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Traffic-driven epidemic spreading in multiplex networks
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Recent progress on multiplex networks has provided a powerful way to abstract the diverse interaction of a
network system with multiple layers. In this paper, we show that a multiplex structure can greatly affect the
spread of an epidemic driven by traffic dynamics. One of the interesting findings is that the multiplex structure
could suppress the outbreak of an epidemic, which is different from the typical finding of spread dynamics in
multiplex networks. In particular, one layer with dense connections can attract more traffic flow and eventually
suppress the epidemic outbreak in other layers. Therefore, the epidemic threshold will be larger than the minimal
threshold of the layers. With a mean-field approximation, we provide explicit expressions for the epidemic
threshold and for the onset of suppressing epidemic spreading in multiplex networks. We also provide the
probability of obtaining a multiplex configuration that suppresses the epidemic spreading when the multiplex
is composed of: (i) two Erdős-Rényi layers and (ii) two scale-free layers. Therefore, compared to the situation
of an isolated network in which a disease may be able to propagate, a larger epidemic threshold can be found in
multiplex structures.

DOI: 10.1103/PhysRevE.101.012301

I. INTRODUCTION

Complex networks have become an efficient abstraction of
the interactions between individuals in real complex systems.
The theory of complex networks has led to many interest-
ing results in various areas of interdisciplinary science [1].
Recently, the study of multiplex networks has become the
new frontier in the area of complex networks [2]. Multiplex
networks are proved to describe many real-life systems better,
especially when these systems are composed of different but
interconnected subnetworks [2–5]. Representative examples
include the traffic systems with multimodal transportation,
and the social networks where individuals can use multiple
platforms. In social networks, an individual can use different
platforms to communicate with different categories of friends:
kinship, vicinity, membership of the same society, colleague
in a company, etc. In the spreading of information, people
will first select the subgroup of friends that are thought
to be interested and then forward the information to the
subgroup.

Multimodal traffic systems can be also abstracted as traffic
dynamics on top of a multiplex structure. In the system, each
geographical location has different entry points for different
transportation media. Traffic dynamics are usually modeled as
the flow of elements from origin to destination nodes guided
by routing paths [6,7]. The routing strategy and network
structure can greatly influence the emergence of congestion
[8–13]. Many works have been devoted to extend the traffic
and spreading dynamics on isolated networks to multiplex
networks [14–20]. The multiplex structure has been proved
to affect the transportation process, such as traffic load dis-
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tribution, and choice of origin and destination [15,21–23].
For example, in the multimodal traffic system, each element
can choose the most appropriate media to start and end its
travel. If all elements adopt the shortest paths to minimize
their travel distance, this “selfish behavior” will provoke an
unbalance in the traffic load of the transportation layers and
induce counterintuitive congestion [15,23].

In this paper, we focus our study on the traffic-driven
epidemic problem in multiplex networks. For convenience,
we briefly review the main results of epidemic dynamics
on networks. As epidemic dynamics is concerned, the struc-
ture of a network is vital to the outbreak of an epidemic
[24–26]. One of the most important findings is the vanished
epidemic threshold on scale-free (SF) networks [24,25,27].
The generalization of classical epidemic models [such as
the susceptible-infected susceptible (SIS) and susceptible-
infected recovered] to the multiplex networks has stimulated
a great interest. Obviously, one important issue is to relate the
epidemic onset of the whole system with those corresponding
to the isolated networks. Previous studies have pointed out
that an epidemic can be induced in the multiplex system even
for infection rates for which a disease would be unable to
propagate in each isolated network [19,20,28]. That is, the
critical epidemic point of the multiplex network is smaller
than any of the isolated layers. The coupled system can sustain
an epidemic even when the isolated networks would be free of
disease.

However, in practice, the spreading of an epidemic is often
accomplished with traffic dynamics, such as the outbreak of
a virus in the Internet through data transmission, and the
propagation of annual influenza by air travel [29,30]. When
the epidemic spreading is taking place in a traffic-driven
environment, the situation will be more complex. In fact, the
outbreak of such an epidemic is mainly dependent on the
spreading scope, which is determined by traffic conditions
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FIG. 1. Schematic of the multiplex networks. Without loss of
generality, here the multiplex network is assumed to be double
layered, labeled A and B, respectively. For traffic dynamics, elements
travel from the origins to the destinations following the shortest
paths. For example, if an element travels from i to j, the shortest
path is iA → jA with length 1. Since only layer A is used, this is an
intralayer path. Another example, the path length is 3 from j to k,
i.e., jA → iA → iB → kB. Obviously, this is an interlayer path.

[27,31–35]. Due to the distribution of traffic flow among the
layers, the relation of the epidemic onset of the whole system
with those of the constituent layers is still unclear. In this
paper, we study the traffic-driven epidemic problem with a
traffic model similar to the multimodal traffic system [15]. By
mean-field approximation, we obtain analytical expressions
for the epidemic thresholds of the multiplex network. We
show that the epidemic threshold of the multiplex network
is not always smaller than those of the isolated networks.
An appropriate structure of one layer will attract some traf-
fic flow and suppress the epidemic spreading in the whole
system. The suppression of an epidemic by a multiplex net-
work will occur when the structure of constitutive layers
meets some special requirements. The theoretical analysis
provided in this paper can be applied to both homogeneous
random multiplex networks and heterogeneous scale-free
multiplex networks. The results reveal a profound relation
between the outbreak of the epidemic and the multiplex
structure.

II. MODEL CONSTRUCTION

Our model is defined on a multilayer network with L layers
as illustrated in Fig. 1. There are N nodes in each layer.
The interconnectivity between layers is assumed to be one
to one, i.e., a node has only one neighbor in the other layer.
It can be also understood as that a node has one replica in
each layer. This network can be regarded as the excellent
proxy of the structure of multimodal traffic or communication
systems in geographic areas. Each location of the system has
different replicas that represent each entry point to the system
using the different traffic or communication media. The traffic
dynamics and epidemic spreading will proceed in the system,
simultaneously.

A. Traffic dynamics model

To model the traffic dynamics on a multiplex network, new
transport elements are constantly generated with randomly
chosen origin and destination nodes. The elements traverse the
multiplex system following the shortest paths. Once arriving
at the destination, the elements are removed from the system.
First-in-first-out discipline is adopted in each replica.

Since nodes have replicas in each layer, an element can
choose any replica of its origin node as the starting point.
Arriving at any one of the replicas of the destination node
is deemed to have completed the travel. Obviously, there are
two types of the shortest paths for a given node pair, i.e., paths
that only use a single layer (intralayer paths) and that use more
than one layer (interlayer paths). Furthermore, we assume that
the element generation rate of each node is Lr, where r is the
average generation rate for its replica in each layer.

Due to the concern of the epidemic spreading, we will not
consider the traffic congestion in this model. We assume that
both the processing capacity and the buffer of each node are
infinite.

B. Epidemic spreading model

Here, the classical SIS epidemic model [36] is adopted.
In this model, the individuals are divided into two states,
i.e., susceptible and infected. When a susceptible individual
receives an element from an infected neighbor, it will be
infected with probability β or keep susceptible by the immune
resources with probability 1 − β. At the same time, the in-
fected individuals are recovered at rate μ (here, we set μ = 1).

Initially, all nodes in the network are susceptible, and no
epidemic spreading occurs. After a transient time, the traffic
dynamics reaches the steady state. Then, some replicas (a
fraction ρ0 at each layer) are randomly set as the infection
sources. In all subsequent numerical experiments, ρ0 = 0.1 is
used. Once a replica is infected, all elements delivered from it
are infected until it recovers.

III. DETERMINATION OF THE EPIDEMIC THRESHOLD

For an isolated uncorrelated network, the traffic-driven
epidemic threshold can be obtained by the mean-field approx-
imation [27],

βc = 〈b〉
〈b2〉

1

rN
, (1)

where N is the number of nodes, r is the element generation
rate for a node, b is the node between-ness, and 〈·〉 means
the average over all nodes. This equation indicates that the
epidemic threshold is constrained by the routing paths and the
traffic demand. Obviously, the outbreak of an epidemic will
be difficult for a light traffic load.

The situation becomes complex when the system involves
more than one layer since the traffic load will redistribute over
the layers. As indicated by Eq. (1), the distribution of routing
paths (or the corresponding between-ness value) is the main
factor that influences the spread of the epidemic. To obtain the
epidemic threshold for multiplex networks, we need to first
figure out the distribution of shortest paths in the system. Two
important parameters have to be found: (i) λ, the fraction of
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interlayer paths among all shortest paths; (ii) φl , the fraction
of intralayer paths of layer l in all intralayer paths. With these
two parameters, we can express the between-ness of each
replica approximatively as [15]

bl
i ≈ λφl b(l )

i , (2)

where bl
i is the between-ness of the replica of node i in

layer l and b(l )
i is the corresponding between-ness by treating

layer l as a single network. The term λφl accounts for the
fraction of the shortest paths traversing only layer l . Note that
the contribution from the paths that use interlayer edges is
ignored. If a particular layer has very dense connections, its
original path length is relatively shorter, and there will be no
need to migrate its shortest path to other layers. Especially,
with the increase in average degree, one can have λ ≈ 1.0 and
bl

i ≈ φl b(l )
i [15].

Then, we can find the following averages:

〈bl〉 =
∑N

i=1 bl
i

N
= λφl〈b(l )〉, (3)

〈bl 2〉 =
∑N

i=1

(
bl

i

)2

N
= λ2φl 2〈b(l )2〉. (4)

With Eq. (1), we can have two ways to predict the epidemic
threshold βc of the multiplex network. First, extending Eq. (1)
to consider all layers in the multiplex, we have

βc =
∑L

l=1〈bl〉
∑L

l=1

〈
bl 2〉

1

rLN
. (5)

Inserting Eqs. (3) and (4) into Eq. (5), the epidemic threshold
can be predicted as

βc =
∑L

l=1 φl〈b(l )〉
∑L

l=1 φl 2〈b(l )2〉
1

λrLN
. (6)

From another point of view, the outbreak of an epidemic in
any layer can indicate the outbreak in the whole system. Thus,
we can first find the epidemic threshold of each layer, and the
smallest one can be regarded as the epidemic threshold for the
multiplex network. Following the mean-field approximation
[27], the epidemic threshold for a layer should be as follows:

β l
c = 〈bl〉

〈bl 2〉
1

rLN

= 〈b(l )〉
φl

〈
b(l )2〉

1

λrLN
. (7)

Then, the epidemic threshold of the multiplex network is

βc = min
l∈L

{
β l

c

}
. (8)

To verify and compare the accuracy of Eqs. (6) and (8),
we perform a simulation experiment on double-layered Erdős-
Rényi multiplex networks with N = 500. The results are
shown in Fig. 2. It can be seen that Eq. (8) is more accurate
to predict the epidemic threshold of multiplex networks. The

FIG. 2. Comparison of the threshold βc obtained by theoretical
analysis and by experimental simulation. The multiplex networks
used in the simulation are formed by two Erdős-Rényi networks (L =
2) with N = 500. For the traffic dynamics, the element generation
rate is set as r = 1. The results are obtained by Eq. (8) (main figure),
Eq. (6) (lower right), and Eq. (8) with λ ≈ 1 (upper left), respectively.
R2 is the coefficient of determination for the linear fitting. Equation
(8) shows the best prediction with R2 = 0.973.

inferior accuracy of Eq. (6) can be explained as follows. In
fact, the extension of Eq. (6) is based on the assumption of an
uncorrelated network. For multiplex networks, the intercon-
nections among different layers will make the system more
correlated and degenerate the accuracy of Eq. (6).

IV. EPIDEMIC SUPPRESSED ON THE MULTIPLEX
NETWORKS

The multiplex structure can make the traffic flow immigrate
from the less efficient layers (with longer travel lengths) to the
more efficient layers (with shorter travel lengths) [15]. In the
context of traffic-driven epidemic spreading, this redistribu-
tion of traffic flow will affect the spreading in the layers and
can eventually induce or suppress the epidemic spreading. In
the following, we will explore this effects in detail using both
homogeneous Erdős-Rényi multiplex networks and heteroge-
neous scale-free multiplex networks.

A. Epidemic suppressed on Erdős-Rényi multiplex networks

We can investigate the phenomenon of an epidemic sup-
pressed by a multiplex structure as the situation that the
epidemic threshold of the multiplex network is larger than, at
least, one threshold of its layers when operating individually.

As an example, consider a multiplex structure composed
of two layers A and B with average degrees 〈k(A)〉 and 〈k(B)〉.
For two layers with the same number of nodes, the layer
with more links (or a larger average degree) usually has a
smaller average between-ness. From Eq. (1), one can find
that the layer will have a larger epidemic threshold. Without
loss of generality, we assume that layer B is more efficient in
terms of traffic dynamics (i.e., 〈kA〉 < 〈kB〉, and β (A)

c < β (B)
c ).

When forming a multiplex network, since layer B is more
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FIG. 3. Fraction of infected nodes ρ as a function of infected
probability β for two typical Erdős-Rényi multiplex networks formed
with two layers of different average degrees: (a) 〈kA〉 = 10 and
〈kB〉 = 20; (b) 〈kA〉 = 15 and 〈kB〉 = 30. Other parameters are N =
500 and r = 1.

efficient, the traffic flow will immigrate from layer A to layer
B. Therefore, the epidemic threshold of layer A will increase,
whereas the threshold of layer B will decrease. That is as
follows:

βA
c � β (A)

c , (9)

βB
c � β (B)

c . (10)

As Eq. (8) predicts, the epidemic threshold of multiplex βc

will be the smaller one of βA
c and βB

c ,

βc = min
(
βA

c , βB
c

)
. (11)

For the situation of an epidemic suppressed by the multiplex
configuration, the epidemic threshold of the multiplex net-
work should satisfy

βc > β (A)
c . (12)

For this situation, since βA
c will be always greater than β (A)

c
[Eq. (9)], the epidemic threshold of the multiplex network
should be βc = βB

c . Thus, we can find the condition for the
occurrence of an epidemic suppressed by the multiplex con-
figuration as: βB

c > β (A)
c . Using Eqs. (1) and (6) to determine

β (A)
c and βB

c , respectively, the condition can be rewritten as

1

2λφB
�

〈b(A)〉〈b(B)2〉

〈b(B)〉〈b(A)2〉 . (13)

From this inequation, we will find that a double-layered
multiplex structure can produce a larger epidemic threshold
than, at least, one individual layer when the condition is meet.
This is verified by simulation experiments of multiplex net-
works composed of two Erdős-Rényi layers. Figure 3 shows
the fraction of infected nodes ρ as a function of infected
probability β for two typical Erdős-Rényi multiplex networks.
Figure 3(a) shows a special result that the multiplex shows an
epidemic threshold between the thresholds of its single layers,
whereas Fig. 3(b) shows a normal result of epidemic induced
by the multiplex structure.

Figure 4 shows the probability of observing the epidemic
suppressed by the multiplex structure generated with Erdős-
Rényi networks. For each data point, we examine 100 real-
izations of the multiplex network. For each realization, we
compute the epidemic thresholds of the multiplex network

FIG. 4. Probability of obtaining a multiplex configuration that
suppresses epidemic spreading. The number of points is 702, and for
each point, 100 configurations are generated with fixed 〈kA〉 and 〈kB〉.
The colors indicate the probability of βc > min(β (A)

c , β (B)
c ). The lines

show the result of Eq. (13) to detect the boundaries [the solid lines
are obtained by Eq. (13) with the real value of λ, and the dashed lines
are obtained with λ = 1]. Other parameters are L = 2, N = 500, and
r = 1.

and of the individual layers. Then, we obtained the fraction of
realization that the multiplex network has a larger epidemic
threshold than one layer. The result of Eq. (13) is used to
determine the regions where the multiplex suppresses the
epidemic. One can see that the result of Eq. (13) shows the
qualitative agreement with the experiments. The deviation
is mainly caused by the mean-field approximation and the
correlation of networks, especially when the average degrees
of individual layers are large.

The reason behind this phenomenon is the distribution of
traffic flow between the layers. The more efficient layer (in
terms of the traffic flow) will attract some traffic flow from
the less efficient layer, which is also more vulnerable in the
epidemic spreading. When the structures of two layers are
appropriate, this effect will eventually increase the epidemic
threshold. However, for the region of comparatively different
average degrees (upper and right edge), the probability of ob-
serving an epidemic suppressed by multiplex structure is very
low. The reason of this phenomenon is also the redistribution
of traffic flow among the layers. When one layer is far more
efficient than the other layers, the traffic flow will immigrate
to the layer, and eventually induce an epidemic outbreak in
the layer.

B. Epidemic suppressed on scale-free multiplex networks

In the previous subsection, we show that the spreading of
a traffic-driven epidemic may be suppressed by a multiplex
network composed of homogenous random graph layers. In
fact, this phenomenon can be observed in other multiplex
network structures. Here, we demonstrate the suppression of
a traffic-driven epidemic on SF multiplex networks, which is
more appropriate to represent real-life communication sys-
tems. We construct each layer by the uncorrelated configura-
tion model (UCM) [37,38]. The rules of the UCM proceed
as follows: (1) In a set of N initially disconnected nodes,
assign each node i a degree ki sampled from the power-law
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FIG. 5. Probability of obtaining a scale-free multiplex configura-
tion that suppresses epidemic spreading. The number of simulation
points is 302, and, for each point, we generate 100 configurations
fixing kA

min and kB
min. The colors indicate the probability of ob-

serving that the epidemic threshold of the multiplex satisfies βc >

min(β (A)
c , β (B)

c ). The lines show the results of Eq. (13) in detecting
the region where the multiplex structure induces an epidemic.

distribution P(k) ∼ k−γ with the constraints kmin � ki � kmax

(normally kmax = √
N); (2) randomly connect nodes by the

preassigned degrees, and multiple and self-connections are
forbidden. One can see that the parameters controlling the
structure of the UCM SF networks are kmin and γ . Here, we fix
γ = 2.8, N = 1000, and adjust kmin as a variable to control
the layer structure. Furthermore, since the system used here
is relatively small, the hubs could dominate the structure of
the network as well as the distribution of the traffic load. So,
we add a constraint kmax = min(kmin + 10,

√
N ) to distinguish

layers with different kmin’s. With the increase in the system
size, this constraint can be relaxed. However, that might be
computationally expensive.

Figure 5 shows the probability of observing an epidemic
suppressed by the SF multiplex networks. The phenomenon
of suppressing the epidemic in the multiplex networks is
observed when both layers’ minimal degrees are relatively
small. When the minimal degree of any layer exceeds

kmin ≈ 22, the UCM model will make a node in the layer have
the maximum degree of kmax = √

N . Then, the traffic flow
will be attracted to the layer, and the effect will eventually
produce a lower epidemic threshold for the multiplex network.
Equation (13) can work well in predicting the boundaries of
regions. With SF networks, the approximation of λ ≈ 1.0 is
no longer valid. Therefore, the prediction of Eq. (13) with
λ = 1.0 is not presented.

V. CONCLUSION

To summarize, we have studied the traffic-driven epidemic
spreading phenomena on multiplex networks. We integrate the
susceptible-infected-susceptible model with a traffic model
and develop a theoretical method to determine the epidemic
threshold of multiplex networks. By theoretical analysis, we
show that the epidemic can be suppressed by the multiplex
structure, which is different from previous findings that the
multiplex network will always induce an epidemic. We also
provide an explicit expression for determining the network
parameters that trigger these phenomena. The theoretical
predictions show a qualitative agreement with the empirical
experiments.

The suppression of the epidemic can be observed on both
Erdős-Rényi multiplex networks and scale-free multiplex net-
works. The reason is the redistribution of the traffic flow
among the layers. When some layers are coupled to be a
multiplex network, the traffic flow could immigrate from one
layer to some others. Eventually, this redistribution of the
traffic flow could suppress the spreading of the epidemic in
the whole system. However, if one layer attracted too much
traffic flow, a lower spreading threshold can also be found.

These findings reinforce the importance of multiplex struc-
tures on network dynamics. The results might also help the
development of more efficient immunization policies.
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