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Type-Z models, where charged leptons, up type quarks, and down type quarks each couple to a different
scalar, are only possible when there are three or more Higgs doublets. We consider the type-Z three-Higgs-
doublet model imposed by a softly broken Z3 symmetry. We take into account all theoretical and
experimental constraints, including perturbative unitarity and bounded from below conditions that we
develop here. Since there can be cancellations between the two charged Higgs in B → Xsγ (and in h → γγ),
the lower bounds obtained on the charged Higgs masses are alleviated. We find regions of parameter space
where both charged scalars can be relatively light. We also discuss in detail the important physical differences
between exact alignment and approximate alignment, and present some useful benchmark points.
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I. INTRODUCTION

After the observation in 2012 by ATLAS and CMS [1,2]
of a new scalar particle closely resembling the Standard
Model (SM) Higgs boson, the search for physics beyond the
Standard Model (BSM) is now the main goal of the LHC
experiments. Popular extensions where only Higgs doublets
are added to the SM have been extensively studied and allow
for both the agreement with the experimental results and the
possibility of new features; for reviews see [3–5].
The simplest extension, the two-Higgs-doublet model

(2HDM), can provide new sources of CP-violation neces-
sary to fulfill the Sakharov criteria for baryogenesis [6].
However, the most general Higgs-fermion Yukawa cou-
plings generically yield Higgs-mediated flavor-changing
neutral “currents” (FCNCs) at tree level, in conflict with
experimental observations. A common method to have
FCNCs sufficiently suppressed is to impose symmetries on
the Lagrangian: tree-level FCNC effects can be completely
removed by establishing how the fermion and scalar fields
have to transform under the chosen symmetry. In the
2HDM this can be achieved by imposing a Z2 symmetry
[7,8]. Reference [9] showed that in general N Higgs doublet
models (NHDM) the Yukawa coupling matrices to fer-
mions of a given electric charge remain proportional (thus

removing FCNCs) under the renormalization group run-
ning if and only if there is a basis for the Higgs doublets in
which all the fermions of a given electric charge couple to
only one Higgs doublet. The models are then classified
based on these choices. The four (five) distinct types of
Yukawa couplings in models with two (more than two)
doublets that fit this requirement were introduced in [9] and
denoted in [10] by Types I, II, X (also known as lepton-
specific), Y (flipped), and Z, according to

Type-I∶ ϕu ¼ ϕd ¼ ϕe;

Type-II∶ ϕu ≠ ϕd ¼ ϕe;

Type-X∶ ϕu ¼ ϕd ≠ ϕe;

Type-Y∶ ϕu ¼ ϕe ≠ ϕd;

Type-Z∶ ϕu ≠ ϕd; ϕd ≠ ϕe; ϕe ≠ ϕu; ð1Þ

where ϕu;d;e are the single scalar fields that couple
exclusively to the up type quarks, down type quarks,
and charged leptons, respectively. In this work, we set
our attention on the type-Z that can only appear for NHDM
with N > 2. It is interesting to see what differences there
are in this new type of model, since it decouples completely
the up quark, down quark and charged lepton sectors from
one-another.
There have been implementations of type-Z in three-

Higgs-doublet models (3HDM) using a Z2 × Z2 symmetry
[11,12] or Z3 [13,14]. For this work, we choose to use
a Z3 symmetric potential. This symmetry is realizable
through the following representation,

SZ3
¼ diagð1; ei2π3 e−i2π3 Þ: ð2Þ
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Recently, there has been an analysis of Z3 3HDM which
takes the exact alignment limit and looks at specific values
of the physical parameters [15]. It does not seem to
consider the theoretical constraints coming from perturba-
tive unitarity, discussed explicitly for the Z3 3HDM model
in Ref. [16] and bounded from below (BFB) conditions,
which guarantee that the potential does have a minimum
and which we develop here. One important consideration
that was studied in Ref. [15] was the impact of the
experimental limits for the BRðB → XsγÞ on the masses
of the charged Higgs scalars. This model has two charged
Higgs scalars and they have shown that, for their con-
strained choice of parameters, the 2HDM limit on the
charged Higgs mass [17] can be alleviated, which is an
important result. This is shown in their Fig. 2, where the
allowed regions in the charged Higgs masses plane
are presented. However compatibility with the bounds
coming from LHC searches for extra Higgs should also
be checked. We do this here, using the newest version of the
HiggsBounds-5.9.1 (HB5) code [18]. We show that recent LHC
bounds on h2;3 → τþτ− decay in Ref. [19], already included
in HiggsBounds-5.9.1, exclude all points in Ref. [15], for the
same parameter choices. We then show that by scanning
over a larger range of parameters (away from their exact
alignment conditions, but still consistent with all exper-
imental data) we can obtain viable points corresponding to
smaller masses of the charged Higgs scalars.
In Sec. II we describe succinctly the scalar and Yukawa

sectors of the Z3 3HDM model, discussed also in [13–15].
The theoretical and experimental constraints are described
in Sec. III. In Sec. IV we describe the impact of current

LHC measurements on the 125 GeV scalar decays, both
excluding and including the impact of HB5 bounds. In
particular, we discuss the fact that the couplings of the
125 GeV Higgs boson (h125Þ to two charged scalars may
have different signs, thus allowing for canceling contribu-
tions to h125 → γγ. A similar effect is possible in B → Xsγ,
thus alleviating the lower bounds on charged scalar masses.
This is discussed in Sec. V and Sec. VI, where we explore
the regions of parameters allowed by the different con-
straints imposed, starting from the experimental limits on
the BRðB → XsγÞ and progressively varying the ranges on
our parameter scans. Our work highlights the importance of
going beyond strict alignment, when procuring the full
range of available parameter space and possible physical
consequences within the Z3 3HDM. We present illustrative
benchmark points in Sec. VIII and discuss our conclusions
in Sec. IX, leaving the Appendixes for the full expression of
some couplings required in our calculations and a detailed
study of σðpp → h2Þ × BRðh2 → ττÞ.

II. THE Z3 3HDM MODEL

A. Scalar sector

Taking the potential defined by [13], the terms invariant
under the chosen transformation, ϕi → ϕ0

i ¼ ðSZ3
Þijϕj, are

given by

VZ3
¼ Vquadratic þ Vquartic; ð3Þ

with the quartic part

Vquartic ¼ λ1ðϕ†
1ϕ1Þ2 þ λ2ðϕ†

2ϕ2Þ2 þ λ3ðϕ†
3ϕ3Þ2 þ λ4ðϕ†

1ϕ1Þðϕ†
2ϕ2Þ þ λ5ðϕ†

1ϕ1Þðϕ†
3ϕ3Þ

þ λ6ðϕ†
2ϕ2Þðϕ†

3ϕ3Þ þ λ7ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ þ λ8ðϕ†
1ϕ3Þðϕ†

3ϕ1Þ þ λ9ðϕ†
2ϕ3Þðϕ†

3ϕ2Þ
þ ½λ10ðϕ†

1ϕ2Þðϕ†
1ϕ3Þ þ λ11ðϕ†

1ϕ2Þðϕ†
3ϕ2Þ þ λ12ðϕ†

1ϕ3Þðϕ†
2ϕ3Þ þ H:c:�: ð4Þ

The quadratic part is

Vquadratic ¼ m2
11ϕ

†
1ϕ1 þm2

22ϕ
†
2ϕ2 þm2

33ϕ
†
3ϕ3

þ ½m2
12ðϕ†

1ϕ2Þ þm2
13ðϕ†

1ϕ3Þ
þm2

23ðϕ†
2ϕ3Þ þ H:c:�; ð5Þ

where we also include terms, m2
12, m

2
13, and m

2
23, that break

the symmetry softly.
After spontaneous symmetry breaking (SSB), the three

doublets can be parametrized in terms of its component
fields as1:

ϕi ¼
�

w†
k

ðvi þ xi þ iziÞ=
ffiffiffi
2

p
�
; ði ¼ 1; 2; 3Þ ð6Þ

where vi=
ffiffiffi
2

p
corresponds to the vacuum expectation value

(vev) for the neutral component of ϕi. It is assumed that the
scalar sector of the model explicitly and spontaneously
conserves CP.2

1Notice that we use xi in place of Ref. [13]’s hi, because for us
hi are the physical neutral scalar mass eigenstates.

2Strictly speaking, it is not advisable to assume a real scalar
sector while allowing the Yukawa couplings to carry the phase
necessary for the CKMmatrix. This is also a problem with the so-
called real 2HDM [20]. One can take the view that the complex
terms and their counterterms in the scalar sector exist, with the
former set to zero.
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That is, all the parameters in the scalar potential are real and the vevs v1, v2, v3, are also real. With this assumption, the
scalar potential of Eq. (3) contains eighteen parameters. The vevs can be parametrized as follows:

v1 ¼ v cos β1 cos β2; v2 ¼ v sin β1 cos β2; v3 ¼ v sin β2; ð7Þ

leading to the Higgs basis [21–23] to be obtained by the following rotation,

0
B@

H0

R1

R2

1
CA ¼ Oβ

0
B@

x1
x2
x3

1
CA ¼

0
B@

cos β2 cos β1 cos β2 sin β1 sin β2
− sin β1 cos β1 0

− cos β1 sin β2 − sin β1 sin β2 cos β2

1
CA
0
B@

x1
x2
x3

1
CA: ð8Þ

The scalar kinetic Lagrangian is written as

Lkin ¼
Xn¼3

k¼1

jDμϕkj2; ð9Þ

and contains the terms relevant to the propagators and
trilinear couplings of the scalars and gauge bosons.
We can now define orthogonal matrices which diagonal-

ize the squared-mass matrices present in the CP-even scalar,
CP-odd scalar, and charged scalar sectors. These are the
transformations that take us to the physical basis, with states
possessing well-defined masses. Following Ref. [13,14],
the twelve quartic couplings can be exchanged for seven
physical masses (three CP-even scalars, two CP-odd scalars
and two pairs of charged scalars) and five mixing angles. The
mass terms in the neutral scalar sector can be extracted
through the following rotation,

0
B@

h1
h2
h3

1
CA ¼ Oα

0
B@

x1
x2
x3

1
CA; ð10Þ

where we take h1 ≡ h125 to be the 125 GeV Higgs particle
found at LHC. The form chosen for Oα is

R≡Oα ¼ R3:R2:R1; ð11Þ

where

R1 ¼

0
B@

cα1 sα1 0

−sα1 cα1 0

0 0 1

1
CA; R2 ¼

0
B@

cα2 0 sα2
0 1 0

−sα2 0 cα2

1
CA;

R3 ¼

0
B@

1 0 0

0 cα3 sα3
0 −sα3 cα3

1
CA: ð12Þ

For theCP-odd scalar sector, the physical basis is chosen
as ðG0 A1 A2 ÞT and the transformation to be

0
B@

G0

A1

A2

1
CA ¼ Oγ1Oβ

0
B@

z1
z2
z3

1
CA; ð13Þ

where

Oγ1 ¼

0
B@

1 0 0

0 cγ1 −sγ1
0 sγ1 cγ1

1
CA: ð14Þ

is defined in order to diagonalize the 2 × 2 submatrix that
remains nondiagonal in the Higgs basis. For later use, we
define the matrix P as the combination

P≡Oγ1Oβ: ð15Þ

For the charged scalar sector, the physical basis is
ðGþ Hþ

1 Hþ
2 ÞT and the transformation is

0
B@

Gþ

Hþ
1

Hþ
2

1
CA ¼ Oγ2Oβ

0
B@

w†
1

w†
2

w†
3

1
CA; ð16Þ

where

Oγ2 ¼

0
B@

1 0 0

0 cγ2 −sγ2
0 sγ2 cγ2

1
CA: ð17Þ

We write the masses of Hþ
1 and Hþ

2 as mH�
1
and mH�

2
,

respectively. The matrix Q is then defined as the
combination

Q≡Oγ2Oβ: ð18Þ

Considering that the states in the physical basis have
well-defined masses, we can obtain relations between
the set
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fv1; v2; v3; mh1; mh2; mh3; mA1; mA2; mH�
1
; mH�

2
; α1; α2; α3; γ1; γ2g; ð19Þ

v1 ¼ v cos β1 cos β2; v2 ¼ v sin β1 cos β2; v3 ¼ v sin β2; ð20Þ

and the parameters of the potential in Eq. (3), as shown in Ref. [13,14]. We performed an extensive scan of the parameter
space in Eq. (19). Our fixed inputs are v ¼ 246 GeV and mh1 ¼ 125 GeV. We then took random values in the ranges:

α1; α2;α3; γ1; γ2 ∈
�
−
π

2
;
π

2

�
; tan β1; tan β2 ∈ ½0; 10�;

mh2; mh3 ∈ ½125; 1000� GeV; mA1
; mA2

mH�
1
; mH�

2
∈ ½100; 1000� GeV: ð21Þ

These parameter ranges will be used in all scans and figures
presented below, except where noted otherwise. The lower
limits chosen for the masses satisfy the constraints listed in
Ref. [24].3

B. Higgs-Fermion Yukawa interactions

One can now impose the type-Z model on the Yukawa
Lagrangian, by establishing how the fields behave under
the Z3 transformation. For this, there are multiple possibil-
ities that differ on which of the scalars gives mass to
each type of fermion. We follow the choice made by Das
and Saha [13]. The scalar doublets ϕ1 and ϕ2 transform
nontrivially as:

ϕ1 → ωϕ1; ϕ2 → ω2ϕ2; ð22Þ

where ω ¼ e2πi=3. For the fermionic fields, we consider that
under Z3

dR → ωdR; lR → ω2lR; ð23Þ

while the rest of the fields remain unaffected. It follows that
the Yukawa coupling matrices are now restricted: ϕ1 only
has interaction terms with the charged leptons, giving them
mass; ϕ3 and ϕ2 are responsible for masses of the up and
down type quarks, respectively.
When taking into account the restrictions imposed by

the symmetry, the Yukawa couplings to fermions can be
written in a compact form. For the couplings of neutral
Higgs to fermions,

LY ∋ −
mf

v
f̄ðafj þ ibfj γ5Þfhj; ð24Þ

where we group the physical Higgs fields in a vector, as
hj ≡ ðh1; h2; h3; A1; A2Þj. The coefficients are given in
Eq. (25),

afj →
Rj;1

v̂1
; j ¼ 1; 2; 3 for all leptons;

bfj →
Pj−2;1

v̂1
; j ¼ 4; 5 for all leptons;

afj →
Rj;3

v̂3
; j ¼ 1; 2; 3 for all up quarks;

bfj → −
Pj−2;3

v̂3
; j ¼ 4; 5 for all up quarks;

afj →
Rj;2

v̂2
; j ¼ 1; 2; 3 for all down quarks;

bfj →
Pj−2;2

v̂2
; j ¼ 4; 5 for all down quarks; ð25Þ

wherewe introduce v̂i ¼ vi=v, with the vevs in Eq. (7). Note
how the coupling of each type of fermion depends on entries
of the diagonalization matrices in Eqs. (11) and (15).
The couplings of the charged Higgs, H�

1 and H�
2 , to

fermions can be expressed as

LY ∋
ffiffiffi
2

p

v
ψ̄di ½mψdi

V�
jiη

L
kPL þmψuj

V�
jiη

R
k PR�ψujH

−
k

þ
ffiffiffi
2

p

v
ψ̄ui ½mψdj

Vijη
L
kPR þmψui

Vijη
R
k PL�ψdjH

þ
k ;

ð26Þ

where ðψui ;ψdiÞ is ðui; diÞ for quarks or ðνi; liÞ for leptons.
For quarks, V is the CKM matrix, while for leptons,
Vij ¼ δij since we are considering massless neutrinos.
The couplings are

ηlLk ¼ −
Qkþ1;1

v̂1
; ηlRk ¼ 0; ηqLk ¼ −

Qkþ1;2

v̂2
;

ηqRk ¼ Qkþ1;3

v̂3
; k ¼ 1; 2; ð27Þ

for leptons and quarks, respectively.

3Reference [24] has the same Z3 3HDM scalar sector, but it
does not couple to fermions as a type-Z model because the aim
there is to have two Inert scalar doublets and only one active one.
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III. CONSTRAINTS ON THE PARAMETER SPACE

In this section we study the constraints that must be
applied to the model parameters in order to ensure
consistency.

A. Theoretical constraints 1

We impose perturbativity unitarity, sufficient bounded
from below conditions, and the oblique parameters S, T,
and U.

1. BFB conditions on the 3HDM

As basic requirements for any physical theory, the Higgs
potential must satisfy conditions that ensure it possesses a
stable minimum, around which one can perform perturba-
tive calculations. That is, it must be bounded from below,
meaning that there is no direction in field space along
which the value of the potential tends to minus infinity. This
need of a nontrivial minimum is then translated into
conditions on the parameters of the potential.
Focusing on the study of the 3HDM constrained by a Z3

symmetry, the quartic terms in Eq. (4) can be written as

Vquartic ¼ V0 þ V1; ð28Þ

where V0 has the terms in λ1→9 and V1 the terms λ10→12.
If the potential were just V0 in Eq. (28), then the BFB
necessary and sufficient conditions would be simply those
given by Klimenko in Ref. [25]. The problem, not yet
solved for the 3HDM with a Z3 symmetry is the V1 part.
We will introduce sufficient conditions for BFB by bound-
ing the potential by a lower potential. To do that we follow
[25,26], checking for neutral minima. Neutral directions in
the Higgs space correspond to situations when all ϕi are
proportional to each other.4 Along these directions, we can
then define

ϕ1 →
ffiffiffi
x

p
eiθ1 ; ϕ2 →

ffiffiffi
y

p
eiθ2 ; ϕ3 →

ffiffiffi
z

p
eiθ3 : ð29Þ

It then follows that for V0,

V0 ¼ λ1x2 þ λ2y2 þ λ3z2 þ λ4xyþ λ5xzþ λ6yz

þ λ7xyþ λ8xzþ λ9yz

¼ λ1x2 þ λ2y2 þ λ3z2 þ ðλ4 þ λ7Þxy
þ ðλ5 þ λ8Þxzþ ðλ6 þ λ9Þyz; ð30Þ

and for V1,

V1 ¼ 2λ10x
ffiffiffi
y

p ffiffiffi
z

p
cos δ1 þ 2λ11y

ffiffiffi
x

p ffiffiffi
z

p
cos δ2

þ 2λ12z
ffiffiffi
x

p ffiffiffi
y

p
cos δ3; ð31Þ

where δi are some combination of the phases θi.
Considering that x, y, z > 0 by definition, we can start
our strategy of bounding the potential by a lower one with

V1≥V 0
1¼−2jλ10jx

ffiffiffi
y

p ffiffiffi
z

p
−2jλ11jy

ffiffiffi
x

p ffiffiffi
z

p
−2jλ12jz

ffiffiffi
x

p ffiffiffi
y

p
:

ð32Þ

Notice that for non-negative x, y, z one has

−
ffiffiffi
x

p ffiffiffi
z

p
>−x−y; −

ffiffiffi
x

p ffiffiffi
z

p
>−x−z; −

ffiffiffi
y

p ffiffiffi
z

p
>−y−z:

ð33Þ

Therefore,

V1 ≥ V 0
1 > V 00

1 ¼ −2jλ10jðxyþ xzÞ − 2jλ11jðxyþ yzÞ
− 2jλ12jðxzþ yzÞ; ð34Þ

and combining Eq. (34) with Eq. (30), it follows that

V0 þ V1 > VBFB; ð35Þ

where

VBFB ¼ λ1x2 þ λ2y2 þ λ3z2 þ 2αxyþ 2βxzþ 2γyz; ð36Þ

with the definitions,

α ¼ 1

2
ðλ4 þ λ7 − 2jλ10j − 2jλ11jÞ;

β ¼ 1

2
ðλ5 þ λ8 − 2jλ10j − 2jλ12jÞ;

γ ¼ 1

2
ðλ6 þ λ9 − 2jλ11j − 2jλ12jÞ: ð37Þ

Now, for the potential VBFB the necessary and sufficient
conditions are obtained from Ref. [25]:

(i) λ1 > 0, λ2 > 0, λ3 > 0,
(ii)

n
β > −

ffiffiffiffiffiffiffiffiffi
λ1λ3

p
; γ > −

ffiffiffiffiffiffiffiffiffi
λ2λ3

p
;α> −

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
;

β ≥ −γ
ffiffiffiffiffiffiffiffiffiffiffi
λ1=λ2

p o
∪
n ffiffiffiffiffiffiffiffiffi

λ2λ3
p

> γ > −
ffiffiffiffiffiffiffiffiffi
λ2λ3

p
;

− γ
ffiffiffiffiffiffiffiffiffiffiffi
λ1=λ2

p
≥ β > −

ffiffiffiffiffiffiffiffiffi
λ1λ3

p
; λ3α> βγ −

ffiffiffiffiffiffiffiffiffiffiffi
ΔαΔγ

p o
;

ð38Þ

where

Δα ¼ β2 − λ1λ3; Δγ ¼ γ2 − λ2λ3: ð39Þ

4Other directions, along which the strict proportionality of all
three doublets does not hold, are called charge-breaking (CB)
directions. In recent works [27,28], it has been proven that these
directions can lead to pathological situations for other symmetries
in the 3HDM. It is then required to consider these directions when
doing a complete work of looking for necessary and sufficient BFB
conditions. Our contribution to the analysis of the Z3 symmetry is
to specify sufficient conditions along the neutral direction.
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As V0 þ V1 > VBFB, these conditions are sufficient con-
ditions for the original potential. They are not necessary,
and therefore might be throwing away part of the parameter
space. However, it still gives us a very good sense of the
possibilities within the type-Z 3HDM.

2. Unitarity

In order to determine the tree-level unitarity constraints,
we use the algorithm presented in [16]. As described there,
we have to impose that the eigenvalues of the scattering
S-matrix of two scalars into two scalars have an upper
bound (the unitarity limit). As these arise exclusively from
the quartic part of the potential, the eigenvalues obtained
for a Z3 symmetric potential in Section 4.4 of [16] can also
be used for the potential with quadratic soft-breaking terms,
Eq. (3). The conversion between the notation of the
algorithm and the potential chosen, Eq. (4), is as follows:

r1 → λ1; r2 → λ2; r3 → λ3; ð40Þ

r4 → λ4=2; r5 → λ5=2; r6 → λ6=2; ð41Þ

r7 → λ7=2; r8 → λ8=2; r9 → λ9=2; ð42Þ

c4 → λ10=2; c12 → λ11=2; c11 → λ12=2: ð43Þ

Denoting by Λi the eigenvalues of the relevant scattering
matrices, we have 21 Λ’s to calculate for each set of
physical parameters randomly generated, and the condition
to impose is that

jΛij ≤ 8π; i ¼ 1;…; 21: ð44Þ

3. Oblique parameters STU

In order to discuss the effect of the S, T, U parameters,
we use the results in [29]. To apply the relevant expressions,
we write the matrices U and V used in [29] with the
notation choices that we made when obtaining the mass
eigenstates in Sec. II A. We start with the 3 × 6 matrix V
defined as

0
B@

x1 þ iz1
x2 þ iz2
x3 þ iz3

1
CA ¼ V

0
BBBBBBBBB@

G0

h1
h2
h3
A1

A2

1
CCCCCCCCCA
; ð45Þ

and find, by comparison with Eqs. (10) and (13), that
V is

V ¼

0
B@

iPT
11 RT

11 RT
12 RT

13 iPT
12 iPT

13

iPT
21 RT

21 RT
22 RT

23 iPT
22 iPT

23

iPT
31 RT

31 RT
32 RT

33 iPT
32 iPT

33

1
CA: ð46Þ

The 3 × 3 matrix U defined as

0
B@

w†
1

w†
2

w†
3

1
CA ¼ U

0
B@

G†

Hþ
1

Hþ
2

1
CA; ð47Þ

gives us the correspondence U ¼ QT from Eq. (16).
Having applied the expressions for S, T, U, the con-

straints implemented on S and T follow Ref. [30], at
95% confidence level. For U, we fix the allowed interval
to be

U ¼ 0.03� 0.10: ð48Þ

B. Theoretical constraints 2

As we want to explore the range of low tan β1 and tan β2
we should avoid that the Yukawa couplings become non-
perturbative. We have, in our model

Yt ¼
mt

ffiffiffi
2

p

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan β22

p
tan β2

; ð49Þ

Yτ ¼
mτ

ffiffiffi
2

p

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan β21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan β22

q
; ð50Þ

Yb ¼
mb

ffiffiffi
2

p

v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan β21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan β22

p
tan β1

: ð51Þ

We require

Y2

4π
< 1 ⇒ Y <

ffiffiffiffiffiffi
4π

p
ð52Þ

C. ΔMb;s Constraints

We see from Ref. [15] that the constraints coming from
ΔMb;s tend to exclude very low values on tan β. Thus, we
take

log10ðtan β1;2Þ > −0.5 ⇒ tan β1;2 > 10−0.5 ¼ 0.31623:

ð53Þ

D. LHC constraints

For comparison with experiment, we consider only the
contributions of the lowest nonvanishing order in pertur-
bation theory. The decays that require one-loop calculations
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are those of neutral scalars into two photons (hj → γγ), one
Z and one photon (hj → Zγ), and two gluons (hj → gg).
The final formulas for the first two widths are given in
Ref. [31], only having to adapt the particles and their
couplings to our case. The formula for the width hj → γγ
reads,

Γðhj → γγÞ ¼ GFα
2m3

h

128
ffiffiffi
2

p
π3

ðjXγγ
F þ Xγγ

W þ Xγγ
H j2Þ; ð54Þ

where, noticing that for scalars the Y terms in [31] vanish,

Xγγ
F ¼ −

X
f

Nf
c2a

f
jQ

2
fτf½1þ ð1 − τfÞfðτfÞ�; ð55Þ

Xγγ
W ¼ Cj½2þ 3τW þ 3τWð2 − τWÞfðτWÞ�; ð56Þ

Xγγ
H ¼ −

X2
k¼1

λhjHþ
k H

−
k
v2

2m2
H�

k

τ�jk½1 − τ�jkfðτ�jkÞ�: ð57Þ

We used

τf ¼ 4m2
f=m

2
hj
; τ�jk ¼ 4m2

H�
k
=m2

hj
; ð58Þ

where mf (mH�
k
Þ is the mass of the relevant particle in

the loop, while mhj is the mass of the decaying Higgs
boson. The function fðτÞ is defined in the Higgs Hunter’s
Guide [3],

fðτÞ ¼

8>><
>>:

h
sin−1ð ffiffiffiffiffiffiffi

1=τ
p Þ

i
2
; if τ ≥ 1

− 1
4

h
ln
�
1þ ffiffiffiffiffiffi

1−τ
p

1−
ffiffiffiffiffiffi
1−τ

p
�
− iπ

i
2
; if τ < 1

; ð59Þ

and the couplings Cj and λhjHþ
k H

−
k
for this model are written

in the Appendix. They were derived with the help of the
software FeynMaster [32,33], that uses QGRAF [34], FeynRules
[35,36] and FeynCalc [37,38] in an integrated way.
The decay into gluons can be obtained from the

expression for the γγ decay,

Γðhj → ggÞ ¼ GFα
2
Sm

3
h

64
ffiffiffi
2

p
π3

ðjXgg
F j2Þ; ð60Þ

where

Xgg
F ¼ −

X
q

2aqj τq½1þ ð1 − τqÞfðτqÞ�; ð61Þ

and the sum runs only over quarks q.
For the 125 GeV scalar, the coupling modifiers, are

calculated directly from the random angles generated and
constrained to be within 2σ of the most recent ATLAS fit
results, [39][Table 10]. Having chosen a specific production

and decay channel, the collider event rates can be conven-
iently described by the cross section ratios μhif,

μhif ¼
�
σ3HDMi ðpp → hÞ
σSMi ðpp → hÞ

��
BR3HDMðh → fÞ
BRSMðh → fÞ

�
: ð62Þ

Starting from the collision of two protons, the relevant
production mechanisms include: gluon fusion (ggH), vector
boson fusion (VBF), associated production with a vector
boson (VH, V ¼ W or Z), and associated production with a
pair of top quarks (ttH). The SM cross section for the gluon
fusion process is calculated using HIGLU [40], and for the
other production mechanisms we use the results of Ref. [41].
Each of the 3HDM processes is obtained by rescaling the
SM cross sections by the relevant relative couplings. As
for the decay channels, we calculated the branching ratios
for final states f ¼ WW;ZZ; bb̄; γγ and τþτ−. Finally, we
require that the μhif for each individual initial state × final
state combination is consistent, within twice the total
uncertainty, with the best-fit results presented in the most
recent study of data collected at

ffiffiffi
s

p ¼ 13 TeV with the
ATLAS experiment [39][Fig. 5].
For the heavier neutral and charged scalars, we use

HiggsBounds-5.9.1 in Ref. [18], where a list of all the relevant
experimental analyses can be found. We allow for decays
with off-shell scalar bosons, using the method explained
in [42]. This is a generalization of the procedure used to
evaluate the off-shell decays of the Higgs boson in the SM,
(for instance H → W þW�, see [43]). Starting from the
three body exact formula, and including the finite width
in the off-shell propagator, one can show that the result
reduces to an integration over the off-shell invariant mass of
the two body formula multiplied by the propagator with
appropriate factors. The inclusion of the finite width in
the propagator makes that this expression merges smoothly
with the on-shell case. We also consider the constraints
coming from b → sγ, as we explain in Secs. V and VI.

IV. DECAYS OF h125 IN THE Z3 3HDM

In this section, we use the scan ranges defined in
Eq. (21), pass them through all theoretical and experimental
constraints, and we study the impact on the decays of the
125 GeV Higgs h1 ¼ h125 found at LHC.
The contribution from the two charged scalars to the

h125 → γγ decay process is shown in Fig. 1. There are two
interesting regimes. To the left (right) of the vertical line
at coordinate zero, the two charged Higgs conspire to
decrease (increase) the branching ratio into γγ. Most of the
points are on the left and correspond to a significant
reduction of the decay width. However, there are indeed
points on the right, which allow for an increase which could
be up by 20%. We have also confirmed the existence of
allowed results where the destructive interference between
the two charged Higgs leads to a null Xγγ

H , occurring when
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the signs of the couplings λhjHþ
1
H−

1
and λhjHþ

2
H−

2
are opposite

in Eq. (57). This means that, barring other constraints, the
charged Higgs masses could be relatively light without
contradicting the observed h125 → γγ, as long as their
contributions to this decay canceled, as they may. The
points in red pass all the theoretical constraints discussed in
Sec. III as well as the signal strengths from ATLAS [39]
[Table 10]. The green points are further constrained by the
latest LHC results on the other Higgs scalars, incorporated
in the latest version of HiggsBounds-5.9.1 (HB5).
The regions of Fig. 1 where jXHj2 is large, for which

the charged Higgs provide a considerable contribution
to the overall h125 → γγ decay rate (the latter, still within
current bounds) are only obtained for very fine tuned

points in parameter space with some charged Higgs mass
below 200 GeV.5

The set of points that are consistent with all the bounds is
now plotted in the sin ðα2 − β2Þ − sin ðα1 − β1Þ plane as
shown in Fig. 2. Comparing with the plot in the same plane
shown in [13][Fig. 1], we find that the use of more recent
experimental data for the simulated results leads to us
being closer to the alignment limit, defined by α1 ¼ β1 and
α2 ¼ β2. However, as illustrated here and in the following
sections, points in parameter space slightly off the align-
ment limit exhibit physical properties which differ signifi-
cantly from the exact alignment limit.6

FIG. 4. Results in the μττ − μγγ plane for all production
channels. The color code is as in Fig. 3.

FIG. 2. Results of the simulation in the sin ðα2 − β2Þ −
sin ðα1 − β1Þ plane. The color code is as in Fig. 1. The point
at (0,0) corresponds to the alignment limit.

FIG. 3. Results in the μZZ − μγγ plane for the gluon fusion
production channel. The color code is as in Fig. 1. In addition,
black points correspond to the perfect alignment limit of
Eq. (73) below.

FIG. 1. Effect of the charged Higgs on the h125 → γγ decay,
with the definitions of Eq. (54). The green points passed all
constraints including those coming from searches for extra scalars
(incorporated in HB5), while the red points did not pass HB5 (see
text for a discussion).

5As we will see in Figs. 9–10 below, this is a very constrained
(fine tuned) region.

6This difference will be even more striking when we consider
the benchmark points discussed in Sec. VIII.
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To study the allowed regions for the signal strengths μhif,
we follow [31,44] and calculate each μhif using all pro-
duction channels. Our set of points is then shown in
Figs. 3–6.
Figures 3–6 contain three interesting results. First, in

these figures we compare the results before (red points) and
after (green points) applying the LHC constraints on the
heavier scalars incorporated in HB5. As discussed in the
introduction (and explained in more detail in Sec. VI
below), the new results from LHC constrain specially
the ττ (Fig. 4) and bb (Fig. 5) channels. That is, the
absence of h2;3 → ττ; bb signals has the strongest impact in
constraining on the model’s parameter space. The differ-
ence between the red and green regions shows that one
cannot ignore the constraints that LHC already places on
the extra scalars (other than the 125 GeV Higgs). It is
important to notice that, although such constraints come
from observables related to the extra scalars, they do restrict

how much the properties of the 125 GeV Higgs can differ
from the SM.
Second, Figs. 3–6 also contain in black the results

obtained in the perfect alignment limit of Eq. (73) below
[a black line close to the center of the figures, ending at
the SM point (1,1)]. We see that points slightly off that
limit yield predictions for the properties of the 125 GeV
Higgs which differ markedly from those obtained in that
exact limit.
Third, similar to the complex 2HDM analyzed by

Fontes, Romão, and Silva in [31], there is a strong
correlation between μZγ and μγγ in our type-Z model, as
shown in Fig. 6. Such a correlation is also visible between
μZZ and μγγ in Fig. 3. It is less apparent in correlations with
τþτ− and bb̄, as shown in Figs. 4 and 5.

V. CALCULATION OF THE BRðB → XsγÞ
A. Introduction

It is well known that the experimental bounds on
B → Xsγ place stringent restrictions on the parameter space
of models with charged scalars [11,17,45–47]. Most
notably, there is a bound on the mass of the only charged
Higgs boson present in the type-II 2HDM which, at
95% CL (2σ), is according to [17]

mHþ > 580 GeV: ð63Þ

The exact value for this bound depends on both the
theoretical approximations [48] and the experimental
errors. The experimental average gives [49]

BRexpðB → XsγÞ ¼ ð3.32� 0.15Þ × 10−4; ð64Þ

while the NNLO calculation within the SM yields [11,50]

BRSMðB → XsγÞ ¼ ð3.40� 0.17Þ × 10−4; ð65Þ

with an error of about 5%.
As explained below, wewill take an error of 2.5% around

the central value of the calculation and, following [11], we
consider 99% CL (3σ) for the experimental error:

2.87 × 10−4 < BRðB → XsγÞ < 3.77 × 10−4: ð66Þ

B. The calculation

We follow closely the calculation by Borzumati and
Greub in Ref. [45]. There, the new contributions from
the charged Higgs bosons are encoded in the Wilson
coefficients,

C0;eff
7 ðμWÞ ¼ C0;eff

7;SMðμWÞ þ jYj2C0;eff
7;YYðμWÞ

þ ðXY�ÞC0;eff
7;XYðμWÞ; ð67aÞ

FIG. 5. Results in the μbb̄ − μγγ plane for the gluon fusion
production channel. The color code is as in Fig. 3.

FIG. 6. Results in the μZγ − μγγ plane for the gluon fusion
production channel. The color code is as in Fig. 3.
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C0;eff
8 ðμWÞ ¼ C0;eff

8;SMðμWÞ þ jYj2C0;eff
8;YYðμWÞ

þ ðXY�ÞC0;eff
8;XYðμWÞ; ð67bÞ

C1;eff
4 ðμWÞ ¼ E0ðxÞ þ

2

3
log

�
μ2W
M2

W

�
þ jYj2EHðyÞ; ð67cÞ

C1;eff
7 ðμWÞ ¼ C1;eff

7;SMðμWÞ þ jYj2C1;eff
7;YYðμWÞ

þ ðXY�ÞC1;eff
7;XYðμWÞ; ð67dÞ

C1;eff
8 ðμWÞ ¼ C1;eff

8;SMðμWÞ þ jYj2C1;eff
8;YYðμWÞ

þ ðXY�ÞC1;eff
8;XYðμWÞ; ð67eÞ

where we are using the notation in Ref. [45] which should
be consulted for the definitions and also for the procedure
used in evolving the coefficients to the scale μb ¼ mb.
The dependence on the charged Higgs mass appears
because the functions C0;eff

i;YY; C
0;eff
i;XY; C

1;eff
i;YY, and C

1;eff
i;XY depend

on y ¼ m2
t =m2

Hþ , while the SM coefficients depend on
x ¼ m2

t =M2
W .

For models with multiple charged Higgs there is one
contribution (and one parameter ykÞ for each particle. A
model with two charged Higgs is discussed in [11,12], with
interesting earlier work highlighting the possible cancella-
tion between the two charged Higgs contributions appear-
ing in Refs. [51,52]. We obtain, for example,

C1;eff
7 ðμWÞ ¼ C1;eff

7;SMðμWÞ þ jY1j2C1;eff
7;YYðμW; y1Þ

þ jY2j2C1;eff
7;YYðμW; y2Þ þ ðX1Y�

1ÞC1;eff
7;XYðμW; y1Þ

þ ðX2Y�
2ÞC1;eff

7;XYðμW; y2Þ; ð68Þ

where we wrote explicitly the dependence on the charged
Higgs masses,

y1 ¼
m2

t

m2
Hþ

1

; y2 ¼
m2

t

m2
Hþ

2

; ð69Þ

and used

X1 ¼ −
Q22

cos β2 sin β1
; Y1 ¼

Q23

sin β2
;

X2 ¼ −
Q32

cos β2 sin β1
; Y2 ¼

Q33

sin β2
: ð70Þ

We took the input parameters from Ref. [45] except for
αsðMZÞ; mt;MZ;MW , that were updated to the most recent
values of the Particle Data Group [53]7:

αsðMZÞ ¼ 0.1179� 0.0010; mt ¼ 172.76� 0.3 GeV;

ð71aÞ

mc=mb ¼ 0.29� 0.02; mb −mc ¼ 3.39� 0.04 GeV;

ð71bÞ

α−1em ¼ 137.036; jV�
tsVtb=Vcbj2 ¼ 0.95� 0.03; ð71cÞ

BRSL ¼ 0.1049� 0.0046: ð71dÞ

where BRSL is the measured semileptonic branching ratio
of the B meson (see Ref. [45]).

VI. IMPACT OF b → sγ AND HB5 ON THE
Z3 3HDM PARAMETER SPACE

As mentioned, Ref. [17] points out that current con-
straints on b → sγ applied to the type II 2HDM force
the charged Higgs to have a mass above 580 GeV.
Reference [15] makes the important point that this is no
longer the case for the Z33HDM, where one of the charged
Higgs can have a relatively low mass. This possibility is
shown on the relevant Fig. 2 of Ref. [15], where the
parameters are fixed as

tan β1 ¼ 10; tan β2 ¼ 2; γ2 ¼
π

6
;
π

4
;
π

3
; ð72Þ

while imposing

mh2 ¼ mA1
¼ mHþ

1
; mh3 ¼ mA2

¼ mHþ
2
;

α1 ¼ β1; α2 ¼ β2; γ1 ¼ γ2 ¼ −α3: ð73Þ

Eq. (73) is dubbed the perfect alignment limit. With the
choice of Eqs. (72)–(73), the bounds from the decays of the
125 GeV Higgs, implemented using signal strengths from
ATLAS [39][Table 10], are easily satisfied because we are
at the alignment limit. However the same is not true for
current bounds on heavier scalars. Indeed, every single
point in the range (72)–(73) is excluded by the data from
searches into heavier states and incorporated into HB5. We
will now show that enlarging the scanning region beyond
the perfect alignment of Eqs. (72)–(73) will yield points
which are consistent with all available data.

A. Enlarging the scanning region

We discovered that the situation just described is a
consequence of the small range chosen for γ2. To illustrate
this, we kept the other conditions in Eqs. (72)–(73), but
allowed for

γ2 ∈ ½−π=2; π=2�; ð74Þ

7If we use exclusively the input values of Ref. [45], we
reproduce their SM results. We are extremely grateful to C. Greub
for discussions and for providing us with the original code used in
[45], utilized to cross check our independent calculations.
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and (for Fig. 7) also varied tan β1. The points which survive
HiggsBounds-5.9.1 are shown in dark green on the left panel
of Fig. 7.
The allowed points for tan β1 ¼ 10 are concentrated

around γ2 ¼ 0;�π=2, thus excluding γ2 ¼ π=6; π=4; π=3.
Taking the interval in Eq. (74) one can indeed find regions
of good points.8

To understand the physics behind this finding, we have
compared the latest version HiggsBounds-5.9.1 on the left panel
of Fig. 7, with the previous HiggsBounds-5.7.1 shown on the
right panel. For that case there are many points allowed
for all values of γ2, even for tan β1 ¼ 10. We have found
that this is due to the recent bounds on h2;3 → τþτ− decay

in Ref. [19], included in HiggsBounds-5.9.1 but not in
HiggsBounds-5.7.1, which used the previous bounds
[54,55].9 To better illuminate this point, we study σðpp →
h2Þ × BRðh2 → ττÞ in detail in Appendix B.

B. The effect of tan β’s

In the last section we saw that while maintaining the
main features of Eqs. (72)–(73), but enlarging the range of
variation of γ2, we could find points allowed by all current
experimental constraints. Here we exploit the variation of
both tan β’s in the range

FIG. 8. All points satisfy Eq. (73). Left panel: All points passed all constraints except for HB5. The blue points satisfy Eq. (75). The
red points are for tan β1;2 > 0.5 and the green points are for tan β1;2 > 1. Right panel: same color code as in the left panel but only
showing points surviving after requiring HB5, which implements the LHC searches for heavier scalars.

FIG. 7. Enlarging the scanning region, taking γ2 ∈ ½−π=2; π=2� and varying β1. All other conditions in Eqs. (72)–(73) were kept. The
dark green points passed all constraints including the constraints from searches of extra scalars incorporated into HB5, while the light
green points did not pass HB5. Left panel: All points passing HiggsBounds-5.9.1. Right panel: All points passing HiggsBounds-5.7.1. See text
for a discussion on the physics behind the difference.

8This it true regardless of whether or not we vary β1, as long as
we enlarge the scanning region of γ2.

9In Ref. [15] the strong constraints from neutral scalar
decays into ττ still seemed to allow points with the choices in
Eqs. (72)–(73).
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tan β1;2 ∈ ½10−0.5; 10�; ð75Þ

subject to the condition of perturbativity of the Yukawa
couplings in Eq. (52). The result is shown in Fig. 8.
We see that by varying the range of tan β’s we can have

smaller masses for the charged Higgs bosons. For tan β < 1
it is even possible to have both charged Higgs with masses
below 400 GeV; an important new result.

VII. GOING BEYOND PERFECT ALIGNMENT

In our initial scan leading to Figs. 1–6 we varied the
parameters in the ranges in Eq. (21) without any additional
constraint. However, we found out that very few points
survived and those were not too far away from the align-
ment condition of Eq. (73). So another strategy can be to
scan points that differ from the perfect alignment of
Eq. (73) by 1% or 10%. Let us clarify what we mean
by this. Take the 1% case. We scan β1, β2, γ1 and mh2 ; mh3
in the intervals of Eq. (21), but for the other parameters
instead of perfect alignment as in Eq. (73) we consider

α1 ∈ ½0.99β1; 1.01β1�; α2 ∈ ½0.99β2; 1.01β2� ð76Þ

mA1
∈ ½0.99mh2 ; 1.01mh2 �; mA2

∈ ½0.99mh3 ; 1.01mh3 �
ð77Þ

and similarly for the other parameters.
In Fig. 9 we show the results for the case when we

allow the parameters to differ 1% from the perfect align-
ment limit.
Next we considered the case when the difference for

perfect alignment was between 1% and 10%. This is shown
in Fig. 10.
We note two issues. The points in Fig. 10 (further away

from alignment) are much harder to generate than the

points in Fig. 9 (closer to the alignment limit). Also, we
note that the figures are almost identical, meaning that
the impact of all current theoretical and experimental
constraints allows exactly the same structure on the
mHþ

1
−mHþ

2
plane, whether one is within 1% of perfect

alignment, or between 1% and 10%. But the points further
away from alignment (shown in Fig. 10) do allow for
qualitatively different predictions, as we saw in Sec. IVand
as we will discuss in Sec. VIII below, in the study of
relevant benchmark points. We conclude that imposing
perfect alignment is too constraining and does not cover all
the interesting features of the Z3 3HDM.

A. Unusual signals of charged scalars

As we have seen, the contributions of the two charged
scalars can exhibit large cancellations in the decays h → γγ
and B → Xsγ.

10 For some choices of parameter space, it is
even possible that there are cancellations in both decays
simultaneously. This is illustrated in Fig. 11.
Such charged scalars would, thus, be difficult to probe

indirectly.
Notice that points with exact alignment, in cyan in

Fig. 11, do not allow for cancellation in h → γγ; but
alignment with 1% already does.
Most points within the blue box close to (0,0) have Hþ

2

decays into quarks or leptons, which are being sought at
LHC. But there are points which could also be difficult to
probe directly with such common searches, even tough one
or both charged scalars might have relatively small masses.
Indeed, one can find fine-tuned points in parameter space

FIG. 9. All points are within 1% of the perfect alignment of Eq. (73). Left panel: all points passed all constraints except for HB5. The
blue points satisfy Eq. (75). The red points are for tan β1;2 > 0.5 and the green points are for tan β1;2 > 1. Right panel: same color code as
in the left panel but only showing points surviving after requiring HB5, which implements the LHC searches for heavier scalars.

10For 3HDMs, the cancellation can be exact in B → Xsγ
because there are two charged components of Higgs doublets
feeding the two physical charged Higgs states. This is no longer
the case in the Zee model, with two Higgs doublets and one
charged scalar singlet [56].
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where the Hþ
2 does not decay primordially into quarks or

leptons, but rather asHþ
2 → Hþ

1 hj with hj ¼ h1; h2; A1. We
propose that such decays be actively searched for at LHC’s
next run. To aid in that experimental endeavor, we present
some benchmark points (BP) in the next section.

VIII. ILLUSTRATIVE BENCHMARK POINTS

This section is devoted to some benchmark points/lines,
with features which may prove useful for the experimental
searches.

There has been a recent interest in the literature for
unusual decays of the charged Higgs [57], specially those
in which the charged Higgs decays toWþhi where hi is any
of the scalars or pseudoscalars in the model.
We have performed a search in our large datasets

and found many points where BRðHþ
1 → Wþ þ h125Þ

TABLE I. Benchmark points for the type Z Z3-3HDM.

Type-Z BP1 BP2 BP3

mh2 419.00 494.60 486.26
mh3 799.60 850.88 694.44
mA1

413.80 483.96 513.46
mA2

763.15 806.44 647.56
mH�

1
396.13 477.63 506.36

mH�
2

752.81 843.034 654.77

ðm2
12Þ −8350 −31768 −19562

ðm2
13Þ −83278 −80800 −63134

ðm2
23Þ −231428 −232361 −197019

α1 1.289 1.343 1.328
α2 0.5419 0.4406 0.7119
α3 0.00543 −0.00299 0.01136
γ1 −0.00503 0.00322 −0.01078
γ2 −0.00504 0.00301 −0.01011
β1 1.192 1.263 1.231
β2 0.5077 0.4311 0.7351

BRðHþ
1 → ντ þ τþÞ 0.0688 0.0790 0.0784

BRðHþ
1 → tþ b̄Þ 0.0383 0.0197 0.0358

BRðHþ
1 → Wþh1Þ 0.8926 0.9011 0.8855

BRðHþ
2 → tþ b̄Þ 0.9970 0.9995 0.9965

BRðHþ
2 → Wþh1Þ 0.0012 0.0001 0.0009

BRðHþ
2 → Wþh2Þ 0.0007 0.0003 0.0006

FIG. 11. Points with significant approximate cancellation of
the charged Higgs contributions to both h → γγ (horizontal
axis) and B → Xsγ (vertical), which pass all theoretical and
experimental bounds, including HB5. Color code: cyan is
perfect alignment, red means alignment within 1%, and blue
means alignment within 10%. The blue box guides the eye to
those points closest to (0,0).

FIG. 10. All points are within 1%-10% of the perfect alignment of Eq. (73). Left panel: all points passed all constraints except for
HB5. The blue points satisfy Eq. (75). The red points are for tan β1;2 > 0.5 and the green points are for tan β1;2 > 1. Right panel: same
color code as in the left panel but only showing points surviving after requiring HB5, which implements the LHC searches for heavier
scalars.
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was larger than 80%. From those we selected three bench-
mark points (BP) that we list in Table I. For each of these
BP we let the mass of the Hþ

1 vary, leaving all the other
parameters fixed, obtaining benchmark lines. All these
points verify all the constraints, including those from
HiggsBounds-5.9.1. These BP, shown in Figs. 12 and 13, all
have the characteristic that the dominant decay of the
charged Hþ

1 is not in the tb channel, but in Wþh125, which
makes these interesting and deserving to be searched at
the LHC.
Notice that, for these BP, the other charged Higgs decays

100% in tb. For BP2 the decay Hþ
1 → WþA1 opens up

when the mass of the Hþ
1 is such that mHþ

1
> MW þmA1

explaining the decrease in our preferred branching ratio
(see left panel of Fig. 13). The same happens for the
channel Hþ

1 → Wþh2 for BP3 as can be seen in the right
panel of Fig. 13.
Notice that the interesting channels studied in this

section are completely forbidden in the alignment limit

of α1 ¼ β1; α2 ¼ β2. For example, the couplingHþ
1 W

−h1 is
proportional to

gh1Hþ
1
W− ¼ R11Q21 þR12Q22 þR13Q23

¼ sin γ2½− sinðα2 − β2Þ
þ cos α2 sin β2ðcosðα1 − β1Þ − 1Þ�
þ cos γ2 cos α2 sinðα1 − β1Þ; ð78Þ

and this obviously vanishes in the alignment limit. Thus, it
is crucial to go beyond exact alignment when studying the
physical implications of (and direct experimental searches
for) multi scalar models.

IX. CONCLUSIONS

Multi-Higgs models with N ≥ 3 allow for the possibility
that all fermions of a given charge couple exclusively to one
dedicated scalar. These are known as type-Z models, and
constitute a fifth alternative beyond the four natural flavor
conservation models allowed in the 2HDM. We investigate
the current bounds on the type-Z 3HDM imposed by a Z3

symmetry. We perform an up-to-date analysis including
the latest data for the 125 GeV Higgs [39], bounds on
new scalars through the HiggsBounds-5.9.1 code [18], and the
theoretical constraints.
We use the theoretical bounds from unitarity [16] and

BFB; the latter developed here for the first time. We stress
the importance of using the most recent LHC bounds,
which constrain severely the allowed parameter space.
In particular, we show that bounds from h2 → τþτ− alter
significantly some results in the literature [15]. This is
clearly visible in our Fig. 7 and Fig. 14. Moreover, we also
stress the fact that interesting physical observables may
differ significantly when one considers situations close to
the alignment limit, versus adopting the exact alignment
limit. Indeed, current LHC bounds on the productions and

FIG. 13. Most important BR’s for BP2 (left panel) and BP3 (right panel). The black cross corresponds to the original BP in Table I.

FIG. 12. Most important BR’s for BP1. The black cross
corresponds to the original BP in Table I.
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branching ratios of the 125 GeV neutral scalar force the
measured couplings to lie close to those obtained for the
SM Higgs. Nevertheless, forcing those couplings to match
exactly those in the SM is too constraining on the parameter
space and precludes much of the interesting new features
that the Z3 3HDM has. This is particularly true for the
signal strengths shown in Figs. 3–6, that can deviate from
exact alignment while being still compatible with all
the experimental data, and for the study of benchmark
points in Sec. VIII.
We look at the constraints allowed by current data on the

125 GeV Higgs decays, including a detailed look at h → γγ
and its correlations with the other decays. We point out the
possibility that the contributions from the two charged
scalars might cancel in h → γγ. This is also possible in
B → Xsγ, and we explore explicitly how this allows for
lower masses for the charged scalars. In particular, we
found that for tan β < 1 it is even possible to have both
charged Higgs with masses below 400 GeV. We provide
illustrative benchmark points to aid in experimental
searches. By comparing the constraints from HiggsBounds-

5.7.1 and the newer HiggsBounds-5.9.1 (which reflect an
improvement in the LHC searches for extra scalars) we
highlight the importance that the next LHC run will have in
further constraining this model, or perhaps, finally uncov-
ering new physics in the scalar sector.
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APPENDIX A: SOME IMPORTANT COUPLINGS

This Appendix is devoted to some important couplings
for the Z3 3HDM used in our calculations. In our con-
ventions these couplings include the i from the Feynman
rules. These couplings were derived with the help of the
software FeynMaster [32,33].

1. Scalar couplings to W� bosons

We find for the neutral scalar couplings to WþW−,

½hj;Wþ
ν ;W−

ρ � ¼ igMWgνρðRj1v̂1 þ Rj2v̂2 þ Rj3v̂3Þ ðA1Þ

Thus,

Cj ¼ Rj1v̂1 þ Rj2v̂2 þ Rj3v̂3; ðA2Þ

is to be used in Eq. (56).

2. Scalar couplings to charged Higgs

The couplings of the scalars hj with j ¼ 1, 2, 3 to the
charged Higgs H∓

k−1; H
�
l−1 where k, l ¼ 2, 3 (we do not

consider here the charged Goldstone) are,

½hj; H∓
k0 ; H

�
l0 � ¼

−i
2
v½4λ1Qk1Ql1Rj1v̂1 þ 2λ5Qk3Ql3Rj1v̂1 þ λ7Qk2Ql1Rj2v̂1 þ λ10Qk3Ql1Rj2v̂1 þ λ7Qk1Ql2Rj2v̂1

þ λ11Qk3Ql2Rj2v̂1 þ λ10Qk1Ql3Rj2v̂1 þ λ11Qk2Ql3Rj2v̂1 þ λ10Qk2Ql1Rj3v̂1 þ λ8Qk3Ql1Rj3v̂1

þ λ10Qk1Ql2Rj3v̂1 þ λ12Qk3Ql2Rj3v̂1 þ λ8Qk1Ql3Rj3v̂1 þ λ12Qk2Ql3Rj3v̂1 þ λ7Qk2Ql1Rj1v̂2

þ λ10Qk3Ql1Rj1v̂2 þ λ7Qk1Ql2Rj1v̂2 þ λ11Qk3Ql2Rj1v̂2 þ λ10Qk1Ql3Rj1v̂2 þ λ11Qk2Ql3Rj1v̂2

þ 4λ2Qk2Ql2Rj2v̂2 þ 2λ6Qk3Ql3Rj2v̂2 þ λ11Qk2Ql1Rj3v̂2 þ λ12Qk3Ql1Rj3v̂2 þ λ11Qk1Ql2Rj3v̂2

þ λ9Qk3Ql2Rj3v̂2 þ λ12Qk1Ql3Rj3v̂2 þ λ9Q22Ql3Rj3v̂2 þ 2λ4ðQ22Ql2Rj1v̂1 þQk1Ql1Rj2v̂2Þ
þ λ10Q22Ql1Rj1v̂3 þ λ8Qk3Ql1Rj1v̂3 þ λ10Qk1Ql2Rj1v̂3 þ λ12Qk3Ql2Rj1v̂3 þ λ8Qk1Ql3Rj1v̂3

þ λ12Q22Ql3Rj1v̂3 þ λ11Q22Ql1Rj2v̂3 þ λ12Qk3Ql1Rj2v̂3 þ λ11Qk1Ql2Rj2v̂3 þ λ9Qk3Ql2Rj2v̂3

þ λ12Qk1Ql3Rj2v̂3 þ λ9Q22Ql3Rj2v̂3 þ 2λ5Qk1Ql1Rj3v̂3 þ 2λ6Q22Ql2Rj3v̂3 þ 4λ3Qk3Ql3Rj3v̂3�
≡ ivλhj;Hþ

k0 ;H
−
l0
; ðA3Þ

where we have defined k0 ≡ k − 1, l0 ≡ l − 1 with j ¼ 1, 2, 3 and k, l ¼ 2, 3. Recall that v̂k ¼ vk=v. The coupling λhj;Hþ
k0 ;H

−
l0

is to be used in Eq. (57).
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3. Pseudoscalar couplings to charged Higgs

The couplings of the pseudoscalars Aj0 with j0 ¼ j − 1 and j ¼ 2, 3 (we do not consider the coupling of the neutral
Goldstone) are

½Aj0 ; H
∓
1 ; H

�
2 � ¼ � 1

2
v½λ8Pj3Q23Q31v̂1 þ λ11Pj2Q23Q32v̂1 − λ12Pj3Q23Q32v̂1 − λ8Pj3Q21Q33v̂1 − λ11Pj2Q22Q33v̂1

þ λ12Pj3Q22Q33v̂1 þ λ11Pj3Q22Q31v̂2 − λ12Pj3Q23Q31v̂2 − λ11Pj3Q21Q32v̂2 − λ11Pj1Q23Q32v̂2

þ λ9Pj3Q23Q32v̂2 þ λ12Pj3Q21Q33v̂2 þ λ11Pj1Q22Q33v̂2 − λ9Pj3Q22Q33v̂2

þ λ7ðQ22Q31 −Q21Q32ÞðPj2v̂1 − Pj1v̂2Þ − λ11Pj2Q22Q31v̂3 − λ8Pj1Q23Q31v̂3 þ λ12Pj2Q23Q31v̂3

þ λ11Pj2Q21Q32v̂3 þ λ12Pj1Q23Q32v̂3 − λ9Pj2Q23Q32v̂3 þ λ8Pj1Q21Q33v̂3 − λ12Pj2Q21Q33v̂3

− λ12Pj1Q22Q33v̂3 þ λ9Pj2Q22Q33v̂3 þ λ10ð−Pj3Q22Q31v̂1 − Pj2Q23Q31v̂1 þ Pj3Q21Q32v̂1

þ Pj2Q21Q33v̂1 þ Pj1Q23Q31v̂2 − Pj1Q21Q33v̂2þPj1Q22Q31v̂3 − Pj1Q21Q32v̂3Þ�;
≡ vλAj0H

∓
1
H�

2
; ðA4Þ

for j0 ¼ j − 1 and j ¼ 2, 3. Note that λAj0H
∓
1
H�

1
and λAj0H

∓
2
H�

2
vanish.

APPENDIX B: DETAILED STUDY
OF σðpp → h2Þ ×BRðh2 → ττÞ

This Appendix is devoted to a detailed explanation of the
two results found in Sec. VI A. Recall that in the beginning
of Sec. VI we learned that the constraints that LHC has
placed on extra scalars (and encoded into HB5) already
excludes all of the points defined by Eqs. (72)–(73). In
Sec. VI A we learned that: (i) there are strong constraints
placed on the γ2 allowed region; and (ii) those constraints
are mainly due to bounds on h2;3 → τþτ− decay, whose
consequences on the Z3 parameter space improved notice-
ably when changing from the old results of Refs. [54,55],
included in HiggsBounds-5.7.1, into the new results of
Ref. [19], included in HiggsBounds-5.9.1. To better illuminate

this issue, we show σðpp → h2Þ × BRðh2 → ττÞ versus
mh2 in Fig. 14. In this figure, the parameters are as in
Eqs. (72)–(73), except that γ2 ∈ ½−π=2; π=2�. Points in
cyan are points that pass all constraints before
HIGGSBOUNDS. In light green are the points in the restricted
interval γ2 ∈ ½π=6; π=3�. In the left panel points in dark
green are those who survived after HiggsBounds-5.7.1. In the
right panel we have the same situation but now we used
HiggsBounds-5.9.1. We see that there were good points in the
restricted interval γ2 ∈ ½π=6; π=3� in the left panel, but they
disappeared with the newer version HiggsBounds-5.9.1. We
have confirmed that similar plots can be obtained for h3.
This is a good point to stress again the role that the LHC

is having in constraining models with new scalar physics.

FIG. 14. Left panel: σðpp → h2Þ × BRðh2 → ττÞ as function of the mh2 . Parameters are as in Eq. (73), except that γ2 ∈ ½−π=2; π=2�.
Points in cyan are points that pass all constraints before HiggsBounds and in dark green after HiggsBounds-5.7.1. In light green are the
points in the interval γ2 ∈ ½π=6; π=3�. Right panel: the same but for HiggsBounds-5.9.1.
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One sees the strong impact that the updated LHC results have in constraining theZ3 3HDM. This highlights the importance
that the upcoming LHC run will have in constraining the parameter space of extended scalar sectors.
To better understand the behavior of σðpp → hiÞ × BRðhi → ττÞ (i ¼ 2, 3), we can make the simplified assumption11

that this product is proportional to

σðpp → hiÞ × BRðhi → ττÞ ∝ g2hiττg
2
hitt

≡ fi; ðB1Þ

where we are assuming that the production occurs mainly via gluon fusion with the top quark in the loop. Now, using the
assumptions of Eq. (73) in Eq. (25), we have

gh2ττ ¼ −
cα3tβ1
cα2

− sα3tβ2 ¼ −
tβ1
cβ2

cγ2 þ tβ2sγ2 ; gh2tt ¼
cα2sα3
sβ2

¼ −
1

tβ2
sγ2 ;

gh3ττ ¼ −cα3tβ2 þ
sα3tβ1
cα2

¼ −tβ2cγ2 −
tβ1
cβ2

sγ2 ; gh3tt ¼
cα2cα3
sβ2

¼ 1

tβ2
cγ2 ; ðB2Þ

where, for Fig. 14, β1, β2 are fixed and γ2 ∈ ½−π=2; π=2�. Fig. 15 shows the functions in Eq. (B1)—f2 for h2 and f3 for h3—
for tan β1 ¼ 10 and tan β2 ¼ 2 as in Eq. (72), but keeping γ2 free.
We see that these functions are largest precisely in the approximate interval �γ2 ∈ ½π=6; π=3�. This explains why these

points are the first to be excluded by the bounds on σðpp → h2Þ × BRðh2 → ττÞ, and why, going outside such bounds,
some points can be preserved.12
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