latter. We evaluate the data sharing methods using {\it phase diagram} from the statistical literature on multiplicity and Higher Criticism thresholding. In the two-dimensional phase space calibrated by the signal sparsity and signal strength, a phase diagram is a partition of the phase space and contains three distinguished regions, where we have no (feature)-privacy violation, relatively rare privacy violations, and an overwhelming amount of privacy violation.
Article Details
Copyright is retained by the authors. By submitting to this journal, the author(s) license the article under the Creative Commons License – Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), unless choosing a more lenient license (for instance, public domain). For situations not allowed under CC BY-NC-ND, short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.
Authors of articles published by the journal grant the journal the right to store the articles in its databases for an unlimited period of time and to distribute and reproduce the articles electronically.
Funding data
-
U.S. Army
Grant numbers DAAD19-02-1-3-038 -
National Science Foundation
Grant numbers BCS0941518;DMS090861