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Two-dimensional anisotropic non-Hermitian Lieb lattice
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We study an anisotropic two-dimensional non-Hermitian Lieb lattice, where the staggered gain and loss
present in the horizontal and vertical directions, respectively. The intracell nonreciprocal coupling generates
magnetic flux enclosed in the unit cell of the Lieb lattice and creates nontrivial topology. The active and dissi-
pative topological edge states are along the horizontal and vertical directions, respectively. The two-dimensional
non-Hermitian Lieb lattice also supports a passive topological corner state. At appropriate magnetic flux, the
non-Hermiticity can alter the corner state from one corner to the opposite corner as the non-Hermiticity increases.
The gapless phase of the Lieb lattice is characterized by different configurations of exceptional points in the
Brillouin zone. The topology of the anisotropic non-Hermitian Lieb lattices can be verified in many experimental
platforms including the optical waveguide lattices, photonic crystals, and electronic circuits.
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I. INTRODUCTION

Over the last two decades, the ubiquitous effect of dissipa-
tion has proven to induce astonishing non-Hermitian features,
rather than just being an inescapable nuisance. Within this
young field, the treasure hunt is sprouting into fascinating
new directions ranging from the complex optical media [1],
nonequilibrium open systems with gain and/or loss [2–9],
to strongly correlated systems as a result of finite-lifetime
quasiparticles [10–16]. Most recently, topological character-
ization and dynamic control of non-Hermitian models have
been hot areas of research [17–49]. Among the most relevant
features observed in non-Hermitian systems, the appearance
of an interface significantly alters the entire spectrum, lead-
ing to the exponential localization of all eigenmodes at the
interface, which goes beyond the expectations for Hermi-
tian systems. This unique non-Hermitian effect is dubbed
the non-Hermitian skin effect [50]. As a consequence, the
conventional bulk-boundary correspondence breaks down. A
correct description requires one to extend Bloch band theory
into the generalized Brillouin zone (BZ) [50–52]. Inspired
by these exciting advances, different generalized versions
of the bulk-boundary correspondence based on redefining
the bulk topological indices to incorporate the impact of
the non-Hermitian skin effect have been proposed [53–69].
Furthermore, the non-Hermitian skin effect itself is also a
topological effect manifested by the spectral winding on
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the complex energy plane with a reference energy. Impor-
tantly, the non-Hermitian topological phenomena have been
observed experimentally in various experimental platforms
including the optical waveguide lattices, photonic crystals,
and electronic circuits [70–83].

The exceptional point (EP) uniquely presents in the
non-Hermitian Hamiltonian [84–87]. At the EPs, eigenstate
coalescence occurs. The order of the EP depends on the
geometric multiplicity of the corresponding eigenvalue. In
general, the band touching induces EPs in one-dimensional
systems. Intriguingly, the EPs are topologically stable at
generic points in the BZ in the sense that they will not dis-
appear suddenly, but move, split, and merge in the BZ until
merging in pairs.

In this paper, we study an anisotropic two-dimensional
(2D) non-Hermitian Lieb lattice. The gain and loss present in
the horizontal and vertical directions, respectively, and induce
the active and dissipative topological edge states. The Lieb
lattice supports the passive topological corner state, which
is created at the appropriate cooperation between the non-
Hermiticity and the magnetic flux. The non-Hermitian term
affects the corner states in a subtle way: when the intracell
nonreciprocal coupling induced magnetic flux is π/2, the cor-
ner states are always localized at one corner; however, when
the intracell nonreciprocal coupling induced magnetic flux is
−π/2, the corner states slowly evolve into the opposite corner
as the non-Hermiticity increases. The type and configuration
of EPs in the BZ distinguish the gapless phases. Our findings
shed light on the influence of non-Hermiticity for the 2D Lieb
lattice.

The remainder of the paper is organized as follows.
In Sec. II, we introduce the anisotropic 2D non-Hermitian
Lieb lattice. Section III presents the topology of the non-
Hermitian Lieb lattice and the topological edge states in the
gapped phase. The corner states under the influence of non-
Hermiticity are elaborated. Section IV highlights the enriched
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FIG. 1. Schematic illustration of the 2D non-Hermitian Lieb
lattice. The system consists of three sublattices denoted by green,
black, and red solid circles, respectively. The non-Hermiticity arises
from the gain in red and loss in green. The black arrow indicates
nonreciprocal coupling and each unit cell is threaded by a magnetic
flux.

gapless band structures characterized by the EPs. Our conclu-
sion is summarized in Sec. V.

II. 2D NON-HERMITIAN LIEB LATTICE

We consider an anisotropic 2D non-Hermitian Lieb lattice.
The Hamiltonian is written in the form of

H =
∑
l,n

(κA†
l,nBl,n + κB†

l,nCl,n + imC†
l,nAl,n

+ κA†
l,nBl+1,n + κB†

l,nCl,n+1) + H.c.

+ iγ (A†
l,nAl,n − C†

l,nCl,n), (1)

where A†, B†, and C† (A, B, and C) denote the creation (an-
nihilation) operators for the three sublattices in each unit cell.
The non-Hermitian Lieb lattice is schematically illustrated in
Fig. 1. κ and m are the coupling strengths. The intracell nonre-
ciprocal coupling im between the sublattices A and C induces
effective magnetic flux π/2 enclosed in the unit cell. The non-
Hermiticity γ originates from the balanced gain and loss that
presented in the sublattices A and C in the horizontal and verti-
cal directions, respectively. The proposed non-Hermitian Lieb
lattice can be experimentally implemented in the platforms
of ultracold atomic gas in optical lattices, photonic crystals,
and coupled resonators based on the nowadays technology
[88–94].

Applying the Fourier transformation al,n =
N−1 ∑

k eik·rak (a = A, B,C) for the three sublattices,
the Hamiltonian H rewritten in the Nambu representation
reads

H =
∑

k

H (k) =
∑

k

ψ
†
kh(k)ψk, (2)

where the basis is ψk = [Ak, Bk,Ck]T and h(k) is a 3 × 3
matrix,

h(k) =
⎛
⎝ iγ κ (eikx + 1) −im

κ (e−ikx + 1) 0 κ (eiky + 1)
im κ (e−iky + 1) −iγ

⎞
⎠. (3)

The Hamiltonians in the momentum subspaces commute with
each other, [H (k), H (k′)] = 0.

At m = γ = 0, the lattice is a standard Lieb lattice and
supports a flat band. In the absence of the gain and loss
γ = 0, the lattice has a flat band and the band energy is
tuned by the coupling strength m [95–102]. The wave trans-
port in the flat band is completely suppressed because of
the momentum-independent dispersion relation, leading to a
strong localization of the eigenstates. This provides an ideal
platform to investigate various interesting strongly correlated
phenomena [103–106].

The presence of gain and loss drastically alters the spec-
trum and results in exotic phenomena compared to the
standard Lieb lattice. We investigate h(k) to show the insights
of the non-Hermitian Lieb lattice. The energy band properties
of h(k) are determined from solving the secular equation
det[h(k) − E (k)I] = 0, where I is the identity matrix. The
algebra after the basis transformation shows a cubic equation

E3(k) + p(hx, hy)E (k) + q(hx, hy) = 0, (4)

where

p(hx, hy) = γ 2 − h2
x − h2

y − m2, (5)

q(hx, hy) = iγ (h2
y − h2

x ) + 2hxhym sin[(kx + ky)/2] (6)

with h2
ε = |κ (eikε + 1)|2 (ε = x, y). The energy bands and

eigenstates are straightforwardly obtained through solving the
cubic equation.

III. TOPOLOGICAL PHASES

In this section, we discuss the topological phase of the
system based on the non-Hermitian topological band the-
ory [107]. For the non-Hermitian Hamiltonian, the separable
energy band means that any two bands of the system are
not degenerate at any point k in the momentum space [i.e.,
Eα (k) �= Eβ (k); α, β are the band index]. The system ex-
periences a topological phase transition when the closing of
separable bands occurs.

For separable bands, the topology of the anisotropic 2D
non-Hermitian Lieb lattice can be characterized by the Chern
number. Clearly, there is a fixed magnetic flux in the unit cell
because of the nonreciprocal coupling strength between the
next-nearest neighbor, which breaks the time-reversal sym-
metry and ensures the existence of the Chern number. For
nonzero Chern number, the topological edge states exist for
the system under OBC in the x or y direction; for zero Chern
number, the system has trivial edge states or no edge states
when imposing OBC in the x or y direction.

Separable bands and Chern number. Figures 2 and 3 are the
phase diagrams. The nonzero Chern number is marked in Fig.
3. The white regions except for the topologically nontrivial re-
gion marked with C = ±1 are all topologically trivial phases
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FIG. 2. Phase diagram in the m-γ parameter space. The color
regions show the three gapless phases distinguished by the EPs in
the BZ. The white regions show the gapped phases distinguished by
the Chern numbers.

with the zero Chern number. The non-Hermiticity greatly
affects the topological property of the Lieb lattice. When the
non-Hermitian term is introduced, the gapped regions shrink
and the gapless regions appear; a typical feature is the exis-
tence of the EPs. Moreover, the large non-Hermiticity destroys

FIG. 3. Phase diagram in the m-γ parameter space focused on the
gapped regions. Here κ is taken as the unit without loss of generality.
In gapped regions, the system can be either in topologically trivial
or nontrivial phase characterized by the Chern number. C = ±1
indicates the Chern number of the lowest band of the topologically
nontrivial phase. Except for the white region marked with C = 1, all
other white regions satisfy C = 0. For the topologically nontrivial
phase, edge states exist for the system under OBC in the x or y
direction.

FIG. 4. Energy spectrum of the topologically nontrivial phase
under PBC in the x direction, but under OBC in the y direction.
Here κ is taken as the unit without loss of generality, and the total
number of the unit cells N is 10. (a), (b) m = −1, γ = 0.1 depict the
topologically nontrivial phase with gapless edge states. (c), (d) The
probability distribution of |ψ1〉 and |ψ2〉 by supposing kx = 1.4π .
Different color bars indicate different sublattices, respectively.

the nontrivial topology of the Lieb lattice as shown in the
phase diagram Fig. 2.

The Chern number of the separable energy band is well de-
fined as the integral of Berry curvature on the entire Brillouin
zone,

C = 1

2π

∫∫
BZ

dkxdky	, (7)

where 	 = ∇ × A with A = −i〈ϕ(k)|∇|ϕ(k)〉 and |ϕ(k)〉 is
the eigenstate of the band. The Chern number evaluated under
PBC predicts the number of gapless edge states of the system
under OBC [107]. In the topologically nontrivial phase, the
Chern number for the lower band is C = ±1, the Chern num-
ber for the middle band is C = 0, and the Chern number for
the upper band is C = ∓1. In the topologically trivial phase,
the Chern numbers for the energy bands are all zeros.

As a consequence, the gapless edge states between the
middle band and the other bands exist for the Lieb lattice
under OBC in the x or the y direction. Figure 4(a) depicts the
energy bands when the system is under PBC in the x direction,
but under OBC in the y direction. Figure 5(a) shows the energy
band when PBC is applied in the y direction but OBC is
applied in the x direction. The non-Hermitian Hamiltonian
h(k) in the momentum space has the particle-hole symmetry,
T−h∗(k)T −1

− = −h(−k); the unitary operator T− is defined
as T− = diag(1,−1, 1). Thus, the band energies satisfy Ek =
−E∗

−k as reflected from Fig. 4(a).
Edge states. In the topologically nontrivial phase of the

non-Hermitian Lieb lattice, we examine the properties of the
gapless edge states. The edge states localized on the boundary
in the x and y direction exhibit the gain and loss, respectively.
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FIG. 5. Energy spectrum of the gapless edge states under PBC in
the y direction, but under OBC in the x direction. The (a) real and
(b) imaginary parts of energy band at m = −1, γ = 0.1. The edge
states (c) |ψ1〉 and (d) |ψ2〉 at ky = 1.4π . Color sticks indicate the
probabilities for the corresponding sublattices. The total number of
unit cells N is 10 and κ = 1.

We discuss the C = −1 region as an example. The energy
spectra for the lattice under PBC in the x direction and OBC
in the y direction are shown in Figs. 4(a) and 4(b). Four edge
states appear in pairs within the band gap. Straightforward
algebra shows that

E1 =
√

m2 − γ 2, (8)

E2 =
√

4κ2 cos2(kx/2) − γ 2/4 + iγ /2, (9)

E3 = −
√

m2 − γ 2, (10)

E4 = −
√

4κ2 cos2(kx/2) − γ 2/4 + iγ /2. (11)

The edge state energies between the middle and lowest bands
satisfy E3 = −E1 and E4 = −E∗

2 under the particle-hole sym-
metry. E1 and E3 are opposite in pair and independent of the
momentum kx. E2 and E4 are complex with constant gain rate
iγ /2 . The wave function of the edge state for Eμ is denoted
as |ψμ〉 with μ = 1, 2, 3, 4. We set the expression of the edge
states as |ψμ〉 = (ψ1A, ψ1B, ψ1C, . . . , ψNA, ψNB, ψNC ) with N
being the total number of the unit cells. To analytically obtain
the wave function of the edge states, we consider the lattice
size at the limitation of infinity large N → ∞.

For the edge state |ψ1〉, the component of |ψ1〉 at the
sublattice B is ψnB = 0 with n being the index of the unit
cell in the y direction. The components of |ψ1〉 in the first
unit cell at the bottom are (ψ1A, ψ1B, ψ1C ) = (1, 0, eiφ ) with
φ = sgn(m) arccos(γ /m). The components of |ψ1〉 in the
nth unit cell satisfy the recursion relation (ψnA, ψnB, ψnC ) =
ρn−1(ψ1A, ψ1B, ψ1C ) with ρ = −e−iφ − e−i(φ+kx ) − 1. The
probabilities of edge states for the sublattices A and C in every
unit cell are identical and decay exponentially from bottom to

top of the Lieb lattice as shown in Fig. 4(c). For the edges
state |ψ3〉, we have a similar wave function distribution. The
components of |ψ3〉 in the first unit cell at the bottom are
(ψ1A, ψ1B, ψ1C ) = (1, 0, e−iφ ) and decay as the index of the
unit cells at the rate ρ = −eiφ − ei(φ−kx ) − 1.

For the edge state |ψ2〉, the component of |ψ2〉 at the
sublattice C vanishes, ψnC = 0. The components of |ψ2〉
in the first unit cell at the top are (ψNA, ψNB, ψNC ) =
(ei(φ+kx/2), 1, 0) with φ = arcsin{γ /[4 cos(kx/2)]} for m >

0, and π − arcsin{γ /[4 cos(kx/2)]} for m < 0. The com-
ponents of |ψ2〉 in the nth unit cell satisfy the recursion
relation (ψnA, ψnB, ψnC ) = ρN−n(ψNA, ψNB, ψNC ) with ρ =
−1 − imei(φ+kx/2). The probabilities of the edge states for
the sublattices A and B in every unit cell are identical and
decay exponentially from top to bottom of the Lieb lat-
tice as shown in Fig. 4(d). For the edge state |ψ4〉, the
result is similar. The components of |ψ4〉 in the first unit
cell at the top are (ψNA, ψNB, ψNC ) = (−ei(kx/2−φ), 1, 0) and
decay as the index of the unit cells at the rate ρ = −1 +
imei(kx/2−φ) with φ = arcsin{γ /[4 cos(kx/2)]} for m < 0, and
π − arcsin{γ /[4 cos(kx/2)]} for m > 0.

The energy spectra for the lattice under PBC in the y
direction and OBC in the x direction are shown in Figs. 5(a)
and 5(b). There are still four edge states in pairs within the
band gap, in the form of

E1 =
√

m2 − γ 2, (12)

E2 =
√

4κ2 cos2(ky/2) − γ 2/4 − iγ /2, (13)

E3 = −
√

m2 − γ 2, (14)

E4 = −
√

4κ2 cos2(ky/2) − γ 2/4 − iγ /2. (15)

E1 and E3 are independent of the momentum ky with E3 =
−E1. E2 and E4 are complex with constant loss rate −iγ /2
with E4 = −E∗

2 . We analyze the wave functions of the four
edge states in the same way as above.

For the edge state |ψ1〉, the component of |ψ1〉 at
the sublattice B is ψυB = 0 with υ being the index of
the unit cell in the x direction. The components of |ψ1〉
in the first unit cell at the right are (ψNA, ψNB, ψNC ) =
(e−iφ, 0, 1) with φ = sgn(m) arccos(γ /m). The components
of |ψ1〉 in the υth unit cell satisfy the recursion re-
lation (ψυA, ψυB, ψυC ) = ρN−υ (ψNA, ψNB, ψNC ) with ρ =
−1 − eiφ − ei(ky+φ). The probabilities of edge states for the
sublattices A and C in every unit cell are identical and decay
exponentially from right to left of the Lieb lattice as shown
in Fig. 5(c). For the edges state |ψ3〉, we have a similar wave
function distribution. The components of |ψ3〉 in the first unit
cell at the right are (ψ1A, ψ1B, ψ1C ) = (eiφ, 0, 1) and decay as
the index of the unit cells at the rate ρ = −1 − e−iφ − ei(ky−φ).

For the edge state |ψ2〉, the component of |ψ2〉 at the
sublattice A vanishes, ψυA = 0. The components of |ψ2〉
in the first unit cell at the left are (ψ1A, ψ1B, ψ1C ) =
(0, 1, e−i(φ+ky/2)) with φ = arcsin{γ /[4 cos(ky/2)]} for m >

0, and π − arcsin{γ /[4 cos(ky/2)]} for m < 0. The com-
ponents of |ψ2〉 in the υth unit cell satisfy the recursion
relation (ψυA, ψυB, ψυC ) = ρυ−1(ψ1A, ψ1B, ψ1C ) with ρ =
−1 + ime−i(φ+ky/2). The probabilities of the edge states for
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FIG. 6. Corner states of the Lieb lattice at the energies E1 and
E3. (a) The dimerized structure of the corner state, being parity-
time-symmetric. (b) The probability distribution of the corner state.
The parameters are κ = 1, m = −1, γ = 0.1, and the lattice consists
of 8 × 8 unit cells. The color bar indicates the probability of wave
function and the maximum is renormalized to 1.

the sublattices B and C in every unit cell are identical and
decay exponentially from left to right of the Lieb lattice
as shown in Fig. 5(d). For the edge state |ψ4〉, the result
is similar. The components of |ψ4〉 in the first unit cell at
the right are (ψNA, ψNB, ψNC ) = (0, 1,−ei(φ−ky/2)) and de-
cay as the index of the unit cells at the rate ρ = −1 −
imei(φ−ky/2) with φ = arcsin{γ /[4 cos(ky/2)]} for m < 0, and
π − arcsin{γ /[4 cos(ky/2)]} for m > 0.

From Figs. 4(c) and 5(c), the edge state energies are in-
dependent of the momentum and the edge states locate on
the sublattices A and C for the non-Hermitian Lieb lattice
under the open boundary in either the x or the y direction.
If the boundaries of the non-Hermitian Lieb lattice on both
the x and the y directions are open, the corner state appears
at the bottom right of the non-Hermitian Lieb lattice. The
structure of the corner state is schematically illustrated in
Fig. 6(a) and the probability distribution of the corner state
is shown in Fig. 6(b). The destructive interference plays the
crucial role to form the dimerized pattern of the corner state.

In the Hermitian case with zero γ , numerical simulation for
the finite system shows that there exist two corner states with
energy Ec = ±|m|. The corresponding corner states appear
at the bottom right of the lattice as shown in Figs. 7(b) and
7(g), where the sublattice B is unoccupied. For the case with
nonzero γ , the non-Hermitian term affects the corner states
in a subtle way. Numerical results are plotted in Fig. 7; the
influence of the gain and loss is demonstrated.

We find that (i) for γ /m < 0, the magnetic flux enclosed
in the unit cell is π/2. The corner states always appear at the
bottom right of the lattice, and become more localized with
the increase of non-Hermiticity |γ |. while (ii) for γ /m > 0,
the magnetic flux enclosed in the unit cell is −π/2. The
corner state becomes more extended as |γ | increases, and
the bottom-right corner states slowly evolve into the top-left
corner state. A new corner state appears at the top left of the
lattice as |γ | across about 0.5. Interestingly, the occupation of
the B sublattice is dominant in this case.

IV. BAND STRUCTURE OF GAPLESS PHASE
CHARACTERIZED BY THE EPs

In this section, we investigate the band structure of the
non-Hermitian Lieb lattice, where the existence of the EP
in the spectrum is featured for the gapless phase. The EP
is unique for the non-Hermitian physics and is associated
with the level coalescence, where not only the eigenenergies
but also the eigenstates become the same. Many interesting
effects without Hermitian counterparts arise around the EP,
ranging from the square root frequency dependence [108], the
nontrivial topological property resulting from the Riemann
sheet structures [109,110], to unidirectional reflectionless and
coherent perfect absorption [83,111,112].

FIG. 7. The profiles of corner state in the real space for finite-size non-Hermitian Lieb lattice affected by the non-Hermiticity. The 2D
lattice consists of 8 × 8 unit cells. (a) and (f) The plots of energy levels close to the corner states (red line) as functions of γ . m = 1 for the
upper panels and m = −1 for the lower panels. (b), (g) γ = 0; (c), (h) γ = 0.4; (d), (i) γ = 0.5; (e), (j) γ = 0.8. The other parameter is κ = 1.
The color bar indicates the probability of wave function and the maximum is renormalized to 1.
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FIG. 8. Complex energy band structures of the non-Hermitian Bloch Hamiltonian h(k). The system parameters are determined by the
representative points and trace the variation of EP in different regions of Fig. 2. The EPs projected on the kx-ky plane: (a) m = 1, γ = 0.388;
(b) m = 1, γ = 0.5; (c) m = 0.5, γ = 0.5; (d) m = 1, γ = 1; (e) m = 1, γ = 2; (f) m = 1, γ = 3; (g) m = 1, γ = 4; (h) m = 1, γ = 4.162;
(i) m = −√

2, γ = 0; and (j) m = √
2, γ = 0. The other system parameter is κ = 1. The solid black dots, solid red dots, and black circles

represent EP2, EP3, and DP2, respectively. Notably, the variation of γ can induce the splitting and the merging of the different types of EP so
that the system can exhibit rich structure.

To calculate the EP of the non-Hermitian Lieb lattice, we
define � as the discriminant of the cubic equation (4). The
real and imaginary parts of � read

Im(�) = mγ hxhy sin[(kx + ky)/2]
(
h2

y − h2
x

)
, (16)

Re(�) = p3/27 + Re(q2)/4. (17)

� = 0 with nonzero γ signifies the EP in the spectrum, where
the energy bands are contacted. The phase diagram for the
band structure determined from Eqs. (16) and (17) is depicted
in Fig. 2. The non-Hermitian system is gapless when the
energy bands are inseparable. In the gapless phase, at least
two of the bands touch and kEP is the EP in the BZ; besides,
the EPs might present in different energy bands at the same
momentum kEP. The gapless phase is divided into three re-
gions in terms of the types of EPs rather than the exceptional
ring [113], denoted as yellow, green, and cyan. In the yellow
regions, there are four EP2s (two-state coalescence); six EP2s
and two EP3s (three-state coalescence) present in the green
regions; and the cyan regions have four EP2s. The EP merge
or split when the system parameters cross the solid lines as the
boundaries between colored regions.

We take κ = 1 as an illustration and analytically determine
the EPs and the boundaries within the gapless phases from
Im(�) = 0 and Re(�) = 0. The EPs may appear at kx = π ,
ky = π , and |kx| = |ky|.

(i) The EP2s appear at kx = ky; we obtain h2
x = h2

y and
Im(�) = 0. The cyan and green regions in the phase diagram
have EP2s in this case, where the energies at the EP2s are real
with Im(E ) = 0. From Re(�) = 0, we obtain

4
(
γ 2 − m2 − 2h2

x

)3 = 27h6
xm2

(
h2

x − 4
)
, (18)

which determines the green and cyan regions in Fig. 2. The
purple boundary and the boundary |γ | = |m| in red enclose
the cyan region with four EP2s, but the blue boundary and
the boundary |γ | = |m| enclose the green region with two
EP2s. The representative points in the two regions are shown
in Fig. 8(b) and Fig. 8(e), respectively. We notice that on the
dashed line kx = ky, the former has four EP2s, and the latter
has only two. At the boundary, the number of EP2s will be
reduced due to merging. In Fig. 8(a) and Fig. 8(d), we notice
that the four EP2s in the cyan region merge into two at the
purple or red boundaries. In Fig. 8(c) and Fig. 8(f), we notice
that the two EP2s in the green region merge into one EP at the
blue or black boundaries.

(ii) The EP3s appear at kx = −ky; we obtain sin(kx +
ky)/2 = 0 and Im(�) = 0. From Re(�) = 0, we obtain

γ 2 − m2 = 2h2
x , (19)

which determines the green region. The boundary γ 2 − m2 =
8 in blue and the boundary |γ | = |m| enclose the green region
with two EP3s. This indicates that the green region has EP3s
in addition to EP2s. The EP3s are the red dots in Fig. 8(e),
where the three bands coalesce at zero energy E = 0. Two
EP3s merge to one at (kx, ky) = (0, 0) in Fig. 8(f) at the blue
boundary and one at (kx, ky) = (π, π ) in Figs. 8(c) and 8(d)
at |γ | = |m|. The non-Hermitian Lieb lattice does not hold
the antiunitary symmetries and the EP3s are not topologically
stable [114–116].

(iii) The EP2s appear at kx = π or ky = π , which leads
to hx = 0 or hy = 0 and Im(�) = 0. From Re(�) = 0, we
obtain

4
(
γ 2 − m2 − h2

x

)3 = 27γ 2h4
x , (20)
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FIG. 9. Energy band structures of the non-Hermitian Hamiltonian in the momentum space as the counterpart of Fig. 8. In all panels,
the vertical axis represents the real part of eigenvalues and the color indicates the imaginary part of eigenvalues. (a) m = 1, γ = 0.388;
(b) m = 1, γ = 0.5; (c) m = 0.5, γ = 0.5; (d) m = 1, γ = 1; (e) m = 1, γ = 2; (f) m = 1, γ = 3; (g) m = 1, γ = 4; (h) m = 1, γ = 4.162;
(i) m = −√

2, γ = 0; and (j) m = √
2, γ = 0. The other system parameter is κ = 1.

which determines the green and yellow regions of the phase
diagram in Fig. 2. The boundary (γ 2 − m2 − 4)3 = 108γ 2

in green and the boundary |γ | = |m| enclose these two re-
gions with four EP2s. At these four EP2s, the coalesced band
energies are imaginary with Re(E ) = 0. The representative
configurations are shown in Figs. 8(d)–(h), showing the move-
ment and merging of EPs. Four EP2s move along the two
dashed lines kx = π and ky = π in Figs. 8(e)–(g) until they
merge into two EP2s at (kx, ky) = (0, π ), (π, 0) at the green
boundary in Fig. 8(h) or merge as one EP at (kx, ky) = (π, π )
at |γ | = |m| in Fig. 8(d). The energy bands for Fig. 8 are
shown in Fig. 9, where the bulk Fermi arc is observed.

In the phase diagram, the cyan region has four EP2s at
kx = ky; the green region has two EP2s at kx = ky, two EP3s
at kx = −ky, and four EP2s at kx = π and ky = π ; the yellow
region has four EP2s at kx = π and ky = π . Under the OBC,
the edge states exist in the gapless region in cyan; they are the
remnant of topological features inherited from the Hermitian
Lieb lattice; however, the edge state does not exist in the
gapless regions in green and yellow. At even larger gain and
loss, the non-Hermitian Lieb lattice enters the trivial phase.

V. CONCLUSION

To conclude, we have proposed an anisotropic 2D non-
Hermitian Lieb lattice, which has gain and loss along the

horizontal and vertical directions, respectively. The nonrecip-
rocal intracell coupling creates nontrivial topology. The gain
and loss result in active and dissipative topological edge states
with net gain and net loss, respectively. The non-Hermitian
Lieb lattice also supports passive topological edge states. In-
terestingly, the gain and loss can alter the localization position
of the corner state. When the magnetic flux enclosed in the
unit cell is π/2, the corner states are always in one corner
of the lattice; however, when the magnetic flux enclosed in
the unit cell is −π/2, the corner states slowly evolve into the
opposite corner as the non-Hermiticity increases. The inter-
play between the magnetic flux and non-Hermiticity produces
rich band structures featured from different types of EPs. The
topological properties and rich band structures of the non-
Hermitian Lieb lattice benefit our understanding of three-band
lattice and robust non-Hermitian transport.
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