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Magnetic structure of RuO2 in view of altermagnetism
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The magnetic structure of RuO2 and the Ru atomic configuration are unknown. A magnetic structure is
inferred by confronting measured and calculated Bragg diffraction patterns and adjusting the latter to achieve
satisfactory agreement. An accepted pattern, a magnetic symmetry, includes symmetry of sites occupied by
the magnetic ions. As a realistic starting point, we provide diffraction patterns for a magnetic symmetry of
RuO2, a descendent of the tetragonal parent structure, which accommodates a departure of Ru axial dipoles from
the crystal c axis. A chiral signal and piezomagnetic effect are permitted, and a linear magnetoelectric effect
forbidden. Features of the neutron diffraction pattern test the nonrelativistic requirement of altermagnetism,
and we scrutinize published room-temperature data. Specifically, one Bragg point is consistent with Ru orbital
angular momentum and magnetic quadrupole both zero, and the latter result is not expected from nonrelativistic
altermagnetism. Azimuthal angle scans in resonant x-ray diffraction are sensitive to the Ru site symmetry and the
atomic configuration. Acid tests of the studied magnetic symmetry include a chiral signature and null intensity
for unrotated photon polarization.
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I. INTRODUCTION

Ruthenium dioxide is a prominent face of altermagnetism,
yet there is no consensus on its magnetic structure or the Ru
electronic configuration [1,2]. We frame pertinent questions
using a realistic magnetic symmetry, and pose some answers
available from diffraction experiments. Altermagnetism is a
nonrelativistic theory dedicated to collinear magnetic struc-
tures with perfect translation invariance. At face value, the
theory is relevant to materials with a negligible spin-orbit cou-
pling in the electronic configuration, and a magnetic structure
with a null propagation vector. Spin degrees of freedom are
completely decoupled from the lattice in the nonrelativistic
space groups of altermagnetism, which include transforma-
tions of spins and lattice that are not symmetry elements if
one takes into account spin orbit coupling. In consequence,
symmetry tools embedded in altermagnetism must be applied
consistently to avoid pitfalls from a mix and match theory.

The magnetic axial quadrupole in neutron diffraction is
zero if the magnetic atomic state is a single J-state (J =
S + L is the total angular momentum), as in the extreme
jeff model of iridates with strong spin-orbit coupling [3].
Thus, the observation of a significant magnetic quadrupole in
RuO2 would weigh in favor its description by altermagnetism.
Similarly, resonant x-ray diffraction is an excellent probe of
local chargelike and magnetic angular anisotropy. According
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to Neumann’s Principle, such anisotropies delineate the local
symmetry of resonant ions [4,5]. Thermal transport coef-
ficients calculated for a model of RuO2 show a striking
dependence on the Néel vector derived from neighboring
Ru ions in a rutile structure. Specifically, this concerns the
temperature dependent anomalous Nernst (thermoelectric),
thermal Hall and Hall conductivities [6]. However, Zhou et al.
[6] find null values for all the transport coefficients for a
Néel vector parallel to the crystal c axis, which is demanded
by rutile magnetic symmetry (P42

′/mnm′). By adopting a
magnetic symmetry for RuO2 descended from the tetragonal
(rutile) crystal structure, the Néel vector is not constrained to
the c axis. We give a coherent account of neutron and x-ray
diffraction patterns derived from the reduced symmetry to be
tested in future experiments.

Centrosymmetric magnetic symmetry P21/c chosen for
RuO2 does not break translation symmetry and the propa-
gation vector k = (0, 0, 0). It accommodates an antiferro-
magnetic motif of axial dipole moments in the tetragonal (bc)
plane together with a ferromagnetic component along the a
axis, as depicted in Fig. 1 (for structure information see the
Supplemental Material (SM) [7]). A linear magnetoelectric
effect is forbidden, because anti-inversion is absent in the
P21/c crystal class, and a piezomagnetic effect is allowed.
Notably, magnetic symmetry P21/c responds to helicity in a
beam of photons.

In the following, magnetic properties are referred to
orthogonal vectors labeled (ξ, η, ζ ) derived from the mono-
clinic unit cell depicted in Fig. 1. The unique axis η is parallel
to the tetragonal a axis. Conventionally, the development of
magnetic order leads to a lowering of the symmetry in the
sample and the magnetic ordering pattern can be inferred by
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FIG. 1. Tetragonal (P42/mnm) and monoclinic (P21/c) unit
cells. Vectors are defined in the SM. Magnetic properties are referred
to orthogonal vectors (ξ, η, ζ ) that match (a∗

m, bm, cm) where a∗
m is a

reciprocal lattice vector ∝ (bm × cm ).

confronting experimental patterns derived by neutron diffrac-
tion with a symmetry analysis in which selected elements
of crystal symmetry are assumed to have disappeared. Our
results for neutron and x-ray diffraction patterns are for Bragg
spots forbidden by the core structure, often labeled basis for-
bidden reflections. By construction, Bragg spots contain only
magnetic and aspherical chargelike electronic contributions.
Reflection vectors for tetragonal and monoclinic structures are
labeled (Ho, Ko, Lo)t and (h, k, l )m, respectively. Basis for-
bidden reflections possess odd k + l , and our subset l = 0 is
chosen on the grounds of relatively simple analytic diffraction
patterns.

II. MAGNETIC QUADRUPOLE

A dependence of the magnetic neutron scattering ampli-
tude on both the magnitude and direction of the reflection
vector κ is a most valuable property of the technique. It
enables the measurement of the magnetization density, or its
spatial Fourier transform more correctly, and the identifica-
tion of electron back-transfer (covalency) [9,10]. Ruthenium
dioxide can be described as a strongly covalent intermediate
coupling system, and the Ru atomic configuration is defined
by a mixture of J states.

The axial dipole 〈t1〉 contains standard radial integrals
〈j0(κ )〉 and 〈j2(κ )〉 depicted in Fig. 2 for the atomic config-
uration 4d4, with 〈j0(0)〉 = 1 and 〈j2(0)〉 = 0 [11,12]. They
appear in both atomic and itinerant formulations of magnetic
neutron diffraction (cf. Section 7.5 in Ref. [10]). The method
used to calculate radial integrals in Fig. 2 is a tried and
tested atomic code [11]. Modifications caused by electron

FIG. 2. Radial integrals 〈j0〉 (black), 〈j2〉 (red), and 〈j4〉 (blue)
for Ru4+ (4d4) calculated using Cowan’s code [11,12]. The dimen-
sionless parameter w and the magnitude of the reflection vector κ

are related by the Bohr radius, namely, κ = w/3ao. Also, κ = 4πs
with s = sin(θ )/λ, Bragg angle θ , and λ the neutron wavelength (cf.
Section 6.3.1, Ref. [14]). Reflection vector κ and s in units of Å−1.

back-transfer have been assessed by Hubbard and Marshall
[9]. In the case of an itinerant electron system, however, a
simulation of the electronic structure is desirable but beyond
the scope of the present study.

An approximation to 〈t1〉,
〈
t1

〉 ≈ (2/3) [〈j0(κ )〉〈S〉 + (1/2) (〈j0(κ )〉 + 〈j2(κ )〉) 〈L〉],
(1)

is often used [10,13]. The numerical coefficient of orbital
angular momentum in the ground state 〈L〉 is approxi-
mate, while 〈t1〉 = (1/3)〈2S + L〉 for κ → 0 is an exact
result. Equation (1) implies 〈t1〉 = 0 for d4, because the
atomic configuration is a singlet J = 0. One finds a magnetic
moment 〈μζ 〉 = 〈(2S + L)ζ 〉 = −〈Lζ 〉 = χ (1)0

√
2, 〈t1

ζ 〉 =
(1/3)〈μζ 〉[〈j0(κ )〉 − (3/4)〈j2(κ )〉] using J = 0 and J′ = 1,
and a purely real mixing parameter χ (1)0 [13]. Remain-
ing components of the dipole are enabled by J′ = 1, M′ =
+1, and they are 〈t1

ξ 〉 = √
2{χ (1)′1/χ (1)0}〈t1

ζ 〉 and 〈t1
η〉 =√

2{χ (1)′′1/χ (1)0}〈t1
ζ 〉, where a single prime and double prime

denote the real and imaginary parts of the mixing parameter
χ1, respectively. All foregoing results for 〈t1〉 are exact, and
the form factor [〈j0(κ )〉 − (3/4)〈j2(κ )〉] is common to compo-
nents of the Néel vector.

Next in line is a quadrupole and another valuable property,
namely, multipoles of even rank are identically zero in a J
manifold. The jeff model of an iridate is a relevant example
[3,13]. The total angular momentum of an Ir ion is J = 5/2
and the corresponding quadrupole 〈t2〉 = 0. However, a re-
alistic model of Sr2IrO4, say, allows for a distortion of the
environment along the c axis and J = 3/2 contaminates the
J = 5/2 state and 〈t2〉 is nonzero. Specifically, the quadrupole
depends on the electronic position operator n. The equiva-
lent operator [(S × n) n] for t2 shows it is a measure the
correlation between the spin anapole (S × n) and orbital de-
grees of freedom [3,13]. A quadrupole has five components
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labeled by projections Q = 0, ±1, ±2. Ruthenium site sym-
metry does not restrict Q, for there is no spatial awareness
other than a centre of inversion symmetry that forbids
parity-odd Dirac multipoles [13]. Diagonal Q = 0 compo-
nents of axial multipoles of rank K in neutron diffraction
are identically zero for even K and d4. Moreover, the rank
K obeys the selection rule K = J′ in d4 [13]. The atomic
configuration of Ru4+ includes J = 0 and J′ = 2. We find
the exact results 〈t2

±1〉 = {iχ (2)1/4} √
(5/7)〈j2(κ )〉, 〈t2

±2〉 =
{χ (2)2/χ (2)1} 〈t2

+1〉, where χ (2)1 and χ (2)2 are the mix-
ing parameter for M′ = +1 and M′ = +2, respectively, in
the state J′ = 2. In subsequent work, we restrict attention to
dipoles and quadrupoles, setting aside octupoles and hexade-
capoles allowed in d4 amplitudes. The octupole form factor
using J = 0 and J′ = 3 is [〈j2(κ )〉 + (3/8)〈j4(κ )〉], and a hex-
adecapole is proportional to 〈j4(κ )〉 [13].

The amplitude of magnetic neutron diffraction 〈Q⊥〉 =
[〈Q〉 − e(e • 〈Q〉)] yields an intensity |〈Q⊥〉|2 = |〈Q〉|2 −
|(e • 〈Q〉)|2, where the unit vector e = κ/κ [9,10]. Factors
required to relate |〈Q⊥〉|2 to the measured intensity of a Bragg
spot can be found in Ref. [14]. We use a shorthand c =
cos(β ) = cos(124.662o) = −0.57 and s = sin(β ) = +0.82,
where β is the obtuse angle of the monoclinic cell in Fig. 1.
Basis forbidden reflections include κ = (0, 0, Lo)t with odd
Lo. In this case 〈Qη〉 ≈ 0 and,

〈Q⊥ξ 〉 ≈ c
{[

c
〈
t1
ξ

〉 − s
〈
t1
ζ

〉] + f
}
,

〈Q⊥ζ 〉 ≈ −s
{[

c
〈
t1
ξ

〉 − s
〈
t1
ζ

〉] + f
}
. (2)

Here, f = (2/
√

3)[c 〈t2
+1〉′′ − s〈t2

+2〉′′], with 〈t2
+1〉′′ ∝ (ηζ ) and

〈t2
+2〉′′ ∝ (ξη) for quadrupole spatial awareness obtained from

a spherical harmonic of rank 2. Amplitudes in Eq. (2) contain
axial dipoles that form the Néel vector, and the same is true of
all basis-forbidden amplitudes, i.e., the ferromagnetic compo-
nent using 〈t1

η〉 is not observed at basis-forbidden reflections
with monoclinic Miller indices k + l = 2m + 1.

Berlijn et al. [15] did not find measurable intensities for
reflection vectors (0, 0, 1)t and (0, 0, 3)t and conclude
that dipole moments are parallel to the c axis of rutile
(P42

′/mnm′). Setting f = 0 in Eq. (2), and c 〈t1
ξ 〉 = s〈t1

ζ 〉 for
null amplitudes places 〈t1〉 parallel to the crystal c axis. In-
clusion of quadruples changes the result for the orientation
of the axial dipole. Returning to Eq. (2), a null intensity im-
plies {[c 〈t1

ξ 〉−s 〈t1
ζ 〉] + f} = 0, and in the corrected theory of

diffraction 〈t1〉 subtends an angle ≈ −s(f/〈t1
ζ 〉) to the c axis.

Evidently, a significant factor in the magnitude of the deflec-
tion from the c axis is the ratio 〈j2(κ )〉/〈j0(κ )〉 for which we
find the value 0.193 at (0, 0, 1)t . With regard to (0, 0, 3)t,
we see from Fig. 2 that 〈j0(κ )〉 ≈ 0, to a good approxima-
tion, while 〈j2(κ )〉 = 0.16. Null (0, 0, 3)t intensity infers
that the projection of 〈t1〉 on the c axis is {(1 − s p)/

√
[1 +

p (p − 2s)]} with p = (3f/〈j2(κ )〉 〈Lζ 〉) and nonzero orbital
angular momentum. An equally viable interpretation of a
null (0, 0, 3)t intensity, and 〈j2(κ )〉 different from zero, is
χ (2)r = 0 in the state J′ = 2, and zero orbital angular mo-
mentum from χ (1)r = 0.

Moving on, Berlijn et al. observed magnetic inten-
sity at reflections (1, 0, 0)t and (3, 0, 0)t [15]. For
κ = (0, k, 0)m ≡ (−k, 0, 0)t with k = 2m + 1 we obtain

relatively simple amplitudes,

〈Q⊥ξ 〉 ≈ 〈
t1
ξ

〉 − (2/
√

3)
〈
t2
+1

〉′′
,
〈
Q⊥η

〉 ≈ 0,

〈Q⊥ζ 〉 ≈ 〈
t1
ζ

〉 − (2/
√

3)
〈
t2
+2

〉′′
, (3)

since (e • 〈Q〉) = 0. Amplitudes Eq. (3) await a test. Indi-
vidual components of 〈Q⊥〉 can be selected for observation
in the spin-flip signal (SF) = {|〈Q⊥〉|2 − |P • 〈Q⊥〉|2}, where
neutron polarization P is assumed to be perfect. And, for
future experiments using κ = (0, 0, l )m ≡ (0, l, 0)t with
l = 2m + 1,

〈Qξ 〉 ≈ 〈
t1
ξ

〉 + (2/
√

3) s
[
s
〈
t2
+1

〉′′ + c
〈
t2
+2

〉′′]
, 〈Qη〉 ≈ 0,

〈Qζ 〉 ≈ 〈
t1
ζ

〉 + (2/
√

3) c
[
s
〈
t2
+1

〉′′ + c
〈
t2
+2

〉′′]
, (4)

with (e • 〈Q〉) = s 〈t1
ζ 〉−c 〈t1

ξ 〉. Quadrupoles in Eqs. (2) and
(4) occur in different combinations.

III. CHIRAL SIGNATURE

The magnetic symmetry considered for RuO2 permits cou-
pling with circular polarization in the primary beam of x-rays
[16]. The coupling equates to a chiral signature for the sym-
metry and it demands a centrosymmetric crystal, magnetic
order that does not break translation symmetry, and absence
of anti-inversion (1̄′) in the magnetic crystal class. Note that
the latter demand rules out a linear magnetoelectric effect as
a material property. A symmetry analysis of a parity-even
absorption event shows that the corresponding chiral signature
is caused by an interference between chargelike (time-even)
and magnetic (time-odd) multipoles. At the level of accu-
racy to which we work, the signal is an interference between
dipoles and chargelike quadrupoles, which create Templeton-
Templeton scattering. In practice, the signature is captured
in a difference between Bragg spot intensities measured with
opposite handed primary x-rays.

Our results for resonant x-ray diffraction amplitudes ex-
ploit universal expressions [17]. In line with standard practice,
primary photon polarizations labeled σ and π are perpen-
dicular and parallel to the plane of scattering, respectively,
and secondary polarization carry a prime [18–21]. Regarding
diffraction amplitudes, (π ′σ ) and (σ ′σ ) apply to primary σ

polarization rotated to the π channel and returned to the
σ channel, respectively. In the diffraction setting crystals
are rotated around the reflection vector by an angle ψ (an
azimuthal angle scan). In contrast to neutron diffraction,
the fixed x-ray energy severely limits the number of Bragg
spots. Ruthenium L2 and L3 absorption edges occur at en-
ergies E ≈ 2.97 keV and E ≈ 2.84 keV, respectively, and a
wavelength ≈ 12.4/E Å. Diffraction of x-rays by ruthenium
multipoles with enhancement by an electric-dipole–electric-
dipole (E1–E1) absorption event is described in terms of mul-
tipoles 〈TK〉 with rank K = 0, 1, 2. They have a time signature
(−1)K , and energy-integrated intensities satisfy sum rules at
L2 and L3 edges [21,22]. X-ray magnetic circular dichroism
forbidden in the rutile magnetic symmetry (4′/mm′m) is al-
lowed in our monoclinic magnetic symmetry (2/m) [22].

Bragg spots (0, 1, 0)t or (0, 0, 1)m correspond to a re-
flection vector c∗

m = (2π/a) (0, 1, 0) parallel to the crystal
b axis (cell length a ≈ 4.497 Å [15]). At the start of an az-
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imuthal angle scan b∗
m = (2π/a) (−1, 0, 0) is in the plane

of scattering. E1–E1 amplitudes and the chiral signature are
neatly expressed in terms of four purely real quantities,

A1 =
√

2
[
c
〈
T1

ζ

〉 + s
〈
T1

ξ

〉]
, B1 =

√
2

[
s
〈
T1

ζ

〉 − c
〈
T1

ξ

〉]
,

A2 = 2
[
c
〈
T2

+1

〉′′ − s
〈
T2

+2

〉]
, B2 = 2

[
s
〈
T2

+1

〉′′ + c
〈
T2

+2

〉′′]
.

Note that dipole and quadrupoles here and in neutron diffrac-
tion are arranged in different ways. The four amplitudes are
(the crystal setting is different from Ref. [23]),

(σ ′σ ) = A2 sin(2ψ ),

(π ′π ) = i sin(2θ ) cos(ψ ) A1 + sin2(θ ) sin(2ψ ) A2,

(π ′σ ) = −i cos(θ ) sin(ψ ) A1 + i sin(θ ) B1

+ sin(θ ) cos(2ψ ) A2 − cos(θ ) sin(ψ ) B2. (5)

A change in sign of A1 and A2 relate (π ′σ ) and (σ ′π ). The
Bragg angle for (0, 0, 1)m is sin(θ ) ≈ 0.485 at the L3 edge.
A chiral signature ϒ requires all four amplitudes (Eq. (S2) in
the Supplemental Material [7]),

ϒ(c∗
m ) = cos(θ ) cos(ψ ) [sin(2θ ) sin(ψ ) (A1B2 − B1A2)

− 2A1A2{cos2(θ )sin2(ψ ) + sin2(θ )}] · (0, 0, 1)m

(6)

As already mentioned, interference between dipoles (A1, B1)
and time-even quadrupoles (A2, B2) creates ϒ. By definition,
the chiral signature expresses different phases between the
four amplitudes, i.e., it vanishes if all four are purely real or
purely imaginary.

The chiral signature for a reflection vector b∗
m parallel to the

crystal a axis, with Miller indices (1, 0, 0)t or (0, −1, 0)m,
is significantly different from Eq. (6) [23]. A key factor
making the difference is that one (0, −1, 0)m scattering
amplitude is zero. The result in question (σ ′σ ) = 0 for a
reflection vector b∗

m is a specific test of the proposed magnetic
symmetry.

IV. CONCLUSIONS

In summary, we studied a magnetic symmetry for RuO2

that accommodates a Néel vector that is not parallel to
the rutile c axis, demanded by magnetic rutile symmetry
(P42

′/mnm′). In consequence, it fulfils a theory of anomalous
thermal transport coefficients [6]. Magnetic symmetry P21/c

chosen for study permits a chiral signature in the diffraction
of circularly polarized x-rays. We do not find a corresponding
chiral signature in magnetic symmetry Pn′n′m used by Šme-
jkal et al. to promote their spontaneous crystal Hall effect in
RuO2 [25]. (Figs. 1D and 2B in Ref. [25] are consistent with
magnetic symmetry Pnn′m′ and not Pn′n′m mentioned in the
text. The chiral signature of Pnn′m′ is reported by Lovesey
et al. [23], where it is labeled motif No. 2.) Notably, Pn′n′m
does not descend from the parent rutile structure, and c-axis
ferromagnetism and perfectly antiparallel moments in the (ab)
plane are permitted. Furthermore, there is no experimental ev-
idence of an orthorhombically distorted structure (cell edges
a � b) of RuO2 consistent with magnetic symmetry Pn′n′m,
with Ru ions in sites 2a and ferromagnetic order along the c
axis. Another acid test of P21/c is the prediction of null Bragg
intensity (1, 0, 0)t or (0, −1, 0)m for unrotated photon po-
larization. Neutron diffraction amplitudes Eqs. (2), (3), and
(4) await tests, as do the x-ray chiral signature Eq. (6) and
diffraction amplitudes Eq. (5).

A calculation of the x-ray Bragg diffraction pattern of
RuO2 reported by Zhu et al. [26] yields a null chiral signature,
because the calculation does not include the 90◦ phase shift
between charge and magnetic contributions to x-ray scatter-
ing demanded by magnetic crystal symmetry. According to
Zhu et al. [26], charge and magnetic contributions to x-ray
scattering amplitudes possess a common phase and add in
calculations of corresponding intensities, whereas, the contri-
butions are in quadrature in intensities, because charge and
magnetic contributions to correct amplitudes are 90◦ phase
shifted with respect to each other.

Regarding neutron diffraction, a zero magnetic quadrupole
and zero orbital angular momentum are consistent with a
viable interpretation of published data [15]. Specifically, null
coupling constants between a state with total angular mo-
mentum J = 0 in the Ru4+ ground state and J′ = 1, 2, i.e.,
χ (J′)r = 0, noting that the multipole rank = J′. A zero mag-
netic quadrupole is alien to altermagnetism, because the result
implies a strong spin-orbit coupling, the likes of which is
found in iridates, for example [3,24]. The incomplete theory
is probably justified in some cases, but it is definitely not a
general concept, and in each case, one needs to decide to
what extent the approach is applicable. Our exact neutron
form factors for the atomic configuration d4 and symmetry
exact diffraction amplitudes enable a peerless confirmation
of P21/c magnetic symmetry of RuO2, or its emphatic
rejection.
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